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Background: The spatial coefficient of variation (sCoV) of arterial spin-labeled (ASL) MRI can index cerebral blood flow
spatial heterogeneity. This metric reflects delayed blood delivery—seen as a hyperintense ASL signal juxtaposed by
hypointense regions.
Purpose: To investigate the use of ASL-sCoV in the classification of cognitively unimpaired (CU), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) cohorts.
Study Type: Prospective/cohort.
Population: Baseline ASL images from AD neuroimaging initiative dataset in three groups of CU, MCI, and AD (N = 258).
Field Strength/Sequence: Pulsed ASL (PICORE QT2) images were acquired on 3 T Siemens systems (TE/TR = 12/3400 msec,
TI1/2 = 700/1900 msec).
Assessment: ASL-sCoV was calculated in temporal, parietal, occipital, and frontal lobes as well as whole gray matter.
Statistical Tests: The primary analysis used an analysis of covariance to investigate sCoV and cognitive group (CU, MCI, AD)
associations. We also evaluated the repeatability of sCoV by calculating within-subject agreement in a subgroup of CU partici-
pants with a repeat ASL. The secondary analyses assessed ventricular volume, amyloid burden, glucose uptake, ASL-sCoV,
and regional CBF as cognitive group classifiers using logistic regression models and receiver operating characteristic analyses.
Results: We found that global and temporal lobe sCoV differed between cognitive groups (P = 0.006). Post-hoc tests
showed that temporal lobe sCoV was lower in CU than in MCI (Cohen’s d = –0.36) or AD (Cohen’s d = –1.36). We found
that sCoV was moderately repeatable in CU (intersession intraclass correlation = 0.50; intrasession intraclass correla-
tion = 0.88). Subsequent logistic regression analyses revealed that temporal lobe sCoV and amyloid uptake classified
CU vs. MCI (P < 0.01; accuracy = 78%). Temporal lobe sCoV, amyloid, and glucose uptake classified CU vs. AD (P < 0.01;
accuracy = 97%); glucose uptake significantly classified MCI vs. AD (P < 0.01; accuracy = 85%).
Data Conclusion: We showed that ASL spatial heterogeneity can be used alongside AD neuroimaging markers to distin-
guish cognitive groups, in particular, cognitively unimpaired from cognitively impaired individuals.
Level of Evidence: 2
Technical Efficacy: Stage 3
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ALZHEIMER’S DISEASE (AD) is the most common
type of dementia and for which, currently, there is no

disease-modifying therapy available. Recent studies report that
cerebral hemodynamic information provide some of the

earliest signs of neurodegenerative processes that contribute to
AD,1,2 although the pathophysiological correlates remain a
topic of debate. Early changes include inadequate cerebral
blood flow (CBF) supply, microvascular dysfunction, altered

View this article online at wileyonlinelibrary.com. DOI: 10.1002/jmri.26650

Received Aug 15, 2018, Accepted for publication Dec 29, 2018.

*Address reprint requests to: Z.S., Department of Medical Biophysics, University of Toronto, Sunnybrook Research Institute, 2075 Bayview Avenue, M6-168,
Toronto, ON, Canada. E-mail: zahra.shirzadi@mail.utoronto.ca

Contract grant sponsor: Canadian Institutes of Health Research; Contract grant number: CIHR CSE133351; Contract grant sponsor: University of Toronto;
Contract grant sponsor: Delphine Martin Prize from Parkinson Society Canada and an Independent Investigator Grant from the Brain & Behavior Research

Foundation (to B.J.M.).

From the 1Department of Medical Biophysics, University of Toronto, ON, Canada; 2Hurvitz Brain Sciences, Sunnybrook Research Institute, University of
Toronto, ON, Canada; 3Department of Radiology, VU Medical Center, Amsterdam, The Netherlands; and 4Department of Medicine (Neurology), Sunnybrook

Health Sciences Centre, University of Toronto, ON, Canada

© 2019 International Society for Magnetic Resonance in Medicine858

https://orcid.org/0000-0003-0894-0307
mailto:zahra.shirzadi@mail.utoronto.ca
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjmri.26650&domain=pdf&date_stamp=2019-01-21


cerebral metabolism, or combinations thereof.2 Cerebral
hemodynamic measures offer potential as biomarkers for at-risk
individuals, prior to AD diagnosis, which would enable screen-
ing and/or early interventions.

Arterial spin-labeled (ASL) magnetic resonance imaging
(MRI) is well suited in this respect because it relies on a nonin-
vasive endogenous tracer in the form of magnetically labeled
blood water.3 Previous ASL studies have shown reductions of
global and regional CBF mainly in posterior cingulate cortex,
precuneus, parietal lobes, and inferior frontal regions in
patients with AD compared with cognitively unimpaired (CU)
individuals.4–7 Landau et al identified brain regions with abnor-
mal glucose uptake in AD based on a meta-analysis; they found
regions in posterior cingulate, temporal and parietal lobes, and
called in meta-ROI (region of interest).8 Given the relationship
of glucose uptake and CBF, Wang et al used data from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) and found
reduced CBF in meta-ROI in AD compared with CU.9

ASL is used primarily to image CBF; arterial transit
time (ATT), however, is an additional source of hemody-
namic contrast. For example, the intravascular ASL signal
(ie, increased ASL signal in proximity to large vessels) pro-
duces angiographic contrast. Prolonged ASL-based ATT is
prominent in aging10,11 and AD5 studies. ATT is easily mea-
surable given additional scan time, but it is often omitted
from clinical ASL studies in the interest of scan time.

Recent studies, however, shows that it is possible to esti-
mate ATT indirectly from a single postlabeling delay ASL
image, which is appealing clinically.12,13 The spatial coefficient
of variation (sCoV) across gray matter (GM) voxels is a single
value that describes the spatial heterogeneity of CBF.12 It is
assumed that a CBF map that is relatively homogeneous across
GM voxels will yield a low sCoV, and indicates a healthy perfu-
sion pattern, whereas hemodynamic alterations that contribute
to prolonged ATT and/or regional CBF changes will increase
CBF spatial heterogeneity, thus increasing ASL sCoV. This
study investigated the use of ASL sCoV in the classification of
cognitively unimpaired and cognitively impaired individuals.

Materials and Methods
ADNI Dataset
Data used in the preparation of this article was obtained from the
ADNI database (www.adni.loni.usc.edu). ADNI was launched in
2003 as a public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, positron emission tomography (PET), other
biological markers and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and early
AD. For up-to-date information, see www.adni-info.org.

Participants
Participants provided written informed consent and completed ques-
tionnaires approved by each participating site’s Institutional Review

Board. Participants were between 55 and 90 years old. They spoke
English or Spanish fluently and had no contradiction to MRI.
People with significant neurological disorders (other than AD) were
excluded; this included major depression, bipolar disorder, schizo-
phrenia, etc. The full list of inclusion/exclusion criteria for ADNI
participants may be accessed at https://adni.loni.usc.edu/wp-content/
uploads/2008/07/adni2-procedures-manual.pdf. Baseline data from
ADNI-GO and ADNI-2 were used in the cross-sectional study since
ADNI-1 did not include an ASL acquisition. Only CU, MCI, and
AD cohorts were included. Early and late MCI groups were com-
bined into a single MCI group. CU individuals were free of any
memory impairment and any other significant impairment in cogni-
tive function and activities of daily living. MCI and AD groups had
abnormal memory function examined by the Wechsler memory scale
and clinical dementia rating scores. A subgroup of CU who had a
repeat scan in less than 3 months from baseline were also included
for the repeatability analysis. Data collection occurred between April
2011 and January 2013 and data were accessed in June 2017. The
sample sizes for secondary analysis were smaller, depending on the
availability of other AD biomarkers.

MRI Acquisition
MR images were collected on 3 T Siemens (Erlangen, Germany) sys-
tems at 17 sites using a standardized protocol. Pulsed ASL (PICORE
QT2) images were acquired with a 2D EPI readout with the following
details: echo time (TE)/repetition time (TR) = 12/3400 msec,
TI1/2 = 700/1900 msec, voxel size = 4 × 4 × 4 mm3, and matrix
size = 64 × 64 × 24. A total of 52 control-label pairs and an M0 cali-
bration image were collected. 3D magnetization-prepared rapid
gradient-echo (MPRAGE) T1-weighted images were also acquired with
TE = 3 msec, TR = 2300 msec, TI = 90 msec, flip angle = 9�, voxel
size = 1 × 1 × 1.2 mm3, and matrix = 256 × 240 × 176 for tissue
segmentation purposes.

MRI Processing
We processed ASL images using the tools in the FMRIB software
library.14 This procedure consisted of: 1) aligning control and label
images to the mean control image; 2) calculating the ASL difference
images using sinc interpolation; 3) a quality control step acting on
intermediate ASL difference images to increase the reliability of CBF
estimates15; 4) calculating the average of ASL difference map from
images that passed quality control; and 5) partial volume correc-
tion.16 For CBF quantification, the following equation was used3:

CBF = 6000×
λ×ΔM

2× α×TI1×M0
× e

TI2 +Δtz z−1ð Þ
T1,b ð1Þ

Where λ is the blood–brain partition coefficient (assumed to be
0.9 mL/g17); ΔM is the mean ASL difference image; α is the label-
ing efficiency (assumed to be 0.9818); TI1 and TI2 are ASL timing
parameters (listed above); M0 is the ASL calibration image; T1,b is
the longitudinal relaxation time of blood (assumed to be
1650 msec19); Δtz is the acquisition time of each axial slice, and z is
a slice number index.

Brain tissue segmentation was performed on the T1-weighted
image using FSL FAST20 to isolate GM voxels based on a probabil-
ity threshold of 70%. We coregistered T1-weighted images to the
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ASL coordinate space and overlaid the corresponding GM masks to
CBF images using FSL FLIRT.21 We calculated mean CBF (μ) and
standard deviation of CBF across the voxels in the ROI (σ) to calcu-
late ASL sCoV as the following (12):

ASL sCoV %ð Þ = σ

μ
× 100 ð2Þ

ASL sCoV generates one value per ROI with a higher value reflect-
ing greater spatial heterogeneity.

Neuroimaging Summary Measures
We calculated ASL sCoV in frontal, temporal, parietal, and occipital
lobes using the masks generated from the Harvard-Oxford atlas and
coregistered to ASL space. For comparison, we also calculated ASL
sCoV from all GM voxels, ie, a global measure of CBF spatial het-
erogeneity. As a summary measure of ASL CBF, we calculated mean
CBF in the meta-ROI that was previously identified as affected
regions in AD.8,9

We extracted ventricular and intracranial volumes from the pro-
cessed MRI in the ADNI dataset; ventricular volume was calculated as
described previously22 and was normalized to the intracranial volume
to serve as an index of brain tissue atrophy. We used Florbetapir PET
processed data to represent the amyloid burden in the brain. The stan-
dardized uptake value ratio of amyloid was calculated as the following:
mean uptake of cortical GM regions (including: frontal, anterior/
posterior cingulate, lateral parietal, lateral temporal) divided by
the mean uptake of cerebellum (ADNI_UCBERKELEY_AV45_
Methods_12.03.15). From fluorodeoxyglucose PET, we used the
average intensity normalized signal in the meta-ROI8 as a proxy of
cerebral glucose uptake.

Statistical Assessments
Statistical analyses were performed in R (R 3.3.3 GUI 1.66) with
P < 0.05 defined as significant. For the primary analysis, we used an
analysis of covariance in which sCoV was the dependent variable
and cognitive group (CU, MCI, AD) was the independent variable.
This analysis was repeated five times: four lobar ASL sCoV measures
and one global GM; thus, the P-values were Bonferroni-corrected
for multiple comparisons, ie, P < 0.01 was considered significant for
these analyses. This primary model included these covariates: age,
sex, APOE-ε4 status (APOE-ε4 noncarriers = 0; APOE-ε4 car-
riers = 1), number of retained ASL volumes, and site. The choice of
covariates was based on previous studies that showed an effect of age
and sex on ASL sCoV,12 APOE-ε4 status on ASL measures,23 and
effect of site on ASL measures.24 Lastly, the number of ASL volumes
will vary by virtue of the image processing; thus, we control for cal-
culating the ASL sCoV. We compared these measures’ effect size by
calculating a Cohen’s d to identify the most pertinent ASL sCoV
metric, ie, global or lobar sCoV.

In the repeatability analysis, we conducted paired-sample
t-tests and calculated the intraclass correlation coefficient (ICC)
between the baseline and repeat ASL sCoV in global GM. For this
analysis, ASL sCoV measures were not adjusted for any of the
above-mentioned covariates to avoid any potential bias in the repeat-
ability estimates. We also performed an intrasession repeatability
analysis: ASL sCoV was calculated twice per participant by splitting

the ASL difference images at baseline into two independent sets and
comparing the sCoV estimates.

The secondary analyses assessed normalized ventricular vol-
ume, amyloid burden, glucose uptake, ASL sCoV, and meta-ROI
CBF as cognitive group classifiers using logistic regression models,
with age, sex, and APOE-ε4 as covariates. The choice of covariates
for the secondary analysis was based on previous studies that showed
effects of age, sex, and APOE-ε4 status on AD diagnosis.25,26 Neuro-
imaging measures were tested and adjusted for the site effect when
necessary, prior to the classification analysis, by calculating the resid-
uals using analysis of variance models.

We then performed receiver operating characteristic analyses
and calculated maximum accuracy as well as area under the curve to
indicate the performance of models with and without ASL measures.
To examine the added value of ASL measures statistically, we con-
ducted likelihood ratio tests with P < 0.05 defined as significant.

Results
Table 1 summarizes the sample characteristics for the primary
analysis. A sample of 258 individuals was available for the pri-
mary analysis; a subsample of 159 individuals had additional
neuroimaging measures required for the secondary analysis.
Each ASL image includes 104 intermediate ASL difference
images obtained from 52 control-label pairs. A quality control
procedure was performed to exclude poor-quality intermedi-
ate ASL difference images.15 After the quality control step,
the number of retained ASL difference images in this sample
ranged from 31 to 103 out of the possible 104 intermediate
images (mean = 84; SD = 14). Figure 1 shows three represen-
tative CBF maps from the participants in this study with their
corresponding density plots of voxel intensities in GM. These
plots show that higher sCoV corresponds to more intravascu-
lar artifact and more skewed CBF histograms.

Figure 2 illustrates ASL sCoV measures with respect to
the cognitive groups. Analysis of covariance revealed that
global GM sCoV (F2,258 = 5.2, P = 0.006) as well as sCoV in
temporal lobe (F2,258 = 5.1, P = 0.006) differed between cog-
nitive groups after adjusting for primary covariates. Table 2
shows between-group effect sizes of temporal sCoV and total
GM. The temporal lobe sCoV had a greater effect size com-
pared with global sCoV, thus this lobar ROI was used for the
secondary analysis.

To assess reproducibility of the ASL sCoV metric, base-
line and 3-month repeat ASL scans were considered from
39 available CU participants. Figure 3a,b shows the scatter-
plot and Bland–Altman plot for ASL sCoV, respectively
(colors denote site). One case was removed from the repeat-
ability analysis due to an artifact in the repeat ASL image,
and marked with an asterisk in the plots. We found there was
no significant difference between baseline and repeat sCoV
measures (paired t-test; P > 0.2; Cohen’s d = –0.22). In addi-
tion, there was a moderate agreement27 between these two
measurements (ICC = 0.50; N = 38).
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For the intrasession repeatability, we used baseline ASL
data from 39 CU individuals, ie, two CBF maps and two
sCoV values for these participants. The scatter and Bland–
Altman plots show no intrasession difference in sCoV
(Fig. 3c,d, where colors denote site). We found there was no
significant difference between these two sCoV measures
(paired t-test; P > 0.6; Cohen’s d = –0.23). In addition, there
was a high agreement27 between these two measurements
(ICC = 0.88; N = 39).

Table 3 summarizes the neuroimaging measures in three
cognitive groups. Table 4 shows logistic regression results for
CU vs. MCI, CU vs. AD, and MCI vs. AD. Odds ratio and
z values are reported for each classifier. Odds ratios that are
significantly greater than 1 correspond to significant classi-
fiers. The z values are reported to show the directionality of
the classifiers, ie, classifiers with positive z values were ele-
vated in the cognitively impaired group compared with less
impaired group, whereas negative z values corresponded to

TABLE 1. Sample Characteristics of the Primary Analysis (N = 258)

Parameters CU (n = 67) MCI (n = 156) AD (n = 35)

Age (years) 74.1 (56.3–87.6) 71.8 (55.1–85.7) 76.6 (56.3–88.9)

Sex (male/female) 35; 32 88; 68 21; 14

MMSE (max:30) 28.9 (24–30) 27.8 (19–30) 22.6 (19–26)

APOE-ε4 (+/-) 17; 50 83; 73 19; 16

Gray matter ASL sCoV (%) 73.4 (41.3–207.6) 84.0 (42.6–234.2) 91.2 (53.0–267.2)

Meta-ROI CBF (mL/100 g/min) 84.0 (25.3–236.4) 77.8 (13.1–170.4) 67.9 (36.8–126.6)

Mean (range) or counts are reported.
CU: cognitively unimpaired; MCI: mild cognitive impairment; AD: Alzheimer’s disease; MMSE: mini-mental state examination;
APOE-ε4: Apolipoprotein E4; sCoV: spatial coefficient of variation; CBF: cerebral blood flow.

FIGURE 1: Left: Density plots of ASL CBF voxels for three representatives with low (a), intermediate (b), and high (c) spatial
heterogeneity. Right: Corresponding CBF images are shown in 2 × 2 × 2 mm3 Montreal Neurological Institute (MNI152) standard
space.
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reduced values in the cognitively impaired group. For CU
vs. MCI, the temporal lobe sCoV and amyloid burden classi-
fied these two groups with 78% accuracy. For CU vs. AD,
the amyloid burden, glucose uptake, and temporal lobe sCoV
classified these two groups with 97% accuracy. For MCI
vs. AD, the meta-ROI glucose uptake classified these two
groups with 85% accuracy.

The receiver operating characteristic analyses results are
summarized in Fig. 4. Area under the curve and maximum
accuracy are indicated in each curve. Models in which ASL
added value to other neuroimaging measures in cognitive
group classification are marked with an asterisk (likelihood
ratio test, P < 0.05). ASL measures added value in all the CU
vs. MCI classification models. ASL measures also added value
to all but glucose included CU vs. AD classification models.

Discussion
This study demonstrates that temporal lobe spatial heteroge-
neity of ASL CBF can be used to effectively classify cognitive
groups, namely because this convenient ASL metric distin-
guished CU from MCI and AD groups. Used in concert with
other neuroimaging markers (ie, neuroanatomical volumes,

regional CBF, amyloid burden, and glucose uptake), CBF
spatial heterogeneity contributed to group classifications
between 78% to 97% in accuracy.

The results of the current study are in line with previ-
ous ASL research that show associations between CBF and/or
ATT with cognitive group.5,9 The current study, however,
used sCoV as a proxy for ATT and it was calculated from a
single postlabel delay ASL acquisition. Vascular dysregulation
is posited to be an early AD marker,1 which is consistent with
the results presented in the current study. We found that
sCoV was different between cognitively unimpaired and cog-
nitively impaired groups but not between MCI and AD. This
suggests sCoV may be better suited to track hemodynamic
changes that happen at an earlier phase of AD progression.
We speculate that the lack of significant finding between
MCI and AD may be because more vascular dysregulation is
less remarkable as neurodegeneration advances or that more
widespread regional CBF reductions acts as a competing
source of sCoV contrast; mechanisms that govern this image
contrast remain unresolved. Further work is needed to resolve
the competing sources of contrast in CBF data broadly and
their influences on the sCoV summary measure.

The choice of MRI pulse sequence parameters dictates
the dominant source of contrast in an ASL image. The sCoV
can be calculated for an ASL difference image. For an ASL
acquisition with long postlabeling delays (>2000 msec), the
tracer signal is more likely to reside in the tissue, so that the
corresponding sCoV is expected to be low and represent spa-
tial variability of perfusion. For an ASL acquisition with
shorter postlabeling delays (<1500 msec), the tracer is more
likely to reside within large arteries, thus producing angio-
graphic image contrast and contribute to a higher spatial het-
erogeneity (ie, sCoV) effect, akin to ATT artifacts.3 Using a
modified ASL sequence, ie, one that suppresses large vessel
signal with vascular crushing gradients,28 it may be possible
to disentangle the competing sources of sCoV. The postlabel-
ing delay for the ADNI ASL was relatively short (1200 msec),
below the recommended range established after the ADNI
ASL protocol was devised (1800–2000 msec).3 This helps to

FIGURE 2: Spatial heterogeneity of ASL CBF images for the different cognitive groups: CU, MCI, and AD. GM sCoV (P = 0.006) and
temporal lobe sCoV (P = 0.006) were significantly different between groups.

TABLE 2. Effect Sizes (Cohen’s d) Are Calculated to
Show Pairwise Group Differences in sCoV for Two of
the Five Brain Regions Investigated

Cognitive groups
Gray matter

sCoV
Temporal
lobe sCoV

CU vs. MCI –0.32* –0.36*

CU vs. AD –0.63* –1.36*

MCI vs. AD –0.16 –0.20

*Significant P values at P < 0.01 (P value is Bonferroni cor-
rected for five comparisons).
CU: cognitively unimpaired; MCI: mild cognitive impairment;
AD: Alzheimer’s disease; sCoV: spatial coefficient of variation.
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FIGURE 3: a: Scatterplot of ASL sCoV at session 1 and session 2. Solid line shows the regression line of session 1 and session 2 and
dashed line shows the equality line for reference. b: Bland–Altman plot for the baseline (session 1) and 3-month repeat (session 2)
ASL sCoV. c: Scatterplot of ASL sCoV for intrasession 1 and intrasession 2 obtained from intrasession repeatability analysis. Solid line
shows the regression line and dashed line shows the equality line for reference. d: Bland–Altman plot for the intrasession ASL sCoV.
The dashed lines in B and D show the mean of difference and dotted lines show mean � 2 × SD of difference. Data are labeled by
site while the site ID is recoded.

TABLE 3. Sample Characteristics of the Secondary Analysis (N = 159)

Parameters CU (n = 41) MCI (n = 88) AD (n = 30)

Age (years) 73.5 (63.2–84.7) 71.0 (55.1–85.1) 76.4 (62.3–86.6)

Sex (male/female) 19; 22 39; 49 19; 11

MMSE (max:30) 28.8 (24–30) 28.1 (24–30) 22.9 (19–26)

APOE-ε4 (+/-) 12; 29 45; 43 18; 12

Gray matter ASL sCoV (%) 72.7 (43.2–207.5) 83.3 (45.1–210.4) 85.0 (53.0–211.8)

Meta-ROI CBF (mL/100 g/min) 81.7 (25.3–236.4) 78.5 (13.1–142.6) 70.2 (36.8–126.6)

Ventricular volume (%ICV) 3.5 (0.9–9.2) 3.9 (0.9–11.6) 4.8 (1.8–10.5)

Amyloid burden (SUVR) 1.1 (0.9–1.7) 1.2 (0.8–2.0) 1.3 (0.8–1.7)

Meta-ROI Glucose uptake (SUVR) 1.3 (1.1–1.5) 1.2 (0.9–1.6) 1.1 (0.8–1.3)

Secondary analysis is a subgroup of the primary analysis for which neuroimaging measures in addition to ASL were available. Mean
(range) or counts are reported.
CU: cognitively unimpaired; MCI: mild cognitive impairment; AD: Alzheimer’s disease; sCoV: spatial coefficient of variation; CBF:
cerebral blood flow; ICV: intracranial volume; SUVR: standardized uptake value ratio.
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explain why the range of GM sCoV in this study was higher
than what was found previously in a group of elderly partici-
pants. The postlabeling delay in the previous study was longer
(1525 msec); therefore, we would expect more intravascular
sources in ADNI ASL data, and hence higher sCoV.12 In
addition, ADNI used a pulsed ASL acquisition, while Mut-
saerts et al12 used a pseudocontinuous ASL, and this could
explain the differences between the two studies.3

Although we found that ASL sCoV has a moderate
repeatability in CU individuals within a 3-month time
window,27 the intrasession analysis showed that ASL sCoV has
a high repeatability. The intersession ASL repeatability coeffi-
cient was lower in this study compared with previous reports
on ASL ATT and CBF.24 There might be several explanations
for this, including: 1) ASL repeatability studies are usually per-
formed within a 1- or 2-week time window, whereas baseline
and repeat visits were 3 months apart in this study; and 2) the
Bland–Altman plot also suggests some sites had lower repro-
ducibility. This was also observed in the previous ASL repeat-
ability study in which ICC ranged from 0.07–0.78 among
28 different sites. The sample size of the current study, how-
ever, was not sufficient to explore site effect statistically, ie,
N = 39 from 13 sites. The site reproducibility discrepancies
might relate to variability in subject compliance (ie, vigilance
to remain still during scanning), subject positioning in the
scanner, and/or operator-dependent planning of ASL images.

The results from the current study showed that ASL
sCoV was able to classify CU vs. MCI and CU vs. AD while
accounting for additional neuroimaging metrics: ventricular
volume, amyloid burden, and glucose uptake. Classification
accuracy obtained from these models (CU vs. MCI: 78%;
CU vs. AD: 97%; MCI vs. AD: 85%) were a few percentage
points higher than previous reports of comparable sample
sizes. Apostolova et al reported an accuracy of CU vs. MCI:
77%; CU vs. AD: 84%; MCI vs. AD: 69% using anatomical

MRI and cerebrospinal fluid markers.25 Another study
reported 62.7% accuracy in classification of CU, MCI, and
AD using anatomical features that included hippocampal
shape, texture, and cortical thickness.29 A whole-brain hierar-
chical network analysis of >700 brain images showed accuracy
of CU vs. MCI: 84%; CU vs. AD: 94%; MCI vs. AD:
88%.30 On the other hand, Wang et al showed that the
meta-ROI ASL CBF was significantly reduced in AD com-
pared with CU; their model did not include structural,
glucose, nor amyloid markers.9 Given the significant role of
other imaging markers, we speculate that our study presents
comprehensive classification models, and demonstrates the
unique contributions provided by the different AD markers.
Moreover, Bron et al observed that regional CBF did not sig-
nificantly improve the classification accuracy of CU vs. AD
after accounting for structural markers.31 This is in line with
our results and supports the use of ASL sCoV as a classifier of
CU from cognitively impaired cohorts.

Our results suggest that cerebral hemodynamic alterations
represent a useful element in assessing AD profiles, independent
of structural, amyloid burden, or glucose uptake abnormalities.
A recent study found that extracranial blood velocity is inversely
related to ASL sCoV32; which unfortunately was not possible
to evaluate in the current study because phase contrast angiog-
raphy from external arteries was not collected. Future studies
are required to disambiguate large-artery from small-vessel
hemodynamic influences on the ASL sCoV metric. Hemody-
namic changes in AD are thought to reflect: 1) cerebral amyloid
angiopathy33; 2) pericyte degeneration which is associated with
capillary reduction and tortuosity of vessels34,35; and/or 3) vas-
cular alterations such as arterial stiffness, atherosclerosis, and
vessel thrombi or hemorrhage.26 A transgenic AD mouse model
supports that these hemodynamic features as microvascular
impairments due to cerebral amyloid angiopathy contributed to
prolonged ATT.36 An 15O PET-ASL comparison study shows

TABLE 4. Results of Logistic Regression Models to Classify Cognitive Groups

Neuroimaging markers CU vs. MCI CU vs. AD MCI vs. AD

Ventricular volume (%ICV) 1.02 (1.7) 1.02 (.56) 1.0 (1.5)

Amyloid burden (SUVR) 1.35* (2.38) 5.6* (2.26) 1.1 (1.1)

Meta-ROI Glucose uptake (SUVR) 1.15 (–.76) 60.1* (–2.26) 2.7* (–3.8)

Meta-ROI ASL CBF (mL/100 g/min) 1.03 (.5) 1.02 (–.2) 1.1 (–1.5)

Temporal lobe ASL sCoV (%) 1.16* (2.47) 1.8* (2.0) 1.0 (.4)

Overall model accuracy 78% 97% 85%

Odds ratio (z values) are reported.
*Significant P values at P < 0.05.
CU: cognitively unimpaired; MCI: mild cognitive impairment; AD: Alzheimer’s disease; sCoV: spatial coefficient of variation; CBF:
cerebral blood flow; ICV: intracranial volume; SUVR: standardized uptake value ratio.
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that ASL sCoV negatively relates to resting CBF and CBF
response to hypercapnia.13 It remains to be seen whether cere-
bral amyloid angiopathy is one source of the elevated sCoV and
this may be a fruitful area of future work.

Pathological findings show that amyloid deposition in
the form of cerebral amyloid angiopathy is spatially heteroge-
neous.37 A more recent study showed that severity of cerebral
amyloid angiopathy is related to hippocampal microinfarcts

FIGURE 4: Receiver operating characteristics curves for different classifiers. Accuracy (acc) and area under the curve (AUC) are
provided for reference. (a) CU vs. MCI, (b) CU vs. AD, and (c) MCI vs. AD. The base model consisted of age, sex, APOE-ε4, and
ventricular volume. ASL features include mean CBF in meta-ROI and temporal lobe sCoV. Glucose: glucose uptake from
fluorodeoxyglucose PET. Amyloid: amyloid burden from Florbetapir PET. *ASL measures added value to the cognitive group
classification (likelihood ratio test at P < 0.05).
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and cognitive dysfunction.38 We therefore speculate that the
temporal lobe is more susceptible to these hemodynamic alter-
ations and this may explain why we observed a greater effect
size for temporal sCoV compared with global GM sCoV in
classifying CU vs. AD. ASL sCoV can, therefore, be used to
describe the severity of hemodynamic-related abnormalities
associated with AD. This summary metric may be added to a
multicontrast MRI session for screening and monitoring people
at risk of AD. In particular, it could serve as a response mea-
sure for interventions that target physiological abnormalities.

This study has some limitations. Although previous work
shows that ASL sCoV shares >70% variance with ATT,12 other
sources could contribute to the spatial heterogeneity of the
ASL. These include ASL artifacts from head motion, partial vol-
ume effects, susceptibility-induced distortions, and site effects.
To reduce image artifacts, we used a recently developed pipeline
(ENABLE) that identifies and excludes poor-quality intermedi-
ate ASL difference images and optimized for the chosen postla-
beling delay.15 To address partial volume effects, we corrected
ASL CBF maps using tissue segmentation maps obtained from
structural images.16 ASL images in this study were not corrected
for susceptibility artifacts, as only a single proton density image
was collected. Others have reported that susceptibility effects
can be corrected.39 Madai et al found that, while correction for
susceptibility artifacts improved the similarity between ASL and
dynamic susceptibility contrast CBF maps, it did not have any
influence on the appearance of intravascular artifact owing to
increased ATT in patients with cerebrovascular disease.39

Therefore, we speculate that this does not influence the role of
ASL sCoV in cognitive group classification. To account for a
potential confounding effect of site, ASL measures were
adjusted. Site effects may be due to between-site participant
selection bias40 or scan prescription systematic differences, such
as the placement of ASL labeling and imaging regions.

Moreover, CBF quantification parameters, such as label-
ing efficiency, relaxation time of blood, and the blood–brain
partition coefficient were assumed to be constant among
cohorts, since these measurements were not performed in
ADNI. Future research may investigate the effect of these
parameters on ASL measures in different cohorts. However,
the effects of these parameters can be expected to be equal
across the brain. Therefore, they are not expected to have a
significant effect on sCoV, which is only influenced by effects
that vary across the brain. Another avenue for future work is
to study sCoV in different brain regions, ie, smaller regions
of interest, or studying the vascular territories separately.
Another aspect of the sCoV signal that remains unresolved is
what happens if the labeling plane is made more proximal or
distal from the imaging volume, as this could influence sCoV.
Furthermore, it is currently not possible to comment on
whether the cardiac output or heart rate, each yielding some
influence on the volume of blood moving into the brain,
would influence sCoV.

In conclusion, we showed that the ASL spatial heteroge-
neity differs among cognitive groups, CU, MCI, and AD. ASL
sCoV indexes delayed blood delivery and/or regional perfusion
changes and is extracted from a single postlabeling delay ASL
acquisition without any additional scans or postprocessing.
This ASL metric added value in classification of CU vs. MCI
and AD to established AD markers, emphasizing ASL as a
noninvasive vascular imaging marker of AD.
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