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Abstract. We consider the problem of using high dimensional data re-
siding on graphs to predict a low-dimensional outcome variable, such as
disease status. Examples of data include time series and genetic data
measured on linear graphs and imaging data measured on triangulated
graphs (or lattices), among many others. Many of these data have two
key features including spatial smoothness and intrinsically low dimen-
sional structure. We propose a simple solution based on a general statis-
tical framework, called spatially weighted principal component regression
(SWPCR). In SWPCR, we introduce two sets of weights including im-
portance score weights for the selection of individual features at each
node and spatial weights for the incorporation of the neighboring pat-
tern on the graph. We integrate the importance score weights with the
spatial weights in order to recover the low dimensional structure of high
dimensional data. We demonstrate the utility of our methods through ex-
tensive simulations and a real data analysis based on Alzheimer’s disease
neuroimaging initiative data.

Keywords: Graph; Principal component analysis; Regression; Spatial;
Supervise; Weight.

1 Introduction

Our problem of interest is to predict a set of response variables Y by using high-
dimensional data x = {xg : g ∈ G} measured on a graph ζ = (G, E), where E is
the edge set of ζ and G = {g1, . . . , gm} is a set of vertexes, in which m is the total
number of vertexes in G. The response Y may include cognitive outcome, disease
status, and the early onset of disease, among others. Standard graphs including
both directed and undirected graphs have been widely used to build complex
patterns [10]. Examples of graphs are linear graphs, tree graphs, triangulated
graphs, and 2-dimensional (2D) (or 3-dimensional (3D)) lattices, among many
others (Figure 1). Examples of x on the graph ζ = (G, E) include time series
and genetic data measured on linear graphs and imaging data measured on
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triangulated graphs (or lattices). Particularly, various structural and functional
neuroimaging data are frequently measured in a 3D lattice for the understanding
of brain structure and function and their association with neuropsychiatric and
neurodegenerative disorders [9].

Fig. 1. Illustration of graph data structure ζ = (G, E): (a) two-dimensional lattice; (b)
acyclic directed graph; (c) tree; (d) undirected graph.

The aim of this paper is to develop a new framework of spatially weighted
principal component regression (SWPCR) to use x on graph ζ = {G, E} to pre-
dict Y. Four major challenges arising from such development include ultra-high
dimensionality, low sample size, spatially correlation, and spatial smoothness.
SWPCR is developed to address these four challenges when high-dimensional
data on graphs ζ share two important features including spatial smoothness and
intrinsically low dimensional structure. Compared with the existing literature,
we make several major contributions as follows:

• (i) SWPCR is designed to efficiently capture the two important features by
using some recent advances in smoothing methods, dimensional reduction
methods, and sparse methods.

• (ii) SWPCR provides a powerful dimension reduction framework for inte-
grating feature selection, smoothing, and feature extraction.

• (iii) SWPCR significantly outperforms the competing methods by simulation
studies and the real data analysis.

2 Spatially Weighted Principal Component Regression

In this section, we first describe the graph data that are considered in this paper.
We formally describe the general framework of SWPCR.

2.1 Graph Data

Consider data from n independent subjects. For each subject, we observe a q×1
vector of discrete or continuous responses, denoted by yi = (yi,1, . . . ,yi,q)T , and
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a m × 1 vector of high dimensional data xi = {xi,g : g ∈ G} for i = 1, . . . , n.
In many cases, q is relatively small compared with n, whereas m is much larger
than n. For instance, in many neuroimaging studies, it is common to use ultra-
high dimensional imaging data to classify a binary class variable. In this case,
q = 1, whereasm can be several million number of features. In many applications,
G = {g1, . . . , gm} is a set of prefixed vertexes, such as voxels in 2D or 3D lattices,
whereas the edge set E may be either prefixed or determined by xi (or other
data).

2.2 SWPCR

We introduce a three-stage algorithm for SWPCR to use high-dimensional data
x to predict a set of response variables Y. The key stages of SWPCR can be
described as follows.

• Stage 1. Build an importance score vector (or function) WI : G → R+ and
the spatial weight matrix (or function) WE : G × G → R.
• Stage 2. Build a sequence of scale vectors {s0 = (sE,0, sI,0), · · · , sL = (sE,L, sI,L)}

ranging from the smallest scale vector s0 to the largest scale vector sL. At
each scale vector s`, use generalized principal component analysis (GPCA)
to compute the first few principal components of an n × m matrix X =
(x1 · · ·xn)T, denoted by A(s`), based on WE(·, ·) and WI(·) for ` = 0, . . . , L.
• Stage 3. Select the optimal 0 ≤ `∗ ≤ L and build a prediction model (e.g.,

high-dimensional linear model) based on the extracted principal components
A(s`∗) and the responses Y.

We slightly elaborate on these stages. In Stage 1, the important scores wI,g

play an important feature screening role in SWPCR. Examples of wI,g = WI(g)
in the literature can be generated based on some statistics (e.g., Pearson corre-
lation or distance correlation) between xg and Y at each vertex g. For instance,
let p(g) be the Pearson correlation at each vertex g and then define

wI,g = −m log(p(g))/

−∑
g∈G

log(p(g))

 . (1)

In Stage 1, without loss of generality, we focus on the symmetric matrix
WE = (wE,gg′) ∈ Rp×p throughout the paper. The element wE,gg′ is usually
calculated by using various similarity criteria, such as Gaussian similarity from
Euclidean distance, local neighborhood relationship, correlation, and prior in-
formation obtained from other data [21]. In Section 2.3, we will discuss how
to determine WE and WI while explicitly accounting for the complex spatial
structure among different vertexes.

In Stage 2, at each scale vector s` = (sE,`, sI,`), we construct two matrices,
denoted by QE,` and QI,` based on WE and WI as follows:

QE,` = F1(WE , sE,`) and QI,` = diag(F2(WI , sI,`)), (2)
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where F1 : Rp×p×R+ → Rp×p and F2 : Rp×R+ → Rp are two known functions.
For instance, let 1(·) be an indicator function, we may set

F2(WI , sI,`) = (1(wI,g1 ≥ sI,`), · · · ,1(wI,gm ≥ sI,`))
T
, (3)

to extract ’significant’ vertexes. There are various ways of constructing QE,`.
For instance, one may set QE,` as

QE,` = (|wE,gg′ |1(|wE,gg′ | ≥ sE,`;1, D(g, g′) ≤ sE,`;2)) ,

where sE,` = (sE,`;1, sE,`;2)T and D(g, g′) is a graph-based distance between
vertexes g and g′. The value of sE,`;2 controls the number of vertexes in {g′ ∈
G : D(g, g′) ≤ sE,`;2}, which is a patch set at vertex g [18], whereas sE,`;1 is used
to shrink small |wE,gg′ |s into zero.

After determining QE,` and QI,`, we set Σc = QE,`QI,`Q
T
I,`Q

T
E,` and Σr = In

for independent subjects. Let X̃ be the centered matrix of X. Then we can ex-
tract K principal components through minimize the following objective function
given by

||X̃− UDV T ||2 subject to UTΣrU = V TΣcV = IK and diag(D) ≥ 0. (4)

If we consider correlated observations from multiple subjects, we may use Σr

to explicitly model their correlation structure. The solution (U`, D`, V`) of the

objective function (4) at s` is the SVD of X̃R,` = X̃QE,`QI,`. The we can use a
GPCA algorithm to simultaneously calculate all components of (U`, D`, V`) for a
fixed K as follows. In practice, a simple criterion for determining K is to include
all components up to some arbitrary proportion of the total variance, say 85%.

For ultra-high dimensional data, we consider a regularized GPCA to generate
(U`, D`, V`) by minimizing the following objective function

||X̃R,` −
K∑

k=1

dk,`uk,`v
T
k,`||2 + λu

K∑
k=1

P1(dk,`uk,`) + λv

K∑
k=1

P2(dk,`vk,`) (5)

subject to uT
k,`uk,` ≤ 1 and vT

k,`vk,` ≤ 1 for all k, where uk,` and vk,` are
respectively the k-th column of U` and V`. We use adaptive Lasso penalties
for P1(·) and P2(·) and then iteratively solve (5) [1]. For each k0, we define

E`,k0
= X̃R,` −

∑
k 6=k0

dk,`uk,`v
T
k,` and minimize

||E`,k0
− dk0,`uk0,`v

T
k0,`||

2 + λuP1(dk0,`uk0,`) + λvP2(dk0,`vk0,`) (6)

subject to uT
k0,`

uk0,` ≤ 1 and vT
k0,`

vk0,` ≤ 1. By using the sparse method in [12],

we can calculate the solution of (6), denoted by (d̂k0,`, ûk0,`, v̂k0,`). In this way,

we can sequentially compute (d̂k,`, ûk,`, v̂k,`) for k = 1, . . . ,K.
In Stage 3, select `∗ as the minimum point of the objective function (5) or

(6) . let QF,`∗ = QE,`∗QI,`∗V`∗D
−1
`∗ and then K principal components A(s`∗) =

XQF,`∗ . Moreover, K is usually much smaller than min(n,m). Then, we build a
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regression model with yi as responses and Ai (the i-th row of A(s`∗)) as covari-
ates, denoted by R(yi, Ai;θ), where θ is a vector of unknown (finite-dimensional
or nonparametric) parameters. Specifically, based on {(yi, Ai)}i≥1, we use an es-
timation method to estimate θ as follows:

θ̂ = argminθ{ρ (R,θ, {(yi, Ai)}i≥1) + λP3(θ)},

where ρ(·, ·, ·) is a loss function, which depends on both the regression model
and the data, and P3(·) is a penalty function, such as Lasso. This leads to a
prediction model R(yi, Ai;θ). For instance, for binary response yi = 1 or 0, we
may consider a sparse logistic model given by logit(P (yi = 1|Ai)) = AT

i θ for
R(yi, Ai;θ).

Given a test feature vector x∗, we can do predictions from our prediction
model as follows:

• Center each component of x∗ by calculating x̃∗ = x∗ − µ̂x, in which µ̂x is
the mean and learnt from the training data;

• Optimize an objective function based on R(y, x̃∗TQF,`∗ ; θ̂) to calculate an
estimate of y, denoted by ŷ∗.

Our prediction model is applicable to various regression settings for continu-
ous and discrete responses and multivariate and univariate responses, such as
survival data and classification problems.

2.3 Importance Score Weights and Spatial Weights

There are two sets of weights in SWPCR including (i) importance score weights
enabling a selective treatment for individual features, and (ii) spatial weights
accommodating the underlying spatial dependence among features across neigh-
boring vertexes on graph. Below, we propose the strategy of determining both
importance score weights and spatial weights.

Importance Score Weights As discussed in Section 2.3, at each vertex g,
wI,g, such as the Pearson correlation in (1), is calculated based on a statistical
model between xg and Y in order to perform feature selection according to each
feature’s discriminative importance. Statistically, most existing methods use a
marginal (or vertex-wise) model by assuming

p(xi,yi) =
∏
g∈G

p(xi,g,yi;β(g)),

where β = (β(g) : g ∈ G) and β(g) is introduced to quantify the association
between yi and xi,g at each vertex g ∈ G. At the g−th vertex, wI,g is a statistic
based on the marginal model

∏n
i=1 p(xi,g,yi;β(g)). However, those wI,gs largely

ignore complex spatial structure, such as homogenous patches defined below,
across all vertexes on graph.
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For a graph ζ = (G, E), it is common to assume that β(g) across all ver-
texes are naturally clustered into P homogeneous patches, denoted by {Gl : l =
1, . . . , P}, such that P << m, G = ∪Pl=1Gl, and β(g) varies smoothly in each
Gl. Note that a patch Gl consists of a set of vertexes that are completely con-
nected through edges in E . That is, if g, g′ ∈ Gl, then there is a sequence of
vertexes g0 = g, · · · , gM = g′ in Gp such that (gj−1, gj) ∈ E for all j = 1, . . . ,M .
It has been shown that for graph data, algorithms based on patch information
have led to state-of-the art techniques for classification and denoising. See for
example, [18] for overviews of imaging patches.

We propose the strategy to jointly model xi and yi and simultaneously cal-
culate wI,g across all vertexes, while learning the homogenous patches Gl. The
strategy is to model the conditional distribution of xi given yi, denoted by
p(xi|yi,β). Then we can learn the patches Gl in G from the estimated β.

Here we consider a set of vertexes G with unknown edge information E . It
is important to learn the homogeneous patches Gp and then form the edge set
E . Let Eg(h) be an edge set at scale h at each vertex g. We consider a sequence
of nested edge sets across multiscales hs such that h0 = 0 ≤ h1 ≤ · · · ≤ hS
and Eg(h0) = {g} ⊂ · · · ⊂ Eg(hS). To learn the homogeneous patches, a general
framework of Multiscale Adaptive Regression Model (MARM) developed in [13]
is to maximize a sequence of weighted functions as follows:

β̂(g;hs) = argmaxβ(g)

n∑
i=1

∑
g′∈Eg(hs)

ω(g, g′;hs) log p(xi,g′ |yi,β(g)) for s = 1, . . . , S,

(7)
where ω(g, g′;h) characterizes the similarity between the data in vertexes g′ and
g with ω(g, g;h) = 1. If ω(g, g′;h) ≈ 0, then the observations in vertex g′ do not
provide information on β(g). Therefore, ω(g, g′;h) can prevent incorporation
of vertexes whose data do not contain information on β(g) and preserve the

edges of homogeneous regions. Let D1(g, g′) and D2(β̂(g;hs−1), β̂(g′;hs−1)) be,
respectively, the spatial distance between vertexes g and g′ and a similarity
measure between β̂(g;hs−1) and β̂(g′;hs−1). The ω(g, g′;hs) can be defined as

ω(g, g′;hs) = K1(D1(g, g′)/hs) ·K2(D2(β̂(g;hs−1), β̂(g′;hs−1))/γn), (8)

where K1(·) and K2(·) are two nonnegative kernel functions and γn is a band-
width parameter that may depend on n. See the detailed algorithm of MARM
in [13]. After the iteration hs, we can obtain β̂(g;hS) and its covariance matrix,

denoted by Cov(β̂(g;hs)), across all g ∈ G and ω(g, g′;hs) for all g′ ∈ Eg(hs) and

g ∈ G. Finally, we calculate statistics wI,g based on β̂(g;hs) and Cov(β̂(g;hs)),
such as the Wald test, and then we use a clustering algorithm, such as the K-
mean algorithm, to group {β̂(g;hs) : g ∈ G} into several homogeneous clusters,

in which β̂(g;hs) varies very smoothly in each cluster. Moreover, each homoge-
nous cluster can be a union of several homogeneous patches.

Spatial Weights As discussed in Section 2.3, wE,gg′ often characterizes the de-
gree of certain ‘similarity’ between vertexes g and g′. The locally spatial weight-
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ing matrix consists of non-negative weights assigned to the spatial neighboring
vertexes of each vertex. It is assumed that

wE,gg′ =
ω(g, g′;hs)1(g′ ∈ Eg(hs))∑

g′∈Eg(hs)
ω(g, g′;hs)1(g′ ∈ Eg(hs))

, (9)

in which ω(g, g′;hs) is defined in (8). Therefore, wE,gg′ = 0 for all g′ 6∈ Eg(hs)
and

∑
g′∈G wE,gg′ = 1. The weights K1(D1(g, g′)/hs) give less weight to vertex

g′ ∈ Eg(hs), whose location is far from the vertex g. The weights K2(u) down-

weight the vertex g′ with large D2(β̂(g;hs), β̂(g′;hs)), which indicates a large

difference between β̂(g′;hs) and β̂(g;hs). Moreover, by following [4, 13, 15, 16],
we set K1(x) = (1−x)+ and K2(x) = exp(−x). Although m is often much larger
than n, the computational burden associated with the local spatial weights is
very minor when hs is relatively small.

3 Simulation Study

In this section, we conducted one set of simulation study corresponding to bi-
nary responses, in order to examine the finite-sample performance of SWPCR
in the high-dimensional classification analysis. We demonstrate that SWPCR
outperforms many state-of-the-art methods for at least in the simulated dataset.

We simulated 20× 20× 10 (x× y × z) 3D-images from a linear model given
by

xi,g = B0(g) +B1(g)yi + εi(g) for i = 1, · · · , n, (10)

where yi is the class label coded as either 0 or 1 and εi(g) are random variables
with zero mean. The true mean images of class yi = 0 and class yi = 1 are

Class 0 Class 1 

x x 

z z 

y y 

(0,0,0) (0,0,0) 

Fig. 2. True mean images for the simulation study: Class 0 in the left panel and Class
1 in the right panel. The white, green, and red colors, respectively, correspond to 0, 1,
and 2.
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shown in Figure 2. Voxels in the red cuboid region have the maximum difference
1 between classes 0 and 1. The dimension of red cuboid is 3× 3× 4 and contains
36 voxels. In this case, m = 4, 000 and we set n = 100 with 60 images from Class
0 and the rest from Class 1. We consider three types of noise εi(g) in (10). First,

ε
(1)
i (g) were independently generated from a N(0, 22) generator across all voxels

g. Second, ε
(2)
i (g) =

∑
‖g′−g‖≤1 ε

1
i (g′)/mg were generated from ε

(1)
i (g) in order to

introduce the short range spatial correlation, where mg is the number of voxels in

the set {‖ g′−g ‖≤ 1}. Third, to introduce long range spatial correlation, ε
(3)
i (g)

were generated according to ε
(3)
i (g) = 2 sin(πg1/10)ξi,1 + 2 cos(πg2/10)ξi,2 +

2 sin(πg3/5)ξi,3 + ε
(1)
i (g), where ξi,k for k = 1, 2, 3 were independenly generated

from a N(0, 1) generator. Moreover, the noise variances in all voxels of the red
cuboid region equal 4, 4/6, and 4{sin(πg1/10)2+cos(πg2/10)2+sin(πg3/5)2}+4
for Type I, II, and III noises, respectively. Therefore, among the three types of
noise, Type III noise has the smallest signal-to-noise ratio and Type II noise has
the largest one.

Table 1. Classification results for the first set of simulations: comparison between
SWPCR and other Classification Methods. sLDA denotes sparse linear discriminant
analysis; SPLS denotes sparse partial least squares; SLR denotes sparse logistic regres-
sion; SVM denotes support vector machine; ROAD denotes regularized optimal affine
discriminant; and PCA denotes principal component analysis.

Noise sLDA SPLS SLR SVM ROAD PCA SWPCR

Type I 0.28 0.43 0.45 0.38 0.36 0.36 0.10

Type II 0.27 0.08 0.18 0.26 0.08 0.45 0.03

Type III 0.52 0.30 0.61 0.60 0.50 0.35 0.09

We ran the three stages of SWPCR as follows. In Stage 1, let {h` = 1.2`, ` =

0, 1, . . . , S = 5}, and for each g ∈ G, wI,g = −m log(p(g))/
[
−
∑

g∈G log(p(g))
]
,

where p(g) is the p-value of Wald test B1(g) = 0 in (7) (β(g) = (B0(g), B1(g))T )
for each voxel g. The spatial weight WE is given by (9). Here we haven’t used
the simple Pearson correlation (1) for computing weights because it neglects the
spatial correlation of the data set. In Stage 2, for each h`, we define QE,` = WE

and generate QI,` through (2) and (3), where sI,` thresholds out the wI,g with
p(g) < 0.01. Then we extract different K principal components of GPCA to
reconstruct the low dimensional representations of simulated images and then
do classification analysis. The results are very stable for different number of
principal components and here we let K = 5. In Stage 3, we tried different
classification methods, including linear regression, k-Nearest Neighbor (k-NN)
[11] and support vector machine (SVM) [14], on these low dimensional spaces.
Based on the misclassification error for the leave-one-out cross validation, the
linear regression is slight better than others. The linear regression uses class label
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yi as dependent variable and principal components as explanatory variables. If
the prediction value is less than 0, the image is classified as 0. Otherwise, the
image is classified as 1.

We compared SWPCR with other state-of-the-art classification methods.
The leave-one-out cross validation is used here to calculate the misclassification
rates of the different methods. Other classification methods considered here in-
clude sparse linear discriminant analysis (sLDA) [6], sparse partial least squares
(SPLS) analysis [5], sparse logistic regression (SLR) [20], SVM, and regularized
optimal affine discriminant (ROAD) [8]. These methods are well known for their
excellent performance in various simulated and real data sets. Inspecting Table
1 reveal that except SWPCR, all classification methods perform pretty poor,
when the signal-to-noise ratio is low in those simulated datasets with Type I
and II noises. Except SPLS, PCA, and SWPCR, all other methods are seem to
be sensitive to the presence of the long-range correlation structure in Type III
noise.

4 Real Data Analysis

4.1 ADNI PET Data

The real data set is the baseline fluorodeoxyglucose positron emission tomogra-
phy (FDG-PET) data downloaded from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) web site (www.loni.ucla.edu/ADNI). The ADNI1 PET data
set consists of 196 subjects (102 Normal Controls (NC) and 94 AD subjects).
There are three subjects, missing the gender and age information. Among the
rest of the subjects, there are 117 males whose mean age is 76.20 years with
standard deviation 6.06 years and 76 females whose mean age is 75.29 years
with standard deviation 6.29 years.

The dimension of the processed PET images is 79 × 95 × 69. Left panel in
Figure 3 shows some selected slices of the processed PET images from 2 randomly
selected AD subjects and 2 randomly selected NC subjects.

4.2 Binary Classification

Our first goal is to apply SWPCR in classifying subjects from ADNI1 to AD
or CN group based on their FDG-PET images. Such goal is associated with the
second primary objective of ADNI aiming at developing new diagnostic methods
for AD intervention, prevention, and treatment. Similar as in Section 3 , SWPCR
contains the three detailed stages that will not be repeated again. The right panel
in Figure 3 is the three view slices of the weight matrix QI,` at the coordinate
(40, 57, 26) in the stage 2 of SWPCR. The red region in three slices corresponds to
the large important score weight and contains the most classification information.

We compared SWPCR with six other classification methods including sLDA,
SPLS, SLR, SVM, ROAD, and PCA. We used their leave-one-out cross valida-
tion rates. Table 2 shows the classification results of all the seven methods. sLDA
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Fig. 3. ADNI1 pet data and the important score weight matrix QI,` in SWPCR. In the
left panel, one row sequence of 2-D images belongs to one subject. The first two rows
respectively belongs to AD subjects and the rest belongs to NC subjects. In the right
panel, the three plots (left -right-bottom) are three view slices of the weight matrix
QI,` at the coordinate (40, 57, 26). The red region corresponds to large weight score
and contains the most classification information.

performs much worse than all other six methods. ROAD performs slightly better
than PCA. SPLS and SVM are comparable with each other, but they outper-
form SLR and ROAD. SWPCR outperforms all six classification methods. It
suggests that the classification performance can be significantly improved by in-
corporating spatial smoothness and simple dimension reductions methods, such
as PCA.

4.3 Age Prediction

Our second goal is to apply SWPCR in predicting subjects’ age based on their
FDG-PET images. The response variable y is the age of the subjects and the
explanatory variables are the latent scores, extracted from image data. It is very
interesting to use memory test scores as the response variable y. However, the
data set here contains no such information. The three subjects without the age
information are deleted and then we have 193 images left. yi in model (10)
becomes age of the subjects. Here we will not repeat the detailed stages of
SWPCR again, which is similar as in Section 3. The slight difference is stage 3.
Here we run regression rather than classification methods between age and the
SWPCR latent scores.

Table 2. Misclassification Rates of Different Methods for ADNI 1 Pet Data

sLDA SPLS SLR SVM ROAD PCA SWPCR

0.255 0.163 0.179 0.168 0.189 0.194 0.117
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First, we compared SWPCR with three other dimensional reduction methods
including PCA, weighted PCA (WPCA) [17], and supervised PCA (SPCA) [2].
We used the leave-one-out cross validation to compute the prediction errors of
all the four methods. Let ŷi be the fitted response value based on the regression
model, and the prediction error is defined as |ŷi − yi|/|yi|. Subsequently, we
calculated the error difference between SWPCR and all three other methods
across different numbers (K = 5, 7, 10) of principal components. Panels (a)–
(c) in Figure 4 show the boxplots of the error difference between SWPCR and
PCA, WPCA, and SPCA, respectively. The error differences are almost always
less than 0 (under the dashed line) and these results show the better performance
of SWPCR in dimension reduction.
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Fig. 4. Performance of SWPCR Regression for ADNI 1 Pet Data. Panels (a)–(c) shows
the boxplots of error difference between SWPCR and PCA (WPCA and SPCA). Panel
(d) compares SWPCR regression with several other regression methods, including PR,
SIS, SVR and SPLS.

Second, we compared SWPCR with several other high-dimensional regression
methods including penalized regression (PR) [19], sure independence screening
(SIS) regression [7], support vector regression (SVR) [3], and SPLS [5]. Panel (d)
in Figure 4 shows the boxplots of the prediction error difference between SWPCR
and all the other regression methods. The analysis results further confirm the
better performance of SWPCR in regression.

5 Discussion

SWPCR enables a selective treatment of individual features, accommodates the
complex dependence among features of graph data, and has the ability of utiliz-
ing the underlying spatial pattern possessed by image data. SWPCR integrates
feature selection, smoothing, and feature extraction in a single framework. In the
simulation studies and real data analysis, SWPCR shows substantial improve-
ment over many state-of-the-art methods for high-dimensional problems.
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