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Abstract
Multi-modal neuroimaging and biomarker data provide exciting opportunities to enhance our
understanding of phenotypic characteristics associated with complex disorders. This study focuses
on integrative analysis of structural MRI data and proteomic data from an RBM panel to examine
their predictive power and identify relevant biomarkers in a large MCI/AD cohort. MRI data
included volume and thickness measures of 98 regions estimated by FreeSurfer. RBM data
included 146 proteomic analytes extracted from plasma and serum. A sparse learning model,
elastic net logistic regression, was proposed to classify AD and MCI, and select disease-relevant
biomarkers. A linear support vector machine coupled with feature selection was employed for
comparison. Combining RBM and MRI data yielded improved prediction rates: HC vs AD
(91.9%), HC vs MCI (90.5%) and MCI vs AD (86.5%). Elastic net identified a small set of
meaningful imaging and proteomic biomarkers. The elastic net has great power to optimize the
sparsity of feature selection while maintaining high predictive power. Its application to multi-
modal imaging and biomarker data has considerable potential for discovering biomarkers and
enhancing mechanistic understanding of AD and MCI.

1 Introduction
Multi-modal neuroimaging data, such as magnetic resonance imaging (MRI) and positron
emission tomography (PET), studied independently or coupled with other biomarker data
(e.g., cerebrospinal fluid (CSF) and neuropsychological assessments), have been shown to
be sensitive to Alzheimer’s Disease (AD) and mild cognitive impairment (MCI, thought to
be the prodromal stage of AD). Although recent studies reported promising prediction rates
by integrating these multi-modal data [7, 10, 16], few were focused on identifying a small
set of disease relevant biomarkers [13] to enhance our understanding of phenotypic
characteristics and underlying mechanisms associated with complex disorders.

With these observations, this paper has the following aims: (1) investigate the predictive
power of a new set of proteomic analytes from an RBM panel, (2) study whether or not
combining structural MRI and proteomic data can enhance prediction rates, and (3) employ
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a principled sparse learning method, elastic net logistic regression [5], in the study to
maximize prediction accuracy while optimizing the selection of disease sensitive
biomarkers. Our overarching goal is to construct from multimodal data sparse models which
combine ease of interpretation with high predictive power. The results may provide
important information about potential surrogate biomarkers for therapeutic trials.

2 Materials and Methods
Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). ADNI is a landmark investigation sponsored by the
NIH and industrial partners designed to collect longitudinal neuroimaging, biological and
clinical information from over 800 participants that will track the neural correlates of
memory loss from an early stage. The following data from 819 ADNI participants were
downloaded from the ADNI database: all baseline 1.5 T MRI scans, the RBM (Rules-Based
Medicine) multiplex proteomic analytes extracted from plasma and serum, and demographic
and baseline diagnosis information. Further information can be found in [15] and at
www.adni-info.org. For one baseline scan of each participant, FreeSurfer V4 was employed
to automatically label cortical and subcortical tissue classes [3, 4] and to extract target
region volume and cortical thickness, as well as to extract total intracranial volume (ICV).
For each hemisphere, thickness measures of 34 cortical regions of interest (ROIs) and
volume measures of 15 cortical and subcortical ROIs (Fig. 1) were included in this study.
Using the regression weights derived from the healthy participants, all the FreeSurfer
measures were adjusted for the baseline age, gender, education, handedness, and ICV, and
all the RBM proteomic measures were adjusted for the baseline age, gender, education and
handedness. 551 out of 819 participants (57 healthy control (HC), 388 MCI, 106 AD
participants) had both FreeSurfer and RBM data available. To have a balanced data set
among different diagnostic groups, we included all HC and AD participants and a randomly
selected set of 110 (out of 388) MCI participants in this study. Their characteristics are
summarized in Table 1.

Elastic Net
Elastic net logistic regression is a regularized version of logistic regression designed to
provide good classification performance while employing a minimal number of predictor
variables. Let yi ∈ {0, 1} denote the class membership of the ith observation and let Xi
denote the corresponding vector of p classification variables. Elastic net logistic regression
uses the standard logistic regression model for the dependence of Y on X:

However, in order to produce sparse classification weight vectors, it estimates β by the
maximizer of the penalized logistic regression log likelihood function

in which  is the elastic net penalty. Note that this
penalty function is a convex combination of the L1 lasso penalty and the L2 ridge regression
penalty. By providing a smooth trade-off between these two penalties, elastic net
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penalization capitalizes on the strengths of both while minimizing their weaknesses; see
Friedman et al [5] for additional details. The imaging and proteomic biomarker data was
analyzed using the implementation of elastic net logistic regression provided in the Matlab
package glmnet.

Experimental setting
The elastic net is in essence a linear classifier, where logistic regression is just a procedural
step. For a fair comparison, a linear support vector machine (SVM) [14] coupled with a
widely used feature selection scheme (SVM-based Recursive Feature Elimination, or SVM-
RFE [6]) was applied in this study. The LIBSVM toolbox was employed to implement SVM
and SVM-RFE using a linear kernel with default setting. We ran SVM-RFE using the
training data only to select the top n% features and then trained a SVM classifier using these
features only. We tested n = 10, 25 and 100, and denoted the corresponding procedures as
SVM10, SVM25 and SVM (i.e., SVM100, equivalent to no feature selection), respectively.
For the elastic net, we did three experiments with α = 0.25, 0.5 and 0.75 (to adjust the
amount of ridge and lasso), respectively, and the parameter λ was tuned by a 10-fold cross-
validation procedure using the training data only. These experiments were applied to three
data sets: (1) FreeSurfer data (98 variables), (2) RBM data (146 variables), and (3)
combined FreeSurfer and RBM data (244 variables, a simple concatenation of the two
modalities). Prediction accuracy was estimated using 5-fold cross-validation.

3 Results
We use EN25, EN50 and EN75 to indicate the elastic net classifiers with α = 0.25, 0.5, and
0.75, respectively. Table 2 summarizes the 5-fold cross-validation results for classifying HC
vs AD, HC vs MCI, and MCI vs AD for each combination of six methods (SVM10, SVM25,
SVM, EN25, EN50 and EN75) and three data sets (FreeSurfer, RBM, combined FreeSurfer
and RBM). These results are very encouraging in the following sense: (1) Elastic net
classifiers outperformed SVMs in terms of overall accuracy and area under ROC (AUROC)
in almost all the cases, while the performances of EN25, EN50 and EN75 did not differ
significantly (paired samples test on AUROC p > 0.06 in all cases). (2) The best prediction
rates using FreeSurfer were 86.6% for HC vs AD and 74.3% for HC vs MCI, comparable
with the most recent studies using MRI as predictors [7, 13, 16]. (3) While FreeSurfer data
performed slightly better in classifying HC vs AD than RBM data, the latter had surprisingly
greater power to distinguish MCI from HC (87.4%) and AD (83.7%). (4) The combined set
consistently outperformed either of FreeSurfer and RBM. While the resulting best prediction
rate for HC vs AD (91.9%) was competitive with prior multi-modal studies [7, 16], the
prediction rates for HC vs MCI (90.5%) and MCI vs AD (86.5%) significantly exceeded
results from prior studies that did not use RBM data (e.g., [16]).

Either the SVM or the elastic net classifier can be characterized by a weight vector w, which
projects each individual data point (i.e., a feature vector) into a 1-D space to produce a
discriminative value. Each weight measures the strength of the contribution of the
corresponding feature to the final discriminative value. Elastic net seeks to reduce the
number of nonzero weights so that only relevant features contribute to the discriminative
value. For consistency, we always visualize negative weights −w so that larger values (red)
correspond to lower measurement levels in cases. We show the weight maps (Fig. 1–3) only
for the combined set analysis, since single modality analyses yielded similar maps.

Shown in Fig. 1 are the weights for the FreeSurfer data. Weights for classifying HC vs AD
are shown in (a–d) for SVM10, SVM25, SVM and EN50 respectively. While most weights
were close to zero, EN50 identified a small number of imaging markers known to be AD-
relevant, including hippocampal volume, entorhinal cortex thickness, amygdala volume, and
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so on. Given many blue blocks (i.e., gray matter increase in AD, which is counter-intuitive),
the SVM map was much less sparse and harder to interpret. While SVM10 and SVM25
identified a few relevant markers similar to EN50, they also yielded some questionable blue
blocks and the selected features varied a lot among different cross-validation trials.

Fig. 1(d–f) compare selected features in different classification tasks using EN50. Note that
Panels (e, f) selected a smaller number of FreeSurfer features even though the overall
prediction accuracies of all three analyses were comparably high. This might imply that the
overall prediction accuracies of the latter two tasks (HC vs MCI and MCI vs AD) were more
dependent on RBM features than FreeSurfer features. These weights can also be back-
projected to the original image space for an intuitive visualization. Fig. 2 shows such a
visualization for SVM, EN25 and EN50. EN25 and EN50 yield similar maps that are much
more sparse than the SVM map.

Shown in Fig. 3 are the weight maps for RBM features. Again, EN50 yielded fewer relevant
features than SVM (see (c–d)). Although SVM10 and SVM25 (see (a–b)) were able to
identify a few interesting features, the selected features varied a lot among different cross-
validation trials. Using Elastic Net, a number of RBM analytes were found to have altered
concentrations in AD participants compared to HCs. This is consistent with previous studies
showing reduced or elevated concentrations of specific analytes in plasma or serum samples
of AD participants. The trends for some of the identified analytes follow those in the
published literature and are summarized below. Using a similar RBM panel and
methodology as done by the ADNI study, O’Bryant et al. identified the analytes alpha-2-
macroglobulin (A2Macro), eotaxin 3 (Eotaxin 3) and pancreatic polypeptide (PPP) to be
over expressed in the serum of AD participants relative to controls [11] similar to the current
findings. Elevated plasma concentrations of complement factor H (CFH) and alpha-2-
macroglobulin (A2Macro) [8], reduced plasma concentrations of apolipoprotein AII (ApoA
II) [9] and elevated serum concentration of apolipoprotein B (ApoB) [2] have been observed
in AD participants relative to controls, and these were also found in the present study.
Apolipoprotein E (ApoE) is a major genetic risk factor for AD [1]. The ApoE concentration
in the present study was observed to be reduced in AD participants relative to controls.
There are conflicting reports regarding the serum or plasma concentrations of ApoE protein
levels in AD, with some studies finding elevated levels, some finding reduced levels and
others finding no difference in levels in AD participants relative to controls [12]. Thus its
role as a potential AD biomarker is unclear at the present time and needs to be further
investigated. A number of novel analytes have also been identified to have altered
expression in AD such as carcinoembryonic antigen (CEA) and pregnancy-associated
plasma protein A (PA PPA). These analytes may play a role in disease pathology and
warrant further investigation in independent samples. Thus the identification of novel
analytes in addition to known analytes demonstrates the power and utility of this approach in
identifying potential candidate AD biomarkers.

4 Discussion
We have done an integrative analysis of structural MRI data and proteomic data to examine
their predictive power and identify relevant biomarkers in a large MCI/AD cohort. RBM
data showed high predictive power to separate MCI from HC and AD. Combining RBM and
MRI data yielded further improved prediction rates: HC vs AD (91.9%), HC vs MCI
(90.5%) and MCI vs AD (86.5%), which were competitive to or better than similar prior
studies. The sparse models generated by elastic net identified a small set of meaningful
imaging and proteomic biomarkers and were much easier to interpret than SVM-based
models. The elastic net has great power to optimize the sparsity of feature selection while
maintaining high predictive power. Its application to multi-modal imaging and biomarker
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data has considerable potential for discovering biomarkers and enhancing mechanistic
understanding of AD and MCI.

Many identified RBM markers warrant further investigation. Replication in independent
large samples will be important to confirm these findings. Pathway analysis could be
performed as a future direction to identify underlying biological pathways of relevant genes
and proteins. This work was focused on sparse linear classifiers applied to the simple
concatenation of multi-modal data, since our major goal was to yield easily interpretable
models while maintaining high predictive power. An initial analysis of applying SVM with a
radial basis function kernel to the same data yielded comparable or less accurate results, and
these nonlinear models were much harder to interpret. An interesting future topic is to
investigate whether these nonlinear models can help improve the prediction rates as well as
derive biologically meaningful results. Another future direction is to apply multi-kernel
learning methods (e.g., [7, 16]) and see if better predictive models can be achieved and
relevant biomarkers can be identified.
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Fig. 1.
Heat maps of classifier weights −w for FreeSurfer measures, where weights were plotted
against 5 different trials in cross validation tests. Positive values (red) indicate lower
measurement levels in cases.
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Fig. 2.
Back-projection of negative weights (−w) onto cortical surface, where positive values (red)
indicate lower measurement levels in cases.
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Fig. 3.
Heat maps of classifier weights −w for RBM measures, where weights were plotted against
5 different trials in cross validation tests. Positive values (red) indicate lower measurement
levels in cases.
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Table 1

Participant characteristics

Category HC MCI AD p-value

Gender (M/F) 30/27 60/50 60/46 0.88

Handedness (R/L) 53/4 104/6 99/7 0.91

Baseline Age (years, mean±SD) 75.2±5.8 75.0±7.4 74.8±8.1 0.95

Education (years, mean±SD) 15.7±2.7 15.5±3.0 15.1±3.3 0.37

ICV (cm3, mean±SD) 1506±143 1559±169 1558±195 0.13
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