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A B S T R A C T

The volumetric and morphometric examination of hippocampus formation subfields in a longitudinal manner
using in vivo MRI could lead to more sensitive biomarkers for neuropsychiatric disorders and diseases including
Alzheimer’s disease, as the anatomical subregions are functionally specialised. Longitudinal processing allows for
increased sensitivity due to reduced confounds of inter-subject variability and higher effect-sensitivity than cross-
sectional designs. We examined the performance of a new longitudinal pipeline (Longitudinal Automatic Seg-
mentation of Hippocampus Subfields [LASHiS]) against three freely available, published approaches. LASHiS
automatically segments hippocampus formation subfields by propagating labels from cross-sectionally labelled
time point scans using joint-label fusion to a non-linearly realigned ‘single subject template’, where image seg-
mentation occurs free of bias to any individual time point. Our pipeline measures tissue characteristics available
in in vivo high-resolution MRI scans, at both clinical (3 T) and ultra-high field strength (7 T) and differs from
previous longitudinal segmentation pipelines in that it leverages multi-contrast information in the segmentation
process. LASHiS produces robust and reliable automatic multi-contrast segmentations of hippocampus formation
subfields, as measured by higher volume similarity coefficients and Dice coefficients for test-retest reliability and
robust longitudinal Bayesian Linear Mixed Effects results at 7 T, while showing sound results at 3 T. All code for
this project including the automatic pipeline is available at https://github.com/CAIsr/LASHiS.
1. Introduction

The hippocampus formation is a brain structure generating large in-
terest and research activity due to its implication in memory, psychiatric
and neurological disorders including Alzheimer’s Disease (AD; Daulatzai,
2013; Fotuhi et al., 2012), Motor Neurone Disease (Machts et al., 2018)
and depression (Sapolsky, 2001), and especially its functional and
structural changes in ageing (Fraser et al., 2015). Due to the hippocampal
formation’s vulnerability in neurodegenerative disease, and its involve-
ment in neurogenesis (specifically within the dentate gyrus [DG],
Erickson et al., 2011), precise volumetric and morphometric
aging, Building 57, Research Roa

tained from the Alzheimer’s Dis
ign and implementation of ADNI
nd at: http://adni.loni.usc.edu/w

8
form 1 April 2020; Accepted 2 A

vier Inc. This is an open access ar
measurements of hippocampus formation are important for clinical
studies and ageing research. Recent work has focussed on the hippo-
campus formation subfields, which are impacted differentially in neu-
rodegeneration and disease (e.g., Machts et al., 2018). Volumetric and
morphometric examination of these hippocampus subfields, especially in
longitudinal studies, may lead to more sensitive biomarkers of disorder
and the progress of the diseases (Adler et al., 2018; Boutet et al., 2014;
Henry et al., 2011; Kerchner et al., 2012; La Joie et al., 2013; Maruszak
and Thuret, 2014; Pluta et al., 2012).

Hippocampus subfields are functionally and cytoarchitectonically
disparate (Andersen, 2007; Daulatzai, 2013; de Flores et al., 2019; Fotuhi
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et al., 2012) with heterogeneous cellular composition. The four Cornu
Ammonis (CA) subfields each have regional variations in pyramidal cells,
creating structural differences between these subfields, which can be
reflected to a degree in differing contrast and intensity signals in mag-
netic resonance imaging (MRI) scans with sufficient sensitivity and
spatial resolution, i.e., at high enough field strengths (3 T and above; e.g.,
Duvernoy et al., 2013; Naidich et al., 2003). As distinct cellular differ-
ences between subfields are only observable ex vivo and translate into
only subtle differences in the MR signal, it is difficult to characterize
these tissue classes at lower field strengths and routine MRI sequences
due to low signal to noise ratio (SNR) and imaging artefacts (Wang and
Doddrell, 2005).

Following from the above challenges, changes in small brain struc-
tures have been successfully studied at ultra-high field (UHF) using MRI
sequences with different contrasts (multi-contrast MRI) and allowed
remarkable details for imaging in vivo (Fracasso et al., 2016). UHF MRI
enables the increased spatial resolution necessary to characterize tissue
differences in vivo, and in reasonable acquisition times. Previous UHF in
vivo hippocampus subfield segmentation studies (for review, see Giuliano
et al., 2017) utilize ‘dedicated’ sequences (e.g., single- or multi-echo
Gradient Echo, Turbo-Spin Echo [TSE]) that exhibit varying intensity
and contrast characteristics for different tissue classes due to multiple
refocusing pulses. Consequently, the subfields of the hippocampus are
observable in these dedicated sequence types (Marques and Norris, 2018;
Winterburn et al., 2013).

Advances in MRI acquisition techniques and image analysis methods
have made automatic segmentation of hippocampus subfields possible.
More recently, fully automatic hippocampus subfield pipelines including
Freesurfer’s hippocampus subfields method (Iglesias et al., 2015) and
Automatic Segmentation of Hippocampus Subfields (ASHS; Yushkevich
et al., 2015) have been released as open-source segmentation software
that combine several computational methods to achieve more reliable
and precise results.

While both Freesurfer and ASHS have been applied in various studies
(Chiappiniello, 2018; Iglesias et al., 2016; Pluta et al., 2012; Yushkevich
et al., 2015), generally, segmentation errors cannot be avoided in practice.
The cross-sectional variant of Freesurfer accounts for contrast differences in
input images while leveraging a combination of T1w and T2w contrasts for
defining hippocampus segmentation. The underlying assumption of the
Freesurfer scheme is that the spatial distribution of brain structures will be
consistent with the in vivo and ex vivo data in the atlas package, and spatial
distributions of brain structures are homogenous within all scanned pop-
ulations. A longitudinal variant of the hippocampus subfield method from
Freesurfer (Iglesias et al., 2016) has also been introduced, which decreases
residual (within-subjects) variability by allowing each participant to act as
their own control. However, this method does not incorporate T2w infor-
mation for labelling. It has been shown previously that T1w information
generally does not contain signal that differentiates hippocampus subfields
(Winterburn et al., 2013), including - in T2w contrast - the hypointense
band of cells that separates the dentate gyrus (DG) from the CA regions
known as the stratum radiatum lacunosum moleculare.

Longitudinal processing allows for increased sensitivity (Fitzmaurice
et al., 2011) due to reduced confounds of inter-subject variability and
higher effect-sensitivity than cross-sectional designs. In image processing
pipelines, longitudinal processing avoids many issues of secular trends
inherent to cross-sectional designs, as participants act as their own con-
trol. These designs often exploit the knowledge that within-subject
anatomical changes over time are usually significantly smaller than
changes on an inter-subject morphological scale (Reuter et al., 2012).
Longitudinal designs have been used to successfully characterize changes
in brain morphometry over time with greater accuracy than their
cross-sectional counterparts (Reuter et al., 2012; Reuter and Fischl, 2011;
Tustison et al., 2017, Tustison et al., 2019). These designs avoid many
types of image processing bias by transforming images into an interme-
diate space between time points where interpolation-related blurring is
consistent across the time points.
2

Currently, using ASHS to measure volumes of hippocampus subfields
in a single participant at multiple time points does not account for the
inherent variability present in cross-sectional methods. The Freesurfer
longitudinal hippocampus subfields pipeline is the only dedicated lon-
gitudinal pipeline for measuring the volume of hippocampus subfields
automatically. However, this method does not utilise the signal and tis-
sue information available with multi-contrast MRI, and in particular, the
‘dedicated’ T2w scan commonly used in measuring the subfields of the
hippocampus. We aimed to develop a longitudinal automatic hippo-
campus subfield segmentation pipeline that incorporates multi-contrast
information while being robust to computational errors inherent to
purely cross-sectional methods. We then examined the performance of
our new longitudinal pipeline (Longitudinal Automatic Segmentation of
Hippocampal Subfields [LASHiS]) against three published approaches
viz; cross-sectional (FS Xs) and longitudinal (FS Long) Freesurfer hip-
pocampus subfields (V6.0 Dev20181125; Iglesias et al., 2016), and ASHS
cross-sectional (ASHS Xs; Yushkevich et al., 2015).

We developed an open-source multi-contrast pipeline that shares
commonalities with existing pipelines but can capture multi-contrast
information from MRI scans automatically, while avoiding errors com-
mon to cross-sectional processing. We integrate several open-source
software packages and programs to construct LASHiS and propose the
usage of multi-atlas fusion techniques to bootstrap automatic segmen-
tation performance. Our pipeline is implemented with existing tools
available through ANTs (ANTs Version: 2.2.0.dev116-gabc03; http://stn
ava.github.io/ANTs/; Avants et al., 2010) and ASHS (https://sites.goo
gle.com/site/hipposubfields/; Yushkevich et al., 2015). Our pipeline
and all associated code can be found at https://github.com/CAI
sr/LASHiS.

2. Methods and materials

2.1. Towards Optimising MRI ChAracterisation of Tissue (TOMCAT)
imaging data

Seven healthy participants (age: M¼ 26.29, SD ¼ 3.35, sex: 3 female,
4 male) were scanned using a 7 T whole-body research scanner (Siemens
Healthcare, Erlangen, Germany), with maximum gradient strength of 70
mT/m and a slew rate of 200 mT/m/s and a 7 T Tx/32 channel Rx head
array (Nova Medical, Wilmington, MA, USA) in three sessions with three
years between session one and two, and 45 min between two and three,
allowing for a scan-rescan condition. The study was approved by the
university human ethics committee and written informed consent was
obtained from the participants. Participants were scanned using a 2D TSE
sequence (Siemens WIP tse_UHF_WIP729C, variant: tse2d1_9), TR:
10,300 ms, TE: 102 ms, FA: 132�, FoV: 220 mm, voxel size of 0.4� 0.4�
0.8 mm3 Turbo factor of 9; iPAT (GRAPPA) factor 2, acquisition time
(TA) 4 min 12 s. The scan was repeated thrice over a slab aligned
orthogonally to the hippocampus formation. An anatomical whole-brain
T1w scan using a prototype MP2RAGE sequence (WIP 900; Marques
et al., 2010; O’Brien et al., 2014) at 0.75 mm isotropic voxel size was also
acquired (TR/TE/TIs ¼ 4300 ms/2.5 ms/840 ms, 2370 ms, TA ¼ 6:54).
At the first time point, the data was acquired as part of a larger study
(Bollmann et al., 2018) and the nominal resolution was 0.5 mm isotropic
with the same parameters. For all subsequent processing, all MP2RAGE
images for the first time point were resampled to 0.75 mm isotropic using
b-spline interpolation. TSE images were resampled to 0.3 mm isotropic
andmotion-corrected using non-linear realignment (Shaw et al., 2019) to
ensure all segmentation strategies had an equivalent chance of suc-
ceeding. We have previously explored the effects of non-linear realign-
ment on hippocampus subfield segmentation (Shaw et al., 2019) and
have found the method to be beneficial for segmentation reliability and
sharpness. Non-linear realignment is a process of minimum deformation
averaging of multiple repetitions of the same sequence, which boosts
SNR and image sharpness. This method works best when input images
are isotropic (in this case interpolated using 3rd order b-splines).

http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
https://sites.google.com/site/hipposubfields/
https://sites.google.com/site/hipposubfields/
https://github.com/CAIsr/LASHiS
https://github.com/CAIsr/LASHiS
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Inter-scan movement before the initial interpolation could lead to un-
wanted artefacts further downstream in the realignment process. How-
ever, non-linear realignment has been shown to iteratively converge
more readily to ‘crisp’ isotropic voxels with distinct features, and the
realignment procedure ensures that only anatomically consistent features
of the three TSE images are retained, which motivated our choice. All
TOMCAT data are available at https://osf.io/bt4ez.

2.1.1. ADNI-3 MRI data
As a follow-up study for the small n TOMCAT dataset, we used lon-

gitudinal data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)-3 (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).

At 3 T, either an anatomical 1 mm3 isotropic full-brain T1wMP-RAGE
or Accelerated SPGR sequence was acquired. A high-resolution ‘dedi-
cated hippocampus slab’ T2w TSE or FSE was also acquired at 0.4 � 0.4
� 1 mm. Specific details and acquisition parameters are given in http://
adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-prot
ocols.pdf. Data were downloaded in October of 2019 and consisted of
112 participants that had both T1w and T2w scans and been scanned two
or more times (fulfilling the longitudinal condition). 17 participants had
three time points. 79 participants were included in the final analysis, as
some data sets could not be processed due to computational errors in one
or more of the pipelines or time points, resulting in 11 participants with
three time points and 68 with two time points. We note that Freesurfer
produced themost failures in processing (n¼ 79), with LASHiS and ASHS
completing 92 cases each. We included all results for each method in the
3

GitHub repository associated with this work. In total, 43 females and 36
males were processed meeting the following diagnostic criteria: 12 late
mild cognitive impairment (LMCI), 31 cognitively normal (CN), 8 mild
cognitive impairment (MCI), 7 significant memory concern (SMC), and
20 early mild cognitive impairment (EMCI) (Age M ¼ 77.68, SD ¼ 8.76).

Data were converted to BIDS using BIDSCoin (https://github.c
om/Donders-Institute/bidscoin), and pre-processed identically to the
TOMCAT dataset, with the exception of resampling to 0.4 mm isotropic
instead of 0.3 mm isotropic for the T2w scan.

2.2. Longitudinal Assessment of Hippocampal Subfields (LASHiS)

2.2.1. Atlas construction
The entire LASHiS pipeline is described in Fig. 1. Optionally, the

ASHS pipeline can be optimised through the incorporation of a group-
specific atlas. Similarly, creation of a group-specific atlas is a benefit to
our proposed method. This atlas is comprised of a representative pool of
subjects (approximately 20–30 participants), manually labelled, and
passed through the ASHS_train pipeline described in Yushkevich et al.
(2015). Essentially, the manual segmentations are used as inputs (priors)
for the joint-label fusion (JLF) algorithm in subsequent segmentations,
and to train classifiers for the ASHS cross-sectional pipeline. Creating a
group-specific atlas (of 20–30 subjects) would be beneficial for large
longitudinal studies, as segmentation training would be performed on
group-specific characteristics. However, having a group specific atlas is
generally not necessary for robust performance of ASHS in certain cases
(Xie et al., 2018).

2.2.2. Pre-processing and cross-sectional processing
The ASHS Xs pipeline has been previously proposed and discussed

(Yushkevich et al., 2015). Briefly, the pipeline labels hippocampus sub-
fields of a given T1w and dedicated T2w scan covering the hippocampus
Fig. 1. Longitudinal Automatic Seg-
mentation of Hippocampus Subfields
(LASHiS) pipeline. The pipeline consists
of the following steps with the input of
any number of T1w and T2w individual
time points per participant: 1) (In red;
optional) pre-processing of both T1w
and T2w scans. 2) (In yellow) Offline
construction of a sample-specific atlas
for LASHiS. 3) Labelling of individual
time points of each subject using ASHS
and a representative atlas (or an atlas
created in [2]) to yield hippocampus
subfield estimates. 4) Construction of a
multi-contrast Single Subject Template
(SST). 4) JLF of each of the individual
time point labels to the SST using both
contrasts and individual hippocampus
subfield labels to produce a labelled SST.
5) Application of the inverse subject-to-
SST transformations to SST labels. 6)
Measurement and calculation of subfield
labels in subject-space.

https://osf.io/bt4ez
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf
http://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf
http://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf
https://github.com/Donders-Institute/bidscoin
https://github.com/Donders-Institute/bidscoin
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subfields. This approach leverages a multi-atlas segmentation method
and corrective learning techniques to segment (usually 3 T or 7 T) MRI
data. The process involves first training existing manually labelled in vivo
atlases of T2w scans. These trained atlas packages inform labels for new
in vivo T1w and dedicated T2w scans. ASHS provides many of these
atlases at https://www.nitrc.org/projects/ashs. These open source
atlases may be replaced with a group-specific atlas as proposed in 2.1.1.
The T2w input scan is usually acquired anisotropically with reduced
resolution along the major axis of the hippocampus subfield and high
in-plane resolution. The spiral structure of the hippocampus formation
does not change rapidly along its major axis, which motivates this
parameter choice (Iglesias et al., 2016). ASHS Xs employs
similarity-weighted voting for learning segmentation priors and JLF for
multi-atlas segmentation prior to classification. In the segmentation
protocol, weighted voting at the voxel level derives ‘strong’ segmentation
choices for the target image (Yushkevich et al., 2015).

For pre-processing of all data, we included modified pre-processing
steps based on the ANTs cortical thickness pipeline (Tustison et al.,
2014 Tustison et al., 2019) and our previous work (Shaw et al., 2019).
These steps were incorporated to ensure consistent segmentation results
across participants and included:

I. Skull stripping (i.e., ROBEX; Iglesias et al., 2011) of the T1w scan
for removal of background tissue and artefacts that may result in
registration errors further downstream

II. N4 bias correction (ANTS version 2.20.dev116-gabc03; Tustison
et al., 2010) of the T1w scan that mitigates low spatial frequency
variations in the data

III. Rician denoising of T1w and T2w scans (Manj�on et al., 2010),
which has been shown to reduce high-frequency Rician noise in
MRI scans (Tustison et al., 2017)

IV. Intensity normalisation of T1w and T2w scans to the atlas using
histogram matching (Nyúl et al., 2000)

V. If multiple repetitions of the dedicated T2w scan are available,
non-linear realignment of these scans to reduce motion artefacts
and increase the sharpness of the scans as in Shaw et al. (2019).

LASHiS derives initial segmentations of each time point cross-
sectionally using the ASHS pipeline with an atlas package similar to
the subjects’ intensity and spatial characteristics. This yields an atlas-
defined number of hippocampus subfield labels. Due to our small sam-
ple size, it was not possible to create a bespoke atlas for validation.
Therefore, we utilised ASHS (V2.0) with the Penn Memory Center 3 T
ASHS Atlas (Yushkevich et al., 2015). We motivated this choice based
partly on Xie et al. (2018), and as the contrast and intensity profiles of the
scans in the 3 T atlas are similar to the TSE scans we collected in the
present study.

2.2.3. Single-subject template (SST)
In parallel to cross-sectional processing, a minimum deformation

averagemulti-contrast template of average intensity and shape is created in
accordance with Avants et al. (2010). This template serves as an interme-
diate between any n time points of a subject and is biased equally to any
given time point. All subsequent processing of hippocampus volumes is
done in the space of the SST in order to treat all timepoints in the sameway.
We have also found previously that combining scans in this way can in-
crease segmentation consistency and image sharpness (Shaw et al., 2019).

2.2.4. Joint-label fusion (JLF) and longitudinal estimations of segmentations
Following SST creation and labelling, and cross-sectional labelling, in-

dividual time point multi-contrast scans and their cross-sectionally defined
segmentation labels then act asmulti-contrast atlases to compute SST labels
usingJLF.The intendedusageof JLF is topropagatemanuallyderived labels
to a target image.However,weusedJLFwith the atlasesbeingautomatically
labelled.We also include the automatically labelled SST as an extra input to
increase the power of the method. JLF assigns the spatially varying atlas
4

(input) weights to the SST in away that accounts for error correlations (Wu
et al., 2017) between every n pairs of atlases. In this way, no single time
point is biased towards the segmentation of the SST, and the SST is labelled
based on aweighted vote of the segmentations fromeach timepoint and the
SST. In our scheme, a working region of interest (ROI) is defined roughly
around the hippocampus, non-linearly warped to the space of the SST ROI,
and JLF applied with parameters chosen based on (Wang et al., 2013). The
inverse of these non-linear transformations is later used for labelling the
input images. This approach, therefore, bootstraps cross-sectional seg-
mentations of hippocampus subfields to the SST, and the best fitting labels
are chosen based on the intensity and shape characteristics of the SST, not
the individual time points.

Subsequently, the inverse of the time point to SST transformations
from the JLF piecewise registration is applied to the generated SST hip-
pocampus subfield labels, warping the SST labels to each individual time
point. Provided the time point-to-SST registrations are accurate (Avants
et al., 2011) and invertible, the reverse normalisation of the labels can be
considered a robust and reliable method for transforming the labels to
the space of the subject’s time point hippocampal subfield labels. Finally,
we used Convert3D (Yushkevich et al., 2006) to measure the new sub-
field volumes in time point space.
2.3. Statistical evaluation

2.3.1. Hippocampal subfield segmentation methods
We compared the performance of our LASHiS strategy with three

other established strategies, and one other exploratory strategy detailed
below, examples of the output of each segmentation strategy are given in
Fig. 2:

1. Cross-sectional ASHS (ASHS Xs), the segmentation strategy described
in Yushkevich (2015), was used to compute segmentations for each
time point independently in a cross-sectional manner. We utilised
segmentation results that incorporated the high-resolution T2w scan
information. We modified certain parameters in ASHS to account for
our 7 T high-resolution and pre-processed (isotropic) inputs to ac-
count for resolution and image size. We used the PennMemory Center
atlas https://www.nitrc.org/frs/?group_id¼370 for segmentation
due to input-atlas contrast similarities and an increased number of
subfield label outputs compared to the available 7 T atlases.

2. Cross-sectional Freesurfer hippocampus subfield segmentation (FS
Xs): the method described in Iglesias et al. (2015) was used to
compute segmentations for each time point independently in a
cross-sectional manner. Due to skull strip failures in recon-all and
mri_watershed, the brain mask was replaced with the brain mask
created in the pre-processing steps using ROBEX (Iglesias et al., 2011)
in order to give Freesurfer the best chance of succeeding.

3. Freesurfer longitudinal hippocampal subfields (FS Long): This pipe-
line, described by Iglesias et al. (2016) utilises intensity and contrast
information from an ex vivo manually traced atlas of hippocampal
subfields to delineate in vivo subfield information. The ex vivo atlas is
supplemented by an in vivo Freesurfer atlas (as described in Kennedy
et al., 1989), which informs segmentation of the geometric priors
surrounding the hippocampus. In this way, the generative model that
classifies hippocampal subfields in vivo is calculated from the spatial
distribution of the hippocampus and its surrounding brain regions as
described in the atlas priors.

4. JLF-free LASHiS (Diet LASHiS): This method is similar to LASHiS,
though does not utilise the JLF bootstrapping step or cross-sectional
processing, thus reducing processing time by approximately 20%.
Instead, the SST is created, labelled using ASHS and a representative
atlas package, and labels were reverse-normalised to time point space
using the transformations calculated in the template building pro-
cedure, as distinct from the SST transformations derived in the JLF
step. We incorporated this method to determine the relative

https://www.nitrc.org/projects/ashs
https://www.nitrc.org/frs/?group_id=370
https://www.nitrc.org/frs/?group_id=370


Fig. 2. Hippocampus subfield segmentation results (coloured) for a single
representative subject for the five tested methods at the same slice in a coronal
view. Each segmentation result is overlaid on the high-resolution T2w scan
except for FS Long, which utilises a T1w scan for segmentation. Green arrows
denote a possible over-segmentation, orange a possible under-segmentation.
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importance of the JLF bootstrapping step in our pipeline. This would
be considered a standard reverse normalisation segmentation
pipeline.

2.3.2. Evaluation methods
Here, we evaluate our strategy in line with previously published

methods in order to quantify reliability, reproducibility and precision.
We reproduced analyses employed by both the FS Long hippocampus
segmentation strategy (i.e., test-retest reliability) and longitudinal
Bayesian Linear Mixed Effects (LME) modelling (Sorensen et al., 2016).
5

2.3.3. Experiment one: test-retest reliability
We evaluated the test-retest reliability of all methods through testing

differences between the second and third time point in the TOMCAT
dataset. For each participant, we segmented each scan-rescan session
with the five segmentation methods and assessed performance based on
two metrics: 1) absolute differences in volume estimates for each hip-
pocampus subfield label between scan-rescan acquisitions, and 2) the
Sørensen-Dice similarity coefficient (Dice, 1945). We first measured the
volume similarity coefficient, which does not rely on segmentation lo-
cations (Taha and Hanbury, 2015). This metric does not implicitly rely on
overlaps in segmentations (such as Dice overlaps, which can be difficult
to measure without bias when comparing between analysis strategies, as
in Iglesias et al., [2016]). For completeness, and to have a direct com-
parison with Iglesias et al. (2016), we also assessed Dice overlaps be-
tween time point two and three in all pipelines. The Sørensen-Dice
similarity coefficient between two binary masks is described as “twice
the number of elements common to both segmentations divided by the
sum of the elements in the segmentations”, and is defined as:

DSC ¼ 2jX \ Y j
jXj þ jY j (1)

where a perfect overlap between two segmentations (X and Y) is 1, and
no overlap is 0 (Taha and Hanbury, 2015). In LASHiS, Diet LASHiS, FS Xs,
and ASHS Xs, the final result of hippocampus subfield labels occurs in a
native (input) space. We resampled all labels in these four pipelines to an
intermediate space (SST space) using a rigid linear realignment, and
calculated Dice overlaps in these cases with the fuzzy Dice counterpart
using the freely available EvaluateSegmentation tool (Taha and Hanbury,
2015). There is a bias towards FS Long for having superior Dice overlap
evaluation due to the extra interpolation required in these linear re-
alignments, which are not necessary in FS Long. We discuss the impli-
cations of this in section 4.1.

We leveraged Bayesian paired t-tests (Rouder et al., 2009) to assess
the differences in subfield changes across the second and third time point
using Jamovi, R, and the BayesFactor plugin (Morey and Rouder, 2019; R
Core Team, 2019; The Jamovi Project, 2019). In our analyses, BF10 > 3
was taken as substantial evidence for the alternative hypothesis, with
BF10 > 10 taken as strong evidence, and BF10 greater than 100 were
considered decisive. BF10 values between 1 and 3 were considered
anecdotal evidence for the alternative hypothesis. In contrast, BF10 <

0.33 (or BF01 > 3) was considered as substantial evidence for the null,
with BF10 between 0.33 and 1 providing anecdotal evidence for the null
hypothesis in accordance with Lee andWagenmakers (2013). BF10 values
can be interpreted to mean that these data are x many times more likely
to be observed under the alternative hypothesis than the null hypothesis,
such that BF10 ¼ 3 suggests that these data are 3 times more likely under
the alternative hypothesis than the null hypothesis. BF10 between 0.33
and 1 can be considered as anecdotal evidence for the null, while values
around 1 are non-evidential.

2.3.4. Experiment two: Bayesian longitudinal linear mixed effects modelling
To assess relationships between cross-sectional and longitudinal re-

sults while accounting for subject-specific trends (Tustison et al., 2017),
we quantify between, and within (residual) variability of hippocampus
subfield volume. In this experiment, we aimed to assess the utility of each
pipeline for measuring each hippocampus subfield and detecting poten-
tial biomarkers therein. It is possible to quantify the relative performance
of cross sectional and longitudinal pipeline variants with Bayesian LME
models (Tustison et al., 2017, Tustison et al., 2019). Intuitively, the best
longitudinal method maximises both within-subject reproducibility and
between-subjects variability (to distinguish between sub-groups). Max-
imising the ratio between between-subject variability and residual vari-
ability indicates a good performance. A summary measure of this is the
variance ratio, which shows the linear relationship between within- and
between-subjects variability, which is a useful measure of performance
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for longitudinal pipelines. Higher variance ratios indicate optimised
prediction and credible intervals for the segmentation quality.

Freesurfer and ASHS provide different outputs in terms of subfield
names. To overcome difficulties computing variance values relating to
non-overlapping regions, we have concatenated several subfields that
share commonalities across all pipelines and present these in Table 1. We
excluded subfields that did not share any commonalities across pipelines
from the analysis.

The subfields chosen in our analysis include Cornu Ammonis (CA)
region 1 (CA1), CA region 2 and 3 (which was combined in Freesurfer’s
method; CA2-3), Subiculum (SUB; comprising presubiculum and sub-
iculum in the Freesurfer pipeline), and dentate gyrus (DG; comprising of
CA4 and DG in the ASHS atlas package). These four subfields are
measured for all analyses for left and right sides for a total of eight
subfields. Note that LASHiS computes as many labels as in the initial atlas
package (usually 14 per side). To obtain more internally consistent
measures of volume and to focus results on determining what fraction of
hippocampal volume is attributed to each subfield rather than fractions
of whole brain volume, we normalised all raw volume values by total
hippocampus formation volume (e.g., CA þ DG þ SUB). We examined
subfield results for all comparisons but report significant differences only
between the most relevant comparisons: namely between LASHiS and FS
Long, as these are the two longitudinal pipelines of interest.

3. Results

3.1. Experiment one: test-retest reliability

We conducted a series of Bayesian paired-sample t-tests in order to
test absolute volume differences between the second and third time
point. Fig. 3 shows differences between methods for volume similarity in
this test-retest experiment. We found that LASHiS and Diet LASHiS
showed significantly higher volume similarity in all subfields than other
methods. Specifically, we found LASHiS to have decisively higher (BF10 >
100) volume similarity coefficients compared to FS Long in all subfields.
ASHS Xs also showed high volume similarity in DG subfields compared to
the Freesurfer variants, though with high variability; we observed larger
variability in the volume similarity in all other methods compared to
LASHiS variants (see Supplementary Figure 1 for subfield variance
breakdowns). All other comparisons with LASHiS are detailed in Sup-
plementary Figure 1 and 2.

We next conducted Bayesian paired-sample t-tests for Dice overlaps
between the segmentation labels in the second and third time point.
Fig. 3 shows Dice overlap values of each subfield for each method. Note,
that Dice scores for LASHiS, Diet LASHiS, Freesurfer Xs and ASHS Xs are
negatively affected by the resampling needed to compute the registra-
tions between the two time points, which is not present in the FS Long
method. Our results do not fully replicate Iglesias et al. (2016) in terms of
mean Dice overlap scores for test-retest reliability, but we found slightly
lower Dice overlaps for all subfields in our sample in the Freesurfer
Table 1
Label names for all hippocampus subfields that share similarities between
Freesurfer and ASHS pipelines.

Combined label
name for analysis

Freesurfer label names (FS Xs, FS
Long)

ASHS label names
(ASHS Xs, Diet LASHiS,
LASHiS)

CA1 CA1-head & CA1-body CA1
CA2-3 CA3-head & CA3-bodya CA2 & CA3
DG GC-ML-DG-head, GC-ML-DG-body,

CA4 head, & CA4 body
DGb

SUB Presubiculum-head, presubiculum-
tail, subiculum head, & subiculum
tail

SUB

a Freesurfer combines estimates of CA2&CA3 as label CA3 in their algorithm.
b ASHS combines estimates of DG and CA4 as label DG in their algorithm.
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methods compared to Iglesias et al. (2016). This discrepancy is poten-
tially due to methodological differences between Iglesias et al. (2016)
and our study - scanner hardware (1.5 T rather than our 7 T) and
sequence choice (IR-SPGR rather than our MP2RAGE).

In terms of subfield differences, we will detail comparisons only for
LASHiS and FS Long, with all method comparisons included in Supple-
mentary Figure 3 and 4. We found that Dice overlaps for LASHiS were
higher than FS Long for test-retest reliability decisively in Left-DG and
Right-DG (BF10 > 100) and anecdotally in Left-CA1 (BF10 > 1). We found
no difference between LASHiS and FS Long in Right-CA1, and Right-SUB
(BF10< 1). FS Long had substantially higher scores than LASHiS for Right-
CA2-3, Left-CA2-3, and Left-SUB (BF10 > 10).

3.2. Experiment Two: Bayesian longitudinal linear mixed effects modelling

We compared the performance of five hippocampus subfield seg-
mentation processing approaches using longitudinal LME modelling to
quantify between and residual variability, and the variance ratio of these.
Figs. 4 and 5 provide the 95% credible intervals for the variance ratios in
each subfield for each of the pipelines. As noted in Tustison et al. (2017),
“superior methodologies are designated by larger variance ratios”. For
the TOMCAT (7 T) dataset and across subfields, LASHiS has higher
variance ratios for all subfields with overlapping 95% credible intervals.
For the ADNI dataset (3 T), across subfields we found overlapping 95%
credible intervals for all subfields between LASHiS and Freesurfer Long,
with the exception of right DG, where LASHiS has significantly higher
variance ratios than all other methods including FS Long.

For the TOMCAT dataset, we found overlapping credible intervals for
all pipelines for variance ratios, with obvious trends towards LASHiS as
having the highest variance ratios. Fig. 4 shows the relative distributions
of variance ratios per subfield for each of the assessed pipelines. A trend
towards higher variance ratios for LASHiS compared to the other
methods can be observed. There are clear trends towards LASHiS having
the superior variance ratios in Left CA1, Left and Right SUB, and Left and
Right DG regions. LASHiS has high residual variability values in Right
CA2/3 and therefore lower variance ratio values in this subfield, result-
ing in higher variance ratios than all other methods in 6 of 8 subfields.
We also provide within and between subject variability for each subfield
in Supplementary Figure 5 and 6, respectively, and the overall break-
downs for the variance ratio in Supplementary Figure 7.

For the ADNI dataset, we found that the overall residual variability for
Fs Long and LASHiS were generally lower (non-significant) than all other
methods (Supplementary Figure 8), resulting in high variance ratios for
Fs Long and LASHiS (Fig. 5). We note higher between-subjects variance
in 6 of 8 subfields in LASHiS compared to FS Long (Supplementary
Figure 8). However, all differences were non-significant, except for the
variance ratio in right DG (Fig. 5), which was significantly higher in
LASHiS compared to FS Long. This significant difference was largely
driven by the low residual variability in this subfield for LASHiS.

4. Discussion

4.1. Experiment One, test-retest reliability

The test-retest results highlight the reliability of the LASHiS pipe-
line. Capitalising on the availability of data from multiple time points to
increase SNR in the SST improves the inherent regularisation and prior
information for segmentation, as proposed for LASHiS. LASHiS and Diet
LASHiS show excellent test-retest reliability for volume similarity co-
efficients. Deformable registration has been previously used success-
fully to segment hippocampus structures in groups of participants
(Hammers et al., 2007; Hogan et al., 2000). LASHiS benefits from
deformable registration-based image segmentation, as the hippocampus
is segmented only in SST space. We contrast LASHiS with FS Long,
which utilises an SST in order to compute time point segmentations.
However, the FS Long SST uses only T1w information, potentially



Fig. 3. Box plots of volume similarity co-
efficients (left) and Dice coefficients (right)
of each hippocampus subfield for the
TOMCAT dataset (7 T). (left, black filled
shapes, and right, white filled shapes) from
time point two and time point three for each
method, where a value of 1 represents per-
fect overlap between time points, and 0 rep-
resents no overlap. Error bars represent
overall standard deviation. Freesurfer Xs,
ASHS Xs, Diet LASHiS and LASHiS all require
resampling to a common space before over-
lap calculation of Dice scores. Higher scores
between time points denote higher subfield
overlap between the test-retest conditions.

Fig. 4. Variance ratio for each subfield (x-axis), for each method (coloured lines) for the TOMCAT dataset (7 T). Values represent the linear regression between
residual and between-subjects variability. Therefore, higher values indicate better discrimination between subjects, and higher within-subject reproducibility between
the test-retest conditions. Shapes represent the mean variance ratio, with lines denoting the 95% credible intervals for each method.

Fig. 5. Variance ratio for each subfield (x-axis), for each method (coloured lines) for the ADNI sample (3 T). Values represent the linear regression between residual
and between-subjects variability. Therefore, higher values indicate better discrimination between subjects, and higher within-subject reproducibility between the test-
retest conditions. Shapes represent the mean variance ratio, with lines denoting the 95% credible intervals for each method.
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limiting the reliability of the time point to SST registration, and
therefore decreasing the volume similarity. Indeed, Iglesias et al. (2016)
found an average of 4.5% difference in absolute volume similarity in
their test-retest condition. In terms of Dice, all other methods were at a
disadvantage to FS Long for this metric due to the interpolation step
required to realign the scans. This effect was mitigated through the
utilisation of a fuzzy Dice coefficient in all other methods. However,
despite the disadvantage, LASHiS shows comparable Dice overlaps in
the test-retest condition to FS Long, except for the smaller subfields
(e.g., CA2/3). One additional potential source of bias is the various
anatomical definitions of hippocampus subfields proposed by both FS
Long and ASHS/LASHiS. We attempted to correct for differences in
7

anatomical priors of subfields by combining subfields that were present
in both ASHS and Freesurfer. However, it should be noted that the
definition of the anatomical priors by the anatomists/raters of the
respective atlas packages would have a strong influence on segmenta-
tion results, and in particular, Dice overlaps. For example, utilising an
atlas package that intrinsically defines smaller subfields would result in
thinner subfields, resulting in lower Dice scores. The influence of label
priors of Freesurfer has not been examined, so we therefore cannot
exclude the possibility that the Freesurfer method is biased negatively
by the initial labelling of the atlas. Coupled with the results of volume
similarity, we can assert that LASHiS is a reliable method for longitu-
dinal hippocampus subfield segmentation.
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4.2. Experiment Two, Bayesian longitudinal linear mixed effects modelling

Many evaluation strategies employ manual segmentations (e.g., Ber-
ron et al., 2017) to provide a gold standard for evaluation of any seg-
mentation strategy. However, manual hippocampus subfield
segmentation is time and labour intensive, taking up to 8 h initially, and
2 h after five months of training (Wisse et al., 2016) and is prone to inter-
and intra-rater variability (Boccardi et al., 2011; Hsu et al., 2002; Mulder
et al., 2014). We explored the usefulness of LASHiS in the examination of
the variance ratio in our longitudinal Bayesian LME modelling experi-
ment. Higher variance ratios that are characterized by both lower re-
sidual variability and larger between-subjects variability are beneficial
for longitudinal cohort studies. In the TOMCAT dataset, we found the
highest variance ratios in LASHiS, underscoring the usefulness of our
approach in maximising between subject differences. We note outliers in
variance ratios in LASHiS and FS Long, which are driven by results in
CA2-3, and SUB, respectively. For LASHiS, high residual variability was
found for right CA2-3, driving this outlier.

For the ADNI data, only one subfield (right DG) had a significantly
higher variance ratio in LASHiS than FS Long, with all other subfields
having overlapping 95% CIs. Our result in the ADNI dataset suggests that
using any longitudinal pipeline is advantageous for examining hippo-
campal subfield volumetry. Optimised longitudinal pipelines such as Fs
Long and LASHiS are important for analyzing longitudinal data. How-
ever, the atlas package should be the determining factor when selecting
which pipeline to utilize. For LASHiS in ADNI, we made use of the Penn
Memory Center ASHS atlas, which has been labelled on older aged par-
ticipants with similar contrast and acquisition parameters to the data
acquired in ADNI. We therefore suggest that at 3 T, the choice of atlas
composition and labelling scheme should inform the user on segmenta-
tion method choice.

We want to note here, that LASHiS is potentially negatively biased by
limitations in subfield selection. All Freesurfer schemes combine CA2 &
CA3 estimates in their algorithms. In calculating our subfield estimates,
we summed CA2 and CA3 volumes offline, potentially biasing our esti-
mates of residual variability. We note a similar residual variability outlier
in the ASHS Xs scheme in the left CA2-3 combined subfield regions.
Volume estimates of CA2 and CA3 regions were generally reported less
precisely than other subfields, as measured by the low test-retest statistics
and low within-subject variability in the LME experiment. Previous
research (Dalton et al., 2017; Pipitone et al., 2014; Wisse et al., 2016;
Yushkevich et al., 2015) has repeatedly shown discrepancies in reporting
these subfield boundaries in vivo. This is largely due to their small size
and the reliance on heuristic geometric rules for segmenting CA2/3
subfields on in vivo MRI, rather than visible contrast differences in the
scan. Thus, inter- and intra-rater reliability are often low for these sub-
fields (Xie et al., 2018). Our automatically derived subfield estimates are
likely influenced by discrepancies in the manual labels that inform seg-
mentations. Notably, FS Long also suffers from a low variance ratio in
CA2-3, suggesting either i) a homogeneous participant pool leading to
low between-subject variability, ii) large, unexpected differences in time
points in these subfields, or iii) a combination of these.

4.3. Benefits and advantages of LASHiS

Both LASHiS and the FS Long scheme segment hippocampal subfields
and derive volume estimates from MRI images. However, only the T1w
scan of an individual is processed through the longitudinal stream of
‘recon-all’ before longitudinal processing of hippocampus subfields,
potentially explaining the FS Long results compared to LASHiS. Our
design utilises multi-contrast information from MRI scans and impor-
tantly allows for information that can only be captured by multi-contrast
MRI (i.e., the subfields of the hippocampus) to be included in the
labelling.

LASHiS derives its power from its ability to decrease random errors in
the labelling procedure, and through increasing the likelihood for correct
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labelling to occur when the SST is created. This implicitly increases SNR
and sharpness of the SST compared to the individual time points through
the template building procedure (Shaw et al., 2019). Our inclusion of
Diet LASHiS highlights the contributions of the JLF step from the simple
labelling of the SST, whichmay be subject to both random and systematic
errors. In LASHiS, these random errors may be mitigated in part due to
the bootstrapping of JLF from the individual time point to the SST. It is
possible that this step decreases the likelihood of random errors in the
labelling scheme because of JLF’s ability to vote on labels that fit best to
the SST. Therefore, random variance caused by mislabelling at any in-
dividual time point may be ameliorated by the JLF step. In turn, this is the
likely cause for the low residual variability found in LASHiS in Experi-
ment Two. Our inclusion of JLF labelling using automatically generated
labels is a novel consideration in the field of hippocampus subfield seg-
mentation and relies on the assumption that automatically generated
subfield labels are considered accurate.

We included a computationally less expensive and faster approach to
multi-contrast hippocampus subfield segmentation, namely Diet
LASHiS. This method performs all steps save for the initial cross-
sectional segmentations and the bootstrapping of these segmentations
to the SST using JLF. Diet LASHiS performed well in the volume simi-
larity portion of Experiment 1, and in Experiment 2 in comparison to the
other methods examined, though to a lesser degree than LASHiS in the
TOMCAT dataset. In the ADNI dataset, Diet LASHiS performs worse
than both LASHiS and Fs Long, suggesting the reverse normalisation to
SST approach may not be suitable for smaller subfield estimations at 3 T
(as the small CA2&3 regions largely drove this result). It is possible that
the SST creation step in Diet LASHiS is not optimal for 3 T data, the
larger voxel size may incur a larger partial volume effect when inverting
the deformation field. As the steps taken to complete LASHiS and Diet
LASHiS are the same except for the additional JLF bootstrapping
method, we conclude that the increased sensitivity and robustness in
the LASHiS scheme was due to the JLF step. Indeed, despite the
disadvantage of potentially increasing systematic errors with the JLF
bootstrapping step, it is evident that these systematic errors are largely
overcome in the initial cross-sectional labelling of the hippocampus
subfield with ASHS Xs.

Processing time for LASHiS depends largely on compute infrastruc-
ture, T2w image size, and the number of time points. Our testing on three
time points with high-resolution (0.3 mm3) T2w images ran in the order
of 24 h on a single CPU core, and 4 h on 8 cores and 64 GB memory
without parallelisation. Many steps, including the initial cross-sectional
segmentations and SST creation, can be run in parallel using job sched-
uling software (PBS, Sun Grid Engine, Slurm, etc.) and parallelised across
cores, decreasing the time required by orders of magnitude commensu-
rate with the number of cores employed. Diet LASHiS is estimated to
decrease compute time by approximately 20%, as neither the cross-
sectional, nor the JLF steps are required. ASHS Xs takes between 1 and
2 h on a single core, while FS Xs takes approximately 40 min after 24–48
h of pre-processing on a single core (https://surfer.nmr.mgh.harvard.
edu/fswiki/ReconAllRunTimes). Fs Long takes approximately 60 min
on a single core after 24 h of cross-sectional processing per time point,
and further creation of an SST. On eight cores with 64 GB of memory and
with parallelisation, our average run time for the entire Freesurfer lon-
gitudinal pipeline was 20 h per participant. The great advantage of
LASHiS is the flexibility of computational processing options for each
step, allowing for scalable processing of larger datasets.

Our incorporation of a Bayesian approach to the widely used longi-
tudinal LME method for examining differences in method performance
aids in discrimination of subtle differences between participants with
small variability (as in the present study). This technique allowed us to
simultaneously examine small differences between participants, while
also capturing longitudinal within-subject changes; both of which are
especially important in examining clinical subpopulations and other low-
n studies, where small longitudinal changes need to be captured
precisely.

https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes
https://surfer.nmr.mgh.harvard.edu/fswiki/ReconAllRunTimes
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4.4. Limitations

The design of our pipeline decreases random variability in any session
due to the SST registration and JLF scheme. A limitation of our scheme is
that label errors (i.e., systematic errors) in subjects will propagate to the
SST, despite the sophisticated JLF algorithm employed that does not
independently compute similarity weights between the pairs while
voting (Wang et al., 2013). Therefore, it is important to note that LASHiS
is never free from labelling errors that occur in all image segmentation
pipelines. These systematic errors can be avoided through quality
assurance of scans and labels at the cross-sectional level (i.e., before the
JLF bootstrapping step), which is essential in any volumetric labelling
scheme, regardless.

We here report a small healthy cohort of young adults with no known
psychological or neurological disorders scanned at 7 T (TOMCAT). We
assumed no difference between time point two and three, and very small
differences between time point one and two due to the age and health of
the participants. We concede this limitation in our interpretation of test-
retest analyses. The Bayesian nature of our longitudinal LME modelling
accounts for small sample sizes (Sorensen et al., 2016), and the results of
Experiment One and Two should therefore not be affected by our small
sample size in the TOMCAT dataset. We also included a larger dataset
from the ADNI consortium, though were unable to conduct test-retest
statistics on this sample due to data availability. Future work could
improve upon the methods we used for the ADNI dataset, including
building and manually labelling an atlas with the specific intensity pro-
file/MR characteristics of ADNI data in order to improve segmentation
priors for LASHiS.

Our test-retest statistics in the 7 T TOMCAT dataset show that LASHiS
has improved metrics compared to other longitudinal methods, with
obvious differences to previous work reporting the same methods (Igle-
sias et al., 2016), where Dice overlaps were considerably higher overall
for the Freesurfer methods. We note this limitation of having such a small
sample size in the present study, which was the likely reason for the
higher variability in the Dice overlap scores in the Freesurfer method.
However, as LASHiS shows a consistent improvement compared to all
other methods, we are confident LASHiS is a robust and reliable method
for longitudinal multi-contrast hippocampus subfield segmentation.

4.5. Conclusions

Here, we present a technique for automatically and robustly seg-
menting hippocampus subfield volumes using UHF multi-contrast MRI.
We found that LASHiS shows marked improvements at 7 T across several
relevant measures, such as Dice similarity and volume similarity co-
efficients for test-retest reliability, and Bayesian LME modelling,
compared to other methods used for cross-sectional and longitudinal
hippocampus segmentation. Results from the 3 T ADNI dataset highlight
the importance of utilising longitudinal pipelines for hippocampus
volumetry, with the user determining pipeline choice by the atlas priors.
LASHiS utilises multi-contrast information and joint-label fusion, which
better captures hippocampus subfield tissue characteristics and decreases
random errors in the labelling procedure.
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