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a b s t r a c t

Alzheimer’s disease (AD) is a degenerative neural condition marked by gradual memory loss and
cognitive impairment. It is irreversible in nature and leads to progressive cerebral cortex atrophy.
Therefore, structural Magnetic Resonance Imaging (sMRI) is an important tool that can be used for
early-stage prediction of AD. Currently, deep learning networks are used for the diagnosis of AD,
but it suffers from the limitations of gradient descent training of deep networks like local minima,
slow learning speed, and overfitting. Also, there is a need to select hyperparameters like learning
rate, momentum, number of epochs, and regularization coefficient. This paper proposes a deep non-
iterative random vector functional link (RVFL) neural network. First, the MRI images’ features are
extracted using transfer learning, and the classification of the extracted features is done using a
non-iterative random vector initialized RVFL network. At the hidden layer of the RVFL classifier, the
fuzzy activation function (FAF), is used to calculate the hidden layer’s output. The proposed algorithm
has been evaluated and compared with the state-of-the-art methods on the ADNI dataset consisting
of Cognitive Normal (CN), AD, converter Mild Cognitive Impairment (cMCI) and non-converter Mild
Cognitive Impairment (ncMCI) MRI images. The performance achieved for CN vs AD diagnosis includes
accuracy (86.67%), sensitivity (83.33%), specificity (88.89%), precision (83.33%), recall (83.33%) and F-
score(86.07%) as well as Receiver Operating Characteristics shows that proposed method outperforms
over several compared methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is a progressive, untreatable, and
euro-degenerative condition most often seen in the elderly per-
ons and it progressively affects brain efficiency. It is irreversible
n nature and is characterized by structural changes in the cortex
egion. AD is the prevailing form of dementia, as it accounts
or 60% to 80% of the cases. In 2019, it was estimated that the
lobal economic costs for dementia treatment were around 1
rillion dollars. By 2030, it is predicted that this economy will
urge to double its present value [1]. Prodome diagnosis of AD,
specially at its transition state, commonly known as Mild Cog-
itive Impairment (MCI), is especially crucial so that one can
ake therapeutic measures and delay the disease progression. MCI
onsist of two subclasses commonly known as converter MCI
cMCI) and non-converter MCI (ncMCI). When patient acquires

∗ Corresponding author.
E-mail addresses: rahul_rs@ece.nits.ac.in (R. Sharma),

riptigoel@ece.nits.ac.in (T. Goel), mtanveer@iiti.ac.in (M. Tanveer),
hubham_pg@ece.nits.ac.in (S. Dwivedi), murugan.rmn@ece.nits.ac.in
R. Murugan).
ttps://doi.org/10.1016/j.asoc.2021.107371
568-4946/© 2021 Elsevier B.V. All rights reserved.
the state of AD from MCI state, this type of MCI is known as cMCI.
When the patient improves the lifestyle and does not attain the
AD state even though MCI state was acquired, that comes under
the category of ncMCI.

Current medical imaging systems render a good amount of
detail about the subject under study, making image analysis a ro-
bust AD diagnosis tool. Computer-aided diagnosis (CAD) systems
learn patterns associated with cerebral neurodegeneration by
exploiting the images’ information. The brain changes with MCI
and AD progression could be quantified with clinical neuroimag-
ing techniques such as Positron-Emission Tomography (PET) and
Magnetic Resonance Imaging (MRI). For instance, high-resolution
information of brain structure is rendered by T1-weighted MRI,
which accurately quantifies the structural metrics such as shape,
volume of hippocampus [2], gray matter, white matter [3], as
well as cortical thickness [4]. Likewise, the regional metabolic
rate of glucose in cerebral region is indicated by 18-Fluoro-
DeoxyGlucose PET (18F-FDG-PET or FDG-PET), makes it feasible to
quantify the metabolic activity of the tissues. By analyzing these
medical images, assistance in the diagnosis and prediction of AD
is provided.

Recently, with the rapid advancement in computer science
domain and the advent of medical analysis, Machine Learning
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ML) and Deep Learning (DL) are gaining recognition in the area
f medical imaging. Support Vector Machine (SVM) and its vari-
nts has shown promising results in disease classification [5–7].
opular ML approaches for the classification of the AD is pre-
entented in [8]. ML algorithms are used not only in medical
maging but also in many forecasting applications. One such
pplication is forecasting of crude oil price [9] using support
ector regression along with heuristic optimization techniques
or obtaining optimal solution. Another application where ML
utperforms is financial exchange rates forecasting [10] uses SVM
or classification and provides how different kernel functions help
mprove performance. Solar radiation emission forecasting is yet
nother domain application of ML proposed in [11] which em-
loyed a state-of-the-art classifier i.e. Random Forest regression,
nd a feature selection techniques. Random Forest is also famous
n classification problems when we are dealing with random-
zation. Ardekani et al. [12] selected neuropsychological scores
nd hippocampal volumetric integrity of MRI as features for a
andom forest classifier. Lebedeva et al. [13] took mini-mental
tate examination (MMSE) as a cognitive measure and extracted
tructural features of MRI to implement the random forest-based
cheme. ML algorithms suffer from limitations because of the use
f backpropagation for parameter tuning, network initialization.
he training time will also increase because of backpropagation
raining.

Besides ML, DL also contributes to a wide variety of forecast-
ng applications. Digital currency forecasting proposed in [14]
mplemented a Deep Neural Network (DNN) i.e. LSTM. Another
ost popular neural networks is, Convolutional Neural Network.
hese networks learn from a set of convolutional kernels. The
ost recent application is Covid detection [15], which uses an
fficientNet B0 model, a variant of the ResNet model. In [16],
esearchers implemented a 3D Convolutional network based on
3D auto-encoder model to predict AD vs MCI vs Cognitive
ormal (CN). Potential of AD diagnosis with DL based schemes
s promising, as evident in previous studies [17]. However, DL’s
ain issue is the use of backpropagation (BP) approach for tuning

he parameter, which is very time-consuming and suffers from
imitations of slow convergence, overfitting, and local minima. BP
ay lead to failure on convergence to single global maxima. Also,
e have to manually choose the values of many hyperparameters
uch as learning rate, number of epochs, batch size, momentum,
nd regularization coefficient.
Pao et al. [18] proposed the randomized functional link net-

ork with a single hidden layer. Non Learnable, randomly ini-
ialization of bias and weight is done between input and hidden
ayers of the network [19]. Evolution from single network to deep
inks in Random Vector Functional Link (RVFL) has been proposed
n [20]. RVFL not only has application in the medical field, but it
utperforms on various other fields such as fault detection [21],
lectricity load prediction for a short span [22], Wind speed and
he power generation predictions [23], where RVFL is used as a
lassifier and the model outperforms when compared to several
L techniques. Extreme Learning Machine (ELM) [24] is another
on-iterative fast learning model but RVFL outperforms ELM.
herefore, in the present paper, the classification of the features
xtracted from DNN are done using improved RVFL classifier. At
he hidden layer of RVFL classifier, Fuzzy Activation function (FAF)
s also used to trace the features to the output space.

Major contributions of the proposed Fuzzy Activation Function
ased Deep RVFL (FAF-DRVFL) neural network is as follows:
. Non-iterative feed-forward random weight initialized neural
etwork is proposed to diagnose AD at the early stage that will
e helpful to the clinicians for automatic diagnosis.
. Features of the MRI images are extracted using Transfer Learn-

ng (TL), which provides robust features related to the disease.

2

3. Fuzzy activation function is used at the RVFL neural network’s
hidden layer to convert the features into non-linear space and
remove the outliers from the features.
4. Diagnosis outcomes are contrasted with the state-of-the-art
networks for CN versus AD, cMCI versus ncMCI, and CN ver-
sus cMCI diagnosis in terms of accuracy, sensitivity, specificity,
precision, recall, F-score and ROC curve.

The motivation of the proposed FAF-DRVFL neural network are
as follows:
1. Traditional DL algorithms are based on gradient descent learn-
ing, which has the limitations like improper learning rate, local
minima, slow convergence because of tuning of weights and
biases, overfitting issues, etc. Therefore, to avoid these issues,
feed-forward RVFL is used to classify weights in which weights
are randomly initialized and give better accuracy with faster
speed.
2. Feature extraction is the main step for disease diagnosis; there-
fore, pretrained DL model, ResNet-50, is implemented to extract
the features from MRI images.
3. MRI images may contain some outliers like motion artifacts,
bias field correction, noise, etc. To address this issue,
s-membership Fuzzy Activation Function (s-FAF) is used that will
map the outliers to a crisp range of membership values.

The rest of the paper is organized as follows: Section 2 pro-
vides the literature review related to the AD diagnosis and FAF-
DRVFL. Section 3 provides information about the dataset and
the methodology proposed in the paper. Section 4 provides the
results and discussion, and finally, Section 5 concludes the paper.

2. Literature review

Traditional ML algorithms observed the functional and
anatomical neural lesions [25,26] for AD diagnosis. For instance,
Zhang et al. [27] proposed a novel scheme that builds a latent
representation, which helps explore the complex correlation be-
tween the feature and the label. Lei et al. [28] recommended
the use of a discriminative sparse learning method. This method
leads to the classification of AD stages using multimodal features
and renders the clinical score’s prediction jointly with relational
regularization. Low generalization error and acceptable perfor-
mance with limited training samples are the major reason behind
SVM’s use as a classifier. Rabeh et al. [29] suggested SVM-based
classification of the AD in early-stage diagnosis. The proposed
scheme used three brain sections, yielding a high accuracy on
the OASIS MRI database. Bron et al. [30] proposed a comparative
study on the feature selection method based on expert knowl-
edge, t-statistics, SVM weight vector directly, and SVM weights
as a significance map (p-map). Classification evaluations were
obtained, and a fair accuracy was observed on the ADNI MRI
database.

In most machine learning approaches, the negligence of strong
texture descriptions is generally observed while the segmenta-
tion is being emphasized. This loss of detail is not appealing.
Nonetheless, the need for image segmentation can be achieved
only if compelling features and characteristics are retrieved from
a complete image. DL can serve this purpose. Recently, DL based
schemes are being used for AD diagnosis. Typically, DL uses a
nonlinear multilayer networks which process the information to
recognize feature quantities from data like color, shapes, text,
images, etc. Without knowing the detailed internal process, an
unerring mathematical model can be devised from huge database.
This serves as the major advantage of DL.

Due to its semantic interpretation ability from the input data
and the generation of optimized high-level features, DL in medical
image analysis is encouraging. The DL field is thus advancing
swiftly in delivering an accurate and early diagnosis of AD. Is-
lam et al. [31] proposed an AD diagnosis scheme based on 2D
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enseNet in which the MRI data was sliced in three directions.
hen for final diagnostic results, analysis and fusion of three
arallel 2D DenseNet were done. A deep multitask multichannel
earning approach was proposed by Liu et al. [32] in which brain
isease classification via MRI data and deduction of clinical score
egression was performed and the performance achieved was
etter than some existing state-of-the-art approach.
Suk et al. [33] proposed model combines two conceptually

ifferent model i.e. sparse regression schemes and DL based net-
ork. The prediction and diagnosis of AD and MCI were achieved
sing this Deep Ensemble Sparse Regression Network. The model
howed high accuracy in the classification of the ADNI cohort.
aqsood et al. [34] also proposed a TL based model. In the pro-
osed method, the model accessed pre-processed OASIS dataset
s an input to AlexNet, and then classification was made. The
arameters are fine-tuned, and the Monte-Carlo method was
mplemented to obtain simulations. Castro et al. [35] developed
model that uses sagittal MRI from OASIS and ADNI datasets
nd performs TL. The model used SVM as a classifier. The model
roposed only used a single plane from 3-D MRI scans.
Zhang et al. [36] proposed a novel approach named sparse pre-

rained RVFL. For a particular learning task, a sparse autoencoder
s used to learn superior network parameters iteratively. Zhang
t al. showed the advantage of using RVFL over the 16 diverse
enchmark datasets. Another approach of transforming shallow
VFL into a deep network is proposed by Katuwal et al. [37]. In
his approach, authors proposed a framework for RVFL inspired
y stacked autoencoders. Also, adopted the approach of feature
euse by directly connecting the previous layer output to fore-
oming layers. Though the model attains a good performance but
till matrix inversion is involved due to stacked autoencoders
nd RVFL classifier. When the dataset is huge and the feature
imensions are very large, then matrix inversion will be a costly
eal with trade-off with time and memory over performance.
Cecotti [38] also proposed the Deep RVFL based model. Since

VFL is generally a single hidden layered model, the author
ncreased the number of hidden layers and termed it as Deep
VFL. Model output was based on a multiclassifier approach in
hich the performance evaluation is done by combining the
ecision scores of the different classifiers. Here author used ELM
nd RVFL as multiple classifier. The model may look similar to
he proposed approach, but the feature extraction part in the
roposed algorithm is executed using a Deep Neural Network
DNN) i.e. ResNet-50, and the classification is performed using
tandard single layered RVFL. Also, we proposed s-FAF as the
ctivation function in RVFL in the evaluation of output in the
odel proposed.
Since the weight allocation of the layer is random, Zhang

t al. [39] proposed a technique to locate the ideal span for
he arbitrary weights by a range scaling calculation. This paper
ives the idea for parameter randomization and the variation
n performance due to the direct link and effect of bias in the
utput. Another interesting approach was adopted in [40]. In this
aper, authors adopted the multiple hidden layers in the RVFL
ased model and the output is extracted from each of the hidden
ayers. Then ensembles the output from the hidden layer through
ajority voting and hence the final output is calculated. 13 dif-

erent real-world datasets were taken into consideration from
he various domain to calculate output. We can say that ensem-
ling increases the computational cost as compared to shallow
VFL. In this paper, the method performance remains outstanding
hen compared to other non-ensemble methods. Suganthan [41]
ompared various model which are non-iterative in nature with
closed form solution and concludes that RVFL outperforms

he Extreme Learning Machine (ELM) is many aspects. Katuwal
t al. [42] proposed a new ensemble classifier with the combi-
ation of RVFL and Decision Tree, and classification was done
 w

3

Table 1
Demographics details of the available subjects for AD
diagnosis.

AD CN MCI

No. of subjects 137 162 210
Average age 76 69 64

Fig. 1. 3 Plane view of MRI middle slices.

n 65 multiclass datasets. The decision tree implemented was
oth univariate and multivariate. The proposed model dominates
he performance when compared to the existing state-of-the-art
ethods such as Random Forest and others.
This section gives us an idea of why we have selected DNN

or feature extraction and RVFL as the classifier and provides
ome details on how we can improvise the model’s performance
arameter.

. Methodology

A comprehensive description of the proposed method is pre-
ented in the following subsections.

.1. Dataset

The MRI images related to AD diagnosis are taken from the
lzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [43].
ore than 500 participants, including patients with MCI, AD, and
N, are involved in the model. Most of the patient ages range
rom 70–90. All the neuro scans used are T1 weighted MRI scans.
CI patients are further sub-classified into two categories, non-
onverter MCI (ncMCI) and converter MCI (cMCI), out of which
34 subjects are ncMCI, and 76 subjects are cMCI. The dataset
as been split in a ratio of 70:30 as training and testing, respec-
ively. The demographics details of the datasets are mentioned in
able 1.

.2. Pre-processing

The 3D scans used has a slice count of 160 in each scan. Out of
he 160 slices, we extract two pictures of each plane i.e., sagittal,
oronal and axial, from entire MRI scans. The three-plane view of
RI is shown in Fig. 1. The Fig. 1 is just a plane extraction for
ne single slice. In the proposed model, we extracted two slices
rom each plane of the MRI scan. Therefore, total six slices set

as extracted from each MRI scan. The slice gap used was two
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Fig. 2. Proposed Model.
r
b

i.e., after two slices from the middle next image will be extracted.
Since these slices is fed to a deep network, the slice is resized into
224*224 dimensions.

3.3. Network architecture

In the proposed method, TL is adopted to extract the features
from the pretrained network, ResNet-50 and FAF-RVFL is used as
classifier. ResNet consists of an array of multiple convolutional
and pooling layers that will extract the MRI images’ high-level
features [44]. A brief explanation of the DNN and RVFL is given
in the proceeding section. The basic architecture of the proposed
model is shown in Fig. 2.

In the proposed method, ResNet-50, a pretrained DNN is used
for feature extraction. The convolutional layers with the combina-
tion of skip connections of DNN play the role of efficient feature
extractor as represented in Fig. 3. In pretrained ResNet-50, there
is no need to tune the parameters of the network. Batch normal-
ization is done to normalize the parameter. Rectified Linear Unit
(ReLU) is used as an activation function because of its threshold.
Max pooling is used in the network to reduce the complexity by
reducing the size of the feature extracted by the convolutional
layer, thereby reducing the computational requirements.

After passing through all the layers, these features will be
fed to a single hidden layer feed-forward neural network known
as RVFL. Deep-RVFL (DRVFL) provides the network’s validness
by modifying linear non-separable data into lower dimension
space. RVFL’s main concept is to initialize the random parameter
for the enhancement layer(also known as a hidden layer), as
4

shown in Fig. 4. After the random parameter assignment, the
parameter values are fixed and do not change during the training
phase. It systematically calculates the parameter of the output
layer generally by using the least square method. For calculating
output weights, both the original data and the learned non-linear
feature by the hidden layer are considered. The hidden layer’s
fixed weight diminishes the problem raised by iterative learning
techniques, as in the iterative method, the model gets trapped in
local minima, monotonous convergence, and overfitting. For MRI
scans, which are a bit more complex in nature, BP based classifier
may take a much longer training time [45]. RVFL is much faster
than other classifiers because of the single hidden layer in the
network and non iterative processing.

Given n samples with labels s = (ai, bi); ai ∈ Rd, bi ∈ Rc, i = 1,
2, . . . , n; where every samples is defined as ai = [a1i , a

2
i , . . . , a

d
i ]

T

and bi = [b1i , b
2
i , . . . , b

c
i ]

T . For RVFL network having E enhance-
ment nodes, the output is given by:

C .O = Y (1)

‘‘C ’’ represents a matrix formed by the concatenation of random
features from the input and the hidden layer. ‘‘Y ’’ matrix consists
of ‘‘n’’ target vectors. ‘‘O’’ is the matrix for the output weights. The
weight and biases between the input and the enhancement nodes
are set random with values between {−x, x} and {0, x}, respec-
tively, ‘‘x’’ indicate a positive real scaling factor. The concatenate
matrix formed consist of hidden parameter denoted by hi(ai) will
have the value for first instance will be h1(a1) = T (Oh

1.a1 + b1),
hE(a1) = T (wh

E .a1 + bE) and similar for ‘‘n’’ samples. Here T (.)
epresents the activation function used in the RVFL, which will
e non-linear in nature.
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Fig. 3. Model for Feature extraction.

Fig. 4. Schematic for RVFL.

3.4. s- Fuzzy activation function

In the proposed algorithm, we implemented s-FAF [46] as
the activation function because s-FAF maps the non-linear data
from the input vector to the feature vector. In order to reduce
the computational complexity, s-FAF uses only three linguistic
variables; low, medium and high. Another advantage of s-FAF is
that it compresses the outliers due to motion artifacts and others
to the range of membership value of either near to zero or one.
For the normal intensity values, the values are almost linear. For
example, if the inputs are negative values, then it will be mapped
to zero and inputs having values more positive will be mapped
near to one. Inputs that contains average grayscale values means
having more information will be mapped linearly. The s-FAF is
efined by Eq. (2).

T (i, j, k,m) =0, i ≤ j,

2f−1
(

i − j
k − j

)f

, j ≤ i ≤ m,

1 − 2f−1
(

i − j
k − j

)f

,m ≤ i ≤ k,

1, i ≥ k.

(2)

Eq. (2) is the functional equation representation of the s-FAF.
he slope of the s-FAF is controlled by ‘‘f’’, called fuzzifier. The
unction has two crossover points, j, and k, at 0 (minima) and 1
maxima), respectively and one center point at m. Fig. 5 shows
he s-shaped s-FAF used in RVFL network.

From Eq. (2), one can calculate the weight for the output node
f RVFL by an approach called ridge regression, which helps in
5

Fig. 5. s-Membership Function.

solving the problem:
l∑
i

(bi − hi ∗ O) + r∥O∥
2, i = 1, 2, . . . ....., n, (3)

where hi represents a vector having both input and random
feature. The solution of the above equation is done by using
regularization parameter r as

O = CT (
(CCT

+ 1/r)−1Y
)
. (4)

This provides a RVFL based model with s-FAF to classify the
disease into three classes. As s-FAF is proposed in the model,
but we also evaluated the output with other standard activation
function such as sigmoid, hard limit (hardlim), triangular basis
(tribas), radial basis (radbas), sine function and sign function, just
to compare the output with the proposed s-FAF.

In a summarized manner, we pre-processed the data and
extracted the slices from the MRI scans. The images are then fed
to the DNN based network, which extracts the features, and the
extracted feature is fed to the FAF-DRVFL for fast and accurate
classification. The models’ main aspects are the parameters in-
volved in the classification network are randomly initialized due
to which the tuning of learnable parameters is almost negligible
and hence the computational time gets reduced.

4. Results and discussion

The result and discussion section is further divided into eight
subsection. Each section shows the comparative discussion re-
lated to the output generated from the proposed model and the
compared models.

4.1. Experiments

In this section, we will discuss and compare the output from
the proposed FAF-DRVFL model with the state-of-the-art DNN.
The classifications are made in 3 classes, i.e., CN vs AD, CN vs
cMCI, and cMCI vs ncMCI. The performance metric on which
the models will be evaluated is accuracy, sensitivity, specificity,
precision, recall, F-score and ROC curve. The flowchart of the
proposed algorithm is shown in Fig. 6.

The next subsections deals with the tools used for implement-
ing the models and generating the output.
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Table 2
Algorithm comparison of proposed FAF-DRVFL model with different Activation Function (in %).
Activation Function Class Accuracy Sensitivity Specificity Precision Recall F-Score

s-FAF
CN vs AD 86.67 83.33 88.89 83.33 83.33 86.07
CN vs cMCI 81.81 1 33.33 80 100 88.89
cMCI vs ncMCI 80 100 33.33 77.78 100 87.5

sigmoid
CN vs AD 80 72.72 100 100 72.73 84.21
CN vs cMCI 63.64 75 33.33 75 75 75
cMCI vs ncMCI 50 57.14 33.33 66.67 57.14 61.54

sine
CN vs AD 66.67 100 44.44 54.55 100 70.59
CN vs cMCI 72.73 100 0 72.73 100 84.21
cMCI vs ncMCI 50 57.14 33.33 66.67 57.14 61.54

hardlim
CN vs AD 73.33 100 20 71.43 100 83.33
CN vs cMCI 63.64 62.50 66.67 83.33 62.5 71.43
cMCI vs ncMCI 50 57.14 33.33 66.67 57.14 61.54

tribas
CN vs AD 80 81.82 75 90 81.82 85.71
CN vs cMCI 63.64 75 33.33 75 75 75
cMCI vs ncMCI 50 57.14 33.33 66.67 57.14 61.54

radbas
CN vs AD 80 90.91 50 83.33 90.91 86.96
CN vs cMCI 72.73 75 66.67 85.71 75 80
cMCI vs ncMCI 80 85.71 66.67 85.71 85.71 85.71

sign
CN vs AD 80 100 25 78.57 100 88
CN vs cMCI 70 85.71 33.33 75 85.71 80
cMCI vs ncMCI 50 57.14 33.33 66.67 57.14 61.54
Fig. 6. Flowchart representation for the model implemented.
6

4.2. Implementation details

The experiments are executed using MATLAB 2020a software
tool. All the training and testing of network along with dataset
preparation is done on a machine with an Intel(R) Xenon(R) W-
2133 CPU @3.60 GHz with a 64 GB RAM. The GPU used is NVIDIA
Quadro P2200. All the experiments are done using ADNI dataset
which includes structural MRI images of CN, AD, cMCI and ncMCI
patients.

The next subsection deals with the comparison of the perfor-
mance parameters of various activation function available for the
proposed model.

4.3. Comparison with different activation functions

First of all, the model performance is tested with the different
activation functions and s-FAF in RVFL network for classifica-
tion in Table 2. Performance is compared in terms of accuracy,
sensitivity, specificity, precision, recall and F-score. Activation
functions help in classification by adding non-linearity to the
system so that the system can handle non-linearity with much
improved efficiency. Out of the various activation function used,
the proposed activation function i.e., s-FAF outperforms in results
with a maximum accuracy of 86.67% in classifying CN vs AD and
81.81% CN vs cMCI. The least performer was sine activation with
the lowest accuracy in all the classes and zero specificity for one
of the classes because of the miss classification of CN as cMCI and
cMCI as CN. Specificity resembles the negatives that are identified
positive. For the case of sine function, all the negative cases were
classified as positive hence, the specificity tends to zero.

The next subsection shows the comparison of the proposed
model with the similar single layered neural networks along with
their various activation functions.

4.4. Comparison with state-of-art non-iterative classifier

Furthermore, the proposed method is contrasted with the
state-of-the-art non-iterative classifiers. In comparisons, first the
features are extracted using pretrained ResNet-50 DL network
and then state-of-the-art non-iterative classifiers with different
activation functions are used for classification. Classification per-

formance of sF activation function based RVFL is compared with
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Table 3
Comparison of the proposed FAF-DRVFL model with State-of-art non-Iterative Classifier (in %).
Classifier used Class Accuracy Sensitivity Specificity Precision Recall F-Score

ELM using CN vs AD 73.33 63.64 100 100 63.64 77.78
sigmoid CN vs cMCI 63.64 75 33.33 75 75 75
function cMCI vs ncMCI 60 71.43 33.33 71.43 71.43 71.43

ELM using CN vs AD 73.33 100 65.56 60 100 75
radial basis CN vs cMCI 72.73 100 0 72.73 100 84.21
function cMCI vs ncMCI 60 85.71 0 66.67 85.71 75

ELM using CN vs AD 40 16.67 55.56 20 16.67 18.18
sine CN vs cMCI 72.73 87.5 33.33 77.78 87.5 82.35
function cMCI vs ncMCI 40 28.57 66.67 66.67 28.57 40

KELM using CN vs AD 73.33 100 0 73.33 100 84.62
sigmoid CN vs cMCI 72.73 100 0 72.73 100 84.21
kernel cMCI vs ncMCI 70 100 0 70 100 82.35

KELM using CN vs AD 80 72.73 100 100 72.73 84.21
polynomial CN vs cMCI 63.64 75 33.33 75 75 75
kernel cMCI vs ncMCI 50 57.14 33.33 66.67 57.14 61.54

KELM using CN vs AD 60 54.55 75 85.77 54.55 66.67
radial basis CN vs cMCI 36.63 37.50 33.33 60 37.50 46.15
kernel cMCI vs ncMCI 40 42.86 33.33 60 42.86 50

KELM using CN vs AD 60 54.55 75 85.77 54.55 66.67
wavelet CN vs cMCI 36.63 37.50 33.33 60 37.50 46.15
kernel cMCI vs ncMCI 40 42.86 33.33 60 42.86 50

Proposed CN vs AD 86.67 83.33 88.89 83.33 83.33 86.07
FAF-DRVFL CN vs cMCI 72.73 87.5 33.33 77.78 87.5 82.35
model cMCI vs ncMCI 80 100 33.33 77.78 100 87.5
Fig. 7. ROC for the classification of (a) CN vs AD (b) CN vs cMCI (c) cMCI vs ncMCI for the proposed FAF-DRVFL model.
ELM [24] and Kernel ELM (KELM) [47] classifier. The performance
matrices are compared in Table 3. ELM is a feed forward network
with single hidden layer that calculates the output by matrix
inversion. The choice of activation function at the hidden layers of
ELM is still unanswered. Therefore, the authors in [24] proposed
kernel function at the hidden node to calculate the output of
the hidden layer to improve the stability and generalization of
the algorithm. In this comparison, the proposed model, which
is based on sF activation function, outperforms with the highest
classification accuracy for all three classes when compared to
the ELM and KELM with different activation functions. Almost
similar result were shown for KELM with kernel function as
Radial Basis and Wavelet for all the three classes. However KELM
with polynomial kernel shows a good results when compared to
other KELM kernels implemented. This is due to the non-linear
complexity in the model. The lowest accuracy was noticed when
ELM is used with sine kernel for CN vs AD and cMCI vs ncMCI
and for CN vs cMCI, radial basis shows relatively poor results. All
the performance parameter values are low with a huge difference
for sine function. This is because the sine function is symmetric
in nature, thereby cannot handle non-linear features. Overall, we
can clearly state that the proposed model shows outstanding

results when compared to ELM and KELM for all the classes.

7

The upcoming subsections deals with the comparison of the
proposed model with popular pretrained DL algorithms available.

4.5. Comparison with the state-of-art deep architectures

Another comparison was made with the popular five pre-
trained DNN networks: Alexnet, ResNet, SqueezeNet, VGG19,
GoogleNet, with the proposed method. The proposed FAF-DRVFL
model outperforms in CN vs AD and cMCI vs ncMCI classifi-
cation tasks with the highest accuracy, sensitivity, specificity,
precision, recall and F-score. However, for CN vs cMCI, although
the accuracy and sensitivity were the same compared to the
several models, the specificity is high in the proposed model
and specificity means the degree to which a diagnostic test for a
specific condition is specific. Hence the FAF-DRVFL model shows
descent specificity when compared to the remaining state-of-the-
art deep models. The classification performance is mentioned in
detail in Table 4. Figs. 7 and 8 shows the ROC curve of the FAF-
DRVFL algorithm and the other compared state-of-the-art Deep
Learning Architectures respectively.

The next subsection represents the complexity analysis for the
proposed model.
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Fig. 8. ROC curve for classification of CN vs AD for (a) AlexNet (b) GoogleNet (c) ResNet-50 (d) KELM (e) SqueezeNet (f) VGG-19 (g) ELM.
Table 4
Comparison with the State-of-the-Art Deep Architectures (in %).
Deep learning model Class Accuracy Sensitivity Specificity Precision Recall F-Score

Alexnet CN vs AD 71.67 71.88 28.41 47.92 71.88 57.50
CN vs cMCI 64.77 41.67 26.56 37.04 41.67 39.22
cMCI vs ncMCI 63.75 20.83 17.86 33.33 20.83 25.64

ResNet-50 CN vs AD 66.67 54.55 100 100 54.55 70.59
CN vs cMCI 72.73 87.5 33.33 77.78 87.5 82.5
cMCI vs ncMCI 70 100 0 70 100 82.35

SqueezeNet CN vs AD 66.67 54.55 100 100 54.55 70.59
CN vs cMCI 72.73 100 0 72.73 100 84.21
cMCI vs ncMCI 70 85.71 33.33 75 85.71 80

VGG19 CN vs AD 73.33 81.82 50 81.82 81.82 81.82
CN vs cMCI 72.73 87.5 33.33 77.78 87.5 82.35
cMCI vs ncMCI 70 100 0 70 100 82.35

GoogleNet CN vs AD 53.33 45.45 75 83.33 45.45 58.52
CN vs cMCI 72.73 100 0 72.73 100 84.21
cMCI vs ncMCI 80 100 33.33 77.78 100 57.74

Proposed CN vs AD 86.67 83.33 88.89 83.33 83.33 86.07
FAF-DRVFL CN vs cMCI 72.73 87.5 33.33 77.78 87.5 82.35
model cMCI vs ncMCI 80 100 33.33 77.78 100 87.5
4.6. Complexity analysis

In this section, the complexity of the proposed FAF-DRVFL
etwork is explained. TL is used for feature extraction using
retrained DL network. So, the complexity of the network in
he proposed FAF-DRVFL model mainly depends on the number
f the hidden neurons in the RVFL network. In RVFL network,
he matrix inversion of size n hidden neurons needs O(n3) time.
irect link calculation also takes time. For complexity analysis,
he training time of the proposed algorithm is compared with
he DL algorithms as well as state-of-the-art single hidden layer
eed forward networks in Table 5. For single hidden layer feed
orward networks: ELM and KELM, the number of hidden neurons
equire are more, which will increase the training time. In DL net-
orks, tuning of the parameters is done using backpropagation
lgorithm which will increase the training time.
The next sections deals with uncertainty analysis in the pro-

osed model.
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Table 5
Execution time comparison.
Deep learning model Time taken (in sec)

ELM 46.70
KELM 44.34
AlexNet 372
ResNet-50 2186
SqueezeNet 118.41
VGG-19 1678.12
GoogleNet 156.08
Proposed FAF-DRVFL model 33.38

4.7. Parameter uncertainty analysis

In the proposed network, there is no need for any tuning of
the parameters of the network and selection of hyperparameters,
therefore the performance depends only on one parameter: num-
ber of hidden neurons. Therefore, experiments are done to find
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Table 6
Comparison of proposed model with various number of neuron in the model for CN vs AD classification (in %).
s-Membership Fuzzy activation function based RVFL

Number of neurons Accuracy Sensitivity Specificity Precision Recall F-Score Time taken (in sec)

500 53.33 100 22.22 46.15 100 63.16 33.81
1000 60 54.55 75 85.71 54.55 66.67 58.51
5000 86.67 83.33 88.89 83.33 83.33 86.07 33.38
10000 80 72.73 100 100 72.73 84.21 45.62
50000 40 100 0 40 100 57.14 38.77
100000 73.33 100 0 73.33 100 84.61 35.02
i
(
S

R

the optimized value of the number of the hidden neurons for
maximum performance results using grid search strategy. Table 6
shows the results for different values of number of hidden neu-
rons for CN vs AD classification. From Table 6, an optimum value
of hidden neurons is 5000. If we increase the hidden neurons
from 5000, the network may face over fitting issue. Therefore,
performance is decreasing if we are increasing the number of
hidden nodes.

The next sections highlights the remarks for the results ob-
ained.

.8. Discussion/remarks

The primary goal of this paper is to early diagnose the AD so
hat care can be taken by proper medications and by changing
he lifestyle of the patients to slow down the progression of the
isease. Therefore, classification is done using three categories:
N vs AD, CN vs cMCI and cMCI vs ncMCI. Based on the ex-
erimental results calculated on the proposed FAF-DRVFL model
nd comparing with state-of-the-art classification model, we can
tate that the proposed model outperforms in all the performance
arameter. The model achieves the highest accuracy of 86.67% for
N vs AD, 72.73% for CN vs cMCI and 80% for cMCI vs ncMCI
lassification. The proposed fuzzy function i.e., s-membership
uzzy function, outperforms with other activation functions. Due
o its random weight assignment feature, the classification model
eads to fast and much accurate classification results. Therefore,
he proposed FAF-DRVFL algorithm can be used to alleviate the
urden of the clinicians for automatic diagnosis of the disease at
he early stage.

. Conclusion

This paper presents a novel, non-iterative and fuzzy activa-
ion function-based deep random vector functional link neural
etwork for early AD diagnosis. The features of MRI images are
xtracted using pretrained ResNet-50 DNN. Classification of the
xtracted features is done using a single hidden layer FAF-DRVFL
lassifier. Weights and biases between the input layer and en-
ancement nodes of the RVFL network are randomly initialized.
he fuzzy activation function is used at the hidden layer to
ap the features into non-linear space. Then the enhanced and
riginal features are combined and fed to the output layer for
lassification. The proposed network’s main advantage is a non-
terative feed-forward network in which weights and biases are
enerated randomly. Results show the best performance of the
roposed network than the state-of-the-art methods for CN vs
D, cMCI vs CN, and cMCI vs ncMCI classification with faster
peed.
In future, the proposed algorithm can be applied to larger

atasets and used to diagnose other neural disorders. Also, in
resent scenario, we are only considering the structural changes
ccurred in the cerebral region, which can be further extended
o consider metabolic changes as well. Also, one can approach
or Multimodal dataset i.e. inclusion of features from PET, Dif-
usion Weighted Imaging, Quantitative susceptibility mapping
long with sMRI to improve the diagnosis results.
9
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