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The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use
of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the
hippocampus. The hippocampal shape variations among a population can be usually described using statisti-
cal shape models (SSMs). Conventional SSMs model the modes of variations among the population via prin-
cipal component analysis (PCA). Although these modes are representative of variations within the training
data, they are not necessarily discriminative on labeled data or relevant to the differences between the sub-
populations. We use the shape descriptors from SSM as features to classify AD from normal control (NC)
cases. In this study, a Hotelling's T2 test is performed to select a subset of landmarks which are used in
PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of
these predictors is evaluated in terms of their classification performances with bagged support vector ma-
chines (SVMs). Restricting the model to landmarks with better separation between AD and NC increases
the discrimination power of SSM. The predictors extracted on the subregions also showed stronger correla-
tion with the memory-related measurements such as Logical Memory, Auditory Verbal Learning Test
(AVLT) and the memory subscores of Alzheimer Disease Assessment Scale (ADAS).

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.
Introduction

Early detection and diagnosis of Alzheimer's disease (AD) is a
challenging task. The hippocampus presents the highest rate of atro-
phy in the early stage of disease (Gosche et al., 2002), and has there-
fore become a popular target for early detection of AD through
morphological analysis of magnetic resonance (MR) images.

Hippocampal atrophy in neurodegenerative diseases such as AD
can be evaluated in terms of the global change in the volume of the
hippocampus, as well as global and local changes in its shape. Hippo-
campal volumetry on MR images has been shown to be a useful tool
in AD diagnosis (Chetelat and Baron, 2003; Dubois et al., 2007; Frisoni
et al., 2010; Small et al., 2008). In various MRI studies, the tissue loss
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in the hippocampus was found in AD as well as in mild cognitive im-
pairment (MCI) subjects (for review see Shi et al. (2009)). The hippo-
campal atrophy rates tracked in longitudinal studies have been found
to be more aggressive in AD as compared to the normal aging (Barnes
et al., 2007, 2009). Hippocampal volume as quantified by the auto-
matic segmentation has been used to discriminate AD from normal
control (NC) subjects, as well as cases with MCI (Chupin et al., 2009).

Volume alone provides significant discrimination ability, but is in-
adequate to fully describe the effect of the disease on the morphology
of hippocampus. In addition to volumetry, hippocampal shape analy-
sis also contributed to the understanding of the development of the
disease. Regional differences between hippocampal subfields have
been found in the neurodegenerative process of AD, with more pro-
nounced neuron loss reported in CA1 and subiculum subfields
(West et al. (1994); Bobinski et al. (1998); Rössler et al. (2002);
Mueller and Weiner (2009); for review see Scher et al. (2007)).
With the development of brain mapping techniques such as radial at-
rophy mapping (Frisoni et al., 2008; Thompson et al., 2004), and
high-dimensional brain mapping (Csernansky et al., 2000; Wang et
al., 2003, 2006), findings from neuroimaging studies into AD and
MCI have also corroborated the locality of shape changes in CA1 and
subiculum subfields along with global tissue reduction (Apostolova
ts reserved.
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et al., 2006; Chételat et al., 2008; Csernansky et al., 2005; Qiu et al.,
2009; Scher et al., 2007). Both shape and volume of hippocampus
have been exploited in the detection of AD and to predict the onset
of the dementia (Csernansky et al., 2005).

Shape surface represented by spherical harmonics (SPHARM,
Brechbühler et al. (1995); Gerig et al. (2001)) has been employed to
model the hippocampus and to detect the shape changes caused by
AD (Cuingnet et al., 2011; Gerardin et al., 2009; Gutman et al.,
2009; Li et al., 2007; Zhou et al., 2009). SPHARM description of
shape boundary has been combined with medial representation
(Bouix et al., 2005; Pizer et al., 1999; Styner and Gerig, 2001) to ob-
tain more localized shape features (Styner et al., 2004). In order to ex-
ploit the localized pattern of hippocampal atrophy, feature selection
methodology has been employed to select patches on hippocampal
surface thus improving the performance of shape features in diagnos-
ing schizophrenia (Yushkevich et al., 2003) and AD (Zhou et al.,
2010). Features characterizing local hippocampal surface deforma-
tion with respect to the mean shape have also been used to classify
AD (Li et al., 2007).

Statistical shape models (SSMs) are another approach used to
model the variability in the hippocampal shapes among the popula-
tion (Davies, 2002; Davies et al., 2003). They usually rely on principal
component analysis (PCA, Cootes et al. (1992)) to determine a lower
dimensional subspace that accounts for most of the variability ob-
served in a training set. However, the principal components spanning
the subspace for valid shape samples are not necessarily discrimina-
tive between the subpopulations of interest. As global shape descrip-
tor, each component models the variation of the whole hippocampal
shape which may not be sensitive to local differences. Constraints
upon isotropic lesser principal components restricting to the region
of interest has been presented to give more meaningful reconstruc-
tion (Vermaak and Perez, 2003). In localized components analysis
(LoCA, Alcantara et al. (2007)), spatial locality in the shape variation
is explicitly optimized, which has been applied to hippocampal
shape analysis and shown to produce local shape components strong-
ly correlated with cognitive measurements (Xie et al., 2009).

In this study, our aim is to extract hippocampal shape descriptors
capturing both global and local shape changes linked to the AD pathol-
ogy by SSM, so as to improve the performance of disease classification
using additional shape information. We try to model the localized
disease-related shape changes by performing the shape analysis upon
the regions that are found to be affected by AD.Wefirst identify the hip-
pocampal surface subregions that are significantly different between
the AD group and the controls via Hotelling's T2 test. Then we model
the variations on these subregions using SSMs. Compared to the shape
analysis of hippocampi via LoCA (Xie et al., 2009) which localizes the
shape components while not specifically targeting the area related to
the disease, we focus our shape analysis only on the regions that we
marked as different, extracting the principal shape components on
these regions. With the use of machine learning techniques, classifiers
are able to learn the difference between AD and NC from the shape in-
formation as quantified by shapemodels. Extra information concerning
AD pathology can be obtained by adding hippocampal shape descrip-
tors in addition to the volumetry. We use the morphological variation
on these regions as variables to describe the AD pathology as they im-
prove the discrimination between the classes and are correlated with
the measures of memory decline associated with the disease.

Materials and methods

Overview

We model the morphology of hippocampus by SSMs, and use the
shape descriptors derived from the SSM to detect the effect of AD
on the hippocampal size and its shape. Descriptors produced by dif-
ferent models serve as features for machine learning algorithms and
are evaluated in terms of their prediction performance in distinguish-
ing AD from NC.

The method used in this paper to extract relevant shape informa-
tion from SSMs can be divided into two steps: 1) the localization step,
and 2) the shape modeling step. The processing pipeline is shown in
Fig. 1. In the localization step, we build up the correspondence on hip-
pocampal surface over a training set of both NC and AD subjects. Once
the correspondence problem is solved, all the landmarks on the hip-
pocampal surfaces are aligned by Procrustes analysis (Gower, 1975).
A statistical test can be performed on each landmark to evaluate the
significance of the difference between the distributions of aligned
points of the NC group and the AD group.

The resulting significance map produced by the statistical tests in
the localization step can be thresholded to obtain a surface mask of
landmarks. In the shape modeling step, we apply these masks to the
hippocampal surface to select a subset of hippocampal landmarks
separating the subpopulations at a given statistical significance. The
selected subregional landmarks are again aligned by Procrustes anal-
ysis and a PCA is performed on the aligned subregional landmarks.
The coefficients of principal components describing local shape of
hippocampus can thus be calculated.

In both the localization step and the shape modeling step, the
shapes or selected shape patches are aligned by Procrustes analysis,
which can be performed either through rigid-body transformations
or through similarity transformations. In our experiments, both align-
ments are performed at each step and their performances are evalu-
ated and compared. We evaluate the subregional shape models
based on their discrimination ability against the control group and
the correlation with measurements of memory. The coefficients of
modes describing the shape variations are used as features for disease
classification, and the evaluation of the subregional models are based
on the performance of the classifiers.

Materials

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial MRI, positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of MCI
and early AD. Determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, M.
D., VA Medical Center and University of California, San Francisco. ADNI
is the result of efforts ofmany co-investigators from a broad range of ac-
ademic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in
the research—approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed for 3
years, and 200 people with early AD to be followed for 2 years.

The hippocampal volumes used in this article are semiautomated
segmentations provided by ADNI, using high-dimensional brain map-
ping tool SNT, commercially available from Medtronic Surgical Navi-
gation Technologies (Louisville, CO). SNT hippocampal volumetry
has been previously validated on the normal aging, MCI and AD sub-
jects (Hsu et al., 2002). It first uses 22 control points manually placed
on the individual brain MRI as local landmarks. Fluid image transfor-
mation is then used to match the individual brains to a template brain
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(Christensen et al., 1997). The segmentations were manually edited
by qualified reviewers if the boundaries delineated by SNT were not
accurate.

The hippocampal volumes were divided into a training set and a
testing set. The demographic information is listed in Table 1.
Statistical shape models

An SSM is built upon a training set of hippocampal surfaces, inwhich
the nP landmarks on the surface of hippocampus are reparameterized to
avoid the false variation induced by incorrect correspondences. This
Table 1
Demographic information of subjects used in the study.

Diagnosis Number (M/F) Age Yeas of education

Training set NC 32/28 76.6(5.2) 16.2(2.7)
AD 31/29 76.1(7.1) 14.5(2.9)

Testing set NC 37/41 76.5(4.9) 15.5(3.1)
AD 20/19 76.5(6.8) 14.6(3.9)

Total NC 69/69 76.6(5.0) 15.8(2.9)
AD 51/48 76.2(7.0) 14.6(3.3)
correspondence problem can be solved by optimization of an informa-
tion theoretic objective function based on the minimum description
length (MDL) of the shape model (Davies et al., 2002). In this study,
the hippocampal volumes in the training set are first registered and
aligned via rigid body transformations. The correspondence of land-
marks over the training set is established by a groupwise optimization
and fluid regularization on the shape image (Davies et al., 2008).

Once the correspondence is established, the surfaces can be aligned
by using Procrustes analysis, either through rigid-body or similarity
transformations. The volume information is preserved after rigid-body
transformations. Procrustes analysis aligns the training data via rigid-
body transformations to the size-and-shape space SΣ3

nP (see Dryden
and Mardia (1998)) in which the variation among the data would be
driven by the change in both the size and the shape of hippocampus.
If the training samples are aligned via similarity transformations, the
surfaces will be rescaled to normalize the hippocampal volume. Thus
we have the training set in the shape space Σ3

nP. As shape is defined as
the remaining information ‘when the differences which can be attribut-
ed to translations, rotations, and dilations have been quotiented out’
(Kendall, 1984), the normalization of the volume by similarity trans-
form enables the SSM to be more specific to the change in shape rather
than incorporating variations in the sizes of hippocampi. In this paper,
SSMs are built on both rigid-body and similarity aligned surfaces.
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For a set of nS hippocampal surfaces {x1, x2, ⋯, xnS
} with established

correspondence, each sample surface is represented by the coordi-
nates of its nP landmarks concatenated as a 3nP-vector

xi ¼ x 1ð Þ
i ; y 1ð Þ

i ; z 1ð Þ
i ; x 2ð Þ

i ; y 2ð Þ
i ; z 2ð Þ

i ; ⋯; x nPð Þ
i ; y nPð Þ

i ; z nPð Þ
i

� �T∈R3nP ; ð1Þ

where pi
(k)=(xi(k), yi(k), zi(k))T∈xi is the position of the kth landmark

point on the xi. If the surfaces in {xi} are aligned using Procrustes analysis,
either rigidly or via similarity transformations, a PCA can be performed on
the data matrix (x1, x2, ⋯, xnS), and the shape data can be expressed as

xi ¼ μ þWbi ð2Þ

where μ is themean of {xi},W is thematrix consisting of the eigenvectors
of the covariancematrix of the training data, and the elements in vectorbi
are the parameters characterizing the ith shape.

Localization step

In the localization step, we identify the regions affected by atrophy by
analyzing the spatial distribution of each landmark across the training ex-
amples and the deformation between the two subpopulations. We begin
with the setXC inwhich the correspondence over the training set is given
and the landmarks are only centered to the origin without further align-
ment. We use Procrustes analysis to obtain an aligned ensemble L of sur-
faces. For the kth landmark in L, a Hotelling's T2 test (Styner et al., 2007)
can be used to assess the statistical significance of the landmark separat-
ing the NC from the AD group

p kð Þ LÞ ¼ P T2
>

nNC⋅nAD

nNC þ nAD

 
μ kð Þ
NC−μ kð Þ

AD

!
TΣ kð Þ−1

 
μ kð Þ
NC−

kð Þ
AD

 ! !
; ð3Þ

where μNC
(k) and μAD

(k) are the mean location of the kth landmark in each
group, and

Σ kð Þ ¼ 1
nNC þ nAD−2

 
∑
i∈NC

 
p kð Þ
i −μ kð Þ

NC

! 
p kð Þ
i −μ kð Þ

NC

!
T
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i∈AD

p kð Þ
i −μ kð Þ

AD

!
p kð Þ
i − kð Þ

AD

!
T

 !! ð4Þ

By thresholding the p-map p kð Þ LÞð , we select only the subset of
landmarks showing significant difference between NC and AD groups.
This can be viewed as a projection P of the shape surface to the re-
gions more relevant to the pathology

P
�
⋅; L
�
: R3nP↦R3m

x↦ x̃ 1ð Þ
; ỹ 1ð Þ

; z̃ 1ð Þ
; x̃ 2ð Þ

; ỹ 2ð Þ
; z̃ 2ð Þ

; ⋯; x̃ mð Þ
; ỹ mð Þ

; z̃ mð Þ
� �T

;

ð5Þ

which consists ofm(<nP) landmarks ~x lð Þ
; ~y lð Þ

; ~z lð Þ
� �T∈ x kð Þ

; y kð Þ
; z kð Þ

� �T∈n
x : p kð Þ LÞ < αð g found to separate theNC from the disease group at signif-
icance level α.

Here the distribution of the surface landmarks depends on how
the shapes in the SSM are aligned, and the variation between the sub-
groups will differ as rigid-body or similarity transformations can be
chosen to align the shapes.

Shape modeling step

In the shape modeling step, instead of performing a PCA on the
data consisting of all nP landmarks of the surface, only the subset of
landmarks identified as different between subpopulations in the lo-
calization step are used. We mask the centered landmarks in Xc and
re-align the masked landmarks P xi; LÞ : xi∈XCgðf by Procrustes anal-
ysis to form the training set

M ¼ x̃ i : x̃ i is Procrustes aligned P xi; LÞ;xi∈XCgð
�

ð6Þ

for the subregional SSM. A PCA is performed on M

x̃i ¼ μM þW̃ b̃i ð7Þ

whereμM is the mean of samples inM, ~W is the matrix of eigenvectors
describing the variation modes from significantly different land-
marks, and ~bi is the vector of coefficients of each mode.

Extrapolation of the SSM to test shapes

For a given target shape not in the training set, the correspondence
established when building the SSM needs first to be propagated to the
target shape surface, so that the target shape can be represented in
the same vector space as the training data. The target shape surfaces
are usually generated from the segmentation, which can be smoothed
using a windowed sinc function (Taubin et al., 1996). The passband of
the sinc filter is set to 0.1. The SSM of the whole hippocampal surface
is deformed with respect to the parametersb to fit the smoothed target
surface, minimizing a distance metric between the SSM generated sur-
face and the target.

We use an L1 distance between two shapes which is less sensitive
to outliers and noise (Ruto and Buxton, 2005). Without the assump-
tion of correspondence between two configurations of point set x
and y, the distance between their triangulated surfaces S xÞð and
S yÞð can be defined in a symmetrical manner as

dS
�
S
�
x
�
;S
�
y
��

¼ ∑
p∈x

dp
�
p;S

�
y
��

þ ∑
q∈y

dp
�
q;S x

��
;

�
ð8Þ

wheredp p;SÞð is the Euclidean distance from the pointp to the closest
point on surface S. Thus we can fit the SSM to the target surface S yÞð
by the optimization of parameters using Powell's algorithm (Powell,
1964)

ðT y;byÞ ¼ arg min dS
T ;bð Þ

S T μ þWbÞð Þ;S yÞð Þðð ð9Þ

where T is a similarity transformation with 7 degrees of freedom
R3⋊ Rþ � SO 3ð Þð Þ
� �

, and b the parameters describes the deforma-
tion of the shape from the mean of the training set according to
the SSM. For the kth landmark p kð Þ∈T y μ þWbyÞ

�
generated by

SSM, we estimate the closest point on the surface p′ kð Þ∈S yÞð as
the corresponding landmark point. By aligning the shape vector

y′ ¼ p′ 1ð ÞT
; p′ 2ð ÞT

; ⋯; p′ nPð ÞT
� �T

to the shapes in the SSM throughProcrustes

analysis, we have the 3nP-D shape vector representing the surfaceS yÞð in
the same space as the shapes in the SSM, ready for further analysis. The
diagram of this process is shown in Fig. 2.

Classification method

The shape descriptors from SSM are evaluated in terms of their
performance when being used as features in classification algorithms.
Support vector machines (SVMs, Vapnik (1995)) are widely used in
solving general classification problems, and have been applied to AD
diagnosis (e.g. Vemuri et al. (2008); Klöppel et al. (2008), for review
see Cuingnet et al. (2011)). SVMs typically find the optimal hyper-
plane with the largest margin separating the classes. The computation
of the optimal solution requires only the inner product of feature vec-
tors which can be exploited by the substitution of a kernel for the
inner product mapping the feature space to higher dimension
(Schölkopf and Smola, 2002). We use the SVM classifier to test the

http://dx.doi.org/10.1016/j.neuroimage.2010.06.013
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discrimination ability of the features. In this study, we choose the ra-
dial basis function (RBF) as the kernel in SVM. The feature vector of
each shape x for classification consists of the coefficients of variation
modes, as extracted from Eqs. (2) or (7).

In order to avoid modeling noise, less significant components pro-
duced by PCA are excluded from the feature set based on the assump-
tion that these components tend to account more for noise than for
meaningful shape information. Feature selection is usually required
in classification tasks using SVM to reduce variance by eliminating
the less relevant or noisier features, and to improve the classifier per-
formance with fewer but more discriminative inputs. Commonly used
wrapper methods for feature selection have the potential risk of over-
fitting the training data (Loughrey and Cunningham, 2005; Reunanen,
2003). The heuristic strategies searching for an optimal subset of fea-
tures may select a combination not generalizing well on a separate
test set. Since the aim of this study is to evaluate the prediction per-
formance of different categories of shape descriptors, the perfor-
mance of the classifier on a selected subset of features (not
guaranteed to be optimal either on the training or the test set) does
not represent the overall discriminant ability of the features derived
from different shape models. It is therefore preferable to adopt a
methodology that takes into account all features in order to assess
the respective model that produces these features.

Bootstrap aggregation, or bagging (Breiman, 1996a), is another
approach to reduce the variance in the learning algorithm. It is
based on the repeating bootstraps of the training set, and trains the
classifier using the resampled data. Multiple classifiers learned from
the resampled data are often combined by a majority voting. When
bagging is used, better performance is usually achieved with larger
feature set without discarding weakly informative features (Munson
and Caruana, 2009). We thus can train the bagged classifier on the
whole set of features to be evaluated and use the prediction perfor-
mance of the bagged classifier as a measurement of the discriminant
ability of the feature set.

In addition to the shape variations, the hippocampal volumes of both
hemispheres normalized by the total intracranial volume (TIV) are used
as independent features. To compare the discrimination ability of the
volume and the shape of the hippocampus, we evaluate the classification
performance of shape descriptors bothwith andwithout the normalized
volume features. The TIV is calculated by summing the volume of white
matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). For each
subject, the T1- and T2-weighted MR images were classified into WM,
GM and CSF using an implementation of the expectation maximization
segmentation algorithm (Acosta et al., 2009). In brief, this algorithm
models the image intensity histogramusing amixture of Gaussian distri-
bution. The parameters of the Gaussian mixture are iteratively updated
using an expectation maximization approach. For this study, 6 Gaussian
distributionswere used: 1 for each of themain tissue types, namelyWM,
GM, and CSF, and 3 for non-brain tissues. To provide initialization and
spatial consistency to the expectation maximization algorithm, a tem-
plate and associated probabilitymaps of GM,WM, andCSFwere spatially
normalized to each individual scan, first through an affine registration
using a robust block matching approach (Ourselin et al., 2001) with 12
degrees of freedom, and then using a diffeomorphic demons nonrigid
registration (Vercauteren et al., 2009). The expectationmaximization al-
gorithm computed probability maps for each tissue type, which were
discretized by assigning each voxel to its most likely tissue type.

In this study, the data set used to train the classifier was
resampled with replacement for 25 times, and the ensemble of classi-
fiers consisted of SVMs with RBF kernel each of which were trained
on the resampled data. The cost parameter C and the scale parameter
of the kernel γ are tuned by a grid search over the range C=2−7,
2−6, …, 22, 23 and γ=2−2, 2−1, …, 27, 28 using the entire training
set with leave-one-out cross validation. The parameters giving the
best performance over the training data are chosen for each individu-
al SVM. The predictions of 25 SVMs were combined by a voting rule to
produce the final output. The validation on the training set with vary-
ing the threshold α, and experiments using separated training and
testing sets were performed.

We use the out-of-bag estimation (OOB, Breiman, 1996b) to eval-
uate the performance of the bagging classifier on the training set. For
each resample of the training data with replacement, there are ap-
proximately one-third of the training data left out of the bootstrap
resampling. A classification of each left-out (i.e. ‘out-of-bag’) case
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can be obtained from the SVM trained using the selected (i.e. ‘in-bag’)
sample. The classification of each case in the training set can be deter-
mined by a voting rule after multiple runs of resampling. The OOB es-
timation can be obtained from average accuracy on the left-out data.
In our experiment, the OOB estimates are carried out by 70 resam-
plings, which result in each training case being left out and classified
for approximately 25 times on average.

In order to compare with the disease classification result reported
by Cuingnet et al. (2011) using hippocampal shape information
(Gerardin et al., 2009), experiments using the linear C-SVM on SSM
features were also carried out. The cost parameter C was chosen by
searching over the range 10−5, 10−4.5, …, 102.5, 103 and leave-one-
out cross validation on the training set, in the same manner as in
Cuingnet et al. (2011).

Correlating the shape variation with memory performance

Hippocampus plays a critical role in the memory formation, and
its atrophy is associated with the memory decline in AD (Heun et
al., 1997; Petersen et al., 2000). We assessed our global and local hip-
pocampal SSMs in terms of their relevance to the memory decline by
the correlation analysis between the shape descriptors derived from
these models and the scores from memory tests. The results from
Logical Memory test (immediate and delayed recall), Auditory Verbal
Learning Test (AVLT, 30-minute delay, Ivnik et al. (1992)), and the
memory subscores of Alzheimer Disease Assessment Scale (ADAS, in-
cluding word recall, delayed word recall, orientation, word recogni-
tion and recall instructions) were chosen as the measurements of
memory performance. Spearman's correlation coefficient ρ was used
to compare the hippocampal shape variation with the memory
scores, which were corrected for age, sex and years of education in
the experiments. For comparison, we also project the shape samples
onto the direction of mean difference μNC−μAD, and perform the cor-
relation analysis between the memory scores and the shape compo-
nent along the mean difference direction.

Experimental results

SSM

Based on the choice of the transformations aligning the surfaces in
the localization step and in the shape modeling step, we can derive
the variation modes of the hippocampal shapes in different ways.
The combinations of alignment in the SSMs are listed in Table 2.

1. In the localization step, the significance maps are produced from
rigidly aligned size-and-shape set LR, and in the shape modeling
step the subregional SSM is built on rigidly aligned the size-and-
shape set MR;

2. in the localization step, the significance maps are produced from
rigidly aligned size-and-shape set LR, and in the shape modeling
step the subregional SSM is built on similarity aligned the shape
set MS;

3. in the localization step, the significance maps are produced from
similarity aligned shape set LS, and in the shape modeling step
the subregional SSM is built on rigidly aligned the size-and-shape
set MR;
Table 2
Choices of alignment in SSMs.

Procrustes alignment II
in shape modeling

MR MS

Procrustes alignment I LR 1 2
in localization LS 3 4
4. in the localization step, the significance maps are produced from
similarity aligned shape set LS, and in the shape modeling step
the subregional SSM is built on similarity aligned the shape setMS.

In the experiments, the hippocampi on both the right and the left
hand sides of 60 NC and 60 AD subjects from ADNI data were used as
a training set to build the SSM. Hotelling's T2 test was performed on
each SSM between the AD and NC groups, with the resulting signifi-
cance maps shown in Fig. 3. The results after the thresholding are
shown in Fig. 4.

We vary the thresholds of the significance level when selecting
the landmarks at α=0.0001, 0.0002, …, 0.0009, 0.001, 0.002, …,
0.009, 0.01, 0.02, …, 0.09, 0.1, 0.2, …, 0.9. The number of landmarks
thresholded at each significance level is plotted in Supp. Fig. 2. For
the purpose of comparison, conventional PCA on all the landmarks
was also performed, using models MR and MS.

Disease classification of AD using regional SSM

The first 15 principal components in each of the SSM were used as
features for classification, which accounted for approximately 90% of
the total variance in the training set (Heimann and Meinzer, 2009).
The rest of the modes individually contributed at most 1.0% of varia-
tion. (For the proportions of the total variance explained by the first
15 modes, see Supp. Fig. 1.) Thus for a given subject, each choice of
SSM yielded 30 variation modes (15 left + 15 right).

The experiments of classification using bagged SVMs on the train-
ing set and the separated testing set were both repeated for 20 times.
The results of average OOB accuracy on the training set and the re-
sults on the separate testing set of bagged SVMs are plotted in
Fig. 5. In the experiment on the testing set, the classifier ensemble
was trained at each time of the test on the training data with 25-
trial bootstrapping, and then tested on the testing set. The average
sensitivity (i.e. the proportion in the actual diseased subjects which
is correctly identified by the classifier as positive) and specificity
(i.e. the proportion in the actual control subjects which is correctly
identified by the classifier as negative) for the disease classification
are available in Supp. Figs. 3 and 4.

As a baseline, using only the TIV normalized volume gave 81.0%
(OOB), 80.6%(testing set) accuracy. The best OOB performance on
the training set (81.8% accuracy) is achieved using rigid-body aligned
SSM (MR) on the selected landmarks (LS;α ¼ 0:05) with additional
volume feature. On the separate testing set the highest accuracy is
88.0% (MR; LS;α ¼ 0:07).

With the features produced by SSMs alone, the best OOB accuracy
is 80.2%, using the localized SSM (MR; LS;α ¼ 0:4), and the accuracy
on the testing set reaches 88.3% (MR; LS;α ¼ 0:1) The result of the lin-
ear C-SVM with this set of SSM features (MR; LS;α ¼ 0:1) gave 87.2%
sensitivity and 79.5% specificity, which is comparable to the result
of 69% sensitivity and 84% specificity reported by Cuingnet et al.
(2011).

Correlation of hippocampal SSM descriptors with memory scores

The results of the correlation between the memory scores and the
hippocampal shape variation over all landmarks, landmarks selected
with threshold α=0.1, and threshold α=0.01 are shown in Fig. 6.
The component in each SSM with the strongest correlation with the
memory scores is plotted. The principal variations in the model on
the selected subregions are shown to be better correlated with mem-
ory scores. Stronger correlations were found by the models built on LS
identified regions. The highest correlation between the memory score
and the hippocampal shape was captured by similarity aligned SSM (
MS) on the hippocampal subregions masked using LS with threshold
at α=0.01, in which the first principal component was the most cor-
related component with AVLT, Logical Memory scores (both

http://dx.doi.org/10.1016/j.neuroimage.2010.06.013
http://dx.doi.org/10.1016/j.neuroimage.2010.06.013
http://dx.doi.org/10.1016/j.neuroimage.2010.06.013
http://dx.doi.org/10.1016/j.neuroimage.2010.06.013


(a) Rigid alignment (LR) (b) Similarity alignment (LS)

0 p>0.05

Fig. 3. The significance map by Hotelling's T2 test. For each landmark in the training set, a Hotelling's T2 test is carried out between the normal control (NC) group, and the Alzhei-
mer's disease (AD) group, resulting the map of p-values. Top: superior view; bottom: inferior view.
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immediate and delayed recall), and memory subscores of ADAS for
both right and left hippocampus (visualization in Fig. 7). The shape
components extracted from subregions with significant shape differ-
ences indicate a better representation of the effect of the disease on
the shape of the hippocampus. The mean differences between the
NC and AD groups in the training set are shown in Figs. 8 and 9.

Discussion

Shape model and correspondences

In our current setting, the correspondence over the training set is
MDL optimized, and propagated to the testing set via closest point.
(a) Rigid alignment (LR) (b) Simil

Fig. 4. Thresholded significance map, by thresho
This is an economical solution while suboptimal to the optimization
of MDL over the testing set. In practice, however, we found that the
classification accuracy was not lowered when using the correspon-
dences by closest point on the separate testing set as compared to
the cross validation on training set equipped with MDL-optimized
correspondence. Therefore we opted for the closest-point as a more
practical method to process the correspondences on the testing set.

Identification of atrophy affected subregions

The results of the Hotelling's T2 test superimposed on the hippo-
campal surface were compared to the maps showing the location of
the different hippocampal subfields (La Joie et al., 2010). Regions of
arity alignment (LS)

p < 0.01

0.01 ≤ p < 0.05

0.05 ≤ p< 0.1

p ≥ 0.1

lding p-values in the significance map Fig. 3.
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Fig. 5. The accuracy of the disease classification using bagged support vector machines (SVMs) with varying thresholds in the landmark selection. The out-of-bag (OOB) estimates is
used for the measure of the training error (the first row), and the performance of the bagged classifier on a separated testing set is also presented. Black circles: shape features from
the Statistical Shape Model (SSM) only; red circles: shape features with additional volume features.
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significant differences between AD and NC were foundmainly located
in the CA1 and subiculum subfields (Fig. 3(a)), which is consistent
with previous studies (Apostolova et al., 2010; Chételat et al., 2008;
Mueller et al., 2010). When the effect of volume change was removed
in SSM by similarity alignment (Fig. 3(b)), the regions of significant
shape difference between the two groups revealed a different profile
with more localized effects mainly located in the posterior hippocam-
pus. Because global changes were mainly driven by the predominant
effects in the CA1 and subiculum subfields, it is not surprising that the
changes independent from these main effects reveals a different
pattern.

It should be pointed out that the hippocampal subregions affected
by AD were identified in this work by comparing the AD subpopula-
tion with NC, which did not take into account the association of AD
and its cognitive outcome with other factors such as age and level
of education. Hippocampal atrophy has been shown to develop dur-
ing the course of normal aging (Chételat et al., 2008; Jack et al.,
1998; La Joie et al., 2010; Malykhin et al., 2008). The shape changes
and variations modeled in this work reflect the combined effect of
aging and AD, which may limit the discrimination ability of the
shape analysis. In the future work it will be of interest to explicitly
control the effects of normal aging on the hippocampus and other
variables such as years of education, in order to isolate the disease
from these effects.

Disease classification using SSM

Using the SSM descriptors combining both size and shape infor-
mation provided better discrimination than using only hippocampal
volume to classify AD from NC. In general the descriptors of size-
and-shape from MR outperformed features produced by MS, because
volume alone is a good discriminant. Since the changes modeled by
MR were driven by both size and shape, adding volume to the features
extracted using MR and MS increased both of their accuracy, but to a
much less extent for MR compared to MS. Using shape information
therefore provides additional discrimination power to volumetry.

Restricting the analysis to the subregions affected by the disease
increased the discrimination ability of the SSM approach by capturing
localized differences between the subpopulations. Whole surface
SSMs are able to describe the global shape or size-and-shape of the
biological object, but are not sensitive to the deformations limited
to specific areas on the object surface. Localizing the PCA to subre-
gions with significant shape difference (LS) on the surface produced
overall better discrimination between NC and AD than using all the
points. When TIV normalized volume was added as additional fea-
tures to the shape features, the best classification results were
obtained using the SSM built using MR on the hippocampal subre-
gions selected by LS.

In particular, using LS in the localization step gave more informa-
tive surface masks thanLR when describing the atrophy pattern in the
disease classification. Subregional masks derived from rigid-body
aligned localization model LR tended to be predominantly represent-
ing changes in global scale due to the volume reduction. Since the
sizes of samples in LS were normalized, the global difference in the
size between subpopulations was filtered out. The resulting subre-
gions found by LS to be significantly different between AD and con-
trols were more localized to subfields such as CA1 and subiculum.

The best classification performance was obtained by the models
describing local size-and-shape variations ( LS þMR). It is noticed
that the shape changes may appear on a local scale as deformation in-
volving both size and shape of the subregion. The localized size-and-
shape modelMR on hippocampal subregions can therefore detect the
shape changes in the form of local volume change which were filtered
out in MS. This may explain the better performance local size-and-
shape variations (LS þMR) than the shape models (LS þMS) on the
local scale, in addition to the discriminant ability of the size factor
present in MR.

The current results demonstrate the potentiality in improving dis-
crimination ability of SSM by localizing the model to hippocampal
subregions. More targeted localization of the atrophy than simple
thresholding may be developed in the future work for the optimal se-
lection of landmarks. In addition to the statistical difference in the
landmark position, histological and anatomical knowledge of hippo-
campus may be incorporated into the identification of regions in
order to capture the shape variation that is more closely linked to
the AD pathology.
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Fig. 6. Bar plot of Spearman's ρ of the correlation between the memory subscores and the principal components from each model. The correlation analysis is performed on the
modes extracted from all landmarks, landmarks selected with thresholds at α=0.1, α=0.05, and α=0.01. The component with strongest correlation with the memory score is
plotted. The correlation of the shape component along the mean difference direction is also plotted.
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Correlation analysis

Since the accuracy of classification could possibly be the results of
overfitting of the given data, the correlation analysis connects the link
between shape components explaining most shape variations on the
selected subregions and the memory decline in the disease, confirm-
ing that the subregional shape components displaying higher dis-
crimination ability are related to the development of the disease.
The correlation between subregional shape components and the
memory scores are comparable to the correlation between the
mean difference and memory scores. The variation modes extracted
on the hippocampal subregions (Fig. 7) are also consistent with the
pattern along the mean difference direction in Fig. 8.

In the correlation analysis, theMS models were able to identify the
shape components with the maximum correlation higher than other
shape or size-and-shape models, despite of the superiority of MR to
MS in the disease classification. It is because more principal compo-
nents from MR models are found to correlate with the memory de-
cline, while to a less degree comparing to the fewer but higher
correlations of MS components. Therefore using the features from
MR though less correlated with the memory decline may contribute
to the higher classification accuracy. The mean difference direction
in the MS model is also more correlated with the memory scores
than that of the rigidly aligned model.

The correlation analysis was not designed to specify the involve-
ment of one particular subfield in episodic memory processes, for in-
stance in encoding and retrieval processes that are thought to
preferentially engage different hippocampal subfields (Eldridge et
al., 2005; Henson, 2005). Our findings however confirm the preferen-
tial implication of both CA1 and subiculum changes in episodic mem-
ory deficits in AD. The regions with variation of most significant
correlation with the episodic memory indices also mainly matches
to the CA1 and subiculum subfields.

Conclusion

The shape of the hippocampus can provide valuable information
for the diagnosis of AD. The principal components of the hippocam-
pus among the population as modeled by the SSM can be used to clas-
sify AD against NC. The conventional PCA in SSM is performed on all
the landmark points on the surface, which represents the original
shape data in a lower dimensional subspace, but may be not discrim-
inative between two groups. The whole-surface description of varia-
tion incorporating both hippocampal shape among the population
may be not sensitive to the changes induced by the disease. By apply-
ing a statistical test on the landmark points in the SSM, we can iden-
tify the regions on the hippocampal surface which display more
significant effect of the disease on the morphology and thus are
more discriminative between AD and NC groups. The PCA performed
on this subset produced variation modes which were used as features
for the classification between these two groups. The principal varia-
tion modes on these regions were more sensitive to the shape change
fromNC to AD, and better correlated with the measurements of mem-
ory decline.



(a) Left hippocampus, the first mode

(b) Right hippocampus, the first mode
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Fig. 7. Variation modes captured by Principal Component Analysis (PCA) on hippocam-
pal subregions best correlated to memory indices (logical memory, AVLT, ADAS mem-
ory), color-coded map showing the magnitude of variation described by the mode. LS,
α=0.01, MS, mode 1. (From left to right: superior, medial, inferior, lateral).

(a) Left hippocampus

(b) Right hippocampus

0 1.0 2.0

Fig. 8. The variation along the direction of mean difference μNC−μAD between the nor-
mal control (NC) group and the Alzheimer's disease (AD) group, color-coded map
showing the magnitude of variation on the rigidly aligned model (MR). (From left to
right: superior, medial, inferior, lateral).

(a) Left hippocampus

(b) Right hippocampus

0 1.0 2.0

Fig. 9. The variation along the direction of mean difference μNC−μAD between the nor-
mal control (NC) group and the Alzheimer's disease (AD) group, color-coded map
showing the magnitude of variation on the similarity aligned model (MS). (From left
to right: superior, medial, inferior, lateral).
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Supplementary materials related to this article can be found on-
line at doi: 10.1016/j.neuroimage.2011.10.014.
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