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Abstract

Diffusion tensor imaging (DTI) has been extensively used to map changes in brain tissue related to 

neurological disorders. Among the most widespread DTI findings are increased mean diffusivity 

and decreased fractional anisotropy of white matter tissue in neurodegenerative diseases. Here we 

utilize multi-shell diffusion imaging to separate diffusion signal of the brain parenchyma from 

non-parenchymal fluid within the white matter. We show that unincorporated anisotropic water in 

perivascular space (PVS) significantly, and systematically, biases DTI measures, casting new light 

on the biological validity of many previously reported findings. Despite the challenge this poses 

for interpreting these past findings, our results suggest that multi-shell diffusion MRI provides a 

new opportunity for incorporating the PVS contribution, ultimately strengthening the clinical and 

scientific value of diffusion MRI.
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Introduction

Diffusion MRI is sensitive to water displacement, a physical process that is useful for 

characterizing structural and orientational features of brain tissue (Bihan and Breton, 1985; 

Le Bihan and Johansen-Berg, 2011). Diffusion tensor imaging (DTI) (Basser et al., 1994) is 
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the most popular diffusion MRI modeling technique which has been widely used to study 

brain in health and disease (Alexander et al., 2007; Assaf and Pasternak, 2008; Hassan et al., 

2014; Horsfield and Jones, 2002; Le Bihan et al., 2001; Sundgren et al., 2004). Over the past 

30 years, many studies reported DTI-derived measures, such as fractional anisotropy (FA) 

and mean diffusivity (MD), in neurological diseases. A reproduced and well-known example 

is the observation of increased MD and decreased FA in neurodegenerative disease such as 

Alzheimer’s disease (Acosta-Cabronero and Nestor, 2014; Agosta et al., 2011; Amlien and 

Fjell, 2014; Cavedo et al., 2017; Charlton et al., 2006; Choi et al., 2005; Fellgiebel et al., 

2004; Kantarci et al., 2017b, 2017a, 2014; Mayo et al., 2017; Naggara et al., 2006; Nir et al., 

2013; Sexton et al., 2011; Westlye et al., 2010; Wolf et al., 2015; Zhang et al., 2009, 2007). 

These findings were often interpreted as the outcome of the white matter degeneration which 

leads to extra free space for water to displace in every direction, and therefore higher MD 

and lower FA (i.e. DTI findings are often interpreted as the pathological microstructural 

alterations of the white matter tissue). However, there remain major concerns regarding the 

validity of the interpretations. Neuronal degeneration is not the only occurring process, and 

other pathological changes related to increased glia, presence of Tau tangles and amyloid 

plaques (Laurent et al., 2018), may even hinder water displacement, and plausibly lower 

water diffusivity.

Perivascular space (PVS), also known as Virchow-Robin space, is a pial-lined, fluid-filled 

structure that accompany vessels entering (penetrating arteries) or leaving (draining veins) 

the cerebral cortex (Krueger and Bechmann, 2010; Zhang et al., 1990). Due to the extensive 

vascularity of the brain, PVS occupies a large portion of the cerebral tissue (Osborn, 2006) 

(Figure 1.a and 1.b). PVS volume varies across people, enlarges with aging as brain tissue 

shrinks, and changes in many neurological diseases (Bacyinski et al., 2017; Banerjee et al., 

2017; Brown et al., 2018; Cavallari et al., 2018; Feldman et al., 2018; Kalaria, 2018; 

Krueger and Bechmann, 2010; Laveskog et al., 2018; Park et al., 2017). Structurally 

speaking, PVS has a microscopic tubular geometry that occupies extra-vascular space, with 

decreasing diameter as it penetrates deeper into the brain tissue. Therefore, unlike brain 

tissue, water molecules of PVS freely move in the microscopic scale, yet they are hindered 

by the vessel and the cerebral tissue in macroscopic scale. High-resolution MRI and post-

mortem studies have shown that PVS in white matter has microscopic scale tubular structure 

with small diameter that was observed throughout the brain (Akashi et al., 2017; Bouvy et 

al., 2014). This morphological characteristic will result in water displacement within the 

white matter that can be anisotropic.

When DTI measures are estimated, the derived measure reflects the diffusion properties of 

both the tissue and fluid from the PVS. Given the relatively fast diffusivity of the water in 

PVS, even a small portion of PVS in an imaging voxel can have a substantial effect on the 

voxel averaged DTI measures, due to the partial volume effect (Alexander et al., 2001). Here 

we focus on the effect of PVS fluid on DTI-derived measures, namely FA and MD. Our 

experiments demonstrate that a failure to incorporate this fluid compartment can impose a 

systematic bias in how DTI can be interpreted. We show that in a brain tissue with a given 

DTI characteristic, if the amount of PVS increases (Figure 1.c), DTI modeling would result 

in an increased MD and decreased FA. While disrupted tissue microstructure is often cited 

when changes in DTI parameters are observed, the bias imposed by changes in PVS fluid 

Sepehrband et al. Page 2

Neuroimage. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provides a hypothetical but compelling alternative explanation for many reported findings in 

DTI studies of neurodegenerative diseases.

Method

In order to assess this bias we considered two tensors in a voxel (Pierpaoli and Jones, 2004), 

one for the tissue and the other for the PVS compartment. This model was utilized because it 

separates PVS and the tissue and allows the examination of the effect of PVS fluid on DTI 

signal. It also enables direct comparison between tensor-derived measures across 

compartments. For clarity, the images relating to the tissue are called tissue tensor images 

(TTI), which were used to investigate the bias of the DTI. DTI reflects the voxel values, but 

TTI reflects tissue values and are referred to accordingly. Experimental data showed that an 

anisotropic model of the PVS fits better to diffusion data compared to an isotropic model 

(described below). Therefore, throughout this study we used an anisotropic model of PVS as 

the reference model, when evaluating DTI measures. It should be noted that a diffusion MRI 

acquisition with multiple b-values is required (multi-shell diffusion MRI) (Pierpaoli and 

Jones, 2004) for multi-compartment modeling of brain tissue, and datasets were selected 

accordingly.

We consider non-parenchymal fluid to relate to less hindered fast-diffusing compartment 

within the white matter, including PVS, cerebrospinal, interstitial and cysts fluids. In the 

presence of white matter atrophy, pathological changes could also result to the accumulation 

of non-parenchymal fluid (e.g. lacunes). Here, a multi-compartment model was used to 

separate TTI from non-parenchymal fluid. In voxels with high PVS presences, the non-

parenchymal fluid is assumed to reflect the PVS compartment.

Experimental data to asses PVS anisotropy

To ensure that PVS diffusion signal is anisotropic, we acquired a multi-shell non-

conventional diffusion MRI of a healthy 32-years-old female volunteer and assessed the 

goodness of fit of an anisotropic model versus an isotropic model. An hour of scan was 

conducted to acquire 632 diffusion MRI volumes. Multi-shell diffusion MRI with b-values 

of 0, 200, 400, 600, 800, 1000, 1200, 1500 and 2000 s/mm2 was acquired with isotropic 

resolution of 1.5 mm3 using a 3T scanner (Prisma, Siemens Healthcare, Erlangen, 

Germany), with an acquisition sequence similar to Human Connectome Project (HCP) 

(Essen et al., 2013). Thirty gradient-encoding directions for low b-value shells (<1500) and 

60 gradient-encoding directions for other shells were acquired in both anterior-posterior and 

posterior-anterior phase encoding directions. We used a single-channel quadrature transmit 

radiofrequency (RF) coil and a 32-channel receive array coil (Nova Medical Inc., MA). In 

addition to diffusion MRI, high-resolution T2-weighted images were also acquired to locate 

PVS in fine detail to aid spotting regions with high PVS presence. T2-weighted images 

using turbo-spin echo sequences with in-plane resolution of 340 μm (interpolated to 170 μm) 

and 2 mm slice thickness were collected with two averages and two concatenations. The 

institutional review board of the University of Southern California approved the study. 

Informed consent was obtained from the volunteer, and the image datasets were 

anonymized.
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dcm2nii was used to convert the dicom images to the nifti file format (Li et al., 2016). 

Diffusion MRI data were corrected for subject motion, eddy current, EPI distortion. FSL’s 

TOPUP was used to correct for B0-inhomogeneity distortion using two opposing phase 

encoded images (Andersson et al., 2003). FSL’s EDDY was used to correct for current 

induced field inhomogeneity and subject’s head motion (Andersson et al., 2012), followed 

by correction for the gradient nonlinearity. Two bi-tensor models were fitted to the diffusion 

data, one allowing anisotropic diffusion for PVS and one constrained to isotropic diffusion. 

Quantitative Imaging Toolkit (QIT) (Cabeen et al., 2018) was used for fitting. Except for the 

diffusion profile of the PVS compartment, an identical fitting routine was used for both 

models. Fitting was performed using constrained trust-region derivative-free optimization 

using Powell’s BOBYQA algorithm (Powell, 2009). The signal fraction was required to be 

between zero and one, the fluid compartment was required to be axially symmetric fluid 

compartment with positive diffusivities and have an axis aligned to the tissue principal 

direction, and the tissue compartment was constrained to be positive definite using a re-

parameterization with the Cholesky decomposition. Models were compared by comparing 

the root mean square error of the fit and also by performing the Akaike information criteria 

(AIC) test (Akaike, 1974), as described here (Burnham and Anderson, 2004). Anisotropy of 

the fluid compartment inside the lateral ventricle were examined as an extra step of the 

scurrility check of the fitting. As expected fractional anisotropy was near zero in ventricle 

voxels (FA = 0.06 ± 0.01).

As expected, the diffusivity of the PVS compartment was not isotropic in white matter and 

in voxels with high PVS presences (Figure 2). Therefore, diffusion profile of the non-

parenchymal fluid was not fixed to an isotropic profile. Anisotropic model fitted more 

accurately to the white matter voxels compared to the isotropic model (Figure 2.e and 2.f). 

Statistically, the root mean square error of the anisotropic fit was significantly lower than 

that of the isotropic model (t(15095) = 147.73, p < 0.0001). AIC test resulted to the same 

conclusion, in which the anisotropic model of the PVS compartment outperformed the 

isotropic model (AIC score was significantly lower in the anisotropic model: t(15095) = 

−142.15, p < 0.0001). The fitting was particularly superior in voxels with high PVS presence 

that were identified from structural MRI across the white matter. In these voxels, AIC score 

was significantly lower in the anisotropic model: t(262) = −21.36, p < 0.0001). For example, 

pre-cortical white matter voxels around centrum semiovale were best modeled when the 

anisotropic model of the PVS was utilized. An isotropic assumption for the PVS 

compartment is evidently not optimal. Therefore, throughout this study we used an 

anisotropic model of PVS, as the reference model to evaluate against DTI measures. It 

should be noted that PVS fluid could also be isotropic if the caliber of PVS pathway is larger 

than the water proton diffusion in the time scale of the diffusion MRI. Using a tensor model 

of non-parenchymal fluid compartment allows the representation of PVS anisotropy level.

Simulation

In the simulation experiments, the diffusion-weighted signal was synthesized with 

biologically plausible tissue and perivascular space (PVS) contributions. The synthetic 

model had a baseline signal of one, fluid signal fractions in the range of 0 to 0.5, and axially 

symmetric and aligned tensors for the tissue and fluid compartments. The tissue 
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compartment had an axial diffusivity of 1.6 μm2/ms and a radial diffusivity of 0.4 μm2/s. The 

fluid compartment had an axial diffusivity of 3 μm2/s and a radial diffusivity of 2.5 μm2/s 

The signal was simulated using a multi-shell acquisition scheme. Diffusion encoding 

gradients were optimized for multi-shell sampling, using the q-space sampling Web 
application (http://www.emmanuel-caruyer.com/q-space-sampling.php ) (Caruyer et al., 

2013). Total of nine shells, with b-values ranging from 0 s/mm2 to 2000 s/mm2 were used (at 

250 s/mm2 steps, with 90 q-space sampling per shell). Noise with a standard deviation of 

0.025 was added to the simulated signal, then diffusion tensor imaging (DTI) (Basser et al., 

1994; Bihan and Breton, 1985) and DTI free water elimination (DTI-FWE) (Pasternak et al., 

2009) models were fitted to the data, and finally diffusion parameters were extracted from 

the fitted models.

High-resolution 7T images

High-resolution T2-weighted images were acquired to visualize PVS in fine detail. Two 

healthy adult females (32 and 56 years old) were scanned on a 7 Tesla (7T), whole-body 

scanner (Terra, Siemens Healthcare, Erlangen, Germany) using a single-channel quadrature 

transmit radiofrequency (RF) coil and a 32-channel receive array coil (Nova Medical Inc., 

MA). The institutional review board of the University of Southern California approved the 

study. Informed consent was obtained from the volunteers, and the image datasets were 

anonymized.

T2-weighted using turbo-spin echo sequences with in-plane resolution of 300 μm 

(interpolated to 150 μm) and 2 mm slice thickness were collected. Four averages and two 

concatenations were acquired to enhance image SNR and CNR (Sepehrband et al., 2018). 

With echo time of 73 ms, repetition time of 3.5 s and total of 25 slices, the acquisition time 

was 12 minutes.

HCP data

We evaluated the effect of PVS on DTI measures on a large cohort of young healthy adults, 

in whom pathological white matter fluid such as microcysts and lacunar infarcts are not 

expected. We also focused on voxels and regions were PVS presence could be confirmed 

from structural MRI. We downloaded structural and diffusion magnetic resonance imaging 

(MRI) data provided by the HCP (Essen et al., 2013), namely “S900 release”. This dataset 

includes 861 healthy participants (age, 22–35 years) with multi-shell diffusion MRI (1.25 

mm3 resolution) and structural Tl-weighted and T2-weighted images (0.7 mm3 resolution 

images), suitable for our analyses. The diffusion MRI image included three shells of b-

values (1000, 2000 and 3000 s/mm2), each with 90 diffusion-weighted images. In addition, 

18 non-diffusion-weighted images were acquired. FA and MD were compared in this cohort 

with and without considering the PVS contribution.

HCP data analysis

We used preprocessed data using methods detailed previously, which were preprocessed 

using HCP pipelines (Glasser et al., 2013; Milchenko and Marcus, 2013; Sotiropoulos et al., 

2013). In brief: the structural images were corrected for gradient nonlinearity, readout, and 

bias field; aligned to AC-PC “native” space and averaged when multiple runs were available; 
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then registered to MNI 152 space using FSL (Jenkinson et al., 2012)’s FNIRT. The native 

space images were used to generate individual white and pial surfaces (Glasser et al., 2013) 

using the FreeSurfer software (Fischl, 2012) and the HCP pipelines (Glasser et al., 2013; 

Sotiropoulos et al., 2013). FSL’s TOPUP was used to correct for B0-inhomogeneity 

distortion using two opposing phase encoded images (Andersson et al., 2003). FSL’s EDDY 

was used to correct for current induced field inhomogeneity and subject head motion 

(Andersson et al., 2012), followed by correction for the gradient nonlinearity. Diffusion data 

were registered to the structural T1-weighted AC-PC space using the non-diffusion-weighted 

volume. The diffusion gradient vectors were rotated accordingly.

DTI, DTI-FWE and tissue tensor imaging (TTI) models were fitted to HCP subjects using 

Quantitative Imaging Toolkit (QIT) (Cabeen et al., 2018). For a robust estimation of DTI 

measure, the shell with the b-value of 1000 s/mm2 was separated and the tensor model was 

fitted to each voxel of the volume using a non-linear least square fitting routine. DTI-FWE 

and TTI were fitted to the complete diffusion data. DTI-FWE model fitting was performed 

using a custom implementation of the procedure described by Hoy et al. (Hoy et al., 2014), 

in which the fluid compartment is assigned a constant diffusivity of 3 μm2/s and the optimal 

signal fraction parameter is determined through a grid search with linear least squares of the 

tissue tensor compartment at each grid point. The TTI model fitting was performed similar 

to the fitting of the experimental data. TTI fitting was initialized with the parameters 

obtained from the DTI-FWE model, and TTI parameters were constrained as follows: the 

signal fraction was required to be between zero and one, the fluid compartment was required 

to be axially symmetric fluid compartment with positive diffusivities and have an axis 

aligned to the tissue principal direction, and the tissue compartment was constrained to be 

positive definite using a re-parameterization with the Cholesky decomposition.

Diffusion MRI-derived measures were compared in different areas of the white matter: in 

voxels with high PVS signal fraction and then in four atlas-driven regions of the white 

matter that are known to have varying PVS appearance in healthy adults (Osborn, 2006), 

namely: corpus callosum (low PVS appearance), para-hippocampus (intermediate PVS 

appearance), centrum semiovale (high PVS appearance), and superior-frontal part of the 

white matter (an additional randomly selected region). White matter voxels with high PVS 

appearance were selected from high-resolution structural images. We noted that the “T1-

weighted divided by T2 weighted” images, provided as part of the HCP release, can clearly 

highlight voxels with high PVS presence. The additional clarity is because fluid appears 

hyperintense in T2-weighted images and hypointense in Tl-weighted images. A threshold of 

2.5 (based on manual inspection of the voxels with high PVS presence) was used to segment 

PVS, where a voxel with “Tl-weighted divided by T2-weighted” intensity of smaller than 

2.5 was considered a voxel with high PVS presence (Figure 3.a is a given example). An 

inflated mask of lateral ventricles was then used to excluded incorrectly segmented voxels in 

the periventricular areas, mainly observed in the body and posterior horn of the ventricles. 

Four white matter regions were extracted from FreeSurfer’s white matter segmentation 

outputs (Fischl, 2012), which were derived using Desikan-Killiany atlas (Desikan et al., 

2006). When comparing diffusion MRI-derived measures, paired t-test and Pearson 

correlation were used.

Sepehrband et al. Page 6

Neuroimage. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To ensure non-parenchymal fluid in voxels with high PVS presences are related to PVS 

fluid, the fluid signal fraction maps were quantitatively compared with high-resolution T2-

weighted images (Supplementary Figures 1–3). In addition, the probability of the PVS 

presence was estimated from structural images using Frangi filtering (Frangi et al., 1998) 

and was compared against fluid signal fraction values. Frangi filter estimates a vesselness 

measure for each voxel from eigenvectors of the Hessian matrix of the image (Frangi et al., 

1998). Frangi filter was implemented similar to (Ballerini et al., 2018). Transformation 

matrix of structural-to-diffusion MRI data was used to register the vesselness map to 

diffusion MRI space. Lastly, per-voxel correlation between the vesselness measures and the 

fluid signal fraction were assessed in voxels with high PVS presence using Pearson 

correlation.

ADNI-3 data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD).

The PVS bias was investigated on an Alzheimer disease neuroimaging initiative 3 (ADNI-3) 

cohort (Weiner et al., 2017), in which multi-shell diffusion MRI data is available. Data of 62 

subjects with multi-shell diffusion MRI was downloaded from the ADNI database (http://

adni.loni.usc.edu) (Toga and Crawford, 2010). One young CN subject (54-year-old) was 

excluded. Subjects were divided into two groups of cognitively normal (CN) subjects (N=37, 

24 females) and MCI patients (N=24, 7 females). Average age of the CN (M=73.7, SD=7.9) 

and the MCI group (M=75.5, SD=6.8) were not statistically different (t(59)=0.93, p=0.36). 

The MCI group consisted of patients with the following cognitive stages: significant 

memory concerns (N=2), early MCI (N=7), MCI (N=12), late MCI (N=3). FA and MD were 

compared between the CN and MCI groups, with and without considering the fluid 

contribution.

ADNI-3 data analysis

All ADNI-3 images used in this study were acquired using Siemens Prisma or Prisma_fit 3T 

scanner (Siemens Healthcare, Erlangen, Germany), on six different sites, using a 

standardized diffusion MRI sequence (Wyman et al., 2013). Diffusion MRI data was 

acquired using the following parameters: 2D echo-planar axial imaging, with sliced 

thickness of 2mm, in-plane resolution of 2mm2 (matrix size of 1044 × 1044), flip angle of 

90°, 126 diffusion-encoding images with three b-values (6 directions for b-value=500 s/

mm2, 48 directions for b-value=1000 s/mm2, 60 directions for b-value=2000 s/mm2), with 

13 non-diffusion-weighted images were acquired.

After downloading the raw images, dcm2nii was used to convert the dicom images to the 

nifti file format (Li et al., 2016). Diffusion MRI were corrected for eddy current distortion 
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and for involuntary movement, using FSL TOPUP and EDDY tools (Andersson et al., 2012, 

2003). DTI, DTI-FWE, and TTI models were fitted using the same procedure as with the 

HCP data. Data was analyzed using QIT to examine diffusion tensor parameters in deep 

white matter, as defined by the Johns Hopkins University (JHU) white matter atlas (Mori et 

al., 2008). The JHU regions were segmented in each scan using an automated atlas-based 

approach described in Cabeen et al., (Cabeen et al., 2017) in which deformable tensor-based 

registration using DTI toolkit (DTI-TK) (Zhang et al., 2006) was used to align the subject 

data to the Illinois institute of technology (IIT) diffusion tensor template (Zhang et al., 

2011), and subsequently to transform the JHU atlas regions to the subject data and compute 

the average of each diffusion tensor parameter with each JHU region.

We used linear regression when investigating the relation between diffusion-derived 

measures with the cognitive stage using an ordinary least square fitting routine, implemented 

with the statsmodels.OLS module in Python 3.5.3 (StatsModels version 0.8.0 – other Python 

packages that were used are Pandas version 0.20.3 and NumPy version 1.13.1). Multiple 

regressions were fitted to regional mean values, one region at a time. For every instance, sex, 

estimated total intracranial volume, and age were included as covariates. The Benjamini–

Hochberg procedure with a false discovery rate of 0.1 was used to correct for multiple 

comparisons. Diffusion MRI-derived measures were compared using paired t-test and 

Pearson correlation. Bland-Altman plots (Altman and Bland, 1983) were used to investigate 

whether DTI and TTI were systematically different. Bland-Altman plot analysis are 

designed to investigate a bias between the mean differences (Bland and Altman, 1995), 

where a distribution above or below 0 (on the y-axis) indicates a bias.

Results

Simulation data

Diffusion MR signal in a white matter voxel was simulated by changing the amount of PVS. 

Simulation experiments show how FA and MD of the tissue, when modeled using DTI, 

deviate from the tissue ground truth values, as the amount of PVS increases (Figure 1.e and 

1.f). For example, a 20% increase in PVS signal contribution would result in a same signal 

change if the tissue MD increases from 1 to 1.2 μm2/ms. Our simulations show that even a 

model incorporating an isotropic free water compartment, i.e. without incorporating fluid 

anisotropy, could still systematically bias results in the same direction as the DTI bias. 

However, the scale of this bias is significantly lower (Figure 1.c and 1.d).

DTI bias in healthy subjects

We demonstrated the influence of the PVS on the DTI-derived maps first on a single subject 

and then investigated it on a large cohort of 861 healthy subjects. Subject-level investigation 

showed that the MD map of DTI was significantly affected by PVS contribution (Figure 3.a–

d). Incorporating PVS contribution has dramatically improved the clarity of the MD map 

(Figure 3.d), wherein white matter homogeneity is preserved. Also, the white-gray matter 

contrast is greater compared with DTI-derived MD. The PVS map visually resembles the 

T2-weighted image, without the PVS contrast (more examples are provided in Supplemental 

Figure 1 and 2). We observed that ignoring PVS contribution to diffusion MRI signal could 
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even influence the visual presentation of the FA map, particularly around PVS area 

(Supplemental Figure 3).

Quantitative MD and FA values from DTI were significantly different from TTI, showing 

the expected systematic bias of increased MD and decreased FA. Figure 3.e shows the 

correlation of TTI-derived MD and FA with DTI-derived MD and FA. MD values from DTI 

were significantly higher (t(1345) = 114.70, p < 0.001) than tissue MD from TTI. Tissue 

MD values were more stable compared with voxel MD values 

( std(tMD)
mean(tMD) = 0.12, std(vMD)

mean(vMD) = 0.22), reflecting the expected white matter quantitative 

homogeneity. FA values from DTI were significantly lower in PVS voxels (t(1345) = 

−119.55, p < 0.001). Tissue FA and voxel FA were highly correlated (r = 0.87, “ = 1345, p < 

0.001), but MD values were weakly correlated (r = 0.15, n = 1345, p < 0.001). The 

quantitative difference was observed beyond the PVS voxels and showed to affect the 

regional values (Figure 3.f). Values of all WM regions were significantly different between 

DTI and TTI (all differences were significant at p < 0.001 level).

To determine whether this effect is generalized across individuals, we characterized the DTI 

bias in a typical adult population by quantitatively examining 861 healthy subjects from 

human connectome project (HCP) (Figure 4) (Essen et al., 2013). Empirical results 

confirmed the simulation study, where an increased MD and a decreased FA in DTI results 

were observed. Values were compared in PVS voxels and in white matter regions with 

different expected concentration of PVS, namely: corpus callosum, para-hippocampus, 

centrum semiovale, and superior-frontal part of the white matter (Figure 4.c and 4.f). When 

PVS voxels were looked at, a large and significant difference between TTI and DTI 

measures were observed (t(860) = 283.13, p < 0.001). Voxel MD values from DTI (mean = 

0.94, std = 0.07) were almost three times higher than TTI values (mean = 0.39, std = 0.02). 

This is not surprising given that much of the volume of these voxels are occupied by PVS. 

MD and FA were also significantly different (all at p < 0.001 level) even at region-averaged 

level across DTI, DTI-FWE and TTI (Figure 4.c and 4.f). FA values derived from DTI-FWE 

were closer to DTI, but MD values derived from DTI-FWE were closer to TTI, both 

significantly different (both at p < 0.001 level), confirming that DTI-FWE is not a remedy to 

the PVS imposed bias (see detailed statistics in Supplemental Note 1). In voxels with high 

PVS presence, fluid signal fraction and vesselness values were significantly correlated ( r = 

0.52, p < 0.0001), suggesting that estimated fluid signal fraction in these voxels is primarily 

related to PVS fluid.

DTI bias in a neurodegeneration study

We examined how the PVS DTI bias affects the study of neurodegeneration using data from 

the ADNI-3 project (Weiner et al., 2017). MD and FA values from DTI were significantly 

different than those from TTI across all regions of the white matter (20 random regions are 

plotted in Figure 5.e and 5.f, and the complete list is presented in Supplemental Figure 4). 

The differences were similar to the expected bias and in corroboration with simulation and 

HCP data analysis. The magnitude of the bias was larger across MD measures compare to 

FA. The Bland-Altman plots confirm that measures from DTI and TTI are systematically 

different (MD of DTI is higher, and FA of DTI is lower).
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When comparing FA values of CN and MCI groups using DTI, twelve regions were 

significantly different after correcting for multiple comparison using Benjamini–Hochberg 

procedure and with the false discovery rate of 0.1 (age, sex and brain size are included in the 

regression). Most of these regions shown no significant association when TTI was used or 

when PVS signal fraction was included in the DTI regression model, except for two regions 

that were significantly different: 1. Hippocampal connection of the right cingulum (p < 

0.001, FDR(q) = 0.0021), 2. The Stria terminalis of the right fornix (p = 0.0032, FDR(q) = 

0.0042). The former region was not significantly different between studied groups when a 

more conservative false discovery rate was applied (i.e. false discovery rate of 0.05).

Discussion

Here we showed that ignoring PVS fluid can systematically bias DTI findings. This bias 

affects how DTI-derived measures such as MD and FA are interpreted. An increased MD or 

decreased FA could be due to a physiologically normal higher amount of PVS fluid in the 

voxel. It could also be pathological (for example, PVS enlargement). Hence, ignoring this 

compartment negatively affects the mechanistic power of diffusion MRI. We also showed 

that employing a multi-shell acquisition strategy enables compartmentation of the diffusion 

signal to PVS and parenchyma (in voxels with high PVS presence, as identified by structural 

images), providing additional insight into diffusion signal change. Such capability makes 

diffusion MRI a powerful tool to assess the mechanistic changes underlying white matter 

physiological and pathological changes.

In order to assess the effect of PVS on DTI measures, we used a bi-tensor model to separate 

PVS signal from tissue signal, similar to (Pierpaoli and Jones, 2004), but by incorporating 

biological prior knowledge about PVS fluid diffusion profile. We considered an anisotropic 

water diffusivity for the PVS compartment that is aligned with white matter tracts. We also 

assumed that diffusivity of the PVS fluid is higher than white matter diffusivity, but not 

fixed. This prior knowledge about PVS fluid aids a robust fitting of the bi-tensor model to 

diffusion data, which is otherwise an ill-conditioned fitting problem.

Our experimental data and literature support above assumptions. Doucette et al, recently 

showed that spin echo perfusion dynamic susceptibility contrast signal depends on white 

matter fiber orientation, which is due to vessels running in parallel with white matter tracts 

(Doucette et al., 2018). They showed that only a model that assumes a high diffusion 

coefficient (i.e. PVS) around the vessels is able to fit the data (Doucette et al., 2018; 

Hernández-Torres et al., 2017). In addition, histology studies exhibit the anisotropy of the 

vascular architecture and also showed that their caliber can widely vary (Amato et al., 2016; 

Cavaglia et al., 2001; Duvernoy et al., 1981). We also provide experimental evidence that the 

diffusivity of the PVS in white matter is anisotropic. PVS fluid is hindered by tissue 

parenchyma and vessel wall, which leads to a diffusivity that could be anisotropy. In low b-

value regime, the pulsation and bulk flow could also affect PVS diffusivity (Harrison et al., 

2018; Le Bihan, 1990). These PVS characteristics and our results suggest that a fixed 

isotropic diffusivity is not an optimum choice to model this compartment in both low b-

value regime and in the conventional diffusion MRI time scale.
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It should be noted that the bi-tensor model employed here separate tissue signal from non-

parenchymal fluid, which is not exclusive to PVS. This compartment has signal contribution 

from other non-parenchymal fluid such as CSF and interstitial fluid. Therefore, to study PVS 

diffusion a multi-modal approach is required to identify voxels with high PVS 

contamination.

To the best of our knowledge, this is the first study that examines the contribution of the 

PVS fluid to the DTI-measures. Several techniques and previous studies have included free 

water in diffusion tensor modeling (Berlot et al., 2014; Hoy et al., 2017; Metzler-Baddeley et 

al., 2012; Pasternak et al., 2009; Pierpaoli and Jones, 2004; Zhang et al., 2012) or aimed to 

eliminate it by modifying the imaging sequence (Papadakis et al., 2002), to address the CSF 

partial volume effect in white matter boundaries (e.g. near ventricle). Most of these studies 

used a fixed-diffusivity isotropic diffusion model and/or treated PVS fluid as a factor to 

eliminate. Non-zero volume fraction of the fluid compartment in these techniques has been 

assumed to relate to extra-cellular fluid. Here in addition to the introduction and examination 

of this systematic of DTI measures, we also emphasize that efforts to eliminate fluid 

contributions may not be the right approach, as parameters obtained from this compartment 

could be an imaging signal of significant scientific value. For example, Taoka et al. recently 

showed that diffusivity along the perivascular space may reflect impairment of the 

glymphatic system (Taoka et al., 2017). The extent to which these findings may be affected 

by the choice of the model is yet to be examined. More recently, Thomas et al. showed that 

DTI measures fluctuates during the day, which could be a reflection of physiological 

changes of the glymphatic system, including changes in the PVS fluid amount (Thomas et 

al., 2018). It is also likely that a number of biological and MR-related factors could 

selectively and non-uniformly affect the diffusion signal and/or the diffusivity fluid in PVS 

regions, including: intra-voxel incoherent motion (Le Bihan et al., 1988), white matter and 

vascular orientation (Doucette et al., 2018), cardiac systolic pressure (Iliff et al., 2013) and 

even the PVS convective flow (Holter et al., 2017), which requires further investigation.

Some previous approaches for free water elimination have used single shell data (Pasternak 

et al., 2009); however, our work shows the importance of more complex parameterization of 

the fluid compartment that requires a multi-shell diffusion acquisition, similar to (Hoy et al., 

2014; Pasternak et al., 2012). It is plausible that such single shell free water elimination 

techniques may also be biased in the presences of anisotropic PVS fluid, but this remains an 

open question to be investigated further. We would like to also note that we intentionally did 

not refer to the non-parenchymal fluid “free water”, because we found no evidence to 

suggest that this fluid is “free”, i.e. isotropic or has a fixed diffusivity.

PVS can be mapped with high-resolution T2-weighted imaging only in some voxels where 

PVS contribution is above the contrast-to-noise ratio (Kwee and Kwee, 2007). It can 

however be quantitatively mapped using multi-shell diffusion MRI by extracting the signal 

fraction of the PVS (Supplemental Figure 1 and 2). The signal fraction of the PVS and its 

diffusion characteristics are valuable measures with great potential clinical significance. 

Microscopic or mesoscopic tissue degeneration may result in microscopic and mesoscopic 

tissue shrinkage which could change the MRI appearance of the surrounding PVS. Our 
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experiments suggest that diffusion MRI opens a window to characterizing this potentially 

significant tissue alteration in vivo.

Perivascular space significance

PVS is a major component of the clearance system, accommodating the influx of CSF to 

brain parenchyma through peri-arterial space, and the efflux of interstitial fluid to the 

lymphatic system through peri-venous space (Iliff et al., 2013, 2012; Rasmussen et al., 2018; 

Tarasoff-Conway et al., 2015). Detecting pathological PVS alteration is of high clinical 

significance, because it provide mechanistic insight about disease pathology, aid diagnosis 

and disease monitoring (Brown et al., 2018; Mestre et al., 2018; Wardlaw et al., 2015). 

Microscopic morphology and flow of the PVS fluid has not been fully understood, as in-vivo 

means are required to image it. Recent animal studies resulted to substantial progress in our 

understanding of this compartment (Kress et al., 2014; Mestre et al., 2018). By tracking the 

movement of small fluorescent tracers, Kress et al. showed that CSF enters and exits the 

brain through peri-arterial and peri-venous spaces (Kress et al., 2014). Mestre et al. have 

shown that the PVS flow is pulsatile and mainly driven by the cardiac cycle (Mestre et al., 

2018). They also showed that perfusion fixation is not optimal to study PVS and 

significantly alters its morphology and flow characteristics.

An example between-group study (ADNI-3)

Results from ADNI-3 subjects with multi-shell diffusion MRI data were in-line with 

simulation and HCP data results (Figure 5). It should be noted that voxels of the ADNI-3 

diffusion MRI data are 4.1 times larger than that from HCP data, yet the influence of the 

PVS on the MD map was clearly apparent (Figure 5.c and 5.d). Interestingly, the tissue MD 

map not only separated PVS from the tissue, but also was able to map the periventricular 

white matter hyperintensities. MD map of the TTI resembles the FLAIR contrast, with the 

advantage of having additional quantitative value. To highlight the inter-group variability of 

the PVS concentration, one example image from CN and MCI groups is depicted in Figure 

6.

For additional insight, we further investigated one of the regions with significantly different 

MD value between CN and MCI from the DTI study, namely the superior fronto-occipital 

fasciculus. Voxel MD (from DTI), tissue MD (from TTI), and PVS signal fraction of this 

region are plotted in and compared across CN and MCI in Figure 7. Voxel MD was 

significantly different between CN and MCI when PVS bias was not considered (p < 0.001), 

however, no significant difference was observed in tissue MD. Interestingly, PVS signal 

fraction appears to be the main feature separating CN and MCI in this region, that is, when it 

was included as a dependent variable in the regression (b = 0.087, t(56) = 3.96, p < 0.001). 

When considering all of the regions that we investigated, MD values of DTI were in average 

5% higher in the MCI group, but when TTI was used, the MD of the MCI group was in 

average 1% lower.

Other than PVS fluid, which is physiological in the brain, several pathological features such 

as cerebral microbleeds and lacunar infarcts, could result in the presence of fluid in the 

white matter. Such accumulation of fluid, if not modeled, could result to an increased voxel 
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MD. This increase of MD also cannot be interpreted as an increase of white matter tissue 

MD. Recently, Hoy et al. highlighted that “free water compartment” plays an important role 

in determining the measured values of MD and FA in subjects with MCI (Hoy et al., 2017).

Limitation

We note that the choices of b-values of the HCP data and the exponential diffusion model 

are suboptimal for measuring PVS diffusivity, given the non-Gaussian diffusion behavior in 

high b-values (Assaf et al., 2004; Novikov et al., 2016, 2012; Sepehrband et al., 2017) or due 

to induced susceptibility of the vasculature network in a monopolar pulse design (Kiselev, 

2004; Kiselev and Posse, 1999; Zheng and Price, 2007). Gaussian assumption in high b-

value data by itself can bias the diffusivity measures of the diffusion MRI models. Here we 

used a bi-tensor model (which provides a better fit to the diffusion data than DTI (Pierpaoli 

and Jones, 2004)) and a commonly used multi-shell design to show that ignoring PVS fluid 

systematically biases DTI findings. For a robust measurement of PVS diffusion coefficient, 

we suggest a multi-shell acquisition that includes low b-values (similar to our experimental 

design) and a more comprehensive model of diffusion profile.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Perivascular space (PVS) fluid significantly contributes to diffusion tensor 

imaging metrics

• Increased PVS fluid results in increased mean diffusivity and decreased 

fractional anisotropy

• PVS contribution to diffusion signal is overlooked and demands further 

investigation
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Figure 1. Perivascular space fluid (PVS) and its bias on diffusion tensor imaging (DTI).
(a) Schematic view of the PVS. (b) High-resolution turbo spin echo images of two healthy 

volunteers (above: 32yr old female, below: 56yr old female), scanned at 7T. In-plane 

resolution of 0.3mm (interpolated to 0.15mm) was used to acquire the data (with the slice 

thickness of 2mm). Four averages were acquired to ensure high signal-to-noise ratio. Note 

that PVS presents throughout the white matter, with larger diameter PVSs closer to the 

cortex and smaller diameter as it penetrates deep into the white matter. Systematic bias from 

PVS on DTI was simulated for the fractional anisotropy (c) and mean diffusivity (d). As 

PVS increases the amount of bias amplifies. Free-water elimination (DTI-FWE) technique is 

also included, which is also affected by PVS presence but to a smaller extent. A plot of 

diffusion MRI signal for 3 different examples of mean diffusivity (d=1 μm2/ms, blue line; 

d=1.2 μm2/ms, blue dashed line; and d=3 μm2/ms, red line) is illustrated in (e) and the log of 

the signal is plotted in (f). Note that an increased mean diffusivity from 1 μm2/ms to 1.2 

μm2/ms has a similar signal profile as a scenario with no increased diffusivity but 20% of 

PVS presence (i.e. PVS signal fraction of 0.2; black line).
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Figure 2. Diffusion of the non-parenchymal fluid in white matter and perivascular space (PVS) 
area is anisotropic in the length scale of the conventional DWI.
(a) T2-weighted image of a healthy 32 years old volunteer, scanned at 7T with in-plane 

resolution of 150 mm2. (b) Zooming into a region with high perivascular space (PVS) 

presence. Signal value of the cerebrospinal fluid (CSF) voxels were much higher than the 

hyperintense PVS voxels, because PVS voxels partially share the imaging signal with white 

matter and vessel (Color range is fixed to [0 500], to better visualize the PVS and avoid CSF 

saturation). Schematic representation of the PVS partial volume for three different possible 

scenarios are presented in (c). T2-weighted image (unweighted diffusion image of the same 

subject, scanned at 3T) is shown in (d) and the DTI-derived tensor glyphs of the white 

matter voxels are overlaid on top. (e) shows the spatial distribution of the fitting error 

difference (Akaike information criteria scores resulted to a similar heat map) between 

anisotropic and isotropic models of the PVS fluid diffusion. Note that the highest differences 

are observed in white matter voxels near cortex, with high PVS presence. The quantitative 

difference is presented in (f). Same results as (e and f) was obtained from Akaike 

information criteria test. An anisotropic model fitted better to the data, particularly within 

the white matter and PVS area.
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Figure 3. Investigating the effect of the perivascular space (PVS) on DTI in single subject level.
Segmented PVS voxels of a healthy subject from human connectome project is plotted in 

(a). Voxel mean diffusivity (MD) derived using DTI, T2-weighted image, and Tissue MD 

derived from tissue tensor imaging (TTI) are plotted (b-d), respectively. Note that the 

expected white matter homogeneity is preserved in tissue MD map, while voxel MD is 

largely affected by the PVS contribution (extreme cases are demonstrated by yellow arrows). 

Correlation of the voxel values and the tissue values that were derived from DTI and TTI are 

plotted in (e). Values from free water elimination (FWE) technique are included for 

comparison. Mean values of MD and FA from DTI and TTI across 10 white matter regions 

are also plotted (f). All differences of MD and FA mean values in (f) are significant at 

p<0.001 (using a paired t-test). Diffusivity values are in μm2/ms.
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Figure 4. Quantitative investigation of the influence of perivascular space (PVS) on DTI, across 
861 subjects of the human connectome project data.
Values from DTI were compared with those from free water elimination (FWE) and tissue 

tensor imaging (TTI) techniques. Mean MD of the PVS voxels are compared in (a) and (b). 
Mean MD values were compared across four white matter regions from Desikan-Killiany 

atlas (c). Regions are: corpus callosum (cc), para-hippocampus (ph), centrum semiovale (cs) 

and superior-frontal part of the white matter (sf). All differences are corroborating 

simulation and subject-level results and are significant at p<0.001 (using paired t-test). 
Similar investigation on the fractional anisotropy (FA) values are shown in (d-f). Diffusivity 

values are in μm2/ms.
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Figure 5. Investigating the effect of perivascular space (PVS) on DTI measures on a cohort of 
ADNI-3, including 37 cognitively normal (CN) subjects and 24 mild cognitively impaired (MCI) 
patients.
(a) shows the T1-weighted, in which a portion of the PVS can be seen. By superimposing 

high-resolution T2-weighted image on the T1-weighted image (b) more PVS are detectable. 

Mean diffusivity (MD) map from DTI and tissue tensor imaging (TTI) are mapped in (c) and 

(d), respectively. Note that MD from TTI preserved the expected white matter homogeneity 

by separating the PVS water from the tissue, yet successfully mapped the white matter 

hyperintensities. White matter hyperintensities are indistinguishable in the MD map from 

DTI, given the partial volume effect of the periventricular space. Mean voxel MD and tissue 

MD of 20 randomly selected (for the sake of space) regions from John Hopkins white matter 

atlas are shown in (e). Bland-Altman plot was drawn to compare DTI versus TTI, which 

shows the systematic bias of the DTI measures (note that if two techniques were equal the 

values would show a standard deviation around the value difference of zero, shown by red). 

(f) shows a similar analysis for the fractional anisotropy (FA) measures. The complete chart 

of John Hopkins white matter regions is illustrated in Supplemental Figure 4. (g) compares 

DTI results with TTI when CN group was compared with MCI. Note that for MD, most 

regions show increased MD (as reported in the literature), but when TTI was used, the 

inverse pattern was observed in many cases. Fornix is an extreme case of this example 
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(while a large difference in Fornix was observe, it was not statically significant). Diffusivity 

values are in μm2/ms. An example group-level analysis was performed on the ADNI-3 data 

to judge if the findings differ when we incorporate a PVS contribution. When comparing 

MD values of CN and MCI groups using DTI, twenty-two regions were significantly 

different after correcting for multiple comparison using Benjamini–Hochberg procedure 

(Kwee and Kwee, 2007) and with the false discovery rate of 0.1 (age, sex and brain size 

were included in the regression). These regions and the statistics are reported in 

Supplemental Note 2. When TTI was used, or when the signal fraction of the PVS was 

included in the regression, none of those regions were significant.
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Figure 6. Examples of differing perivascular space (PVS) concentration on a cognitively normal 
(CN) subject and a patient with mild cognitive impairment (MCI) diagnosis.
Coronal T1-weighted images (a and c) are illustrated. High-resolution T2-weighted images 

were superimposed on them to highlight the PVS (b and d). Right column figures zoomed 

into the temporal lobe area, in which increased mean diffusivity and decreased fractional 

anisotropy are commonly reported.
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Figure 7. An example of a false discovery of diffusion tensor imaging (DTI) sourced from the 
PVS bias.
Mean diffusivity (MD) of the left superior fronto-occipital fasciculus of the cognitively 

normal (CN) group (n=37) and patients with mild cognitive impairment (MCI) diagnosis 

(n=24) are plotted in left. Comparison are made using both DTI and tissue tensor imaging 

(TTI) techniques. From DTI eyes, higher MD was significantly associated with the cognitive 

stage (p<0.001). However, when TTI was used, no difference was observed. PVS signal 

fraction of this region is plotted in right. The PVS signal fraction had significant association 

with the cognitive stage on this region (p<0.001). Age, sex and brain volume were included 

in the regression analysis as covariates. Diffusivity values are in μm2/ms.
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