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Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with
MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity
to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI)
measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular
morphometry analysis remains challenging because of its complicated topological structure. Here we describe
a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based
morphometry (TBM) statistics. Unlike prior ventricular surface parameterizationmethods, hyperbolic conformal
parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one
diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM
statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by
other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's
Disease Neuroimaging Initiative (ADNI: 71MCI converters vs. 62MCI stable). Although the combined ventricular
area and volume features did not differ between the two groups, our fine-grained surface analysis revealed
significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures
that are affected early in AD. Significant correlations were also detected between ventricular morphometry,
neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron
emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and
more sensitive approach to study preclinical and early symptomatic stage AD.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Mild Cognitive Impairment (MCI) describes individuals who cogni-
tively lie betweennormal aging anddementia, andMCI oftenprogresses
to Alzheimer's disease (AD). The prevalence of MCI is as high as 19% in
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persons over age 65, and 29% in those over age 85 (Small et al., 2009).
Also, a significant portion of the population diagnosed with life limiting
illnesses (LLI) has therapeutic exposures that place them at risk for MCI.
As MCI has the greatest risk of progression to dementia, it is a primary
focus of interest in aging studies (Roberts et al., 2010). The International
Classification of Diseases now has a billing code for MCI (331.83)
(ICD, 2010). Over half of those with MCI progress to dementia within
5 years (Gauthier et al., 2006), and early detection of thoseMCI individ-
ualswhowill convert to dementia can facilitate earlier intervention, and
guide recruitment for clinical trials. Current therapeutic failures in pa-
tients with symptomatic memory loss might reflect intervention that
is too late, or targets that are secondary effects and less relevant to dis-
ease initiation and early progression (Hyman, 2011).

As the paradigm in AD research shifts to a new stage, targeting ear-
lier intervention and prevention (Caselli and Reiman, 2013; Langbaum
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et al., 2013), there is a requirement for biologically grounded, highly ob-
jective biomarkers that can help to identify those high AD riskMCI indi-
viduals for whom early intervention may be most appropriate. Various
neuroimaging techniques can track disease progression and therapeutic
efficacy in MCI (Caroli et al., 2012; Chen et al., 2011; Matsuda, 2007b;
Petersen, 2011; Petersen and Jack, 2009; Pihlajamaki et al., 2009;
Small et al., 2006;Wolf et al., 2003) and others are beginning to identify
abnormal anatomical or functional patterns and their rates of decline.
Structural magnetic resonance imaging (MRI) has been the mainstay
of AD imaging research and has included evaluations of whole-brain
(Chen et al., 2007; Fox et al., 1999; Stonnington et al., 2010), entorhinal
cortex (Cardenas et al., 2011), hippocampus (Apostolova et al., 2010b;
den Heijer et al., 2010; Jack et al., 2003, 2010; Reiman et al., 1998;
Thompson et al., 2004a; Wolz et al., 2010), and temporal lobe volumes
(Hua et al., 2010), as well as ventricular enlargement (Jack et al., 2003,
2008; Thompson et al., 2004a;Wang et al., 2011). These correlate close-
ly with differences and changes in cognitive performance, supporting
their validity as markers of disease progression. Among these bio-
markers, ventricular enlargement is a very important measure of AD
progression (Frisoni et al., 2010). Owing to the high contrast between
the CSF and surrounding brain tissue on T1-weighted images, lateral
ventricles can be measured more reliably than hippocampus or other
structures, whose boundaries are difficult for experts to agree on
(Chou et al., 2010). Furthermore, lateral ventricles span a large area
within the cerebral hemispheres and abut several structures relevant
to AD including the hippocampus, amygdala and posterior cingulate.
Changes in ventricular morphology, such as enlargement, often reflect
atrophy of the surrounding cerebral hemisphere which itself may be
regionally differentiated (for example, frontotemporal in contrast to
posterior cortical atrophy). Regional differences in cerebral atrophy
may be reflected in specific patterns of change in ventricularmorpholo-
gy, so accurate analysis of ventricular morphology has the potential to
both sensitively and specifically characterize a neurodegenerative
process.

Many brain imaging based AD studies examine cortical and subcor-
tical volumes (den Heijer et al., 2010; Dewey et al., 2010; Holland et al.,
2009; Jack et al., 2004, 2003; Ridha et al., 2008; Vemuri et al., 2008a,
2008b; Wolz et al., 2010), but recent research (Apostolova et al.,
2010a, 2010b; Chou et al., 2009a; Costafreda et al., 2011; Ferrarini
et al., 2008b; Madsen et al., 2010; McEvoy et al., 2009; Morra et al.,
2009; Qiu et al., 2010; Styner et al., 2005; Tang et al., 2014; Thompson
et al., 2004a) has demonstrated that surface-based analyses can offer
advantages over volume measures, due to their sub-voxel accuracy
and the capability of detecting subtle subregional changes. Higher-
order correspondences between brain surfaces are often required to
be established in order to statistically compare or combine surface
data obtained from different people, or at different time-points. Usually,
brain surface registration is done by first mapping the surfaces to be
matched onto one common canonical parameter domain, such as a
sphere (Fischl et al., 1999b; Thompson et al., 2004b), or a planar rectan-
gle (Shi et al., 2013a), and then registering the surfaces in the simpler
parameter domain. The one-to-one correspondences obtained in the
parameter domain induce the registration of the 3D brain surfaces.
However, it is challenging to apply this framework to ventricular sur-
faces, due to their concave shape, complex branching topology and
extreme narrowness of the inferior and occipital horns. Thus, surface-
based subregional analysis of ventricular enlargement is notoriously dif-
ficult to assess, exemplified by the conflictingfindings regarding genetic
influences on ventricular volumes (Chou et al., 2009b; Kremen et al.,
2012). Pioneering ventricular morphometry work (Paniagua et al.,
2013; Styner et al., 2005) used spherical harmonics to analyze ventricu-
lar surfaces where each ventricular surfacewasmapped to a sphere and
registered to a common template. However, as demonstrated pre-
viously (Wang et al., 2010), this spherical parameterization method
may result in significant shape distortion that affects the analysis. Our
prior work (Wang et al., 2007, 2011, 2010) computed the first global
conformal parameterization of lateral ventricular surfaces based on
holomorphic 1-forms. However, this conformal parameterizationmeth-
od always introduces a singularity point (zero point, Fig. 9(a)) in the
resulting parameter domain. As a result, each ventricular surface had
to be partitioned into three pieceswith respect to the zero point, the su-
perior horn, the inferior horn, and the occipital horn. These three pieces
were mapped to three planar rectangles and registered across subjects
separately. To model a topologically complicated ventricular surface,
hyperbolic conformal geometry emerges naturally as a candidatemeth-
od. Hyperbolic conformal geometry has an important property that it
can induce conformal parameterizations on high-genus surfaces or sur-
faces with negative Euler numbers and the resulting parameterizations
have no singularities (Luo et al., 2008). Motivated by recent advances in
hyperbolic conformal geometry based brain imaging research (Shi et al.,
2013d; Tsui et al., 2013), including our ownwork (Shi et al., 2012;Wang
et al., 2009b, 2009c), here we propose to use the hyperbolic Ricci flow
method to build the canonical parameter domain for ventricular surface
registration. The resulting parameterizations are angle-preserving and
have no singularity points. After surface registration across subjects,
surface deformations are measured by the tensor-based morphometry
(TBM) (Chung et al., 2008, 2003b; Davatzikos, 1996; Thompson et al.,
2000), which quantifies local surface area expansions or shrinkages.
The Ricci flow method is theoretically sound and computationally effi-
cient (Jin et al., 2008; Wang et al., 2006, 2012). In addition, TBM has
been used extensively to detect regional differences in surface and vol-
ume brain morphology between groups of subjects (Chung et al.,
2003b; Hua et al., 2011; Leow et al., 2009; Shi et al., 2014, 2013a,
2013b;Wang et al., 2012, 2011, 2013b).We hypothesize that the hyper-
bolic Ricci flow together with TBM may offer a set of accurate surface
statistics for ventricular morphometry and that it may boost statistical
power to detect the subtle difference between MCI patients who prog-
ress to dementia from those who fail to progress.

In this paper, we develop a ventricular morphometry system based
on hyperbolic Ricci flow and TBM statistic and use it to study ventricular
structural differences associated with baseline T1-weighted brain
images from the ADNI dataset, including 71 patients who developed
incident AD during the subsequent 36 months (MCI converter group)
and 62 patients who did not during the same period (MCI stable
group). These subjects were also selected based on the availability of
fluorodeoxyglucose positron emission tomography (FDG-PET) data
and cognitive assessment information. Here we set out to test whether
our new system can detect subtle MCI conversion related changes and
whether the new statistics are correlated with FDG-PET biomarkers
and other cognitive measures.

Subjects and methods

Subjects

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative isMichaelW.Weiner,MD,
VA Medical Center and University of California—San Francisco. ADNI is
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the result of efforts of many coinvestigators from a broad range of ac-
ademic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 subjects but ADNI has been followed
by ADNI-GO and ADNI-2. To date, these three protocols have recruit-
ed over 1500 adults, ages 55 to 90, to participate in the research,
consisting of cognitively normal older individuals, people with
early or late MCI, and people with early AD. The follow up duration
of each group is specified in the protocols for ADNI-1, ADNI-2 and
ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date information,
see www.adni-info.org.

Based on the availability of both volumetric MRI and FDG-PET data,
we selected 133 subjects from the MCI group in the ADNI baseline
dataset, including 71 subjects (age: 74.77 ± 6.81) who developed inci-
dent AD during the subsequent 36 months, which we call the MCI con-
verter group, and 62 subjects (age: 75.42 ± 7.83 years) who did not
during the same period, which we call theMCI stable group. These sub-
jects were chosen on the basis of having at least 36 months of longitu-
dinal data. If a subject developed incident AD more than 36 months
after baseline, it was assigned to the MCI stable group. All subjects
underwent thorough clinical and cognitive assessment at the time of ac-
quisition, including the Mini-Mental State Examination (MMSE) score
(Folstein et al., 1975), Alzheimer's disease assessment scale—Cognitive
(ADAS-COG) (Rosen et al., 1984) and Auditory Verbal Learning Test
(AVLT) (Rey, 1964). The demographic information of the subjects is in
Table 1.
Table 1
Demographic information of studied MCI subjects in ADNI baseline dataset.

Gender (M/F) Education Age MMSE at baseline

MCI converter
(n = 71)

45/26 15.99 ± 2.73 74.77 ± 6.81 26.83 ± 1.60

MCI stable
(n = 62)

44/18 15.87 ± 2.76 75.42 ± 7.83 27.66 ± 1.57
System pipeline overview

Herewe briefly overview the processing procedures in our ventricu-
lar morphometry system. Following sections are detailed explanations
of each step.

Fig. 1 summarizes the overall sequence of steps in the system. First,
from each MRI scan (a), we automatically segment lateral ventricular
volumes with the multi-atlas fluid image alignment (MAFIA) method
(Chou et al., 2010). The MR image overlaid with the segmented ventri-
cle is shown in (b). A ventricular surface built with marching cube algo-
rithm (Lorensen and Cline, 1987) is shown in (c). Lateral ventricle
segmentation and surface reconstruction will be introduced in Section
Image acquisition and preprocessing. After the topology optimization,
we apply hyperbolic Ricci flow method on the ventricular surface and
conformally map it to the Poincaré disk. The concepts of topology opti-
mization and Poincaré disk model will be introduced in Section
Theoretical background. Details about conformal parameterization
with hyperbolic Ricci flow and embedding in Poincaré disk are in Sec-
tions Hyperbolic Ricci flow and Embedding into the Poincaré disk
model, respectively. On the Poincaré disk, we compute consistent geo-
desics and project them back to the original ventricular surface, a meth-
od called geodesic curve lifting. The results are shown in (d). Further,we
convert the Poincaré model to the Klein model where the ventricular
surfaces are registered by the constrained harmonic map (Zeng et al.,
2010). The registration diagram is shown in (e). Geodesic curve lifting
and surface registration will be detailed in Section Geodesic curve
lifting and ventricular surface constrained harmonic map via the Klein
model. Next, we compute the TBM features and smooth them with
the heat kernel method (Chung et al., 2005b) (f). TBM computation
and its smoothing are in Section Surface tensor-based morphometry
and its smoothness with heat kernel method. Finally, the smoothed
TBM features are applied to analyze both group difference between
the two MCI groups and correlation of ventricular shape morphometry
with cognitive test scores and FDG-PET index. Significance p-maps are
used to visualize local shape differences or correlations (g). Correction
for multiple comparisons is used to estimate the overall significance
(corrected p-values).
Image acquisition and preprocessing

High-resolution brain structural MRI scans were acquired at multi-
ple ADNI sites using 1.5 T MRI scanners manufactured by General Elec-
tric Healthcare, Siemens Medical Solutions, and Philips Medical
Systems. For each subject, the T1-weighted MRI scan was collected
with a sagittal 3D MP-RAGE sequence. Typical 1.5 T acquisition param-
eters are repetition time (TR) of 2400ms, minimum full excitation time
(TE), inversion time (TI) of 1000ms, flip angle of 8°, 24 cm field of view.
The acquisition matrix was 192 × 192 × 166 in the x, y, and z dimen-
sions and the voxel size was 1.25 × 1.25 × 1.2 mm3. In-plane, zero-
filled reconstruction (i.e., sinc interpolation) generated a 256 × 256
matrix for a reconstructed voxel size of 0.9375 × 0.9375 × 1.2 mm3.

The T1-weighted images from ADNI baseline dataset were automat-
ically skull-stripped with the BrainSuite Extraction Software (Shattuck
and Leahy, 2002). Then the imperfections in this automatic segmenta-
tion procedure were corrected manually. In order to adjust for global
differences in brain positioning and scaling, the segmented images
were normalized to the ICBM space with a 9-parameter (3 translations,
3 rotations, and 3 scales) linear transformation obtained by the
Minctracc algorithm (Collins et al., 1994). After resampling into an
isotropic space of 2203 voxels with the resolution 1 mm × 1 mm ×
1 mm×, the registered images were then histogram-matched to equal-
ize image intensities across subjects. Finally, the lateral ventricular
volumes were extracted using the multi-atlas fluid image alignment
(MAFIA)method that combines multiple fluid registrations to boost ac-
curacy (Chou et al., 2010). Briefly, in the MAFIA method, 6 MRI scans
(2 AD, 2 MCI, and 2 normal) after preprocessing were randomly chosen
from the ADNI baseline dataset. The lateral ventricles were manually
traced in these 6 images following the delineation protocol described in
http://resource.loni.usc.edu/resources/downloads/research-protocols/
segmentation/lateral-ventricle-delineation. These labeled images are
called atlases and segmentation of lateral ventricles in other unlabeled
images was done by fluidly registering the atlases to all other images.
For details of this method, please refer to (Chou et al., 2010).

After obtaining the binary segmentations of the lateral ventricles,
we used a topology-preserving level set method (Han et al., 2003) to
build surface models. Based on that, the marching cube algorithm
(Lorensen and Cline, 1987) was applied to construct triangular sur-
face meshes. Then, in order to reduce the noise fromMR image scan-
ning and to overcome the partial volume effects, surface smoothing
was applied consistently to all surfaces. Our surface smoothing pro-
cess consists of mesh simplification using “progressive meshes”
(Hoppe, 1996) and mesh refinement by Loop subdivision surface
(Loop, 1987). The similar procedures were frequently adopted in a
number of our prior works (Colom et al., 2013; Luders et al., 2013;
Monje et al., 2013; Shi et al., 2014, 2013a, 2013b; Wang et al., 2011,
2010) and our experience showed that the smoothed meshes are ac-
curate approximations to the original surfaces with higher signal-to-
noise ratio (SNR) (Shi et al., 2013a).
Theoretical background

This section briefly introduces the theoretical background necessary
for the current work.

http://www.adni-info.org
http://resource.loni.usc.edu/resources/downloads/research-protocols/segmentation/lateral-ventricle-delineation
http://resource.loni.usc.edu/resources/downloads/research-protocols/segmentation/lateral-ventricle-delineation
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Conformal deformation
Let S be a surface in ℝ3 with a Riemannian metric g induced from

the Euclideanmetric. Let u : S→ℝ be a scalar function defined on S. It
can be verified that eg ¼ e2ug is also a Riemannian metric on S and an-
gles measured by eg are equal to those measured by g, i.e. the induced
mapping is angle-preserving. Thus, eg is called a conformal deforma-
tion of g and u is called the conformal factor. Furthermore, when sur-
face metrics change, the Gaussian curvature K of the surface will
change accordingly and become eK ¼ e−2u −Δguþ K

� �
, where Δg is

the Laplace–Beltrami operator under the original metric g. The
Fig. 1. A chart showing the key steps in the ventricular surface registration method. After the
computed consistent geodesic curves on each ventricular surface to constrain the registratio
parameter domain represented by the Klein model, which also induced a surface registration i
Finally the smoothed TBM features are applied to analyze both group difference between the tw
and FDG-PET index.
geodesic curvature kg will become ekg ¼ e−u ∂ruþ kg
� �

, where r is
the tangent vector orthogonal to the boundary. The total curvature
of the surface is determined by its topology with the Gauss–Bonnet
theorem (Do Carmo, 1976): ∫ SKdA + ∫ ∂Skgds = 2πχ(S), where dA
is the surface area element, ∂S is the boundary of S, ds is the line ele-
ment, and χ(S) is the Euler characteristic number of S.

Uniformization theorem
Given a surface S with Riemannian metric g, there exist an infinite

number of metrics that are conformal to g. The uniformization theorem
lateral ventricles were segmented from MRI scans and surfaces were reconstructed, we
n. Then the constrained harmonic map was used to obtain a correspondence field in the
n 3D. The statistic of TBM was computed on each point of the resulting matched surfaces.
oMCI groups and correlation of ventricular shapemorphometrywith cognitive test scores



Fig. 2. Illustration of hyperbolic geometry. (a) is a pair of topological pants with three boundaries γ1, γ2, and γ3. τ1 and τ2 are automatically traced paths connecting γ1 to γ2, γ1 to γ3,
respectively. After slicing along τ1 and τ2, the topological pants can be conformally mapped to the hyperbolic space and isometrically embedded in the topological disk of fundamental
domain, as shown in (b). (c) is an illustration of the Poincaré disk model. (d) is a saddle plane which has constant negative Gaussian curvatures with a hyperbolic triangle.
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states that, among all conformal metrics, there exists a unique repre-
sentative which induces constant Gaussian curvature everywhere.
Moreover, the constant will be one of {+1, 0, −1}. Therefore, we can
embed the universal covering space of any closed surface using its
uniformization metric onto one of the three canonical spaces: the unit
sphere S2 for genus-0 surfaces with positive Euler characteristic num-
bers; the plane E2 for genus-1 surfaces with zero Euler characteristic
numbers; the hyperbolic space ℍ2 for high-genus surfaces with nega-
tive Euler characteristic numbers. Accordingly, we can say that surfaces
with positive Euler numbers admit spherical geometry; surfaces with
zero Euler numbers admit Euclidean geometry; and surfaces with neg-
ative Euler numbers admit hyperbolic geometry.
2 In Euclidean space, rigidmotions include translation and rotation. Any transformation
consisting of rigidmotions changes the position of an object without deforming the shape
of the object. As the Poincaré disk is a representation of the hyperbolic space, the rigidmo-
tion in it is defined by Eq. (1), which is the Möbius transformation and is different from
that in the Euclidean space. However, theMöbius transformation has the same properties
as the Euclidean rigidmotion. For example, as shown in Fig. 4(d), the object at the center is
transformed to four other different positions in the Poincaré disk with four different
Möbius transformations. Each of the four pieces (shown in four colors) is a copyof the cen-
ter object. They have different positions, but their shapes are the same in the hyperbolic
space.
Topology optimization
Due to the concave and branching shape of the ventricular surfaces,

it is difficult to find a conformal grid for the entire structure without in-
troducing significant area distortions. Here, as in prior studies (Wang
et al., 2011, 2010), we automatically located and introduced three cuts
on each ventricular surface, with one cut on the superior horn, one cut
on the inferior horn, and one cut on the occipital horn. The locations
of the cuts are motivated by examining the topology of the lateral ven-
tricles, in which several horns are joined together at the ventricular
“atrium” or “trigone”. Meanwhile, we kept the locations of the cuts con-
sistent across subjects. This operation is called as topology optimization
(Wang et al., 2011, 2010). After being modeled in this way, each ven-
tricular surface becomes a genus-0 surface with 3 boundaries and
is homotopic to a pair of topological pants, as shown in Fig. 2(a).
Fig. 4(a) shows two different views of a ventricular surface with the
three boundaries, which are denoted as γ1, γ2, γ3. As a result, each ven-
tricular surface has the Euler characteristic number −1, which means
that it admits the hyperbolic geometry. In our work, we try to compute
conformal mappings from ventricular surfaces to the hyperbolic space
ℍ2 and use it as the canonical parameter space to register ventricular
surfaces.

Poincaré disk model
As thehyperbolic space cannot be realized inℝ3,we use the Poincaré

disk model to visualize it. The Poincaré disk is the unit disk |z| b 1, z =
x + iy in the complex plane with the metric ds2 ¼ 4dzdz

1−zzð Þ2 . The rigid

motion in the Poincaré disk2 is the Möbius transformation:

z→eiθ
z−z0
1−z0z

ð1Þ

A hyperbolic line (a geodesic) in the Poincaré disk is a circular arc
which is perpendicular to the unit circle |z| = 1. A hyperbolic circle
circ(c, r) (c is the center and r is the radius) looks like a Euclidean circle

Circ(C, R), with C ¼ 2−2μ2

1−μ2 cj j2 , and R2 ¼ Cj j2− cj j2−μ2

1−μ2 cj j2 , where μ ¼ er−1
erþ1 .

Fig. 2(c) shows an illustration of the Poincaré disk. In order to map the
ventricular surfaces to the hyperbolic Poincaré disk, we automatically
traced two paths, τ1 connecting γ1 and γ2 and τ2 connecting γ1 and
γ3, respectively, as shown in Fig. 4(b). Initially, the locations of the

image of Fig.�2
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paths were not required to be consistent across subjects. But they were
required to connect consistent ends of γ1, γ2, γ3 for consistent surface
mappings to be discussed in Section Geodesic curve lifting and
ventricular surface constrained harmonic map via the Klein model. As
shown in Figs. 4(a–b), endpoints with same colors were connected
to each other. After slicing along the paths, a ventricular surface be-
came a simply connected domain, which we call a topological disk.
Fig. 2(b) is an illustration of the topological disk of the topological
pants in Fig. 2(a), which provides the fundamental domain when
embedded in the Poincaré disk.

In practice, surfaces are represented by triangular meshes. If a
surface admits hyperbolic geometry, all triangles on it are hyperbolic tri-
angles. As an illustration of the hyperbolic geometry, Fig. 2(d) shows a
saddle-shape plane which has constant negative Gaussian curvatures
with a hyperbolic triangle.

Hyperbolic Ricci flow

In this work we use the surface Ricci flow method (Jin et al., 2008;
Wang et al., 2009c, 2006, 2012; Zeng et al., 2010) to conformally project
the ventricular surfaces to the hyperbolic space and isometrically
embed them in the Poincaré disk. We call this method the hyperbolic
Ricci flow method.

Ricci flow is a powerful curvature flow method, which was first
introduced in (Hamilton, 1988). Let S be a smooth surface with
Riemannian metric g = (gij), the Ricci flow deforms the metric g(t)
according to the Gaussian curvature K(t) (induced by the metric itself),

dgi j tð Þ
dt

¼ −2K tð Þgi j tð Þ ð2Þ

where t is the time parameter. Eq. (2) states that the metric should
change according to the Gaussian curvature, so that the curvature
evolves like a heat diffusion process. There is an analogy between the
Ricci flow and heat diffusion. Suppose T(t) is a temperature field on

the surface, the heat diffusion equation is dT tð Þ
dt ¼ −ΔgT tð Þ, where Δg is

the Laplace–Beltrami operator induced by the surface metric. The
temperature field becomes more and more uniform with the increase
in t, and it will become constant eventually. In a physical sense, the
curvature evolution induced by the Ricci flow is exactly the same as

the heat diffusion on the surface as dK tð Þ
dt ¼ −Δg tð ÞK tð Þ, where Δg(t) is

the Laplace–Beltrami operator induced by the metric g(t). For the
proof of this analogy, please refer to (Wang et al., 2012).

With conformal mapping, which requires g(t) = e2u(t)g(0), we have
a simplified Ricci flow equation

du tð Þ
dt

¼ −2K tð Þ ð3Þ

the derivation of Eq. (3) can be found in Wang et al. (2012).
In engineering field, surfaces are approximated by triangular

meshes. Major concepts such as metric, curvature, Ricci flow, etc.,
which were introduced above in the continuous setting, need to be
generalized to the discrete setting. Suppose M(V, E, F) is a triangular
mesh, with the vertex set V, edge set E, and face set F. We define vi
the ith vertex, [vi, vj] the edge connecting vertices vi and vj, and
[vi, vj, vk] the face formed by vi, vj, and vk. The discrete Riemannian
metric on M is a function defined on each edge l : E → R+ such that
in each face [vi, vj, vk], the triangle inequality holds li+ lj N lk. Usually,
it is the edge length. As shown in Fig. 3(a), the corner angles in each
face are determined by themetric according to the hyperbolic cosine
law:

θi ¼ cos−1 cosh l j cosh lk−cosh li
2 sinh l j sinh lk

ð4Þ
Let fijk be the face formed by vi, vj, and vk, and θijk the corner angle at vi
in this face, the discrete Gaussian curvature on vi can be defined by the
angle deficit:

Ki ¼
2π−

X
f i jk∈F

θ jk
i vi∉∂M

π−
X

f i jk∈F
θ jk
i vi∈∂M

8<: ð5Þ

The discrete Gaussian curvature definition is an approximation of
that in the continuous setting, for the derivation, please refer to Gu
and Yau (2008). Accordingly, the Gauss–Bonnet theorem also holds
for the discrete meshes ∑vi∈VKi ¼ 2πχ Mð Þ (Do Carmo, 1976).

By definition, the conformal deformation maps infinitesimal circles
in one surface to infinitesimal circles in another and preserves angles
among the circles. The discrete conformal deformation uses circles
with finite radii to approximate the infinitesimal circles. The concept
of the circle packing metric was introduced in Thurston (1976) and
later adopted by Hurdal and Stephenson in their discrete cortical
conformal flattening work (Hurdal and Stephenson, 2004, 2009).
Fig. 3(b) shows a hyperbolic triangle together with three circles cen-
tered at its three vertices. Let Γ be a function defined on vertices
Γ : V → ℝ+, which assigns a radius γi to vertex vi. Similarly, let Φ be a
function defined on edges Φ : E→ 0; π

2

� �
, which assigns an acute angle

ϕij to edge eij and is called a weight function of the edge. The pair of
vertex radius function and edge weight function, (Γ, Φ), is called the
circle packing metric of M. As shown in Stephenson (2005); Wang et al.
(2012); and Zeng et al. (2010), the circles in the circle packing metric
are not necessarily tangent to each other, they can intersect (Wang
et al., 2012), or not intersect at all (Zeng et al., 2010). As shown in
Fig. 3(b), for each triangle [vi, vj, vk], one can compute the Riemannian
metrics by the hyperbolic cosine law:

lk ¼ cosh−1 cosh γi cosh γ j þ cos ϕi j sinh γi sinh γ j

� �
ð6Þ

Let U : V → ℝ be the discrete conformal factor and (Jin et al., 2008;
Zeng et al., 2010),

ui ¼ log tanh
γi

2

� �
ð7Þ

we define the discrete Ricci flow as

dui

dt
¼ −2Ki ð8Þ

The discrete Ricci flow is in the exact same form as the smooth Ricci
flow (Eq. (3)). Let U = (u1, u2, …, un) be the conformal factor vector,
where n is the number of vertices on M, and U0 = (0, 0, …, 0), then
the discrete hyperbolic Ricci energy is defined as (Jin et al., 2008)

E Uð Þ ¼
Z U

U0

Xn
i¼1

Kidui ð9Þ

Given the definitions (4), (6) and (7), by direct computations, we get
∂θi
∂u j

¼ ∂θ j

∂ui
. Considering the definition of Ki (Eq. (5)), immediately we get

∂Ki
∂u j

¼ ∂K j

∂ui . Thus, the differential 1-form ω = ∑ i = 1
n Kidui is closed as

dω=0. This proves that the hyperbolic Ricci energy (Eq. (9)) is convex
and its unique global minimum corresponds to the hyperbolic metric
with zero vertex Gaussian curvatures. The discrete Ricci flow is the
negative gradient flow of the hyperbolic Ricci energy.

The algorithm with gradient descent is summarized as following:

(1) Compute the initial radius γi for each vertex vi, and weight ϕij for
each edge eij with the hyperbolic cosine law;

(2) Set the target Gaussian curvature as zero;



Fig. 3. Illustration of the hyperbolic cosine law (a) and visualization of the circle packing metric on a hyperbolic triangle (b).
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(3) Compute edge lengths with Eq. (6), face corner angles with
Eq. (4), and the Gaussian curvature with Eq. (5).

(4) Update ui for each vertex vi with Eq. (8) as ui + 1 = ui − 2ΔtKi.
(5) Update γi with Eq. (7).
(6) Repeat steps (3) to (5) until the final Gaussian curvature is no

greater than a user-specified error tolerance.

Instead of gradient descent, the Ricci energy (Eq. (9)) can also be
optimized by Newton's method (Jin et al., 2008; Wang et al., 2012),
which requires compute theHessianmatrix. LetH=(hij) be theHessian
matrix, then

hi j ¼
∂Ki

∂uj
; hii ¼

∂Ki

∂ui

In our experiments, we have used the Newton's method to optimize
the Ricci energy, which is stable and fast. For a ventricular surface with
more than 50 K vertices, the optimization took less than 30 s on a
2.66 GHz Intel Quad CPU Q8400 PC with Windows 7 64-bit operating
system.

Embedding into the Poincaré disk model

After computing the discrete hyperbolic metric of a surface, we can
embed this surface into the Poincaré disk. In the beginning, we select
a seed face f012 and compute the positions of the vertices v0, v1, and v2
in the Poincaré disk as following:

p v0ð Þ ¼ 0;0ð Þ; p v1ð Þ ¼ el01−1
el01 þ 1

1;0ð Þ; p v2ð Þ

¼ el02−1
el02 þ 1

cos θ120 ; sin θ120
� �

Then we propagate the embedding to other faces. We put all un-
embedded faces adjacent to the current face into a queue. We pop a
face fijk from the queue and check whether all its vertices have been
embedded. If so, we continue to pop the next face from the queue.
Otherwise, suppose that vi and vj are embedded, then p(vk) can be com-
puted as one of the two intersections between two hyperbolic circles,
circ(p(vi), lki) and circ(p(vj), lkj), satisfying (p(vj) − p(vi)) × (p(vk) −
p(vi)) N 0. We continue to do so until the queue is empty. Fig. 4(c)
shows the embedding of the ventricular surface in the Poincaré disk.
The boundaries γ1, γ2, and γ3 have become geodesics γ1

2 ;
γ1
2 ;γ2; and

γ3. We call it as the Poincaré disk embedding of the fundamental domain
of the surface. As pointed out in Jin et al. (2008), different selections of
the seed face will result in different layouts of the fundamental domain.
In this work, to keep the fundamental domain consistency across
subjects, we first applied our prior holomorphic 1-form method
(Wang et al., 2011, 2009e) to compute a Euclidean conformal mapping
and automatically chose the seed face at the center of the zero point re-
gion (Wang et al., 2007), as shown in Fig. 9(a).

The computed boundaries of the fundamental domains of different
ventricular surfaces are not consistent, i.e., the positions of τ1 and τ2
may not be consistent. We further apply a geodesic lifting step to
achieve consistent boundaries with the deck transformation group gen-
erators. For a surface with hyperbolic geometry, its universal covering
space is the entire Poincaré disk. As shown in Fig. 4(c), there are 4 free
sides in the fundamental domain, τ1 and τ2 and their compliments
τ1−1 and τ2−1 (after we cut along a curve, it generates two boundaries
on the new surface, one is τ1 and its compliment is τ1−1). The rigid trans-
formations across these sides induce different periods of the surface
mapping. In Poincaré disk, all rigidmotions areMöbius transformations.
There exist uniqueMöbius transformationsmap τ1 to τ1−1 and τ2 to τ2−1,
respectively, as shown in Fig. 4(d).We explain the details for computing
theMöbius transformation that maps τ1 to τ1−1. Counterclockwisely, let
the starting and ending vertices of the two sides be ∂τ1 = (p0, q0) and
∂τ1−1= (q1, p1). The geodesic distance from p0 to q0 equals the geodesic
distance from p1 to q1 in the Poincaré disk. To align them, we first com-
pute aMöbius transformation t0, whichmaps p0 to the origin and q0 to a
positive real number, with

t0 ¼ eiθ0
z−p0
1−p0z

; θ0 ¼ arg
p0−q0
1−p0q0

Similarly, we can compute another Möbius transformations t1, which
maps p1 to the origin and q1 to a positive real number. Then with
t0(q0) = t1(q1), we get the final Möbius transformation t = t1

−1 ∘ t0,
which satisfies p1 = t(p0) and q1 = t(q0). Any deck transformation
can be composed by the generators. Then the universal covering space
can be tiled by transforming a fundamental domain by the deck trans-
formations and gluing the transformed fundamental domains with the
original fundamental domain. Fig. 4(d) shows a portion of the universal
covering space, which is tiled by 5 fundamental domains, one original
and 4 transformed by the 4 deck transformation group generators.

Geodesic curve lifting and ventricular surface constrained harmonic map
via the Klein model

To register brain surfaces, a common approach is to compute a range
of intermediate mappings to a canonical parameter space, such as a
sphere (Bakircioglu et al., 1999; Fischl et al., 1999b; Gu et al., 2004;
Yeo et al., 2010) or a planar domain (Auzias et al., 2013; Joshi et al.,
2007; Thompson et al., 2004b; Thompson and Toga, 2002; Wang et al.,

image of Fig.�3


Fig. 4. A chart showing the computation of geodesic curves for a ventricular surface. After introducing one cut on each horn by topology optimization, the ventricular surface became a
genus-0 surface with 3 boundaries, which is homotopic to a pair of topological pants (a). We traced two paths connecting consistent endpoints of the boundaries, i.e., the endpoint
pair with the same color (b). We then computed the hyperbolic metric of the ventricular surface with hyperbolic Ricci flow and isometrically embedded it onto the Poincaré disk.
(c) is the topological disk fundamental domain, which was obtained by slicing (b) along the paths and embedding it on the Poincaré disk with the hyperbolic metric. (d) is a portion of
theuniversal covering space of theventricular surface, tiled by 5 fundamental domains,whichwere obtainedwith the deck transformation groupgenerators. In (d),we computedgeodesic
curves, i.e., hyperbolic circle arcs (e). The geodesic curves were consistent across subjects as we constrained them to connect consistent endpoints of existing geodesics γ1, γ2, and γ3.
(f) shows a zoomed view of the geodesic curves. After slicing the universal covering space along the geodesic curves, we got a consistent fundamental domain for each ventricular surface,
whichwe call the canonical fundamental domain (g). Finally, we converted (g) to the Kleinmodel (h), which is a Euclidean polygon. The Kleinmodelwas used as the canonical parameter
space for ventricular surface registration.

8 J. Shi et al. / NeuroImage 104 (2015) 1–20
2013b, 2010). In the currentwork,we propose to use the Kleinmodel as
the canonical space to register ventricular surfaces.

First, we use the Poincaré disk model to achieve consistent geodesic
curves across ventricular surfaces. As shown in Fig. 4(c), γ1

2 ;
γ1
2 ;γ2; and

γ3 are already geodesics on the Poincaré disk model, but the paths
between them, τ1, τ2, τ1−1, and τ2−1, are not. Fig. 4(b) shows the paths
on the original surface. If the positions of the paths are not consistent
across subjects, the fundamental domains will also be different for dif-
ferent surfaces. We solve this problem by locating the geodesic on the
Poincaré disk between two fixed points andmapping it back to the orig-
inal surface, a step known as geodesic curve lifting. Specifically, each of
these geodesics is an arc on a circle which passes two fixed points in
the Poincaré disk and is orthogonal to the unit circle. Thus the geodesics
are unique. The fixed points are the endpoints of existing geodesics. For
example, as shown in Fig. 4(e), τ1 is an arc on the circle which passes
one endpoint of γ1

2 and one endpoint of γ2 and is orthogonal to |z| = 1.
As we stated in Section Theoretical background, the initial paths τ1
and τ2 can be inconsistent, but they have to connect consistent end-
points of γ1, γ2, and γ3, as to guarantee the consistency of the geodesic
curve computation. After slicing the universal covering space along the
geodesics, we get the canonical fundamental domain, as shown in
Fig. 4(g). All the boundary curves become geodesics. As the geodesics
are unique, they are also consistent when we map them back to the
surface in ℝ3. As shown in Fig. 5, the first row shows a left ventricular
surface from the MCI stable group and second row shows one from
the MCI converter group. We can see that, although the two surfaces
have different shapes due to disease progression, the geodesics τ1 and
τ2 on them are consistent.

Furthermore, we convert the Poincaré model to the Klein model
with the following transformation (Zeng et al., 2010),

z→
2z

1þ zz
ð10Þ

It converts the canonical fundamental domains of the ventricular
surfaces to a Euclidean octagon, as shown in Fig. 4(h). Then we use
the Klein disk as the canonical parameter space for the ventricular sur-
face registration.

image of Fig.�4


Fig. 5. Illustration of ventricular surface registration with the hyperbolic Ricci flow and geodesic curve lifting. Surface 1 and surface 2 were from the MCI stable group and MCI converter
group, respectively. After computing their canonical fundamental domains with the steps in Fig. 4, we lifted the computed geodesic curves to the original surfaces. The last column shows
that the geodesic curves introduced by our method are consistent across subjects. Then the surfaces were registered by constrained harmonic map with consistent geodesic curve
matching.
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In our experiment, 133 left and 133 right ventricular surfaces were
registered to a common left and right template, respectively. The tem-
plates are the left and right ventricular surfaces from a randomly select-
ed subject. We implemented the octagon constrained harmonic map
(Wang et al., 2012, 2011). Briefly, the constrained harmonic map was
computed by solving the Laplace equation with the Dirichlet boundary
condition. Suppose M, N are two ventricular surfaces with their Klein
disks, the map f : M → N is a harmonic map if Δf = 0. In order to
solve the Laplace equation, all the boundary curves in the Klein octagon
disk were treated as boundary conditions and enforced to be aligned
across subjects with linear interpolation by the arc length parameter.
To show the correspondences between boundaries, we assigned unique
labels to geodesic boundaries shown in Fig. 5.
Surface tensor-based morphometry and its smoothness with heat
kernel method

In this work we use surface tensor-based morphometry (TBM)
(Chung et al., 2008; Davatzikos, 1996; Thompson et al., 2000) to analyze
Fig. 6. Illustration of statistical map showing local shape differences (p-values) between MCI
morphometry (TBM), which was smoothed by the heat kernel smoothing method (Chung et a
the ventricular shape changes along with disease progression. Suppose
ϕ : S1→ S2 is amap from surface S1 to surface S2. The derivativemap ofϕ
is the linear map between the tangent spaces dϕ : TM(p) → TM(ϕ(p)),
induced by the map ϕ, which also defines the Jacobian matrix of ϕ. In
the triangle mesh surface, the derivative map dϕ is approximated by
the linear map from one face [v1, v2, v3] to another [w1, w2, w3]. First,
the surfaces [v1, v2, v3] and [w1, w2, w3] are isometrically embedded
onto the Klein disk, the planar coordinates of the vertices vi and wi are
denoted by the same symbol vi and wi. Then the Jacobian matrix for
the derivative map dϕ can be explicitly computed as (Wang et al.,
2009a)

J ¼ dϕ ¼ w3−w1;w2−w1½ � v3−v1; v2−v1½ �−1 ð11Þ

Then the TBM is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Jð Þ

p
. TBM measures the amount of

local area changes in a surface with the map ϕ (Chung et al., 2008).
As pointed out in (Chung et al., 2005b, 2003a), in an integrated

surface analysis system, each step in the processing pipeline including
MR image acquisition, image segmentation, surface reconstruction,
converter and MCI stable groups from the ADNI baseline dataset, based on tensor-based
l., 2005b).

image of Fig.�5
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etc., are expected to introduce noise in the deformation measurement.
To account for the noise effects, we apply the heat kernel smoothing
algorithm proposed in (Chung et al., 2005b) to increase the SNR in the
TBM statistical features and boost the sensitivity of statistical analysis.
We briefly describe the smoothingmethod as follows, for details please
refer to (Chung et al., 2005b).

Let S be a surface and p∈ S be a point on S. Y is a real-valued function
defined on S, representing a measurement of the surface, e.g., the TBM
features in our study. Consider a stochastic model for Y as Y(p) =
θ(p) + ϵ(p), where θ is the unknown mean measurement and ϵ is a
zero mean Gaussian random field. The heat kernel smoothing estimator
of θ is defined by the convolution

θ pð Þ ¼ Kσ � Y pð Þ ¼
Z

S
Kσ p; qð ÞY qð Þdμ qð Þ ð12Þ

where q is a point on S which is adjacent to p, μ(q) is the surface
Lebesgue measure, and σ is the smoothing parameter (bandwidth). In
numerical implementation, if σ is sufficiently small and q is sufficiently
close to p, the heat kernel is defined as:

Kσ p; qð Þ≈ 1ffiffiffiffiffiffiffiffiffiffi
2πσ

p exp − d2 p; qð Þ
2σ2

" #
ð13Þ

where d(p, q) is the geodesic distance between p and q. Heat kernel
smoothing with large bandwidth can be decomposed into iterated
kernel smoothing with small bandwidth via

K mð Þ
σ � Y ¼ Kσ � Kσ �… � Kσ � Y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m times

¼ K ffiffiffi
m

p
σ � Y ð14Þ

For the case at hand, we define Np = {q0, q1, …, qk} to be the set of
neighboring points of p on S and the normalized truncated kernel for
S to be

Wσ p; qið Þ ¼
exp − d2 p; qið Þ

2σ2

" #
Xk

j¼0
exp −

d2 p; qj

� �
2σ2

24 35 ð15Þ

The discrete convolution is defined asWσ * Y(p) =∑ i = 0
k Wσ(p, qi)

Y(qi).

Ventricular surface morphometry analysis of MCI group differences study

To evaluatewhether ventricularmorphometry, analyzed in thisway,
could be a valid predictive biomarker, we studied morphological differ-
ences in the lateral ventricles extracted from the baseline MR images
between the two different MCI groups. We applied Student's t test on
the TBM statistic to study group difference; we used permutation tests
to correct for multiple comparisons (Nichols and Holmes, 2002).
Given two groups of ventricular surfaces, on each surface point, we
compute a t value with true group labels to represent the difference
between the two groups of subjects on this point. We then randomly
assign the ventricular surfaces into two groups with same number of
subjects in each group as in the true grouping and re-compute the t
value on each surface point, which we denote as the t′ value. The ran-
dom group assignment is permuted 5000 times and results in 5000 t′
values on each point. A probability on each surface point is computed
as the ratio of the number of t′ values which are greater than the t
value to the number of total permutations. These probability values
(p-values) are color coded on an average ventricular shape to build
the significance p-map (uncorrected) of the group comparison. Given
a pre-defined statistical threshold of p = 0.05, the feature in a
significance p-map is defined as number of surface points with p-
values lower than this threshold,which is also regarded as the real effect
in the true experiment. The feature is then comparedwith features that
occur by accident in the random groupings. A ratio is computed describ-
ing the fraction of the time an effect of similar or greater magnitude to
the real effect occurs in the randomassignments. This ratio is the chance
of the observed pattern occurring by accident and provides an overall
significance value of the map (corrected for multiple comparisons)
(Thompson et al., 2003).
Correlation between ventricular shape and cognition and
other AD biomarkers

In addition to examining the group difference, we also investigated
the ventricular shape morphometry correlation with each of several
cognitive tests such as the 11-item Alzheimer's Disease Assessment
Scale-Cognitive (ADAS-COG11) (Rosen et al., 1984), and with the
FDG-PET based hypometabolic convergence index (HCI) (Chen et al.,
2011), which is computed from the same subject's FDG-PET image
and is a single measurement of the extent to which the pattern and
magnitude of cerebral hypometabolism in an individual's FDG-PET
image correspond to that in AD patients. Such correlation analysis
may help evaluate whether the proposed ventricular morphometry is
linked to cognition or abnormal levels of AD-related markers that
were previously reported. We apply a Pearson correlation method to
analyze the relationship between the ventricular shape morphometry
and cognitive or FDG-PETmeasures, where the latter is used as the pre-
dictor. We estimate the p-value of the correlation at every surface point
to build the correlation p-map. The estimated r-value, i.e., the correla-
tion coefficient on each surface point, is also computed. Similar to
group difference analysis, the overall significance value of the correla-
tion, corrected for multiple comparisons, is obtained through a permu-
tation test (5000 iterations) of cognitive or other AD biomarker values.
Results

Volume and area differences between diagnostic groups

We first tested if there were significant differences between two
groups (MCI converter vs. stable) with two global measurements of
shape changes: the total volumes and surface areas of the ventricles.
In each experiment, we combined the volumes or areas of the left and
right ventricles to form a 1 × 2 vector (Vl, Vr) or (Al, Ar) for the permuta-
tion test with 5,000 random assignments of subjects to groups, given
0.05 as the significant level. However, neither of them detected signifi-
cant differences between the groups. The permutation test corrected
p-values are 0.0803 for the volume and 0.2922 for the area.
Group difference analysis with tensor-based morphometry

We performed a group comparison with Student's t test on the
smoothed TBM features after we registered ventricular surfaces with
our proposed method. Specifically, for all points on the ventricular sur-
face, we ran a permutation test with 5,000 random assignments of sub-
jects to groups to estimate the statistical significance of the areas with
group differences in surface morphometry. The probability was color
coded on each surface point as the statistical p-map of group difference.
Fig. 6 shows the p-map of group difference detected between the MCI
converter (n = 71) and stable (n = 62) groups, using the smoothed
TBM as a measure of local surface area change and the significance
level at each surface point as 0.05. In Fig. 6, the non-blue color areas
denote the statistically significant difference areas between two groups.
The overall significance of the map is 0.0172.
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Correlation analysis of ventricular morphometry with
cognitive measurements

We studied the correlation between the smoothed surface TBM
statistic and three cognitive measurements, including MMSE score
(Folstein et al., 1975), ADAS-COG11 (Rosen et al., 1984) and AVLT
(Rey, 1964) on the 133 subjects with MCI. After the permutation tests,
the correlation with ADAS-COG11 passed the multiple comparisons
(the overall significance of the correlation value p = 0.0110) while
the correlations with MMSE and AVLT did not pass the multiple com-
parisons test (the overall significance of the correlation value p =
0.8516 for MMSE and p = 0.4358 for AVLT). Fig. 7(a) shows the p-
map of correlation results with ADAS-COG11, where the non-blue
color areas denote the statistically significant difference areas;
(b) shows the r-map of the r-values where the red color denotes a
positive correlation and the blue color a negative correlation. In the
statistically significant areas in Fig. 7(a), the maximum r-value is
0.3701, the average r-value is 0.1548, and the dominant correlations
are positive (86.18%).
Correlation analysis of ventricular morphometry with HCI

Since all subjects included in this study had both structural MRI
and FDG-PET images, we attempted to study whether ventricular mor-
phometry features were correlated with FDG-PET based single global
index HCI. If such a correlation holds, we may use MRI measures as
surrogates of disease progression in AD, even in pre-clinical stages (for
related work, please see (Chou et al., 2009a, 2010; Henneman et al.,
2009; Vemuri et al., 2010; Whitwell et al., 2008)). In previous studies,
we showed that HCI correlated with AD progression and smaller hippo-
campal volumes (Chen et al., 2012; Reiman and Jagust, 2012; Schraml
et al., 2013; Toledo et al., 2013).
Fig. 7. Correlation maps with ADAS-COG11. (a) shows the p-map of correlation results with A
areas; (b) shows the r-map of the r-values where the red color denotes a positive correlation a
The smoothed TBM statistic of the 133 MCI patients was correlated
with their HCI measurements, with the permutation test corrected p-
value as 0.0001. Fig. 8(a) shows the correlation p-map color-coded
with uncorrected p-values and (b) shows the r-map color-coded with
the correlation coefficients. On the statistically significant areas in
Fig. 8(a), the maximum r-value is 0.5163, the average r-value is
0.3030, and the dominant correlations are positive (99.40%). It is inter-
esting to note that the enlargement of lateral ventricles in these patients
was correlated with higher HCI, implicating enlarged ventricles were
associatedwith greater glucose uptake reduction. Such positive correla-
tion was observed in multiple locations. Of special interest and relevant
to reported AD hypometabolism were the regions in the neighborhood
of posterior cingulate.
Discussion

Our study has two main findings. First, we demonstrate the feasibil-
ity to apply hyperbolic geometry to register ventricular surfaces across
subjects. In brain imaging, a surface-based morphometry analysis ap-
proach is to set upparametric grids on surfaces, and thenuse differential
geometry to comeupwith useful descriptors of surface features of inter-
est, or to summarize the geometry as a whole. Prior research has used
sphere (Jeong et al., 2013; Lee et al., 2013; Styner et al., 2005) or
Euclidean plane (Wang et al., 2011, 2010) as the parameter domain.
However, for ventricular surfaceswith a branching structure, as demon-
strated in our prior work (Wang et al., 2010), spherical mapping creates
distortions and planar mapping some inevitable singularities. The
hyperbolic Ricci flow method (Wang et al., 2009b, 2009c; Zeng et al.,
2010) is capable of parameterizing complex shapes. Thus it has the po-
tential to detect subtle differences between people with high accuracy
and categorize them into diseased and healthy control groups, or as in
the current study categorize them into different risk levels of disease,
DAS-COG11, where the non-blue color areas denote the statistically significant difference
nd the blue color a negative correlation.
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Fig. 8. Correlation maps with HCI. (a) shows the p-map of correlation results with HCI, where the non-blue color areas denote the statistically significant difference areas;
(b) shows the r-map of the r-values where the red color denotes a positive correlation and the blue color a negative correlation.
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by analyzing ventricular surface deformation tensors computed from a
set of parametric surfaces using concepts from hyperbolic conformal
parameterizations. In addition, the introduced hyperbolic Ricci flow
method is theoretically sound and numerically efficient (Jin et al.,
2008; Wang et al., 2012; Zeng et al., 2010). Together with geodesic
curve lifting and the Klein model, our proposed computational frame-
work may achieve a diffeomorphic ventricular surface registration
with consistent boundary matching condition. Second, the surface
tensor-based morphometry, which is computable from the conformal
grid, carries rich information on local surface geometry that is defined
at the coordinates of the well-organized surface grid. As demonstrated
in many prior studies (Chung et al., 2008, 2003b; Davatzikos, 1996;
Thompson et al., 2000), the resulting set of surface tensor methods
practically encodes a great deal of information that would otherwise
be inaccessible, or overlooked. The analysis of parametric meshes for
computational studies of ventricular structures can bemademore pow-
erful by analyzing the surface metric tensor information inherent in the
surface.

We validated our proposed methods in our ongoing work on MCI
conversion prediction (Chen et al., 2013) which examined baseline
measurements of structuralMRI and FDG-PET, in combinationwith cog-
nitive tests, to distinguish individuals withMCI who developed incident
AD from thosewhodid not, with the aimof establishing their usefulness
as predictors for progression to AD. Our current work focused on ven-
tricular morphometry analysis. Although the analyses of global ventric-
ular volume and surface area did not differentiate

MCI converter and MCI stable groups, our fine-grained analysis
revealed significant differences mostly localized around the subregion
of the ventricular body that abuts medial temporal lobe structures.
This subregional ventricular enlargement was reported to correlate
with atrophy of medial temporal lobe which includes the hippocampal
formation. Consistent with prior observations, e.g. (Frisoni et al., 2010;
Thompson et al., 2003), our findings suggest that grey matter atrophy
starts from the temporal lobe region and then spreads to involve frontal
cortices, consistent with Braak staging of neurofibrillary pathology
(Braak et al., 2006). Importantly, they provide evidence that ventricular
subfield analysis provides enhanced statistical power in structural MRI
analysis compared with ventricular volume analysis. Some recent stud-
ies (Li et al., 2012;Weiner et al., 2012;Westman et al., 2013) found that
including optimum features from multiple modalities provides better
AD predictive value than any onemeasure alone. The proposed ventric-
ular surface TBM features may enhance the predictive value of MRI-
derived data in AD research.

Furthermore, the positive correlation between ventricular mor-
phometry and ADAS-COG11 that we found is consistent with previous
studies that correlated ventricular expansion with worsening cognition
in MCI subjects (Jack et al., 2009; Samtani et al., 2012). The strong
positive correlationwith HCI values supports to the validity of our algo-
rithm and demonstrates the linkage between functional abnormalities
and structural changes (ventricle enlargement particularly in our
study). As shown in the Results section, we found that the ventricular
subregions where the statistically significant correlation between ven-
tricle enlargement and HCI abutted areas of earliest FDG-PET change
in AD, particularly the posterior cingulate (Buckner et al., 2008; Leech
and Sharp, 2014; Matsuda, 2007a), and to our knowledge, this is the
first study to explore the relationship between ventricular measures
and FDG-PET measures.

Applicability to other brain structures

As stated by the uniformization theorem, any surfacewith a negative
Euler characteristic number admits a hyperbolic background geometry

image of Fig.�8
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and can be conformally mapped to the hyperbolic space ℍ2. Geometri-
cally, the Euler characteristic number is defined as 2 − 2g for closed
surfaces, where g is the surface genus, i.e., the number of handles on a
surface, and is defined as 2 − 2g − b for surfaces with boundaries,
where b is the number of boundaries. Thus the hyperbolic Ricci flow
method has broad applicability in human brain surface morphome-
try studies, as surfaces of brain structures are often irregular and
topologically complicated. Here we take the cortical surface as an ex-
ample. In human brain mapping field, a diffeomorphic mapping be-
tween a pair of cortical surfaces with landmark correspondence is
usually pursued to study brain deformations along with disease pro-
gression. By slicing a cortical surface open along three or more land-
mark curves, the cortical surface becomes a genus-0 surface with
multiple boundaries, which has a negative Euler number. In our
prior work (Shi et al., 2012), we illustrated the application of our
method on a cortical surface with three landmark curves, which is
Fig. 9. Lateral ventricular surface parameterizationwith amethod based onholomorphic 1-form
parameterization has a zero point (a). In (Wang et al., 2009d), the ventricular surfacewas segm
domain and registered separately (b). After registering each part separately and merging the
registration is also affected by the locations of the cuts that divide a ventricular surface into th
homotopic to the topological pants. For cortical surfaces with more
landmarks, which also have negative Euler numbers, the hyperbolic
Ricci flow method is still applicable (Shi et al., 2013c, 2013d), so
the remaining processes of the proposed method follow naturally.
On the other hand, for different brain structures, certain processing
steps in the pipeline may need to be adapted accordingly. For exam-
ple, a major difference between cortical and ventricular surface pro-
cessing with the proposed method is the topology optimization.
Given the highly variable gyral patterns of cortical surfaces, one
may need to work with experienced neuroanatomists to manually
label homologous landmark curves across subjects following some
well-established anatomical protocols such as (Sowell et al., 2002),
as described in our prior work (Wang et al., 2012, 2013b). In this
case, the topology optimization reduces to slicing a cortical surface
along a set of manually defined landmark curves to change it into a
genus-0 surface with multiple boundaries.
s (Wang et al., 2009d). Due to the property of holomorphic 1-forms, the ventricular surface
entedwith curves traced from the zero point and each hornwasmapped to the parameter
m back together, the ventricular surface has a hole at the zero point position (c). Surface
ree parts (d).
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Comparison with holomorphic 1-form algorithm

The holomorphic 1-form algorithm (Wang et al., 2009d) is a com-
monly used method to analyze lateral ventricular surfaces (Wang
et al., 2011). However, due to the limitation of holomorphic 1-form
itself, this method introduces singularities and the number of singular-
ities equals the absolute value of the Euler characteristic number of a
surface. In analyzing lateral ventricular surfaces, each surface has a sin-
gular point, as shown in Fig. 9(a), which was called zero point in Wang
et al. (2009d) and Wang et al. (2011) and used as the starting point to
segment a ventricular surface into three parts, the superior horn, the
inferior horn, and the occipital horn, as shown in Fig. 9(b). After regis-
tering the three horns separately and merging them to form the
whole registered ventricular surface, a hole is generated around the
zero point due to the changes from surface registration, as shown in
Fig. 9(c), which is not reasonable in analyzing anatomical surfaces. On
the other hand, the new registration introduces no holes as shown in
Fig. 6. Furthermore, the segmentation of ventricular surfaces with
holomorphic 1-form, though consistent, separates an entire surface
into independent partitions. The independent registrations of different
partitions are based on matching surface features which should not be
separated. For example, when registering the superior horn, the other
two horns are not affected, which may not be true when registering
the ventricular surfaces as a whole. Particularly, as shown in Fig. 6, as
most of the significantly different areas concentrated at the locations
of the partition cuts, the statistical analysis may be affected by the seg-
mentations. Another problem with the ventricular surface segmenta-
tion is that the surface registration may be affected by the locations of
the cuts that divide a ventricular surface into three parts. As shown in
Fig. 9(d), we slightly changed the locations of the cuts on a left ventric-
ular surface (shown in two different views), where the original cuts are
shown in green, and the changed cuts are shown in red. Although the
cutting locations almost overlap, the resulting registered ventricular
surfaces are different. By measuring the differences with the Euclidean
Fig. 10. Comparison with SPHARM. (a) is the spherical harmonic mapping of a left ventricular
differences (p-values) between MCI converter (N = 58) and MCI stable (N = 53) groups fro
shape differences (p-values) between the same groups as in (b); (d) shows the CDF plots com
distances between pairs of vertices on the two registered surfaces, the
differences are in the range of [0.0001, 1.3545]. Even more careful stud-
ies are necessary to determine the impact of the cutting locations on the
statistical analysis. Thus it is advantageous for the new algorithm as it
takes the ventricular surface as an entirety for the registration.

Comparison with SPHARM

SPHARM (Styner et al., 2006) is another surface mapping tool with
a number of applications (Alhadidi et al., 2012; Paniagua et al., 2012,
2013; Tae et al., 2011). It takes a binary image segmentation as
input and provides functions such as surface reconstruction, spherical
harmonic mapping and surface registration; statistical analysis tools
are also included. The major limitation of SPHARM is that it assumes
the input binary image segmentation has a spherical topology. Thus
prior work on ventricular shape morphometry with SPHARM usually
discarded the inferior horn (Gerig et al., 2001; Paniagua et al., 2013).
The inclusion of the long and narrow inferior horn in our segmentation
makes the shape of the lateral ventricle non-spherical. As a result,
SPHARM cannot successfully parameterize the concave ventricular sur-
faces that are reconstructed from our segmentation unless a coarse res-
olution is used. For this experiment, we resampled the segmented
binary images into a resolution of 2 × 2×2mm3. However, the resulting
spherical parameterizations still have severe distortion and overlap on
the inferior horn, as shown in Fig. 10(a), and 22 subjects failed the
parameterization process. After surface registration, the TBM statistic
was computed at each vertex of the aligned surfaces as described in
Section Surface tensor-based morphometry and its smoothness with
heat kernel method and group difference was analyzed as in Section
Ventricular surface morphometry analysis of MCI group differences
study. The significance p-map of group comparison between 58
converters and 53 stable MCI subjects with SPHARM is shown in
Fig. 10(b). The result of ourmethod is shown in Fig. 10(c) and the cumu-
lative distribution function (CDF) plots in Fig. 10(d) show the
surface; (b) is the statistical map from SPHARM (Styner et al., 2006) showing local shape
m the ADNI baseline dataset; (c) is the statistical map from our method showing local
paring the two methods.
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comparison of the resulting p-values for each method. While the line
y = x represents null hypothesis, which implies there is no detectable
difference, a steeper curve suggests that greater differences are detect-
ed. The details of the experiment with SPHARM can be found in (Shi
et al., 2013a). From the CDF comparison, both methods got comparable
results, but our method is more robust for processing the concave
ventricular surfaces. The inferior horn on the lateral ventricle is also
important for the study of AD, as it is adjacent to the hippocampus
and its enlargement may indicate hippocampal atrophy—a well-
established biomarker for AD. As shown in Fig. 6, our approach detected
significant differences on both left and right inferior horns. Even with a
small dataset, our method detected significant differences on the right
inferior horn, as shown in Fig. 10(c). The significance p-maps of the
two methods are not quite consistent, most probably because that de-
tails in the original image segmentations were greatly removed during
the resolution resampling step of SPHARM. A more convincing way to
validate the new algorithm is to apply it to study cortical surface mor-
phometry and compare the results to other extensively applied cortical
analysis tools such as FreeSurfer (Fischl et al., 1999a). We will address
this problem in future work.

Comparisons with voxel-based morphometry and pattern analysis

When studying brain morphology with imaging, the voxel-based
morphometry (VBM) method has been extensively developed, im-
proved, and used (Ashburner and Friston, 2000; Good et al., 2001;
Killgore et al., 2012; Mechelli et al., 2005; Niedtfeld I et al., 2013;
Whitwell, 2009). Briefly, VBM starts by spatially normalizing the T1-
weighted image of each individual subject to a template image to estab-
lish a voxel-to-voxel correspondence across subjects. The registration
process consists of both affine transformation and a nonlinear deforma-
tion. After segmenting the registered images into tissue classes, each
voxel contains a measure of the probability that it belongs to a specific
segmentation class. This quantity can be used to compute other brain
anatomical features such as gray matter volume (Ashburner and
Friston, 2000). Voxel-wise statistical analyses are then applied to
study local differences in the anatomical features of each tissue class
across subjects. The VBM method is available in many major neuro-
imaging software packages such as FSL and SPM and is efficient and
easy to apply. However, the VBM method may have limited accuracy
in measuring some aspects of brain morphology, particularly in regions
where fine anatomical features are found within brain structures. For
example, the cerebral cortex has a highly folded geometry. Many of its
anatomical features are built in deep folds. The voxel-wise nature of
the VBM method may limit its capability to accurately measure such
features and to align these features across subjects. On the other hand,
our surface-based method can achieve sub-voxel accuracy when ap-
plied to some specific structures. For example, as discussed above, the
hyperbolic Ricci flowmethod can conformally flatten a convoluted cor-
tical surface onto a 2D domain (Shi et al., 2013c). The flattened cortical
surface retains substantial geometric information about the original sur-
face with no singularities or overlap in the mapping, so all features in
the cortical folds are well preserved and can be accurately analyzed.
Pattern analysis (Joshi et al., 2011; Li et al., 2010; Liu et al., 2014) is
another commonly applied method, which aims to identify the most
discriminative disease-related features in brain images or surfaces. In
this paper, the proposed method is based on tensor-based morpho-
metry (TBM), which is generalized to deal with 3D surfaces, to study
the morphological deformation patterns of ventricular surfaces along
with disease progression. The TBM features encode rich information
about the local surface geometry, which may be inaccessible or over-
looked in other methods (Chung et al., 2008, 2003b; Davatzikos, 1996;
Thompson et al., 2000). Experimental results in our group difference
study illustrate the differentiation power of the TBM features, as
shown in Fig. 6. These TBM features may also improve MRI-based diag-
nostic classification with sparse learning based feature selection
method (Wang et al., 2013b). Despite the many advantages of the pro-
posedmethod, however, a few issues need to be addressed before it can
be established as an attractive alternative to other methods. First, more
experiments on large-scale datasets of ventricular and other brain struc-
ture surfaces, especially cortical surfaces, are necessary to validate the
efficacy of the method. Second, the system needs to be automated to
hide the complex details for general users. Third, the ability of TBM
features in diagnostic classification needs more systematic study. We
will address these problems in our future work.

Statistical feature smoothing

In our surface processing pipeline, each of theMR image acquisition,
image segmentation, surface reconstruction, surface parameterization,
and surface registration procedures is expected to introduce noise in
the TBM statistical features. The mesh smoothing process introduced
in Section Image acquisition and preprocessing is used to reduce the
noise from image acquisition, segmentation and partial volume effects
in surface reconstruction (Shi et al., 2013a). The remaining noise and
noise introduced in subsequent processes still affect the SNR in the
TBM features and the final statistical analysis. Thus, we have applied
the heat kernel smoothing algorithm (Chung et al., 2005b) to the TBM
features before the group difference and correlation studies, as intro-
duced in Section Surface tensor-based morphometry and its smooth-
ness with heat kernel method. From Eq. (14), the bandwidth of the
smoothing process is determined by the number of iterations. As point-
ed out in (Han et al., 2006), the correlation of noise in surface measure-
ments falls off rapidly with distance on the surface, so it is sufficient to
use a small kernel bandwidth. For heat kernel smoothing on cortical
surfaces, usually applied parameters include bandwidth σ = 1 and
number of iterations m = 200 yielding the effective smoothness offfiffiffiffiffi
m

p ¼ 14:14 mm (Chung et al., 2005a) or even smaller smoothness
values such as 6 mm in (Han et al., 2006). Based on these observa-
tions, in our experiment, we set σ = 1, m = 10 giving the effective
smoothness of 3.16mm. As few studies in the literature have validat-
ed the performance of the heat kernel smoothing method (Seo et al.,
2010), the smoothing parameters were chosen tentatively. The
group difference p-map with unsmoothed TBM features is shown
in Fig. 11. In Fig. 6, the significant areas are consistent with those
in Fig. 11, but the noisy distributions are greatly improved by the
smoothing process. Similar comparison studies for correlation-
based p-maps give similar results. Thus the parameters are suitable
for our current studies. A potential future work is to quantitatively
study the effects of the heat kernel smoothing process on the statis-
tical analysis.

Surface multivariate tensor-based morphometry

In some of our prior studies (Wang et al., 2013b, 2010), the multi-
variate tensor-based morphometry (mTBM) was proved to be more
powerful for checking group differences than other statistics including
TBM. This paper used TBM as the statistic instead of mTBM because
for the lateral ventricle, a fluid-filled subcortical structure, its changes
vary drastically with normal aging, disease progression, or other brain
activities. As the mTBM is very sensitive to local changes, the resulting
significantly different areas spread on the ventricular surface even
after smoothing, making the results difficult to be interpreted as mean-
ingful anatomical findings or noise from subtle changes. Thus here we
used TBM as the measurement of changes.

Integration of relative pose statistical analysis

In the current study, the proposed surface-based ventricular mor-
phometry system relies on shape changes of the lateral ventricles
along with disease progression. Similar to other shape analysis studies
of a single structure, ventricular pose information is discarded in our



Fig. 11. Illustration of statistical map showing local shape differences (p-values) between MCI converter and MCI stable groups from the ADNI baseline dataset, based on determinant of
Jacobian matrix (TBM), which was not smoothed.
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system during the surface registration stage. Pose mainly depends on
extrinsic factors such as the position and orientation of a ventricular
surface in ℝ3 while our method depends on the intrinsic factors of the
ventricular surfaces such as local enlargement. Although it rarely hap-
pens that atrophy of brain tissue causes only pose changes in adjacent
structures without any local shape deformation, pose information is
still very important in brain morphometry studies. In (Bossa et al.,
2011), the statistical analysis of relative pose was presented to study
brain atrophy associated pose changes of the subcortical nuclei in AD.
Same method was applied in (Lao et al., 2013) to study pose changes
of thalamus due to prematurity and in (Lao et al., 2014) to study pose
changes of corpus callosum due to traumatic brain injury. Briefly, the
relative pose is computed by following steps, where we take ventricular
surfaces as an example. First, one-to-one point correspondences be-
tween different ventricular surfaces are established by a surface regis-
tration algorithm, such as the method proposed in this paper. Second,
for each registered ventricular surface, a pose matrix is obtained by
fitting a template shape to this surface with a Procrustes alignment.
Third, the mean pose is calculated iteratively with the pose matrix of
each ventricular surface. The relative pose of each ventricular surface,
which consists of 7 parameters: 1 scale scalar, 3 rotation scalars and 3
translation scalars, is obtained by subtracting the mean pose from its
pose matrix. Statistical analyses are then applied on the relative pose
parameters. For details of the algorithm, please refer to (Bossa et al.,
2011). Since our ventricular surface analysis gives indirect information
about the atrophy of surrounding brain structures, integration of rela-
tive pose analysis in our system may help to better understand the ab-
normal growth of brain tissue adjacent to lateral ventricles. In future,
we will try to integrate the statistical analysis of relative pose informa-
tion in our system.

In neuroimaging research, T1-weightedMRI has high contrast differ-
ences from surrounding structures making accurate lateral ventricle
segmentation straightforward for both manual and automatic methods
(Carmichael et al., 2007; Chou et al., 2010; Ferrarini et al., 2006; Jack
et al., 2003; Thompson et al., 2004a). Thus structural MRI based lateral
ventricular structure has been used to study a variety of humandiseases
including AD (Chou et al., 2009a; Ferrarini et al., 2006, 2008a; Gutman
et al., 2013; Jack et al., 2003; Thompson et al., 2004a; Wang et al.,
2011), HIV/AIDS (Thompson et al., 2006; Wang et al., 2010), normal
pressure hydrocephalus (Bader et al., 2013), ventriculomegaly
(Paniagua et al., 2013), vascular dementia (Bader et al., 2013), diabetes
mellitus (Lee et al., 2013), drug addiction (Jeong et al., 2013), and
others. Our proposed algorithm is very generalizable and may be
applied to a similar range of diseases including but not limited to AD.
Starting from our prior work on brain surface conformal parameteriza-
tion (Gu et al., 2004; Shi et al., 2013c, 2013d; Wang et al., 2009b, 2009c,
2007), here we show that the hyperbolic Ricci flow method can be
adopted to analyze branching ventricular morphometry. Besides its
global non-singularity parameterization, our method also carries a few
other novel ideas, such as using geodesic curve lifting to enforce amean-
ingful boundary matching, diffeomorphic surface registration via the
Klein model, and combing hyperbolic conformal parameterization
with TBM analysis. We expect that ourwork can provide some practical
experience and inspire more interest in hyperbolic geometry related
neuroimaging research.

Conclusion

In this paper, we present a hyperbolic Ricci flow and surface TBM
based ventricularmorphometry system,which can improve the compu-
tational efficiency and accuracy for in vivo regional structuralMRI later-
al ventricle estimation. Our approach introduces the hyperbolic Ricci
flow method which computes a ventricular surface conformal parame-
terization on the hyperbolic Poincaré disk without any singularity.
Through geodesic curve lifting and the conversion to the Klein model
(Zeng et al., 2010), we can compute a diffeomorphic surface mapping
with consistent boundary matching condition. Furthermore, we com-
pute the TBM from the well-organized conformal grids and use it to
capture any possible subtle surface deformations.We applied the devel-
oped tool to our ongoing work on MCI conversion prediction (Chen
et al., 2013) and our results demonstrated that our proposed method
achieved good correlation with cognition and other AD biomarker
such as FDG-PET, which may help predict longitudinal AD conversion
by capturing subtle ventricular morphometric differences from the
baseline image analysis.

In the past few years, our group has developed a series of structural
MRI analysis software tools for AD research, such as multivariate TBM
on cortical surface (Wang et al., 2013b) and hippocampal abnormality
analyses (Shi et al., 2014, 2013a, 2013b; Wang et al., 2011), together
with cortical thickness estimation with volumetric Laplace–Beltrami
operator and heat kernel (Wang et al., 2013a, 2014). In the future, we
plan to apply our structural MRI software tools in our ongoing preclini-
cal AD research (Caselli and Reiman, 2013; Langbaum et al., 2013). We
will carefully explore a broad range of research questions on structural
MRI analysis (Braskie and Thompson, 2014), such as (1) structural
MRI as an AD biomarker to measure AD progression; (2) the relation-
ship of structural MRI to cognition (3) and to other AD biomarkers in-
cluding amyloid imaging and FDG-PET, and (4) the value for structural
MRI measures to help predict cognitive decline.
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