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Abstract

The study of complex brain networks, where structural or functional connections are evaluated to 

create an interconnected representation of the brain, has grown tremendously over the past decade. 

Much of the statistical network science tools for analyzing brain networks have been developed for 

cross-sectional studies and for the analysis of static networks. However, with both an increase in 

longitudinal study designs, as well as an increased interest in the neurological network changes 

that occur during the progression of a disease, sophisticated methods for longitudinal brain 

network analysis are needed. We propose a paradigm for longitudinal brain network analysis over 

patient cohorts, with the key challenge being the adaptation of Stochastic Actor-Oriented Models 

(SAOMs) to the neuroscience setting. SAOMs are designed to capture network dynamics 

representing a variety of influences on network change in a continuous-time Markov chain 

framework. Network dynamics are characterized through both endogenous (i.e., network related) 

and exogenous effects, where the latter include mechanisms conjectured in the literature. We 

outline an application to the resting-state fMRI setting with data from the Alzheimers Disease 

Neuroimaging Initiative (ADNI) study. We draw illustrative conclusions at the subject level and 

make a comparison between elderly controls and individuals with AD.

Keywords

Network analysis; Longitudinal network analysis; Complex brain networks; Stochastic actor-
oriented models; Alzheimer’s Disease; Resting-state fMRI; functional connectivity

*Corresponding author. hshappe1@jh.edu. 

Heather Shappell has nothing to disclose.

HHS Public Access
Author manuscript
Netw Sci (Camb Univ Press). Author manuscript; available in PMC 2020 December 11.

Published in final edited form as:
Netw Sci (Camb Univ Press). 2019 June ; 7(2): 196–214. doi:10.1017/nws.2019.9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

The study of complex brain networks is an an active area of research, as evidenced by the 

launching of efforts such as the Human Connectome Project (Van Essen et al., 2012) and the 

1000 Functional Connectomes Project (Biswal et al., 2010). Complex brain network analysis 

is a specific subfield of connectivity analysis. Structural connections (representing physical 

or anatomical links) or functional connections (where connections rely on the coupling 

between dynamic activity) are evaluated for all pairs of pre-specified brain regions of 

interest (ROIs). The resulting data structure is an interconnected representation of the brain 

(Simpson et al., 2013). Therefore, in contrast to other brain network analytic methods that 

are more widely used (e.g. seed-based functional connectivity and independent component 

analysis), graph-based network analyses allow one to visualize the overall connectivity 

pattern among all ROIs, quantitatively assess differences in global network structure, and 

investigate how different modules (i.e. interconnected clusters of ROIs) communicate with 

one another (Simpson et al., 2013). Understanding brain development and causes of 

neurological disorders, such as AD, as well as developing more effective treatments, require 

not just gaining knowledge about separate components in the brain, but also studying how 

these components interact (Telesford et al., 2011; Sporns, 2014; Mesulam et al., 1990; 

Bressler & Menon, 2010). It is within this paradigm shift that scientists have begun 

investigating how structural and functional networks behave in healthy brains and are altered 

in neurological and psychiatric disorders (Stam, 2014).

Despite the many advances that have been made in understanding how the brain functions, 

the underlying cause of most neurological disorders remains vastly unknown. However, with 

a number of modern noninvasive imaging techniques such as Diffusion Tensor Imaging 

(DTI), electroencephalography (EEG), magnetoencephalography (MEG), and functional 

magnetic resonance imaging (fMRI) lending themselves to the characterization of brain 

networks, coupled with several initiatives, such as the Alzheimers Disease Neuroimaging 

Initiative (ADNI) (Mueller et al., 2005), the Autism Brain Imaging Data Exchange (ABIDE) 

(Di Martino et al., 2014), the Attention Deficit Hyperactivity Disorder (ADHD) 200 

(Milham et al., 2012), and the National Alzheimer Disease Coordinating Center (NACC) 

Database (Beekly et al., 2004) providing access to these neuroimaging databases, 

researchers have an enormous opportunity to delve deeper into brain network research.

With this growth of data and interest, comes the need for novel statistical approaches to 

analyze brain network data. Much of the statistical network science tools for analyzing 

complex brain networks have been developed for cross-sectional studies and for the analysis 

of static networks, leaving the potential to conduct longitudinal complex network analysis 

largely untapped. The few longitudinal brain ‘network’ analyses that have been performed 

have been done on networks constructed via independent component analysis (instead of the 

graph theoretical approach that we are focused on here), and/or the analysis consists of only 

two time points (Bai et al., 2011; Damoiseaux et al., 2012). Often times brain network 

studies that contain a longitudinal component use methods such as a paired t-test or ANOVA 

to compare basic summary network metrics (e.g. local efficiency, global efficiency, degree, 

etc) across two time points and/or disease groups. With the growth of initiatives that are 

collecting and providing access to neuroimaging data over time on many subjects, a natural 
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next step is to model and draw inference from fully constructed longitudinal whole-brain 

networks (e.g. at a series of time points) and to evaluate influences on network change both 

within a subject and across subjects and populations.

In this paper, we propose a paradigm for longitudinal complex brain network analysis, with 

the heart of the framework being the adaption of Stochastic Actor-Oriented Models 

(SAOMs) to the neuroscience setting. SAOMs are designed to capture network dynamics 

representing a variety of influences on network change in a continuous-time Markov chain 

framework (Snijders et al., 2010a). To the best of our knowledge, these models have not yet 

been used in neuroscience. Originally developed in the social network setting, SAOMs 

revolve around the notion that the nodes in the network make changes to their local 

connections (or lack of connections) such that their personal “satisfaction” with the network 

configuration is maximized. This satisfaction is captured by an objective function, a linear 

combination of effects that can be either functions of the network itself (endogenous effects) 

or characteristics of the nodes themselves (exogenous effects). Importantly, this framework 

lends itself to the testing of hypotheses through the estimation of parameters expressing 

possible influences on network change (Snijders et al., 2010a). This SAOM framework 

allows researchers to delve in, disentangle, and identify which mechanisms are driving 

network change over time, as opposed to focusing on different network characteristics 

individually.

Figure 1 outlines our proposed paradigm. We begin with rsfMRI data collection for i = 1, …, 

N subjects over each of their Ti time points. Next is network construction, using one of the 

many methods existing in the literature. After network construction, hypotheses are 

formalized and paired with effects that can be placed into the SAOMs. Models are then fit to 

each subject’s series of networks. Finally, a meta-analysis is performed on the model output, 

allowing one to draw conclusions at the group level. Each of these steps requires careful 

attention, and we outline each in the remaining sections of this paper. The best way to 

present our framework is to do so with a real-world application. Therefore, we will walk 

through an application of our paradigm to resting-state fMRI functional networks in a study 

of Alzheimer’s Disease (AD). In the next section, we provide some background information 

on AD and resting-state functional brain networks. From there, we delve into the six steps of 

our framework, as they apply to our AD study.

2 AD and resting-state functional networks

AD is the most common neurodegenerative disorder, accounting for 60–80% of dementia 

cases. Currently, there is no cure for the disease, but there is a worldwide effort under way to 

develop additional agents to reduce the rate of progression, and ultimately, to prevent it from 

developing.

Resting-state functional magnetic resonance imaging (rsfMRI) is considered a promising 

biomarker for AD. In contrast to task-based fMRI, it is often used to evaluate regional 

interactions in the brain that occur when a subject is not performing a task (Lee et al., 2013). 

There are several reports in the literature on resting-state complex functional network 

changes in those with Mild Cognitive Impairment (MCI) and AD. For example, researchers 
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have reported on changes in network characteristics such as path length, clustering, node 

centrality, hubs, and modularity (Greicius et al., 2004; Wang et al., 2010; Supekar et al., 
2008) when comparing disease groups at one or two time points. We will expand on some of 

these findings in Section 3.3.2 during our formulation of hypotheses and corresponding 

SAOM effects. The goal of this proof-of-concept application is to leverage some of these 

previous findings and hypotheses, along with our newly proposed framework, to assess 

longitudinal brain network changes occurring during the progression of AD and to compare 

these disease-related changes to network changes in a cohort of healthy aging controls.

3 Methods

3.1 Subjects and fMRI

3.1.1 Subjects—Data used in the preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. ADNI was originally slated as a 5 year endeavor, but was 

extended by a 2-year Grand Opportunities grant in 2009 and a renewal of ADNI (ADNI-2)

(Mueller et al., 2005).

All of our subjects are participants of ADNI-2. ADNI-2 has subjects who are classified as 

having normal cognitive status, MCI, or AD and had data collected over a series of visits 

that include screening/baseline, 3 months, 6 months, one year, and occasionally two years. 

Resting-state fMRI data are known to contain a substantial amount of noise, related to 

factors such as cardiac and respiratory signals (Lee et al., 2013). Additionally, the number of 

subjects with rsfMRI scans was somewhat limited due to the selection criteria employed. 

Accordingly, in order to maximize the ratio of signal to noise, we chose to focus on a 

comparison of two extremes, selecting patients who are of either normal cognitive status 

(controls) or who have been classified as having AD (cases). When selecting subjects, we 

only chose those that had at least two visits with rsfMRI scans, and additionally, we tried to 

limit the number of subjects who had non-monotone missingness (i.e. subjects who have 

missing observations and then return and have non-missing information at a later time 

point). With these inclusion criteria, we have a sample of 25 controls and 20 cases. Please 

refer to Table 3 in Section 4.2 for a description of how many subjects had 2, 3, 4, and 5 

scans.

3.1.2 Resting-State fMRI—Functional communication between brain regions is highly 

important in complex cognitive mechanisms, and rsfMRI, a technique that focuses on 

spontaneous low frequency fluctuations (< 0.1Hz) in the Blood-Oxygen-Level Dependent 

(BOLD) signal, has drawn much interest in recent years. In the past, functional 

communication was typically looked at in fMRI using task-based or stimulus-driven 

paradigms, while fMRI at rest was interpreted to have no meaning and was just ‘background 

noise’. However, it is now widely recognized that the brain is never silent (Sporns, 2013). 

Shappell et al. Page 4

Netw Sci (Camb Univ Press). Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rather, it is always engaged in anatomically structured and meaningful neural activity, and is 

shown to not only be altered in neurological or psychiatric diseases, but also during healthy 

aging (Damoiseaux et al., 2008; Andrews-Hanna et al., 2007; Mathys et al., 2014). Resting-

state fMRI also has its advantages in that it allows functional data to be acquired in patients 

with a wide range of cognitive abilities, it avoids performance related variability of 

activation fMRI studies, and it is less complicated to acquire and standardize (Fleisher et al., 
2009).

3.1.3 Data acquisition and pre-processing—Structural scans were acquired on 3T 

Phillips System scanners using the 3D MPRAGE protocol and rsfMRI protocol developed 

by ADNI (http://adni.loni.usc.edu/methods/documents/mri-protocols/). The MPRAGE scans 

were acquired in the sagittal plane using the following parameters: TR/TE 3000/4 ms; flip 

angle 8◦ - 9◦; section thickness 1.2 mm; 170 sagittal slices. Functional data were acquired 

while subjects focused on a dot in the middle of the screen, per the ADNI protocol. The 

rsfMRI sequence consisted of a seven-minute functional run acquired in the axial plane 

using a T2*-sensitive gradient-recalled, single-shot echo-planar imaging pulse sequence 

(TR/TE 3000/30 ms, FoV = 212 mm, flip angle 80◦, matrix size 64 × 64, inplane resolution 

3.3 mm × 3.3 mm). Each volume consisted of 48 slices parallel to the bicommissural plane 

(slice thickness 3.3 mm, no gap), and each functional run was comprised of 140 volumes.

Freesurfer software (surfer.nmr.mgh.harvard.edu version 5.3) was used to parcel and label 

the structural MPRAGE scans of each of the subjects (Desikan et al., 2006). The software 

identified grey matter regions in the cortex and sub-cortex. Following the “standard” 

Freesurfer processing pathway, all of the scans were initially run through the “recon all” 

pipeline. Each individual scan was then viewed, and errors in the pial surface were edited to 

remove the inclusion of non-brain tissue (i.e. dura matter). Errors in the white matter surface 

were also corrected to include white matter that was excluded by Freesurfer. Edited images 

were then re-processed through Freesurfer and the resultant maps again viewed and edited as 

needed. The edited Freesurfer images from each subject were then run through the standard 

Freesurfer longitudinal processing stream (Reuter et al., 2012), where a template image was 

created and longitudinal runs made. After the completion of this final processing, all images 

were again visually inspected for gross errors in processing.

Sixty-four grey matter regions of interest (ROIs) from the cortex and sub-cortex were chosen 

from these labels, excluding those highly susceptible to field distortions. A mean time series 

for each ROI was calculated by averaging all fMRI voxel values within each ROI over time, 

resulting in 140 time points calculated for each 7 minute resting state session. Please refer to 

the appendix for a full list of the ROIs used in our analysis, as well as additional details on 

data acquisition and pre-processing. An image of the cortical parcellation used in our study 

may be found in (Desikan et al., 2006).

3.2 Construction of brain networks

We define our functional connection matrix, or m × m adjacency matrix of edge status 

variables x jk, obtained for each subject at each of his/her scans to be an undirected binary 

graph G with m = 64 nodes. An edge between ROIs j and k is present if x jk = 1 and isn’t 

Shappell et al. Page 5

Netw Sci (Camb Univ Press). Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/methods/documents/mri-protocols/


present if x jk = 0. The edges in the network represent binary undirected functional 

connections between regions. To estimate each connection matrix, we first calculated the 

Pearson correlation matrix using the time series (over the length of the scan) of BOLD 

signals at each of the 64 ROIs. We decided on Pearson correlation when defining edges 

given that there is some evidence that, via Test Re-test analyses, the reliability is highest for 

Pearson’s-correlation-based brain networks (Liang et al., 2012). Please see the discussion 

section for additional comments.

Next, we took the top 20% of Pearson correlation values and defined their corresponding 

edge status variables to be 1 (i.e. a functionally connected node pair). As is standard in the 

literature, we chose to work with positive correlations only (Schwarz & McGonigle, 2011; 

Rubinov & Sporns, 2010). Such thresholding led to equal edge densities in all subjects and 

time points, which is important for comparisons of network topology. In addition, we chose 

a 20% edge density to be in line with what would be expected from the edge density of the 

underlying structural connectivity which ranges from 10 − 30% (Van Wijk et al., 2010). Out 

of the 184 total networks in our analysis, 162 of them are connected as a single connected 

component at the 20% threshold. Of the 22 networks that are not completely connected, 14 

have only one ROI that is not included in the giant connected component, and the remaining 

8 all have a very large connected component.

3.3 Stochastic Actor Oriented Models

3.3.1 Background—For our purpose of longitudinal statistical analysis on functional 

fMRI networks, we employ a type of models called “Stochastic actor-oriented models for 

network dynamics” proposed by Snijders et al. These SAOMs are fit on a subject-by-subject 

basis. We are modeling a continuous time Markov process where the totality of possible 

networks is the state space and each individual’s observed networks are snapshots of his/her 

network state during this continuous period of time. In other words, unobserved changes are 

assumed to happen sequentially in between the observations of each subject. At a given 

moment, one probabilistically selected ROI may change an edge, where the decision is 

modeled according to a random utility model, requiring the specification of a utility function 

(i.e. objective function) depending on a set of explanatory variables and parameters (Snijders 

et al., 2010a).

Therefore, we are reduced to modeling the change of one edge status variable (x jk) by one 

ROI at a time (a network micro step) and modeling the occurrence of all of these micro steps 

over time. The first observed network for each subject serves as the starting value of the 

evolution process for that subject. In other words, the first observed network is always 

conditioned upon. For each ROI j, the waiting time until ROI j takes a micro step is modeled 

by exponentially distributed variables with parameters λj (Snijders et al., 2010a). Therefore, 

the waiting time until occurrence of the next micro step by any ROI is exponentially 

distributed with parameter

λtotal = λj .
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Since we are working with undirected networks, we will work under the assumption that one 

ROI takes the initiative and unilaterally imposes that a tie is created or dissolved. For 

example, let’s assume that G = g is the current network in the evolution process and ROI j 
has the opportunity to make a network change. The next network state g′ then must be either 

equal to g or deviate from g by one edge. Vertex j chooses the value of g′ for which

fj(g, g′, β) + εj(g, g′)

is maximal, where εj(g, g′) is a Gumbel-distributed random disturbance that captures the 

uncertainty stemming from unknown factors, and

fj(g, g′, β) =
r

βrSr(j, g, g′),

where βr represent parameters and Sr( j, g, g′) represent the corresponding effects.

This is the so-called objective function, which is a function of the network perceived by the 

focal ROI. Probabilities are higher for moving towards states with a high value of the 

objective function. The objective function depends on the personal network position of the 

ROI, the ROI’s exogenous covariates, and the exogenous covariates of all of the ROIs in the 

ROI’s personal network. Due to distributional assumptions placed on ε j(g, g′), the 

probability of choosing g′ can be expressed in multinomial logit form as

exp(fj(g, g′, β)
exp(fj(g, g′′, β))

,

where the sum of the denominator extends over all possible next network states g′′ (Snijders 

et al., 2010a).

For each set of model parameters, there exists a stationary distribution of probabilities over 

the state space of all possible network configurations. The complexity of the model does not 

allow for the equilibrium distribution nor the likelihood of the observed data set to be 

calculated in closed form. Therefore, parameter estimates are obtained either via an iterative 

stochastic approximation version of the Method of Moments approach (Snijders et al., 
2010a) or a Maximum Likelihood approach based on data augmentation and stochastic 

approximation (Snijders et al., 2010b). The RSiena R package (Snijders, Steglich, and 

Schweinberger) is used to estimate and fit the model (Ripley et al., 2011).

3.3.2 Hypotheses and Effects—The specification of a SAOM is done by defining a 

rate function and an objective function. The rate function indicates the speed at which the 

ROIs obtain an opportunity to change a connection, while the objective function informs 

which changes are made when given the opportunity. Following the recommendation of 

SAOM documentation, we used a constant rate function without additional rate function 

effects, but it is possible to let the rate function depend on individual ROI covariates when 

there are important size or activity differences between them. The objective function we will 

use involves effects that we have matched to hypotheses we wish to test.
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We have outlined each hypothesis we wish to test below, along with its matching effect(s). It 

is important to keep in mind that for these models, hypotheses and effects can be made 

based on functions of the network topology itself (i.e. endogenous effects), attributes related 

to pairs of ROIs (dyadic exogenous effects), and attributes related to individual ROIs 

(monadic exogenous effects). It is also important to keep in that mind that because these 

models are fit on a subject level, each subject will have his/her own parameter estimates 

corresponding to each effect (the effects will be the same for all subjects). Therefore, each of 

the hypotheses we outline below can be tested on an individual level, and each individual’s 

own parameter estimates will allow us to draw insight as to the mechanisms that are driving 

each person’s own personal brain network change. It is during a later step, at the meta-

analysis stage, that we gather the parameter estimates across all subjects and make 

comparisons across groups. This final stage is where we draw conclusions regarding how 

groups of subjects differ in the degree to which the various effects are influencing their 

network changes.

Endogenous Hypotheses and Effects

Clustering Hypothesis: Clustering is an indication of segregation in the network. The 

clustering coefficient of a vertex is calculated as the ratio of the number of existing edges 

between its neighbors and the total number of possible edges. The global clustering 

coefficient of a network is computed by averaging the clustering coefficient of all vertices of 

the graph, reflecting, on average, the prevalence of clustered connectivity around individual 

nodes (Kolaczyk, 2009).

Network analysis of functional connectivity data for healthy individuals has been 

characterized by a high clustering coefficient, which is associated with high local efficiency 

of information transfer for specialized processing (Schulz et al., 2014). It is of interest to 

investigate whether this holds in people with AD. Sanz-Arigita et al. found no difference in 

the clustering coefficient in resting-state functional networks between AD patients and 

healthy age-matched controls (Sanz-Arigita et al., 2010). Whereas, in another rsfMRI 

experiment, Supekar et al. found that the clustering coefficient was significantly decreased in 

AD, specifically in bilateral hippocampus, and could be used to distinguish AD participants 

from controls with high specificity and sensitivity (Supekar et al., 2008).

We look at differences in clustering between cases and controls by comparing their tendency 

to form triangles. Not only are triangles a good representation of clustering, but they are 

important from a motif standpoint. Network motifs are of interest because they represent 

different topological patterns of connections, or “building blocks” of the network as a whole 

(Sporns, 2011; Sporns, 2013).

Three-cycles Effect-: The tendency of ROIs to connect in a triangular pattern.

∑k, ℎxjkxkℎxℎj
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Integration Hypothesis: Another structural characteristic that is often looked at hand-in-

hand with clustering is average shortest path length, a measure of integration. The shortest 

path length between nodes j and k is defined as the minimum number of edges that must be 

traversed to go from node j to node k. Short path lengths promote functional integration and 

efficiency since they allow for communication with few intermediate steps, minimizing 

effects of noise or signal degradation (Sporns, 2013).

Studies have shown that functional networks in AD have longer path lengths, indicating a 

less efficient organization of the connectivity. Sanz-Arigita found that, compared to controls, 

the average path length of AD resting-state functional networks is closer to the theoretical 

values of random networks (Sanz-Arigita et al., 2010). Moreover, Xiang et al. analyzed brain 

networks using ADNI rsfMRI data that was extracted from people with a range of cognitive 

function. They found that as cognitive deficits increased, the shortest paths in the resting-

state functional network gradually increased as well (Xiang et al., 2013). Similarly, we 

would also like to investigate the notion of distance between ROIs and conduct a comparison 

between our cases and controls. We have two effects related to distance.

Number of Distances 2 Effect-: Defined by the number of ROIs to whom j is indirectly tied 

(through at least one intermediary). When this effect has a negative parameter, ROIs will 

have a preference for having few others at a geodesic distance of 2.

# k xjk = 0, maxℎ(xjℎxℎk) > 0

Between Effect-: The tendency for ROIs to position themselves between other ROIs that are 

not directly connected to one another.

∑k, ℎxℎjxjk(1 − xℎk)

Lastly, the following endogenous effect is typically included in all SAOMs to account for the 

observed density of the networks. It represents the basic tendency of ROIs to make 

connections to other ROIs.

Degree Effect-: ∑kxjk (where j, k are vertices and xjk = 1 if there is an edge connecting j and 

k and 0 otherwise).

Exogenous Hypotheses and Effects

Segregation Hypothesis: Functional segregation in the brain is the capability for specialized 

processing to occur within densely interconnected groups of regions, called modules 

(Rubinov & Sporns, 2010). Modules permit quick and efficient sharing of information 

among brain regions that work together towards a common set of goals, while adhering to 

their functional specialization and limiting the spread of information across the entire brain 

network (Sporns, 2013). A network’s modular structure is identified (sometimes called 

community detection) by partitioning the network into groups of nodes, with a greater 

number of within-group links, and a lesser number of between-group links (Kolaczyk, 
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2009). Unlike most other network measures, the optimal partitioning for a given network is 

typically estimated with optimization algorithms, so results tend to vary depending on study 

designs and community detection procedures used (Danon et al., 2005).

Salvador et al. constructed rsfMRI networks from average partial correlation matrices from 

healthy volunteers and found that significant connections were often local, involving regions 

in the same lobe and/or closely adjacent to each other anatomically (Salvador et al., 2005). 

They went on to perform a hierarchical clustering analysis of healthy controls, revealing that 

the basic hierarchy of brain functional organization tends to be designated as lobar/sublobar/

symmetrical. In other words, ROIs in the same lobe tend to have more connections between 

each other, with symmetrical links between bilaterally homologous regions consistently 

expressed at the lowest level of the hierarchy (Salvador et al., 2005).

We would like to control, at the very least, for the fact that ROIs tend to be connected to 

ROIs that are anatomically close to them, but we would also like to explore whether this 

modular, efficient network structure that is found in healthy individuals, tends to break down 

in people with AD. Given that there is not one standard set of partitions for the ROIs, and 

given the results of Salvador et al, we define groups according to cortical lobes, with the 

following effect:

Same Lobe Effect-: A dyadic effect to represent the tendency for ROIs in the same lobe to 

connect. This is our modularity effect.

∑kxjkI aj = ak  where aj and ak indicate the lobe for ROIs j and k, respectively.

We would also like to account for the notion that symmetrical links between bilaterally 

homologous regions might be more likely to be connected. We do this through the following 

dyadic effect:

Bilateral Effect-: ∑kxjk(bjk − b) where bjk = 1 if two ROIs are bilaterally homologous and 

bjk = 0 otherwise

Default Mode Network Hypothesis: The Default Mode Network (DMN) is a network of 

interacting brain regions known to have activity highly correlated with one another in resting 

state functional networks and much less activity during any attention-demanding task. 

Although the exact role of the DMN remains unknown, it is thought to be involved in 

monitoring internal stimuli, as well as in maintaining consciousness (Greicius et al., 2003; 

Wicker et al., 2003).

In AD, the DMN is believed to be affected by reduced functional connectivity and atrophy. 

Sorq et al. analyzed fMRI data from healthy individuals and patients with high risk for 

developing AD and found that select areas of the DMN showed reduced connectivity in the 

patient group (Sorg et al., 2007). Several other studies have also reported similar findings 

(Greicius et al., 2004; Wu et al., 2011). Often times the default mode network is identified 

via ICA. ICA separates time course data into a collection of independent signals, or 

components, where each component represents a ‘network’ following a similar temporal 

pattern (Moussa et al., 2012). Since our framework is hypothesis-driven, as opposed to data-
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driven, we must identify DMN ROIs prior to modeling and testing. Given that there is some 

evidence in the literature that resting state networks (RSNs) identified via graph-based 

network analyses are comparable to the corresponding RSNs identified by ICA, with the 

DMN being one of the most robust (Moussa et al., 2012), we elect to define DMN ROIs in 

this manner. Therefore, we choose to specifically define DMN ROIs to be each of the 

following in both the left and right hemispheres of the cerebrum: caudal and rostral anterior 

cingulate, inferior parietal, middle temporal, posterior cingulate, and precuneus, as these 

seemed to be the most consistently identified DMN ROIs in the literature (Buckner et al., 
2008; Laird et al., 2009; van den Heuvel et al., 2009). We hypothesize that connections 

between these ROIs will be less likely to exist in cases, compared to controls. There is much 

debate on which ROIs make up the DMN, so while we have decided to use this specific set 

of ROIs for our primary analysis, other choices can be argued as well. In fact, we perform a 

secondary analysis where we slightly modify this set of DMN ROIs. The primary analysis 

results are reported in section 4.2, while the secondary analysis results are presented in the 

appendix.

DMN Effect-: A dyadic effect for the tendency of DMN ROIs to be densely connected to 

one another.

∑kxjk(wjk − w), where wjk = 1 if two ROIs are in the DMN we have defined and wjk = 0 

otherwise

3.3.3 Model Specifications—We fit a SAOM with all of our effects (objective function 

shown below) separately, for each pair of consecutive time points and for each of our 46 

subjects. This is effectively performing a sliding window analysis due to the potential non-

stationarity of our networks. Therefore, a subject will have Ti − 1 sets of parameter estimates 

where Ti is the number of visits he/she had rsfMRI scans.

fj(g, g′, β) = β0∑kxjk + β1∑k, ℎxjkxkℎxℎj + β2 # k xjk = 0, maxℎ(xjℎxℎk) > 0
+ β3∑k, ℎxℎjxjk(1 − xℎk) + β4∑kxjkI aj = ak + β5∑kxjk(wjk − w)

+ β6∑kxjk(bjk − b)

Our model parameters were all estimated using Method of Moments, the default approach, 

under the standard options of RSiena (i.e. estimation of the parameters is based on 4 

consecutive and increasingly accurate subphases of the Robbins-Monro moments estimation 

algorithm), and standard errors are calculated based on 1000 additional simulation runs. 

Lastly, all t-ratios for convergence associated with the individual parameters in our models 

are less than 0.1 in absolute value, indicating excellent convergence (Ripley et al., 2011).

3.4 Meta-Analysis

After applying the SAOMs on a subject-by-subject basis, in order to aggregate and contrast 

the findings from all our ADNI subjects and conduct a group level analysis, we perform a 

separate meta-analysis on each parameter. Standard meta-analysis approaches (DerSimonian 

& Laird, 1986; Normand, 1999) are not sufficient since we have multiple estimates for each 
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parameter (one for each pair of consecutive time points) for each subject. Therefore, we 

perform a ‘longitudinal’ meta-analysis by fitting a general linear mixed effects model with 

some slight modifications (Ishak et al., 2007).

Suppose, for each parameter, Ti − 1 estimates (i.e. one for each time period) are collected on 

subjects i = 1, …, N. An example of how time periods are defined is shown in Figure 2. We 

denote by yi the (Ti − 1) × 1 vector of observed estimates (for one particular parameter) from 

the ith subject and by yip the pth observation from this subject. The simplest way to account 

for the correlation between estimates of the same individual is to allow a random-effect that 

is common to estimates of the same person. Therefore, the general linear mixed effects 

model is given by

yip = β0 + β1xi + β2zip + β3xi × zip + δi + εip, (1)

where β0 is a fixed intercept, β1 is a fixed slope for case/control status, β2 is a fixed slope for 

time period number, and β3 is a fixed slope for the interaction between case/control status 

and time period. Let xi = 1 for cases, xi = 0 for controls, and zip indicate the time period 

number (i.e. zip = 1, 2, 3 or 4). For example, zip = 1 corresponds to the estimate obtained 

from fitting the SAOM model to a subject’s first and second networks. Lastly, δi is a random 

intercept. We make the assumption that δi follows a normal distribution with mean 0 and 

variance D, while εi follows a multivariate normal distribution with mean 0 and variance Si 

(where Si is a (Ti − 1) × (Ti − 1) diagonal matrix with values set to the variances of estimates 

obtained for each person). We denote Sip to be the pth diagonal element in Si. We also 

assume that cov(εi, δi) = 0 and that observations from different subjects are independent, so 

that cov(εip, εcl ) = 0 when i ≠ c and for any observations p, l. Therefore, the variance of the 

marginal distribution of yip is D + Sip, while the covariance between two estimates collected 

at times p and l from subject i is cov(yip, yil ) = D.

For each subject, we collected the parameter estimates of the 6 effects and fit the meta-

analysis above for each effect (separately). The models were estimated by maximum 

likelihood, using SAS 9.3 and the MIXED Procedure (Singer, 1998). If we found the 

interaction to be non-significant at a conservative α = 0.15 significance level, we removed it 

from the model and re-ran the analysis. If the parameter for time period was then also found 

to be non-significant at an α = 0.05 significance level, we went ahead and removed it and re-

ran the analysis so that disease status was the only fixed effect in the model.

4 Results

4.1 Single Subject

SAOMs must be fit on each individual. A model can be fit to an individual’s entire 

longitudinal sequence. However, due to potential heterogeneity of the influence of our 

effects, we chose to fit the models to each pair of consecutive networks in the series (Figure 

2). For illustrative purposes, in Tables 1 and 2 we show the results for two subjects. Both are 

74 year old females, but they differ in disease status.
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The parameter estimates allow for a caricature of the rules governing the dynamic change in 

the network (Steglich et al., 2006). Because the temporal progression is taken care of by the 

rate functions, the parameters in the objective function are static and are comparable across 

periods of different lengths of time. A common misunderstanding is that the parameter 

estimates express tendencies over time. Instead, they should be interpreted as satisfaction 

measures that are suitable for explaining the observed changes (Steglich et al., 2006).

The parameter estimates for the appearance of three-cycles have relatively large t-ratios 

(ratio of estimate to standard error) across all time points for both subjects. We must 

interpret individual analyses cautiously based on relative magnitude of t-ratios, as formal 

grounds for comparison to the t distribution are not well established. The estimate for three-

cycles is also positive in all cases, indicating that triangle formation is favored as these 

networks evolve, controlling for the other effects in the model. This suggests a preference 

for local clustering. Looking closely at the effect sizes, we see that the individual with AD 

has slightly smaller parameter estimates overall, compared to the healthy individual, leading 

us to wonder whether this is an indication of clustering breaking down in AD.

The distance two effect expresses network closure inversely. In all cases, we see a negative 

parameter estimate (with a relatively large corresponding t-ratio), meaning that ROIs have a 

preference for forming connections to few other ROIs with a distance of 2, controlling for 

the other effects. Another related effect is the between effect, which represents brokerage, or 

the tendency for ROIs to form edges that bridge gaps. The negative parameter estimates for 

this effect for both individuals, suggest avoidance of bridging gaps. This, combined with 

clustering tendencies leads to insular network structures.

As expected, our results consistently show a very strong tendency for ROIs to prefer forming 

connections to their symmetric counterpart in the opposite cortical hemisphere, and this 

doesn’t differ between our case and control. Moreover, the positive parameter estimate for 

our same lobe effect tells us that ROIs in the same lobe are more likely to have a functional 

connection than ROIs that are not in the same lobe, after adjusting for the other effects in the 

model.

Lastly, we see a fairly strong positive parameter estimate for our DMN effect for our healthy 

subject, but the individual with AD either has less strong positive estimates or negative 

estimates. This suggests that the subject with normal cognitive status has a higher 

probability of forming a functional connection between two DMN ROIs than between two 

ROIs that are not both apart of the DMN, controlling for the other effects in the model. 

However, we cannot say the same for the individual with AD.

4.2 Meta-Analysis

Baseline descriptive statistics are reported in Table 3. Our control subjects show no signs of 

depression, MCI or dementia, with an average Boston Naming Test (BNT) score of 29 and 

an average Mini-Mental State Examination (MMSE) score of 29. AD participants have been 

evaluated and meet the NINCDS/ADRDA criteria for probable AD and have an average 

BNT test score of 24 and an average MMSE score of 22. Our cases and controls did not 

significantly differ in age (p-value= 0.8698) or gender (p-value= 0.5683).
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The primary meta-analysis results are shown in Table 4. Both the DMN effect and the same 

lobe effect substantially differ between cases and controls. Controls have a positive DMN 

parameter estimate, indicating a tendency of DMN ROIs to form connections with one 

another (p-value<.0001). However, cases show a significant decrease at the α = .01 level in 

the estimate (p-value= 0.010). Controls also have a positive parameter estimate for the same 

lobe effect, indicating that ROIs in the same lobe have a higher probability of forming a 

connection (p-value<.0001). Meanwhile, cases show a significant decrease in the estimate 

(p-value= 0.021) at the α = .05 significance level. Both cases and controls also show a 

decrease in the same lobe effect estimate over time (p-value= 0.001).

The negative distance 2 parameter suggests that ROIs tend to shy away from forming 

connections where they have a geodesic distance of at least 2 with other ROIs. The three-

cycles effct, between effect, and the bilateral effect have a significant interaction at the α 
= .15 level between disease status and time period, which makes it difficult to interpret the 

main effects of disease status and time period. Figures D1, D2, and D3 in the appendix show 

the mean value of each effect over time, and we can see that there does appear to be a 

qualitative interaction. For the three-cycles and between effects, the AD subjects have larger 

effects than the controls at their earlier time points but smaller effects than the controls at the 

later time points. Both groups appear to decline over time with respect to the three-cycles 

effect (although, less so for the control group), but for the between effect, the controls have 

an increased effect over time, while the cases have a decreased effect. Again, it is difficult to 

interpret these results because of the strong interaction. For the bilateral effect, there does 

not appear to be any real pattern with regard to disease pattern and time period. At some 

time points, the control group has higher parameter estimates, while at other times the AD 

group has higher estimates.

As noted in section 3.3.2, there is some disagreement in the literature on which ROIs 

constitute the DMN. Therefore, we have performed a secondary analysis where we have 

modified which ROIs we have assigned as DMN ROIs. Results are similar to the primary 

analysis. Please see the appendix for additional details and results.

If we adjust for multiple comparisons using, for example, a Bonferroni adjustment, we do 

not observe any significant differences between our AD and control groups in either sets of 

analyses. We attribute this lack of significant difference after adjustment to the relatively 

small sample size in our study, as well as the high level of noise that is typically present in 

resting-state fMRI data. Please see the appendix for an approximate sample size calculation.

We also performed a goodness-of-fit test to determine if our SAOM is fitting the data well, 

overall. Given that we have fit our SAOM on each period, for each subject separately, we 

assessed the goodness-of-fit in the same manner (i.e. on each period, for all subjects 

separately). We utilized three different Mahalanobis distance tests available in the RSiena R 

package; tests for degree, geodesic distance, and triadic structures. These tests, proposed by 

(Lospinoso, 2012), compare the observed values for these auxiliary statistics, at the ends of 

the periods, with the simulated values for the ends of the periods. The differences are then 

analyzed by combining the auxiliary statistics using the Mahalanobis distance.
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Out of the 139 models fit for the primary analysis, 31 rejected the null hypothesis of a good 

fit with regards to degree (p-value < 0.05), 7 rejected the null hypothesis for a good fit with 

regards to triadic structures, and 0 rejected the null with regards to geodesic distance. All but 

3 of the 139 models were a good fit on at least 2 of the 3 auxiliary statistics. We combined 

the p-values by the sum of logs method, also known as Fisher’s method (Won et al., 2009), 

and obtained the p-values of < 0.0001, 1, and 1 for degree, geodesic distance, and triadic 

structures, respectively.

It is not surprising to us that the model was not always a great fit on these statistics for every 

subject at every period. Our model was hypothesis driven, and effects were chosen based on 

what prior literature indicated may be important in terms of driving connections in resting-

state networks. It was important to us to fit the exact same model across all subjects to 

ensure a fair comparison when it came time for the meta-analysis. While it appears that our 

chosen model is able to adequately represent important network features in a majority of the 

cases (which is the hope), there will always be some individuals that stray from the norm 

and have unexplained variability.

5 Discussion

In this paper, we propose a framework for the analysis of complex networks in neuro-

science. At the heart of the paradigm we suggest is the adaptation of SAOMs, a type of 

model developed for the analysis of social networks, and to our knowledge, not yet used in 

neuroscience. Given the increased interest in, and clinical implications of, analyzing brain 

networks over time, a modeling framework that has the ability to test hypotheses and draw 

inference from a series of structural and/or functional networks is quite useful to the 

neuroscience community.

To illustrate our framework, we conduct a longitudinal brain network analysis on rsfMRI 

complex functional networks obtained from participants in ADNI. We take several existing 

hypotheses conjectured in the literature and map them to effects in the SAOM framework, 

with the goal of testing these hypotheses and estimating parameters expressing their 

strength, while controlling for the other factors in the model. After fitting the model on each 

participant and obtaining individual results, we conduct a meta-analysis comparing AD 

patients with healthy controls. Both the DMN effect and the same lobe effect substantially 

differ between the two groups. Controls have a positive DMN parameter estimate, indicating 

a tendency of DMN ROIs to form connections with one another, while cases show a 

decrease in the estimate, leading us to conclude that DMN ROIs aren’t as likely to activate 

and connect to one another in those with AD. Controls also have a positive parameter 

estimate for the same lobe effect, indicating that ROIs in the same lobe have a higher 

probability of forming a functional connection. Meanwhile, again, individuals with AD have 

a decreased tendency of ROIs to form functional connections with other ROIs in the same 

lobe. Both cases and controls also show a decrease in the same lobe effect estimate over 

time.

Our paradigm can be used in many applications other than on resting-state data in our AD 

study. These initial analyses are meant to be a proof-of-concept that pave the way forward 
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for testing, in other contexts, various hypotheses related to functions of the nodes (e.g. ROIs) 

and the connections they have formed. Given existing literature that indicates brain regions 

often change functional connections as a compensatory mechanism (Gardini et al., 2015; 

Etkin et al., 2009; Simpson & Laurienti, 2016) or that ‘hub’ regions shift which regions they 

communicate with based on instructions for the task at hand (Cole et al., 2013), an ‘actor-

oriented’ or ‘node-oriented’ approach is well-motivated and appealing. With that being said, 

model interpretation with regards to ‘actor’ preferences and decision-making should not be 

interpreted too literally. The key is that the model expresses tendencies for connections to 

form based on each ROI’s current connections/network, its own properties, and the 

properties of all other ROIs The SAOMs that we propose adapting are extremely flexible in 

that they are able to represent network dynamics as being driven by many factors/influences. 

Furthermore, the models allow for the accounting of several different explanations of 

network change, which may be competing and even complementary. This allows for the 

testing of effects driving the changes, while controlling for other factors, which better 

enables researchers to delve in, disentangle, and identify which mechanisms are playing a 

role.

Temporal Exponential Random Graph Models (TERGMs) (Hanneke et al., 2010) are the 

other popular choice of models for longitudinal network analysis, and to the best of our 

knowledge, they have not been used in neuroscience. Both types of models have their pros 

and cons and can be argued to be useful and appropriate in the context of networks in 

neuroscience. However, given that SAOMs (a) take an “actor-oriented” approach where the 

vertices are driving the network changes and (b) model network changes (and we expect 

network changes given that AD is a progressively degenerative disease), SAOMs are a 

natural choice for a first attempt at a more sophisticated method for longitudinal network 

analysis in neuroscience. A more detailed theoretical and empirical comparison between the 

two types of models can be found in (Leifeld & Cranmer, 2015).

The SAOM framework scales well to network sizes of hundreds of vertices, so we expect it 

to perform in a reasonable amount of time (e.g. no more than an hour with a single processor 

on a home computer) at the ROI level where one has up to a couple hundred ROIs. For our 

analysis, each pair of consecutive time points took 90 seconds to run on a machine with a 

2.5 GHz processor and 8.00 GB RAM. Therefore, the average time it takes (in minutes) to 

fit separate models to a subject’s 64 ROI networks for T − 1 time periods is 90 ∗ (T − 1)/60, 

where T is the number of time points. The SAOM framework can also handle thousands of 

vertices, but will take substantially longer to run (i.e. may take several days, but if one can 

parallelize with multiple processors it may run in a day), while network sizes of over a few 

thousand vertices will be a challenge.

The paradigm we propose can be modified at several stages of the analysis regime. For 

example, in addition to Pearson Correlation, one can use other methods of network 

construction. Methods for estimating functional connectivity between nodes fall into one of 

two categories: association measures and modeling approaches. Correlation and coherence 

are two examples of linear association measures, while nonlinear measures include mutual 

information and generalized synchronization. The literature on modeling approaches is less 

developed (but quickly evolving), though (Varoquaux et al., 2010) and others have made 
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contributions. See (Simpson et al., 2013) for a survey. There is currently no gold standard, 

but the choice of method is largely driven by the type of neuroimaging data being analyzed 

and the hypotheses one is interested in testing. The method used clearly may affect results. 

However, we necessarily leave a large-scale assessment of this issue, in the context of our 

proposed method, to future work.

The specifications of the random effects model used to conduct the meta-analysis can also 

be adjusted. We have included two fixed effects in our models (for case/control status and 

visit number). However, one could easily incorporate various individual attributes, such as 

age and gender into the models. Since we did not find a significant difference in cases and 

controls on these variables, we chose not to adjust for them.

Another way that the meta-analysis can be modified is through correlation structure. Our 

current formulation assumes that between-subject heterogeneity affects the parameters at 

each time period in a given subject the same way. One could extend the model by allowing a 

random slope for time. In fact, for our DMN effect, we ran a random intercept model and a 

random intercept and slope model separately. We compared the goodness of fit of these two 

models using a likelihood ratio test and did not find a significant difference (χ2 = 2.8, df=1, 

p-value = 0.0943), indicating that it may not improve the model much, at least with this 

particular outcome. One could also attempt a multivariate meta-analysis which would take 

into account the correlation between the different parameters of the same subject. We 

ultimately chose to perform a series of univariate meta-analyses instead, given that some 

literature suggests multivariate meta-analysis can cause estimation difficulties. The 

normality assumption is also stronger and difficult to verify (Jackson et al., 2011).

While this paper has demonstrated the potential of adapting SAOMs to networks in 

neuroscience, several opportunities for extending the scope of this manuscript remain. For 

example, the assumption of a Gumbel-distributed random disturbance term is built into the 

SAOM framework and is not something we have set ourselves. During the SAOM evolution 

process, each vertex, when given the opportunity to make a change, chooses its next move 

based off of a discrete set of choices with probabilities that can be calculated from variables 

in the model (i.e. a utility function). Therefore, these types of models are discrete choice 

models. Early developments of discrete choice models were based on the assumption that 

the errors terms were independently and identically Type I extreme value (Gumbel) 

distributed, which leads to a multinomial logit model. The creators of SAOMs chose this 

assumption to be in line with the discrete choice model theory, but there are currently no 

diagnostics within the SAOM framework, to our knowledge, that can be used to check this 

assumption. It would be useful to have such diagnostics in place.

Given that that the field has recently been moving towards the use of weighted networks, 

another future direction is adapting the approach mentioned in this paper to weighted 

networks. The current SAOM framework currently only allows for binary networks. 

However, it does allow for the defining and modeling of multiple networks representing 

discrete levels of relationships. Therefore, future work might involve adapting our approach 

to weighted networks where one defines several categories representing edge weights. For 

example, positive correlations of ≤ 0.20, 0.21 − 0.40, 0.41 − 0.60, 0.61 − 0.80, and 0.81 − 1 
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may each be a different category, and one can create a model for the co-evolution of these 

networks.

To conclude, the flexibility our proposed framework affords and the vast array of hypotheses 

it allows one to test open the door for additional research and the possibility to delve deeper 

into what is driving brain network changes. We were able to demonstrate our framework on 

a subset of participants in ADNI and corroborate the findings of several existing studies. Not 

only that, but we were able to test these effects that may be driving network changes, while 

also controlling for other effects. In a world where neurological and mental health disorders 

are a huge concern, the clinical and research implications of this type of analysis reach far 

and wide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow Chart of proposed framework for longitudinal complex brain network analysis.
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Fig. 2. 
An example of how the periods are defined for an individual.
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Table 1:

Results for 74 year old female of normal cognitive function.

Period 1 Period 2 Period 3 Period 4

Effect Est
a

SE
b

 T
c Est SE  T  Est  SE T  Est  SE T

Degree −0.11 0.15  −0.76 0.31 0.27  1.13  −0.24  0.21 −1.16  −0.46  0.18 −2.53

Three-Cycles 0.12 0.02  6.76 0.13 0.02  5.86  0.15  0.02 7.50  0.10  0.02 5.78

Distance 2 −0.20 0.04  −5.00 −0.11 0.04  −3.11  −0.13  0.03 −4.16  −0.22  0.04 −5.68

Betweenness −0.11 0.02  −6.65 −0.18 0.03  −5.74  −0.12  0.02 −6.16  −0.05  0.02 −2.55

Bilateral 1.85 0.45  4.13 1.47 0.45  3.25  1.33  0.43 2.91  1.11  0.39 2.88

Same Lobe 0.39 0.08  4.85 0.29 0.10  2.92  0.33  0.09 3.60  0.16  0.11 1.49

DMN 0.34 0.22  1.53 0.52 0.26  1.97  0.99  0.21 4.68  0.25  0.25 1.02

a
Parameter Estimate.

b
Standard Error.

c
T-Ratio. Calculated by dividing the parameter estimate by the standard error prior to rounding.
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Table 2:

Results for 74 year old female with AD.

Period 1 Period 2 Period 3 Period 4

Effect Est
a

SE
b

 T
c Est SE  T Est SE  T Est SE  T

Degree −0.10 0.20  −0.52 −0.73 0.19  −3.84 −0.05 0.25  −0.19 0.33 0.21  1.57

Three-Cycles 0.10 0.01  6.86 0.10 0.02  4.55 0.08 0.01  5.47 0.07 0.02  3.04

Distance 2 −0.18 0.04  −4.81 −0.30 0.06  −4.82 −0.18 0.03  −5.93 −0.23 0.05  −4.66

Betweenness −0.11 0.02  −5.55 −0.05 0.02  −2.29 −0.11 0.02  −4.44 −0.17 0.02  −6.72

Bilateral 2.02 0.45  4.51 1.43 0.40  3.63 0.40 0.24  1.67 3.49 0.70  5.01

Same Lobe 0.17 0.08  2.05 0.46 0.08  5.78 0.17 0.09  1.78 0.32 0.10  3.26

DMN 0.03 0.24  0.11 −0.23 0.27  −0.84 0.13 0.22  0.61 −0.35 0.29  −1.19

a
Parameter Estimate.

b
Standard Error.

c
T-Ratio. Calculated by dividing the parameter estimate by the standard error prior to rounding.
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Table 3:

Baseline Characteristics of Alzheimer’s Disease Patients and Controls. Data are mean ± SD or number (%).

Controls (n=25) AD (n=20) P-value

Age 73.40 ± 5.2 73.65 ± 7.9 0.8987

Gender, n (%) of males 12 (48.0) 11 (55.0) 0.5683

Boston Naming Test (BNT) 28.56 ± 1.6 23.40 ± 4.3 <.0001

Mini-Mental State Examination (MMSE) 28.56 ± 1.4 22.15 ± 2.2 <.0001

Participants with only 2 scans 1 (0.04) 0 (0.00)

Participants with only 3 scans 6 (0.24) 4 (0.20)

Participants with only 4 scans 5 (0.20) 13 (0.65)

Participants with 5 scans 13 (0.65) 3 (0.15)
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Table 4:

Meta-Analysis Results for the Primary Analysis.

Effect Intercept Case
a

SE
b

T
c

P
d

Period Est
e

Period P
f

Interact Est
g

Interact P
h

Three-Cycles 0.111 −0.002 0.005 −0.46 0.645

Distance 2 −0.146 < 0.001 0.007 0.00 0.999

Between −0.133 0.039 0.011 3.55 0.0006 0.008 0.002 −0.021 <.001

Bilateral 1.101 0.333 0.189 1.76 0.082 −0.028 0.513 −0.128 0.074

Same Lobe 0.395 −0.060 0.025 −2.35 0.021 −0.027 0.001

DMN 0.308 −0.150 0.057 −2.64 0.010

a
Controls are the reference group.

b
Standard error corresponding to the case/control parameter estimate. Calculated prior to rounding.

c
T-ratio corresponding to the case/control parameter estimate.

d
P-value corresponding to the case/control parameter estimate.

e
Parameter estimate associated with the period number.

f
P-value corresponding to period number parameter estimate.

g
Case×Period interaction parameter estimate.

h
Case×Period interaction p-value.
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