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Nonrigid image registration is an important, but time-consuming task in medical image
analysis. In typical neuroimaging studies, multiple image registrations are performed,
i.e., for atlas-based segmentation or template construction. Faster image registration
routines would therefore be beneficial. In this paper we explore acceleration of the image
registration package elastix by a combination of several techniques: (i) parallelization
on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on
the GPU building on and extending the OpenCL framework from ITKv4, to speed up
the Gaussian pyramid computation and the image resampling step; (iii) exploitation of
certain properties of the B-spline transformation model; (iv) further software optimizations.
The accelerated registration tool is employed in a study on diagnostic classification of
Alzheimer’s disease and cognitively normal controls based on T1-weighted MRI. We
selected 299 participants from the publicly available Alzheimer’s Disease Neuroimaging
Initiative database. Classification is performed with a support vector machine based on
gray matter volumes as a marker for atrophy. We evaluated two types of strategies
(voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization
and optimization resulted in an acceleration factor of 4–5x on an 8-core machine. Using
OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids,
and 15–60 for the resampling step, for larger images. The voxel-wise and the region-wise
classification methods had an area under the receiver operator characteristic curve of
88 and 90%, respectively, both for standard and accelerated registration. We conclude
that the image registration package elastix was substantially accelerated, with nearly
identical results to the non-optimized version. The new functionality will become available
in the next release of elastix as open source under the BSD license.
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1. INTRODUCTION
Image registration is a frequently used technique in medical
image processing. It refers to the process of automatically align-
ing imaging data, where a moving (target) image IM is deformed
to mimick a fixed (reference) image IF . In other words, registra-
tion is the problem of finding a coordinate transformation T that
makes IM(T) spatially aligned with IF . The quality of alignment is
defined by a cost function C. The optimal coordinate transforma-
tion is estimated by minimizing the cost function with respect to
T, usually by means of an iterative optimization method embed-
ded in a hierarchical (multiresolution) scheme. Extensive reviews
on the subject of image registration are given in Brown (1992);
Maintz and Viergever (1998). Areas of application include the
alignment of data sets from different modalities (Mattes et al.,
2003) to fuse information, comparison of follow-up with base-
line scans (Staring et al., 2007) to follow disease development,
alignment of different MR sequences for extraction of quantita-
tive MR parameters such as in diffusion tensor imaging or MR
relaxometry (Alexander et al., 2001; Bron et al., 2013), alignment

of pre- and post-contrast images (Rueckert et al., 1999) to aid
breast cancer detection and diagnosis, and updating treatment
plans for radiotherapy and surgery (Pennec et al., 2003).

Accordingly, most neuroimaging research also requires image
registration. Registration is mainly needed to create a refer-
ence frame, which enables comparison between subjects, between
image sequences and over time. This reference framework can
either be a common template space to which every subject’s
image is registered (Mazziotta et al., 1995; Seghers et al., 2004;
Ashburner, 2007), or a region-labeling system for example
obtained with multi-atlas segmentation (Heckemann et al., 2006).
Many different neuroimaging applications rely on such a ref-
erence framework: statistical group comparisons (Friston et al.,
1994), voxel-based morphometry (Ashburner and Friston, 2000),
tissue segmentation (Fischl et al., 2002; Ashburner and Friston,
2005), and diagnostic classification (Klöppel et al., 2008; Magnin
et al., 2009; Cuingnet et al., 2011). In these applications, reg-
istration methods are used to align the data with the reference
frame.
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To create a reference frame that maps between different sub-
jects, nonrigid image registration is applied, which can be very
time-consuming. Runtime depends on the specific cost function,
transformation complexity, data size, and optimization strategy.
The first three items have increased in complexity over the years:
more complex cost functions were needed for multi-modal image
registration (Maes et al., 1997), nonrigid transformations have
many parameters frequently generating a 106 dimensional space
to be optimized, and data sizes have increased tremendously with
the advent of new scanners. This results in a typical runtime
of registration algorithms in the order of at best 15 min, up to
hours (Klein et al., 2009a); future acquisition-side improvements
in image resolution may even increase that number. Moreover,
for creating a reference frame, many registrations are required:
every subject needs to be aligned with the template space, or,
when using multi-atlas segmentation, every atlas image needs to
be aligned with every subject image.

One of the neuroimaging applications mentioned above is
diagnostic classification. As the incidence of Alzheimer’s Disease
(AD) as well as the need for early and accurate diagnosis is dra-
matically growing (Alzheimer’s Association, 2012), automated
classification is an emerging research field. To advance the diag-
nosis of AD in individual patients, machine-learning techniques
can be applied to imaging or other data. These techniques use
labeled data to train a classifier to categorize two groups (e.g.,
patients and controls). Several studies demonstrated the suc-
cessful classification of dementia based on atrophy using such
machine-learning methods (e.g., Fan et al., 2008; Klöppel et al.,
2008; Vemuri et al., 2008; Magnin et al., 2009; Cuingnet et al.,
2011; Koikkalainen et al., 2012). The atrophy features used in
these studies are derived from structural MR using two main
approaches: voxel-wise (e.g., Klöppel et al., 2008) and region-wise
(e.g., Magnin et al., 2009) feature extraction. Voxel-wise meth-
ods use a feature for each voxel in the brain, for example the gray
matter (GM) density as an atrophy measure. In the region-wise
approach, a region-labeling consisting of a set of brain regions
is used to calculate a feature, for example the GM volume in
each region of interest (ROI). Both approaches require many non-
rigid image registrations: in the voxel-wise approach, to align all
scans in a template space, and in the region-wise approach, to
obtain a region-labeling for each individual scan using multi-atlas
segmentation.

In this paper we explore the acceleration of image registration
in the context of neuroimaging applications, by a combination of
methods. Critical registration components are parallelized, utiliz-
ing the CPU as well as the GPU, certain properties of the B-spline
transformation model are exploited, and source code is opti-
mized. These efforts are integrated in the popular open source
registration toolkit elastix (Klein et al., 2010), which is based
on the Insight ToolKit (ITK, (Ibánez et al., 2005)). elastix
aims to deliver convenient access to a wide range of image reg-
istration algorithms to end-users (researchers as well as medical
practitioners). For the GPU implementation, the recently intro-
duced OpenCL functionality in ITKv4 was improved, extended
and exploited. The developed functionality will become available
in the next release of elastix, as open source under the BSD
license.

Others have also addressed registration performance by means
of parallel processing. An overview of both CPU and GPU work
is given by Shams et al. (2010b). Many authors use derivative-free
optimization techniques, and therefore focus on low dimensional
transformations, on a cluster of computers (Warfield et al., 1998),
using a GPU (Shams et al., 2010a) or an FPGA (Castro-Pareja
et al., 2003). Rohlfing and Maurer (2003) proposed a scheme
for nonrigid registration using finite differences for the deriva-
tive computation, distributing the elements of the derivative over
the processing elements. Results were evaluated by visual inspec-
tion. Saxena et al. (2010) implemented an analytical derivative
based nonrigid registration scheme on the GPU for mutual infor-
mation, using CUDA. In this paper we present methods that
(i) exploit both the CPU and hardware accelerators (GPU, and
potentially also the FPGA), (ii) do not require a cluster of com-
puters but runs on a single computer, (iii) are based on the analyt-
ical cost function derivative, enabling gradient based (stochastic)
optimization, (iv) work for 2D and 3D image registration, imple-
mented for various metrics and various transformation types,
(v) will be made freely available, and (vi) are quantitatively val-
idated to obtain similar results as the unoptimized registration
method.

The paper is outlined as follows. In Section 2 prelimi-
nary information is given about image registration, elastix,
OpenCL and ITK. The registration accelerations are described
in Section 3, together with the methodology for voxel-wise and
region-wise diagnostic classification of AD. Experiments and
results are given in Section 4, detailing the obtained speedup
factors (Section 4.2 and 4.3). In Section 4.4 an accuracy anal-
ysis is made comparing original and optimized versions of
elastix. For this evaluation, we used structural MR data
of AD patients and healthy volunteers from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. The paper is
concluded in Section 5.

2. PRELIMINARIES
2.1. IMAGE REGISTRATION
Image registration is the process of aligning images, and can be
defined as an optimization problem:

µ̂ = arg min
µ

C(IF, IM;µ), (1)

with IF(x) : x ∈ �F → R and IM(x) : x ∈ �M → R the d-
dimensional fixed and moving image, respectively, on their
domains �F and �M , and µ the vector of parameters of size
N that model the transformation Tμ. The cost function C con-
sists of a similarity measure S(IF, IM; µ) that defines the quality
of alignment, and optionally a regularizer. Examples of the first
are the mean square difference (MSD), normalized correlation
(NC), and mutual information (MI) (Maes et al., 1997) mea-
sure; examples of the last are the bending energy (Rueckert
et al., 1999) and rigidity penalty term (Staring et al., 2007).
Optimization is frequently performed using a form of gradient
descent:

µk + 1 = µk − ak
∂C
∂µ

, (2)
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with ak the step size at iteration k. The derivative of the cost
function can commonly be written as

∂C
∂µ

= η
∑

x∈�̃F

ξ (IF(x), IM(T(x)))
∂T

∂µ

T

(x)
∂IM

∂y
(y)

∣∣∣∣
y = T (x)

(3)

with ξ(·) a continuous function mapping to R, �̃F a discrete set of
coordinates from �F , and η = 1/|�̃F| a normalization factor. For
the MSD metric for example we have ξ(·) = IF(x) − IM(T(x)).
This form holds for all the above mentioned similarity met-
rics, while for regularizers a similar form can be derived. In this
paper we focus on stochastic optimization methods (Klein et al.,
2007), where the derivative is computed with a small number |�̃F|
of randomly drawn samples, newly selected in each iteration k.
Specifically, we use the adaptive stochastic gradient descent opti-
mizer (Klein et al., 2009b), which automatically computes the step
size ak. The computation time of this step is addressed in other
work (Qiao et al., 2014).

Image registration is usually embedded in a multi-resolution
framework, and after the optimization procedure (1) has fin-
ished, a resampling of the moving image is desired to generate
the registration result IM(Tµ̂).

2.2. GPUs AND OPENCL
Multi-core computers have enabled the acceleration of a wide
variety of computationally intensive applications. Nowadays,
another type of hardware promises even higher computational
performance: the graphics processing unit (GPU), which has
a highly parallel hardware structure. This makes them more
effective than general purpose CPUs for algorithms where pro-
cessing of large blocks of data can be performed in parallel.
The increasing computing power of GPUs gives them consid-
erably higher peak computing power than CPUs. For example,
NVidia’s GeForce GTX 780 GPU provides 3977 Gflop/s and
AMDs HD7970 GPU 3788 Gflop/s, while Intels Xeon X5675 CPU
reaches only 144 Gflop/s.

Writing parallel programs to take full advantage of this GPU
power is still a challenge. The OpenCL C programming language
(www.khronos.org/opencl/) can be used to create programs that
can be executed on one or more heterogeneous devices such
as CPUs, GPUs, FPGAs and potentially other devices developed
in the future. CUDA (www.nvidia.com/object/cudahomenew.

html) on the other hand is NVidia’s C language targeted to NVidia
GPUs only. OpenCL is maintained by the non-profit technology
consortium Khronos Group. An OpenCL program is similar to a
dynamic library, and an OpenCL kernel is similar to an exported
function from the dynamic library. In OpenCL programmers can
use OpenCL command queue execution and events to explicitly
specify runtime dependencies between arbitrary queued com-
mands, which is different from C(++) where sequential execution
of commands is always implied. OpenCL is based on the C99 lan-
guage specification with some restrictions and specific extensions
to the language for parallelism.

In this project we decided to adopt OpenCL for algorithm
implementation for two reasons: (i) OpenCL solutions are inde-
pendent of the GPU hardware vendor, and can even be run on

other hardware accelerators, thereby broadening the applicabil-
ity of this work; (ii) Our image registration package elastix is
largely based on the Insight Toolkit (ITK), in which OpenCL also
was adopted recently.

2.3. elastix AND ITKv4
Parallelization is performed in the context of the image registra-
tion software elastix (Klein et al., 2010), available at http://
elastix.isi.uu.nl. The software is distributed as open source via
periodic software releases under a BSD license. The software con-
sists of a collection of algorithms that are commonly used to solve
(medical) image registration problems. The modular design of
elastix allows the user to quickly configure, test, and com-
pare different registration methods for a specific application. A
command-line interface enables automated processing of large
numbers of data sets, by means of scripting.

elastix is based on the well-known open source Insight
Segmentation and Registration Toolkit (ITK) (Ibánez et al., 2005)
available at www.itk.org. This library contains a lot of image pro-
cessing functionality, and delivers an extremely well tested coding
framework. The ITK is implemented in C++, nightly tested, has
a rigorous collaboration process, and works on many platforms
and compilers. The use of the ITK in elastix implies that the
low-level functionality (image classes, memory allocation, etc.) is
thoroughly tested. Naturally, all image formats supported by the
ITK are supported by elastix as well. elastix can be com-
piled on multiple operating systems (Windows, Linux, Mac OS
X), using various compilers (MS Visual Studio, Clang, GCC), and
supports both 32 and 64 bit systems.

3. METHODS
As described in Section 2.1 the image registration algorithm con-
sists of multiple parts: general tasks such as image reading and
setting up the registration pipeline, pyramid construction, then
iteratively derivative computation and updating of the parameter
vector using (2), and finally resampling. To accelerate the reg-
istration algorithm, we identified the pyramid construction, the
optimization routine and the resampling step as the most domi-
nant parts in terms of performance. Acceleration possibilities for
the optimization routine are identified by recognizing paralleliza-
tion options, by manual inspection of the source code, and by the
use of the Callgrind profiling tool (Weidendorfer et al., 2004), see
Section 3.1. This component of the registration algorithm is per-
formed on the CPU. Both pyramid construction and resampling
are in this work off-loaded to the GPU, because these compo-
nents exhibit clear opportunities for massive data parallelization,
see Section 3.2. Finally, in Section 3.3, we present the methods
used for validation of the optimized registration procedure with
an experiment on diagnostic classification of AD which heavily
relies on image registration.

3.1. CPU
Considering Equation (3) we see that image registration con-
stitutes a loop over the image samples as a key component of
the algorithm. This part can be computed in parallel by dis-
tributing the image samples in �̃F over different threads. This is
implemented by a fork-and-join model using the thread system
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of the ITK: in each iteration T threads are created (forking), T
derivatives gt

k = ∂Ct/∂µ over the sample subsets are computed
in parallel (t denoting the thread id), and the results are joined
into a single derivative. Functions that are used by the differ-
ent threads were made thread-safe, and preparation functionality
was refactored and called only once by the master thread. Where
possible, we avoided false sharing of data (Bolosky and Scott,
1993), which can substantially affect performance. This recipe
was implemented in elastix for several similarity measures
(MSD, NC, MI, kappa statistic), and the bending energy penalty
term.

Parallel computation was also implemented at several other
places, namely for aggregation of the thread derivatives gt

k to a
single derivative gk, and for performing the update step of the
optimizer, see Equation (2). At these places some straightforward
vector arithmetic is performed on gk and µk, which are vectors
of possibly very long size (up to 106). Parallelization can be per-
formed here by threads working on disjoint parts of the vectors.
Implementations using the ITK thread model and OpenMP were
created.

Again considering Equation (3) we can see that part of the
computation is in calculating ∂T/∂µ

.= J. The Callgrind profiler
confirmed this as a performance bottleneck. For the general case
the matrix J has size d × N, N being the size of µ. In case of a B-
spline transformation however, this matrix is mostly empty due
to the compact support of the B-spline basis function, resulting in
a matrix of size d × dP, P = (O + 1)d � N, with O the B-spline
order (usually equal to 3). This much smaller matrix has the form:

J(x)
.= ∂T

∂µ
(x) ≡

⎡
⎣j1 · · · jP 0 · · · 0 0 · · · 0

0 · · · 0 j1 · · · jP 0 · · · 0
0 · · · 0 0 · · · 0 j1 · · · jP

⎤
⎦ , (4)

where ji are products of the B-spline basis functions, following
from the definition (Rueckert et al., 1999). The derivative of the
B-spline transformation is therefore a relatively small and sparse
matrix, with repetitive elements, thus only P elements need to be
computed instead of d2P or even dN. Again examining (3) we
can see that the multiplication JT ∂IM

∂x can also be accelerated by
omitting the empty parts.

Further optimizations to the source code resulted from a
combination of Callgrind profiling and visual inspection of the
source code, and include: (i) Allocated large vectors or matri-
ces only once and re-use them throughout the registration.
Examples include the cost function derivative gk, the transfor-
mation parameters µk and the transformation derivative J, and
in the optimizer the new position µk + 1; (ii) Avoided repeated
initializations of large arrays (fill with zeros), and additionally
optimized this operation using std::fill (contributed back
to ITKv4); (iii) Optimized some often used functions by avoid-
ing ITK iterators, the use of loop unrolling, memcpy, etc; (iv)
Compared to the previous implementation the amount of mem-
ory accesses were reduced when interpolating the moving image
value and gradient; (v) Implemented gradient computation for
the linear interpolator, which can compute the moving image gra-
dient ∂IM/∂x [see Equation (3)] much faster than the existing

implementation of the first order B-spline interpolator; (vi) Made
use of a new ‘scan line’ iterator from ITKv4 with low overhead.

3.2. GPU
For implementing algorithms on the GPU we have chosen to
build on ITKv4’s recent addition for GPU acceleration. This mod-
ule wraps the OpenCL 1.2 API in an ITK-style API, while taking
care of OpenCL initialization, program compilation, and kernel
execution. It also provides convenience classes for interfacing with
ITK image classes and filtering pipelines.

In the OpenCL design of ITKv4 important parts of the
OpenCL specification were missing, most notably the queueing
mechanisms and event objects. We implemented a large part of
the OpenCL class diagram, where classes are responsible for a
specific task conforming to the OpenCL standard. OpenCL event
objects are used to synchronize execution of multiple kernels, in
case a program consists of multiple kernels. We take advantage
of the scheduling and synchronization mechanisms of OpenCL
for the implementation of the GPU version of the resampler,
see Section 3.2.2, where individual kernels have to be executed
in order. In addition, we have added debugging and profiling
functionality, which are useful features during development and
for understanding performance bottlenecks of GPU architectures.
A number of modifications have been made to improve design,
implementation, and platform support (Intel, AMD, NVidia),
thereby enhancing the existing ITKv4 GPU design.

We identified two independent registration components that
allow for parallelism: the Gaussian pyramids and the resampling
step. The Gaussian filtering relies on a line-by-line causal and
anti-causal filtering, where all image scan lines can be indepen-
dently processed; The resampling step requires for every voxel
the same independent operation (transformation followed by
interpolation).

3.2.1. Pyramids
It is common to start the registration process (1) using images
that have lower complexity, to increase the chance of success-
ful registration. To this end images are smoothed and option-
ally downsampled, the latter either using linear interpolation
(resampling) or by subsampling without interpolation (shrink-
ing). The Gaussian pyramid is by far the most common one for
image registration, and the computation of this pyramid we tar-
get to accelerate. The Gaussian filter computes infinite impulse
response convolution with an approximation of the Gaussian ker-
nel G(x; σ) = 1

σ
√

2π
exp

(−x2/2σ2
)

(Deriche, 1990). This filter

smoothes the image in a single direction only, and is therefore
subsequently called for each direction to perform full smoothing.

The filter performs execution row-by-row for the direction x
or column-by-column for the direction y, and similarly for direc-
tion z. All rows or columns can be processed independently, but
columns can only be processed when all rows have finished. This
execution model is therefore suitable for the GPU, by assigning
each row or column to a different thread, which can then be exe-
cuted in parallel. The column kernel is scheduled to start after the
row kernel, using the OpenCL queues.

To achieve better performance each thread uses the local GPU
memory, which is fastest, but this introduces a limitation on the
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input image size. Current GPUs usually only have 16kB of local
memory, and the algorithm allocates three floating point buffers
the size of the row/column (input, output plus temporary buffer).
This results in a maximum image size of 1365 pixels, and therefore
our GPU implementation works only for images of maximum size
[1365,1365] or [1365,1365,1365]. This limitation can be avoided
by using other platforms with a larger local memory (e.g., Intel
CPUs allow 32kB), or by changing the algorithm altogether (e.g.,
by direct convolution with a truncated Gaussian kernel).

3.2.2. Resampling
Resampling is the process of computing the value IM(T(x)) for
every voxel x inside some domain. Usually, the fixed image
domain �F is chosen, meaning that the computational complex-
ity is linearly dependent on the number of voxels in the fixed
image. The procedure is simple: 1) loop over all voxels x ∈ �F ,
2) compute its mapped position y = T(x), 3) obtain the mov-
ing image intensity IM(y) by interpolation, since y is generally a
non-voxel position, and 4) copy this value to the output image.

Notice from above that the procedure is dependent on a
choice of the interpolator and the transform. Several methods for
interpolation exist, varying in quality and speed. Available imple-
mentations inelastix are nearest neighbor, linear and B-spline
interpolation. There are also many flavors of transformations.
The ones available in elastix in order of increasing flexibil-
ity, are the translation, the rigid, the similarity, the affine, the
nonrigid B-spline and the nonrigid thin-plate-spline-like trans-
formations, as well as arbitrary combinations of them by function
composition, i.e., T(x) = Tn(. . . T2(T1(x))). The latter is fre-
quently used in image registration, for example when a rigid
or affine registration is performed prior to a nonrigid B-spline
registration.

In the ITK C++ implementation the flexibility to use any
transformation in combination with any interpolator is achieved
using classes and virtual methods. This flexibility introduces a
major challenge when implementing a GPU version of the resam-
pler. As mentioned earlier, OpenCL is a simplified C language
specification, which does not provide a way of implementing vir-
tuality on kernels, or the use of function pointers. In order to solve
this issue, we propose to split the OpenCL kernel for the resampler
in three groups of kernels, see also Figure 1:

Initialization: The first part is an OpenCL kernel responsible for
the initialization of the deformation field buffer.
Transformation: This part consists of multiple OpenCL kernels
each performing a single transformation Ti sequentially.
Interpolation: The last part is an OpenCL kernel performing the
interpolation IM(T(x)).

The OpenCL queueing mechanism utilizing OpenCL event lists,
is employed for scheduling, to make sure that all kernels are exe-
cuted successively. Within a kernel voxels are processed in parallel.
A transformation field buffer is required to store the interme-
diate result of all sub-transformation kernels implementing Ti.
The resample kernel code is constructed from these multiple
kernels during instantiation of the resample filter. Construction
of all kernels is performed on the host (the CPU) at runtime.

FIGURE 1 | Design of the resample filter on the GPU. We select a chunk
of the output image, initialize it (red kernel), and for that chunk a series of
transformations T n(. . . T 2(T 1(x ))) are computed and stored in the
intermediate transformation field (green kernels). After these
transformation kernels have finished, the input image is interpolated and
the result is stored in the output image chunk (blue kernel). Then we
proceed to the next chunk. The loops in purple are computed in parallel.

All initialization, transformation and interpolation kernels are
sequentially scheduled on the target device (GPU) using the event
list functionality. All kernels are provided with their arguments
(inputs), such as input image, resampling domain, etc. The thus
generated code is compiled for the GPU at runtime, and then
executed. NVidia has implemented a mechanism to cache the
compiled GPU binaries, thereby avoiding the need to re-compile
the code after the first run. To be able to process large 3D images
that may not fit on the GPU memory entirely, we additionally
implemented a mechanism to process the input data in chunks,
see Figure 1. While the input (IM) and output (IM(T)) images are
loaded resp. allocated entirely, only a relatively small amount of
memory is then needed for the intermediate transformation field.
This buffer is reused until the full image is resampled.

GPU versions of all common transformations and interpo-
lators were implemented, as well as arbitrary compositions of
them.

3.3. DIAGNOSTIC CLASSIFICATION OF AD
The optimized registration procedure was validated with an
experiment of classification of AD patients and healthy controls.
The classification was based on two types of features, voxel-wise
and region-wise features, which were extracted from structural
MRI. These feature extraction approaches involve numerous
image registrations steps, which were performed with both the
accelerated version of elastix and the most recent release
elastix v4.6. The classification performances were compared
between the two versions, because then we can see in practice,
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in an application that makes heavy use of rigid and nonrigid
registration, if and how much the results are affected by the
acceleration. In this section the methods for the classification
experiment are explained.

3.3.1. Data
Data from the ADNI 1 database was used. The ADNI cohort
used for our experiments is adopted from the study of Cuingnet
et al. (2011), from which we selected the AD patient group
and the normal elderly control group. The inclusion criteria
for participants were defined in the ADNI GO protocol (www.
adni-info.org/Scientists/AboutADNI.aspx\#). The patient group
consisted of 137 patients (67 males, age = 76.0 ± 7.3 years,
Mini Mental State Examination (MMSE) score = 23.2 ± 2.0),
and the control group of 162 participants (76 males, age =
76.3 ± 5.4 years, MMSE = 29.2 ± 1.0). The participants were
randomly split into two groups of the same size, a training set
and a test set, while preserving the age and sex distribution
(Cuingnet et al., 2011). Structural MRI (T1w) data were acquired
at 1.5T according to the ADNI acquisition protocol (Jack et al.,
2008).

3.3.2. Image processing
Tissue segmentations were obtained for GM, white matter (WM),
and cerebrospinal fluid (CSF) using SPM8 (Statistical Parametric
Mapping, London, UK). For estimation of intracranial volume,
a brain mask was required for each subject. This brain mask
was constructed using a multi-atlas segmentation approach using
30 atlases (see Section 3.3.3). We performed brain extraction
(Smith, 2002) on the T1w images associated with the 30 atlases
(Hammers et al., 2003; Gousias et al., 2008), checked the brain
extractions visually, and adjusted extraction parameters if needed.
The extracted brains were transformed to each subject’s image
and the labels were fused, resulting in a brain mask for each
subject.

3.3.3. Image registration: template space and ROI labeling
Voxel-wise features were extracted in a common template space
(�Template, see Figure 2) based on the data of the training set.
This common template space was constructed using a procedure
that avoids bias toward any of the individual training images
(Seghers et al., 2004). In this approach, the coordinate transfor-
mations from the template space to the subject’s image space (Vi :
�Template → �Ii ) were derived from pairwise image registrations.
For computation of Vi, the image of an individual training sub-
ject (Ii) was registered to all other training images (Ij) using
Ii as the fixed image. This resulted in a set of transformations

1The ADNI was launched in 2003 by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. The pri-
mary goal of ADNI has been to test whether serial MRI, positron emission
tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD.

FIGURE 2 | Image spaces defined within the ADNI structural MRI data:

image space (�I ) and the template space (�Template). Another image
space (�Atlas) is defined for the 30 atlas images. Transformations between
the image spaces are indicated by S, U, V, and W. The arrows are pointing
from the fixed to the moving domain. Different subjects are represented by
i and j, the different atlas images are represented by k. From all Ii , a
template space image (I) is calculated (Section 3.3.3).

Wi,j : �Ii → �Ij . By averaging the transformations Wi, j, the
transformation Ui : �Ii → �Template was calculated:

Ui(x) = 1

N

N∑
j = 1

Wi, j(x). (5)

The transformation Vi was calculated as an inversion of Ui:
Vi = U−1

i . Note that the identity transformation Wi,i is also
included in (5). The pairwise registrations were performed using
a similarity (rigid plus isotropic scaling), affine, and nonrigid B-
spline transformation model consecutively. The nonrigid B-spline
registration used a three-level multi-resolution framework with
isotropic control-point spacings of 24, 12, and 6 mm in the three
resolutions respectively.

A template image was built using: I(x) = 1
N

∑N
i = 1 Ii(Vi(x)),

with Ii(Vi) representing the deformed individual training images.
The test images were not included in the construction of
�Template. For the test images, the transformation to template
space (Vi) was obtained using the same procedure described
above: using pairwise registration of each image with all train-
ing images, followed by averaging and inversion. Brain masks and
tissue maps were transformed to template space using Vi.

For extraction of the region-wise features, a set of 72 brain
ROIs was defined for each subject individually in subject space
(�I) using a multi-atlas segmentation procedure (Figure 3).
Thirty labeled T1w images containing 83 ROIs each (Hammers
et al., 2003; Gousias et al., 2008) were used as atlas images.
The atlas images were registered to the subject’s T1w image
using a rigid, affine, and nonrigid B-spline transformation model
consecutively resulting in transformation Si,k : �Ii → �Atlask .
Registration was performed by maximization of mutual informa-
tion within dilated brain masks (Smith, 2002). For initialization,
the dilated brain masks were rigidly registered. For nonrigid reg-
istration, the same multi-resolution settings were used as in the
template space construction. For this step, the subjects’ images
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FIGURE 3 | The region labeling consisting of 72 ROIs in the brain.

were corrected for inhomogeneities (Tustison et al., 2010). Labels
were propagated to �Ii using Si,k and fused using a majority
voting algorithm (Heckemann et al., 2006). The brain stem, cor-
pus callosum, third ventricle, lateral ventricles, cerebellum, and
substantia nigra were excluded.

3.3.4. Classification
Linear SVM classification was used with the LibSVM software
package (Chang and Lin, 2011). Classification performance was
assessed on the separate test set and quantified by the area
under the receiver-operator characteristic curve (AUC). The SVM
C-parameter was optimized using gridsearch on the training set.

Voxel-wise features were defined as GM probabilistic segmen-
tations in the template space (�Template) (Klöppel et al., 2008;
Cuingnet et al., 2011). A modulation step was performed, i.e.,
multiplication by the Jacobian determinant of the deformation
field (Figure 2, transformation Vi), to take account of compres-
sion and expansion (Ashburner and Friston, 2000). This modula-
tion step ensures that the overall GM volume was not changed by
the transformation to template space.

The region-wise features were calculated in subject space (�I)
as the GM volume in each ROI obtained from the probabilis-
tic GM maps (Magnin et al., 2009; Cuingnet et al., 2011). To
correct for head size, these features were divided by intracranial
volume. All features were normalized to have zero mean and unit
variance.

4. EXPERIMENTS AND RESULTS
4.1. OVERVIEW
For the evaluation we compare the accelerated implementations
with the original implementations. Both runtime performance
and accuracy are investigated.

To evaluate performance we compare the runtime per itera-
tion between both algorithms, told and tnew. The speedup factor
is defined as F = told/tnew. The speedup will depend on the
number of threads T that are used for parallelization. The paral-
lelization efficiency is a measure expressing how much a program
is accelerated compared to an ideal speedup equal to the number
of threads, i.e., E = F/T.

To evaluate accuracy we use a combination of measures, to
make sure that the accelerated registration still returns similar

Table 1 | Details of the system used for the timing tests.

OS Linux Ubuntu 12.04.2 LTS, 64 bit

CPU Intel Xeon E5620, 8 cores @ 2.4 GHz

GPU NVidia Geforce GTX 480

compiler gcc 4.6.3

OpenCL NVIDIA UNIX x86_64 Kernel Module 290.10

results as the original. GPU pyramid and resampler results by
OpenCL are compared with their original CPU version as a base-
line, using the normalized root mean square error (nRMSE) as a
measure of accuracy:

nRMSE =
√∑n

i = 0(ICPU(xi)−IGPU(xi))
2 /

∑n
i = 0ICPU(xi)

2.(6)

All timings were measured on a second run of the program,
where the pre-compiled GPU kernel is loaded from cache. CPU
optimizations were evaluated using the Alzheimer classification
application to compare original with optimized methods, see
Section 4.4.

While in our automatic testing environment (using CTest, part
of the CMake package, www.cmake.org) we perform nightly eval-
uation on both 2D and 3D data, in this paper we only report
3D results. All timing experiments were run on a linux sys-
tem, detailed in Table 1. This systems contains an NVidia GTX
480 graphical card (market launch March 2010), while currently
(August 2013) the GTX 780 generation is available. All registra-
tions for the diagnostic classification of AD were run on a cluster
of linux systems.

4.2. PARALLELIZATION AND OPTIMIZATION ON THE CPU
CPU accelerations are evaluated by comparing the baseline algo-
rithms with accelerated version, using various numbers of threads
(T ∈ {1, 2, 3, 4, 8, 16}). We show registration results for the B-
spline transformation, using a first order B-spline and a lin-
ear interpolator for the baseline and accelerated algorithms,
respectively, with 3 resolutions and 1000 iterations per reso-
lution. The B-spline grid is refined from the first to the last
resolution, so that a progressively larger number of parame-
ters N is used. In the experiments we inspect the influence of
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the number of samples |�̃F| (2000 vs. 20,000), the B-spline
grid spacing in the last resolution (10 mm vs. 5 mm, result-
ing in N = 2 · 103, 9 · 103, 5 · 104 vs. N = 9 · 103, 5 · 105, 3 · 105

parameters at each resolution, respectively), and the cost function
(MSD vs. NC vs. MI).

Figure 4 displays the performance results for MI, 2000 sam-
ples, N = 5·104, showing the reduction in runtime per iteration,
the speedup factor and the parallelization efficiency. It can be
seen that using more threads steadily increases the performance,
until T matches the number of CPU cores. Further increas-
ing parallelization decreases performance. The efficiency plot

A

B

C

FIGURE 4 | Registration performance as a function of the number of

threads. Ri denotes the resolution number, b refers to the baseline
un-accelerated algorithm, and the numbers 1–16 refer to the number of
threads used when running the parallel accelerated algorithm. The blue line
shows ideal linear speedup. Results are shown for MI, N = 5·104,
|�̃F | = 2000. (A) Shows the runtime per iteration, (B) the speedup factor
F , and (C) the efficiency E.

shows that although the performance increases with increasing
T, the benefits are gradually diminished. An efficiency of 60–70%
(Figure 4C) was obtained for 8 threads, which is influenced by
the overhead of thread creation and destruction and by the fact
that derivative joining (aggregating gt

k to gk) is not free of cost.
Comparing the columns “b” and “1” we can see that the general
optimizations described in Section 3.1 already reduce runtime
from 27 ms to 18 ms per iteration (R2), showing the overall
benefits of these modifications. Separate tests used during devel-
opment showed for example that computing ∂IM/∂x using the
linear interpolator instead of a first order B-spline was about
10–15x faster stand-alone, and using the new scan line iterator
from ITKv4 when computing T(x) for the B-spline transform was
about 15% faster. Overall, the image registration was accelerated
by a factor of 4–5x, when using 8 threads on our 8-core machine.

Figure 5 shows the experimental results when varying the
number of samples |�̃F|, parameters length N and cost function
type. The speedup remains much closer to the theoretical limit
when using 20,000 samples instead of 2000 (Figure 5A), although
of course the former is 10 times as slow. This may be attributed
to the fact that for many samples the overhead of thread cre-
ation and destruction is relatively small wrt computation time.
In our current design we employ ITK’s threading mechanism,
which may be suboptimal for short tasks. Figure 5B shows that
speedup decreases when the number of parameters is large (R2).
In this case vector arithmetic [joining the derivatives gt

k and per-
forming the optimization step (2)] is starting to take a larger
portion of an iteration. According to the Callgrind profiler about
15% of the time was spend for derivative joining and an addi-
tional ∼7% for threading related initialization, and ∼3% for the
optimization step. In a separate test program we tested the per-
formance of these operations comparing three versions: single
threaded, multi-threaded using ITK and multi-threaded using
OpenMP. We found that multi-threading was unsuccessful for
the optimization step, only deteriorating performance, and suc-
cessful for derivative joining, mostly so when using OpenMP. We
therefore opted to only use multi-threading with OpenMP for the
derivative joining. Finally, Figure 5C shows that all metrics almost
equally well benefit from parallelization. Overall, the accelerations
reduced the registration runtimes from 52, 57, and 80s to 10, 12,
and 17 s for MSD, NC and MI, respectively (|�̃F| = 2000, N =
5 · 104), excluding optimization step size computation (∼22s) of
the ASGD optimizer.

4.3. PARALLELIZATION ON THE GPU
4.3.1. Gaussian image pyramids
For testing the Gaussian pyramid accelerations we chose default
scaling and smoothing schedules using 4 resolutions: images were
downsized by a factor of 8, 4, 2, and 1 and smoothed with a
Gaussian kernel with σ = 4, 2, 1 and 0 for the four resolutions,
respectively. The results are shown in Table 2.

The imprecision as measured by the nRMSE was quite small
(<10−6), meaning that the the CPU and GPU returns almost
exactly identical smoothed images. Small speedup factors of
about two were measured, which may be an indication that the
specific Gaussian smoothing algorithm is not very well suited for
acceleration on the GPU.
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A

B

C

FIGURE 5 | Registration performance as a function of the number of

threads. Ri denotes the resolution number, b refers to the baseline
un-accelerated algorithm, and the numbers 1–16 refer to the number of
threads used when running the parallel accelerated algorithm. The blue line
shows ideal linear speedup. Varying the number of samples (A), the
number of registration parameters (B), and the cost function (C).

4.3.2. Image resampling
We tested the GPU resampling filter with different combinations
of interpolators and transformations. For the B-spline interpola-
tor and B-spline transform we have used third order splines. For
brief notation we introduce the symbols T, R, S, A and B for the
translation, rigid, similarity (rigid + isotropic scaling), affine and
B-spline transformation, respectively. Detailed results are shown
in Table 3 and Figure 6.

The GPU results for resampling were very close in terms of
nRMSE to the output produced by the ITK CPU code. Only for
the nearest neighbor interpolator in combination with the affine
transformation higher errors are reported. This difference is due

Table 2 | Results of the multi-resolution pyramid filter.

Image size Resize tCPU tGPU F nRMSE

100 x 100 x 100 Off 0.05 0.02 2.3 0.55 ×10−6

Resampler 0.06 0.03 1.9 0.52 ×10−6

Shrinker 0.04 0.02 2.0 0.55 ×10−6

256 x 256 x 256 Off 0.84 0.33 2.5 0.56 ×10−6

Resampler 0.98 0.58 1.7 0.52 ×10−6

Shrinker 0.88 0.31 2.8 0.56 ×10−6

512 x 512 x 256 Off 4.07 2.51 1.6 0.57 ×10−6

Resampler 4.68 2.19 2.1 0.53 ×10−6

Shrinker 4.07 1.58 2.6 0.57 ×10−6

Timings shown are for all four levels in total.

to floating point differences between CPU and GPU, sometimes
leading to different rounding behavior. Example results are shown
in Figure 7.

Figure 6 shows that linear transformations are accelerated less
well than nonlinear transformations. This can be explained by
(i) the small runtime of the linear transformations on the CPU,
which is due to the CPU resampler implementing a highly opti-
mized path for these cases, not possible for the GPU, and (ii) the
lower computational complexity of these transformations (com-
monly more complex operations give more speedup on the GPU
since GPU overhead is relatively small in those cases). Note that
the B-spline interpolator yields higher speedup factors than the
nearest neighbor and linear interpolator, for linear transforma-
tions (15–20 vs. 1–3), but lower speedup factors for nonrigid
transformations (35–45 vs. 45–65). We remark that the reported
speedup factors are a mixture of the speedup factors for the trans-
formation and the interpolation step, related to the time spent in
each step. For lower computationally complex transformations,
the B-spline interpolator speedup will mostly determine the over-
all speedup, while for the more complex transformations both
speedup factors determine the overall speedup. As a final obser-
vation, note the trend that more speedup is obtained for larger
images, likely due to a better occupancy of the GPU combined
with the copying overhead being less prominent in those cases.

Summarizing, speedups were obtained in the range 15–60x
using more complex transformations, with no degradation for
setups that were already very fast on the CPU. Using a B-spline
interpolator and transform on a larger image, a common use-
case, the execution time was 67 s on an 8 core CPU, while with
a GPU this was reduced to <1 s.

4.4. DIAGNOSTIC CLASSIFICATION OF AD
4.4.1. Registrations
To evaluate the registration results in the AD classification
experiment, we compared the deformation fields obtained with
the original and accelerated version of elastix. The RMSE
between the two deformation fields was calculated. In the voxel-
wise approach all 299 subjects’ images were registered to the
images of the 150 training subjects, which resulted in a mean ±
std RMSE of the deformation field of 0.52 ± 0.46 mm (range:
0.0001–20.01 mm). In the region-wise approach 30 atlas T1w
images were registered to all subjects’ T1w scans. The RMSE was
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Table 3 | Results of the resampling filter.

sz T tCPU tGPU F nRMSE×10−3

NN L B NN L B NN L B NN L B

10
0

x
10

0
x

10
0 T 1 0.00 0.01 0.25 0.01 0.01 0.01 1 2 17 0.00 0.00 0.00

T 2 0.00 0.01 0.21 0.01 0.01 0.01 1 2 14 4.06 0.00 0.00

T 3 0.38 0.39 0.60 0.01 0.01 0.02 47 44 34 0.12 0.00 0.00

T 4 0.38 0.39 0.61 0.01 0.01 0.02 41 43 33 0.36 0.00 0.00

T 5 0.36 0.36 0.56 0.01 0.01 0.03 35 32 20 0.73 0.00 0.00

25
6

x
25

6
x

25
6 T 1 0.05 0.14 3.99 0.05 0.05 0.19 1 3 21 0.00 0.00 0.00

T 2 0.05 0.14 4.48 0.05 0.05 0.20 1 3 23 3.14 0.02 0.02

T 3 5.78 5.86 10.6 0.10 0.10 0.25 58 59 43 0.64 0.00 0.00

T 4 5.86 5.93 10.6 0.10 0.11 0.25 56 56 42 0.64 0.00 0.00

T 5 5.40 5.43 9.18 0.10 0.12 0.41 54 46 23 0.57 0.00 0.00

51
2

x
51

2
x

25
6 T 1 0.31 1.26 19.6 0.18 0.17 0.77 2 8 26 0.00 0.00 0.00

T 2 0.26 1.03 20.6 0.18 0.18 0.78 1 6 27 1.26 0.00 0.00

T 3 23.4 24.4 66.7 0.41 0.40 0.96 56 62 70 0.41 0.00 0.00

T 4 22.9 23.0 41.7 0.41 0.40 0.99 56 57 42 0.45 0.00 0.00

T 5 21.3 21.6 39.1 0.39 0.44 1.47 54 49 27 0.53 0.00 0.01

Timings are shown in seconds. sz denotes image size. First, second and third number in each column denote the result for the nearest neighbor (NN), linear (L) and

B-spline (B) interpolator, respectively. T1 − T5 are the composite transforms T , A, B, A ◦ B and T◦A◦B◦R◦S, respectively.

A

B

C

FIGURE 6 | Speedup factors F for the GPU resampling framework.

Results are shown for the nearest neighbor (A), the linear (B), and the 3rd
order B-spline interpolator (C).

calculated in the same brain mask that was used for registration,
which resulted in a RMSE of 0.75 ± 0.45 mm (range: 0.14–8.42
mm). The voxel sizes of the image is 0.95 × 0.95 × 1.20 mm3, so
the average RMSE is smaller than the voxel dimension. Figure 8
shows an example of the registration with median RMSE for
the voxel-wise approach. Registration time for the described
setup reduced from ∼13.1 to ∼3.6 min per patient, of which
optimization step size computation took 1.2 min.

4.4.2. Features
For the region-labeling, a high overlap was found between the
ROIs using the two versions of the registration methods, resulting
in a Dice coefficient of 0.97 ± 0.02 (mean ± std) over all ROIs in
all subjects. Figure 9 shows a Bland-Altman plot for the region-
wise features. The difference in the region volumes between the
original and accelerated versions of the registration methods is
very small compared to the mean.

The voxel-wise features cannot be compared directly as they
are calculated in separate template spaces. Figure 10 shows the
template spaces constructed with the original and accelerated ver-
sion of the registration method. Although the template spaces
show no visually observable differences, they do slightly differ
(Figure 10C). The magnitude of the difference is much smaller
than the magnitude of the template images. There seems to
be a slight shift in the z-direction between the template spaces
calculated with the two elastix versions.

4.4.3. Classification performance
Figure 11 shows the receiver-operator characteristic (ROC)
curves for the classifications on the test set. The area under this
curve (AUC) is a measure for classification performance. For the
voxel-wise classifications, the features calculated with the original
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A B C

FIGURE 7 | Resample example for the highest nRMSE of Table 3 (NN, A, 1003). Differences are due to 79 isolated voxels in the range [−743, 502]. Shown
are the result for the CPU (A), the GPU (B), and their difference (C).

FIGURE 8 | Registration result for the median case of the voxel-wise

method with a RMSE of 0.419 mm. The fixed T1w image, the
transformed moving T1w image registered with the original and the
accelerated version of elastix and the difference between the two
resulting images are shown.

version of the registration software gave an AUC of 88.4%. The
accelerated version resulted in a very similar AUC: 88.3%. For all
test subjects (n = 149), the predicted labels were the same using
both registration methods. For the region-wise method, perfor-
mance was slighly better than for the voxel-wise method. Here,
the original version resulted in a slightly higher AUC than the
accelerated version (90.3% vs. 89.6%). Only three test subjects
had a different prediction. To assess the difference between the
two registrations methods, McNemar’s binomial exact test was
performed. For both voxel- and region-wise methods, the tests
showed no significant difference (p = 1 in both cases).

FIGURE 9 | Bland-Altman plot of the region-wise features for the

original and accelerated versions of elastix. The features represent
the GM volume per brain ROI divided by the intracranial volume. The
average features were grouped in bins of width 0.001, for each bin a
boxplot is shown. 72 features for 299 subjects are included. The mean
difference between the features is 1.0 · 10−7 (CI: −5.2 · 10−5; 5.2 · 10−7),
mean and CI are indicated with the striped and dotted lined in the figure.

5. DISCUSSION AND CONCLUSION
In this paper we present a number of CPU and GPU opti-
mizations for the image registration package elastix. The
accelerated version of elastix was compared with the origi-
nal in a study to automatically discriminate between AD patients
and age- and gender-matched cognitively normal controls, based
on T1w MRI.

Parallelization was used at several places of the image regis-
tration framework, exploiting the fork-and-join thread model of
ITK, i.e., for computation of the cost function derivatives and for
joining the results of the several threads. In addition, throughout
the registration framework optimizations were performed, for
example exploiting the sparseness of the derivative of the B-spline
transformation, resulting in an overall increase in performance.
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FIGURE 10 | Template space for the voxel-wise features constructed with the original version of elastix (top row) and the accelerated version

(middle row). The difference between the two is shown at the bottom row.

Compared to the original framework the optimizations only
(no parallelization) accelerated image registration by 40–50%, see
Figures 4, 5. Parallelization increases performance until the used
number of threads reaches the number of CPU cores. We obtained
an overall speedup of 4–5x, using 8 threads on an 8 core system.
All registration similarity metrics almost equally well benefit from
parallelization.

In addition to accelerating the core registration algorithm
using the CPU, the GPU was used to accelerate two poten-
tially computationally intensive components that are part of the
algorithm. In this paper we accelerated computation of the multi-
resolution Gaussian pyramid and the final resampling step, using
OpenCL. A generic OpenCL framework was first developed,
based on the existing ITKv4 GPU acceleration design. To this end
a large part of the OpenCL specification was wrapped in ITK
classes, following the OpenCL class diagram and inspired by cur-
rent ITKv4 design. This generic architecture and close integration
with ITK will ease adoption of OpenCL for general image pro-
cessing tasks, not only for image registration. Subsequently, we
designed a pipeline for pyramid computation and resampling,
exploiting the design, notably the OpenCL queueing and syn-
chronization mechanisms. The developed code is generic and
allows extension to other geometric transformations and interpo-
lators. The use of OpenCL furthermore enables targeting of most
accelerator devices (GPU, FPGA) available today.

For the GPU optimizations speedup factors of ∼2x were
achieved for the image pyramids and 15–60x for the resampling,
on larger images, using an NVidia Geforce GTX 480. For resam-
pling, the increase in performance was negligible when using
simple transformations (translation, affine) in combination with
simple interpolators (nearest neighbor, linear), since in these
cases the CPU computation was already quite fast (< 1 s). For
more complex operations (B-spline interpolator and/or B-spline
transformation) the GPU is very beneficial.

To compare registration accuracy between original and accel-
erated versions of elastix, ∼54k T1w image registrations have
been performed with each version in the setting of an AD clas-
sification experiment. Registration results were similar as shown
by visual inspection of the median result and the RMSE of the
deformations field: 0.521 ± 0.460 mm (voxel-wise) and 0.749 ±
0.446 mm (region-wise). In addition, the classification features
calculated with the two elastix versions were very similar. The
differences in features between the two versions of the registra-
tion software were much smaller than the features themselves: for
the voxel-wise approach the template spaces looked very similar,
and for the region-wise approach the Dice overlap of the ROIs
was very high and the differences between the GM volumes were
relatively small. This resulted in a high classification performance,
which was not significantly different between the two elastix
versions.
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FIGURE 11 | Receiver-operator characteristic (ROC) curves for the

classification based on voxel-wise (red, blue) and region-wise features

(magenta, green) calculated with the original and accelerated versions

of elastix. Between brackets, the area under the curve (AUC) is given as
performance measure.

Remaining differences between original and accelerated algo-
rithms are attributed to a combination of algorithmic changes
and hardware effects. For example, where in the original version
the sample contributions (see Equation (3)) are directly accu-
mulated in a single derivative, in the parallel version multiple
derivatives are created, which are later joined to a single deriva-
tive. This changes the order and amount of arithmetic operations,
and depending on machine precision this will lead to slightly
different results. In addition, since image registration is an iter-
ative process, small differences will be propagated until the end.
In general, all implementation choices influence the final result.
In the neuroimaging application the differences in the features
(GM volumes) and classification results provide information on
the impact of these imprecisions on the final result, which appears
to be small.

Fast registration algorithms have most impact when used in a
time-critical setting. An example would be the diagnostic classi-
fication of a single patient on a clinical workstation, performed
by a neuro-radiologist. Generally, interactive speed is desired in
such a user setting. The multiple registrations needed for the clas-
sification would be performed in parallel on a computing cluster,
as was done in this work, which means that total classification
time is limited by the runtime of a single registration. An exam-
ple from outside the image-guided therapeutic domain would be
(near) realtime motion compensation for radiation therapy. For
research, fast registration enables testing of a wider range of algo-
rithm parameters, or enables testing on large groups of patients
within reasonable time. Given the general nature of similarity
based image registration the results are naturally applicable to a
wide range of image registration problems.

There are several areas in which our work can be improved
and extended. For the CPU the total efficiency was 60–70%
using 8 threads. When thread overhead is small compared to

the computation, a much larger efficiency was obtained, see
Figure 5A. This suggests that for short iteration times (5–6 ms,
due to heavy stochastic subsampling during the optimization) the
thread overhead is not negligible. The implementation of thread
pools, that do not create and destruct threads every iteration,
may mitigate this problem. Registration problems which need a
high number of transformation parameters (large images and/or
fine deformations) obtained only a small overall speedup (<3).
In the current implementation the algorithmic steps related to
vector arithmetics were found to be difficult to parallelize, and
better methods have to be found. Further accelerations may be
found by performing a comprehensive complexity analysis for
each stage of the registration procedure, identifying the theoreti-
cal data transfer and computational requirements. Moreover, the
use of more advanced profiling tools, such as the Intel VTune
Amplifier, could be investigated. For the GPU we consider the use
of pre-compiled binaries to completely remove compilation over-
head at runtime. This functionally is available since the OpenCL
1.2 standard. Offloading of more parts of the registration algo-
rithm to the GPU can also be considered. Considerable estimation
time is still required by the ASGD optimizer (Klein et al., 2009b),
which we addressed in separate work (Qiao et al., 2014).

The OpenCL implementation was additionally tested with an
AMD Radeon HD 7900 card, and we can confirm portability of
the solution. The AMD OpenCL compiler currently does not sup-
port caching of compiled binaries, making a timing comparison
difficult. The CPU accelerations will be made available as open
source in the next release of elastix. The GPU extensions are
already incorporated in the elastix testing framework, but are
not yet fully integrated in the elastix pyramids and resampler.

In conclusion, the proposed parallelization and optimizations
substantially improve the runtime performance of image registra-
tion as implemented in the publicly available registration software
elastix. This will facilitate medical practitioners and neu-
roimaging researchers, who commonly rely on image registration
to label brain data, classify patients, compare between subjects or
image sequences and to perform patient followup. It was shown
in a large experiment on public data of patients with Alzheimer’s
disease that the registration results of the accelerated version are
very close to the original. This work therefore makes substantially
accelerated image registration accessible to a wide audience.
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