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Abstract
We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and
predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction
and identify critical imaging markers relevant to AD at the same time. ARD is one of the most
successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection
method, and provides sparse models that is easy to interpret. PARD selects the model with the best
estimate of the predictive performance instead of choosing the one with the largest marginal model
likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in
general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based
general linear model (GLM) analysis shows that regions with strongest signals are identified by both
GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/
PARD provide a small number of relevant and meaningful imaging markers with predictive power,
including both cortical and subcortical measures.

1 Introduction
Neuroimaging is a powerful tool for characterizing neurodegenerative process in the
progression of Alzheimer’s disease (AD) and can provide potential surrogate biomarkers for
therapeutic trials. This paper is focused on identifying relevant imaging biomarkers from
structural magnetic resonance imaging (MRI) data for AD classification. Machine learning
methods have been applied to many problems in computational neuroscience, including
computer-aided diagnosis for AD [1,3,4,6,7,9]. While popular methods like support vector
machines (SVMs) [15] can achieve decent prediction accuracy, most of them are not optimized
for selecting sensitive features.

This paper presented the results of applying novel sparse Bayesian learning methods, automatic
relevance determination (ARD) and predictive ARD (PARD) [13], to MRI-based AD
classification for achieving two goals at the same time: (1) accurate prediction rate and (2)
selection of relevant imaging biomarkers. Linear SVM and general linear model (GLM) based
cortical thickness analyses were also performed on the same data for comparison to ARD/
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PARD. Our overarching goal is to learn from these data sparse Bayesian models so that they
are easy to interpret while maintaining high predictive power.

2 Materials and Methods
MRI Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (www.loni.ucla.edu/ADNI). ADNI is a landmark investigation
sponsored by the NIH and industrial partners designed to collect longitudinal neuroimaging,
biological and clinical information from 800 participants that will track the neural correlates
of memory loss from an early stage. Further information can be found in [11] and at
www.adni-info.org. Following a previous imaging genetics study [14], 378 non-Hispanic
Caucasian participants (203 healthy control (HC) and 175 AD participants) were selected for
this work. For one baseline scan of each participant, FreeSurfer V4 was employed to
automatically label cortical and subcortical tissue classes [2,5] and to extract target region
volume and cortical thickness, as well as to extract total intracranial volume (ICV), as
previously described [14]. For each hemisphere, thickness measures of 34 cortical regions of
interest (ROIs) (Fig. 1(a–f)) and volume measures of 15 cortical and subcortical ROIs (Fig. 1
(c–f)) were included in this study. All these measures were adjusted for the baseline age, gender,
education, handedness, and baseline ICV using the regression weights derived from the HC
participants. Participant characteristics are summarized in Table 1.

ARD and Predictive ARD
We apply ARD and predictive ARD (PARD) [13] to classify the imaging features. ARD is one
of the most successful Bayesian feature selection methods [8,12]. It is a hierarchical Bayesian
approach where there are hyperparameters which explicitly represent the relevance of different
input features. These relevance hyperparameters determine the range of variation for the
parameters relating to a particular input, usually by modeling the width of a zero-mean
Gaussian prior on those parameters. If the width of that Gaussian is zero, then those parameters
are constrained to be zero, and the corresponding input cannot have any effect on the
predictions, therefore making it irrelevant. ARD optimizes these hyperparameters to discover
which inputs are relevant.

Predictive ARD impoves upon ARD in the following aspects. First, the Laplace approximation
used in ARD [8] is replaced by the more accurate expectation propagation (EP) [10]. Second,
EP computes an estimate of leave-one-out predictive performance without requiring expensive
cross-validation experiments. This estimate of predictive performance can be used as an
important criterion for ARD to avoid the overfitting problem associated with evidence
maximization. Last, predictive ARD uses a fast sequential optimization method such that we
can efficiently prune and add new features without updating a full covariance matrix for the
classifier.

Now we describe ARD for linear classification. A linear classifier classifies a point x according
to t = sign(wTx) for some parameter vector w (the two classes are t = ±1). Given a training set
D = {(x1, t1), …, (xN, tN)}, the likelihood for w can be written as

(1)

where , Ψ (·) is the cumulative distribution function for a Gaussian. One can
also use the step function or logistic function as Ψ (·). The basis function φT (xi) allows the
classification boundary to be nonlinear in the original features. This is the same likelihood used
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in logistic regression and in Gaussian process classifiers. Given a new input xN+1, we
approximate the predictive distribution:

(2)

(3)

where 〈w〉 denotes the posterior mean of the weights, called the Bayes Point.

The basic idea in ARD is to give the feature weights independent Gaussian priors:

where α = {αi} is a hyperparameter vector that controls how far away from zero each weight
is allowed to go. The hyperparameters α are trained from the data by maximizing the Bayesian
‘evidence’ p(t|α), which can be done using a fixed point algorithm or an expectation
maximization (EM) algorithm treating w as a hidden variable [8]. The outcome of this
optimization is that many elements of α go to infinity such that the classifier w would have
only a few nonzero weights wj. This naturally prunes irrelevant features in the data.

Unlike previous approaches that use the EM algorithm and find a solution that maximizes the
evidence, the predictive-ARD (PARD) algorithm trains the sparse classifier as follows: (1)
Initialize the model so that it only contains a small fraction of features. (2) Sequentially update
the classifiers via a fast sequential optimization method and calculate the required statistics by
EP until the algorithm converges. The sparsity level of the classifiers increases along the
optimization iterations. (3) From all the classifiers, choose the classifier with minimum
predictive error probability estimate.

SVM and GLM
A linear support vector machine (SVM) was applied in our study to provide a comparison to
ARD/PARD in terms of prediction accuracy. SVMs represent a new generation of learning
systems based on recent advances in statistical learning theory [15]. The aim in training a linear
SVM is to find the separating hyperplane with the largest margin; the expectation is that the
larger the margin, the better the generalization of the classifier. We employed the OSU SVM
Matlab Toolbox (sourceforge.net/projects/svm/) in this work.

We also performed surface based analysis for identifying thickness changes on the brain cortex
and comparing these regions with the imaging markers detected by ARD/PARD. We consider
the following general linear model (GLM): y = XΨ + ZΦ + ε, where the dependent variable y
is cortical thickness; X = (x1, ···, xp) are the variables of interest (diagnosis in our case); Z =
(z1, ···, zk) are the variables whose effects we want to exclude (age, gender, education,
handedness and ICV in our case); Ψ = (ψ1, ···, ψp)T and Φ = (φ1, ···, φk)T are the coefficients;
and ε is the error term. The goal is to test if X is significant (i.e., Ψ = 0) for some y ∈ ∂Ω, where
∂Omega; is the cortical surface manifold. To test GLMs, we used SurfStat [16], a Matlab
toolbox for the statistical analysis of univariate and multivariate surface and volumetric data
using linear mixed effects models and random field theory (RFT) [17].
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3 Results
Classification was performed on each hemisphere separately, using two sets of imaging
features: (1) 34 thickness measures (Fig. 1(a–b)), and (2) 34 thickness measures and 15 volume
measures (Fig. 1(c–f)). 10-fold cross-validation was performed for accuracy estimation. Shown
in Table 2 is the performance comparison among ARD, PARD and SVM. ARD and PARD
outperformed SVM except for the case of using both thickness and volume measures from
right hemisphere. PARD outperformed ARD except for the case of using both thickness and
volume measures from left hemisphere. PARD was designed for improving ARD predictive
performance based on theoretical considerations, which empirically worked better for most
cases but not all. Using thickness measures only, the best prediction rate was obtained at 85.3%
by PARD for left hemisphere. Using both thickness and volume measures, the best prediction
rate was improved to 87.6% by applying ARD to the left hemisphere data. In all cases, the
prediction rates were improved after including 15 additional volume measures in the analyses,
indicating both cortical and subcortical changes were related to AD.

A linear classifier is usually characterized by a weight vector w, which projects each individual
data point (i.e., a feature vector) into a 1-D space for getting a discriminative value. Each weight
measures the amount of the contribution of the corresponding feature to the final discriminative
value. ARD and PARD aim to reduce the number of nonzero weights so that only relevant
features are selected by examining these weights. For consistency, we always visualize
negative weights −w so that larger values (red) correspond to more grey matter in HC. Fig. 1
(a–b) shows the heat maps of PARD weights −w in cortical thickness analysis for one run of
10-fold cross validation for both hemispheres. The weight vectors (i.e., columns in the map)
derived by different trials in cross validation are very similar. Most weights are close to zero,
indicating a small number of relevant imaging markers. While entorhinal cortex (EntCtx)
appears to be a strong predictor in both sides, rostral middle frontal gyri (RostMidFrontal) are
strong only on the left and inferior temporal gyri (InfParietal) on the right.

These weights can be back-projected to the original image space for an intuitive visualization.
Fig. 2(c–d) shows such a visualization for PARD and ARD results using thickness data. Since
we only examine the mean thickness of each cortical subregion in our analysis, the entire region
is painted with the same color defined by the corresponding weight. The patterns of imaging
marker selection between PARD and ARD are very similar to each other. For comparison,
surface-based GLM analysis using SurfStat is also performed to examine diagnosis effect (HC-
AD) on cortical thickness and Fig. 2(a–b) shows the resulting T-map and P-map. Regions with
strongest signals, such as entorinal cortex on both sides and left middle temporal gyri are picked
up by GLM and ARD/PARD. While GLM P-map returns significant regions across the entire
cortex, PARD/ARD maps provide a small number of selective regions with predictive power.

Heat maps of ARD/PARD weights −w in combined thickness and volume analyses are shown
in Fig. 1(c–f). Again, the patterns are very similar between ARD and PARD. Shown in Table
3 are top imaging markers selected by ARD using thickness and volume measures (PARD data
not shown but extremely similar to ARD) and by PARD using thickness measures (ARD data
not shown but extremely similar to PARD). While most top markers are thickness measures
from cortical regions, two markers are volume measures from subcortical structures including
hippocampus and amygdala.

4 Discussion
We presented a novel application of sparse Bayesian learning methods, ARD and PARD, to
AD classification. Our strategy was to minimize the complexity of both data and methods for
deriving a simple model easy to interpret. For methods, we focused on linear classifiers and
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showed that ARD/PARD in general outperformed SVM. For data, we focused on summary
statistics (i.e., thickness and volume) of anatomically meaningful grey matter regions across
the whole brain, and showed that promising prediction accuracy (87.6%) could be achieved
with a small number of relevant imaging measures. Most prior studies (e.g., [1,3,4]) performed
feature selection/extraction before classification. Our method integrated feature selection into
the learning process to form a simple and principled procedure. Prior research [6] also
integrated feature selection into classification and reported lower prediction rates (77–82%)
for analyzing a subset of the same ADNI MRI data. Comparison to other feature selection
schemes merits further investigation. While some prior studies [3,4,7,9] reported better
prediction rates, they analyzed many more imaging variables in much smaller data sets. One
interesting future topic is to apply our method to more detailed imaging features to determine
if better prediction rates and refined imaging marker maps can be achieved. It is unclear if
disease duration of AD is comparable between ADNI cohort examined by us and [1,4,6] and
others cohorts by [3,7,9], and this could have an effect on prediction rates. Incorporating disease
duration in predictive models warrants further investigation. To sum up, contributions of this
work include: (1) a simple and unified learning method that inherently does feature selection
and enables biomarker discovery while maintaining high predictive power; (2) a much larger
AD sample tested with much fewer variables, resulting in a better power; and (3) promising
rates for predicting mild AD with identified biomarkers that are known to be related to AD.
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Fig. 1.
(a–b) Heat maps of PARD weights −w in cortical analyses using 34 thickness measures. (c–f)
Heat maps of PARD (c,d) and ARD (e,f) weights −w in analyses using 15 volume (top) and
34 thickness (bottom) measures. 10-fold cross-validation was performed for left (a,c,e) and
right (b,d,f) hemisphere data. In each heat map, feature weights were plotted against 10 different
trials in cross validation tests.
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Fig. 2.
(a–b) GLM results of diagnosis effect (HC-AD) on cortical thickness include (a) the map of
the t statistics and (b) the map of corrected P values for peaks and clusters (only regions with
corrected p ≤ 0.01 are shown), where positive t values (red, yellow) indicate more grey matter
in HC. (c–d) Back-projection of negative weights (−w) of the linear classifier for (c) PARD
and (d) ARD, where positive values (gray,red,yellow) indicate more grey matter in HC.

Shen et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shen et al. Page 9

Table 1

Participant characteristics

Category HC AD p-value

Number of Subjects 203 175 -

Gender (M/F) 111/92 97/78 0.8840

Baseline Age (years; Mean±STD) 76.09±5.00 75.53±7.58 0.3884

Education (years; Mean±STD) 16.13±2.73 14.93±3.00 < 0.0001

Handedness (R/L) 188/15 163/12 0.8413
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