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Summary. Traditional voxel-level multiple testing procedures in neuroimaging, mostly p-value based, often ignore the spatial
correlations among neighboring voxels and thus suffer from substantial loss of power. We extend the local-significance-index
based procedure originally developed for the hidden Markov chain models, which aims to minimize the false nondiscovery rate
subject to a constraint on the false discovery rate, to three-dimensional neuroimaging data using a hidden Markov random field
model. A generalized expectation–maximization algorithm for maximizing the penalized likelihood is proposed for estimating
the model parameters. Extensive simulations show that the proposed approach is more powerful than conventional false
discovery rate procedures. We apply the method to the comparison between mild cognitive impairment, a disease status with
increased risk of developing Alzheimer’s or another dementia, and normal controls in the FDG-PET imaging study of the
Alzheimer’s Disease Neuroimaging Initiative.
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1. Introduction
In a seminal article, Benjamini and Hochberg (1995) intro-
duced false discovery rate (FDR) as an alternative measure
of Type I error in multiple testing problems to the family-wise
error rate (FWER). They showed that the FDR is equiv-
alent to the FWER if all null hypotheses are true and is
smaller otherwise, thus FDR controlling procedures poten-
tially have a gain in power over FWER controlling procedures.
FDR is defined as the expected proportion of false rejec-
tions among all rejections. The false nondiscovery rate (FNR;
Genovese and Wasserman, 2002), the expected proportion of
falsely accepted hypotheses, is the corresponding measure of
Type II error. The traditional FDR procedures (Benjamini
and Hochberg, 1995, 2000; Genovese and Wasserman, 2004),
which are p-value based, are theoretically developed under the
assumption that the test statistics are independent. Although
these approaches are shown to be valid in controlling FDR
under certain dependence assumptions (Benjamini and Yeku-
tieli, 2001; Farcomeni, 2007; Wu, 2008), they may suffer from
severe loss of power when the dependence structure is ignored
(Sun and Cai, 2009). By modeling the dependence structure
using a hidden Markov chain (HMC), Sun and Cai (2009) pro-
posed an oracle FDR procedure built on a new test statistic,
the local index of significance (LIS), and the corresponding
asymptotic data-driven procedure, which are optimal in the
sense that they minimize the marginal FNR subject to a con-
straint on the marginal FDR. Following the work of Sun and
Cai (2009), Wei et al. (2009) developed a pooled LIS (PLIS)
procedure for multiple-group analysis where different groups
have different HMC dependence structures, and proved the
optimality of the PLIS procedure. Either the LIS procedure

or the PLIS procedure only handles the one-dimensional de-
pendency. However, problems with higher dimensional depen-
dence are of particular practical interest in analyzing imaging
data.

FDR procedures have been widely used in analyzing neu-
roimaging data, such as positron emission tomography (PET)
imaging and functional magnetic resonance imaging (fMRI)
data (Genovese, Lazar, and Nichols, 2002; Chumbley and Fris-
ton, 2009; Chumbley et al., 2010, among many others). We
extend the work of Sun and Cai (2009) in this article by
developing an optimal LIS-based FDR procedure for three-
dimensional (3D) imaging data using a hidden Markov ran-
dom field model (HMRF) for the spatial dependency among
multiple tests. Existing methods for correlated imaging data,
for example, Zhang, Fan, and Yu (2011) are not shown to be
optimal, i.e., minimizing FNR.

HMRF model is a generalization of HMC model, which re-
places the underlying Markov chain by Markov random field.
A well-known classical Markov random field with two states is
the Ising model. In particular, the two-parameter Ising model,
whose formal definition is given in equation (1), reduces to the
two-state Markov chain in one-dimension (Bremaud, 1999).
The Ising model and its generalization with more than two
states, the Potts model, have been widely used to capture
the spatial structure in image analysis; see Bremaud (1999),
Winkler (2003), Zhang et al. (2008), Huang et al. (2013) and
Johnson et al. (2013), among others. In this article, we con-
sider a hidden Ising model for each area based on the Brod-
mann’s partition of the cerebral cortex (Garey, 2006) and
subcortical regions of the human brain, which provides a nat-
ural way of modeling spatial correlations for neuroimaging
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data. To the best of our knowledge, this is the first work that
introduces the HMRF-LIS based FDR procedure to the field
of neuroimaging.

We propose a generalized expectation-maximization algo-
rithm (GEM; Dempster et al., 1977) to search for penalized
maximum likelihood estimators (Ridolfi, 1997; Ciuperca, Ri-
dolfi, and Idier, 2003; Chen, Tan, and Zhang, 2008) of the
hidden Ising model parameters. The penalized likelihood pre-
vents the unboundedness of the likelihood function, and the
proposed GEM uses Monte Carlo averages via Gibbs sampler
(Geman and Geman, 1984; Roberts and Smith, 1994) to over-
come the intractability of computing the normalizing constant
in the underlying Ising model. Then the LIS-based FDR pro-
cedures can be conducted by plugging in the estimates of the
hidden Ising model parameters. In what follows, we use the
term “HMRF” to refer to the 3D hidden Ising model.

The article is organized as follows. In Section 2, we intro-
duce the HMRF model, i.e., the hidden Ising model, for 3D
imaging data. We provide the GEM algorithm for the HMRF
parameter estimation and the implementation of the HMRF-
LIS-based data-driven procedures in Section 3. In Section 4,
we conduct extensive simulations to compare the LIS-based
procedures with conventional FDR methods. In Section 5,
we apply the PLIS procedure to the 18F-Fluorodeoxyglucose
PET (FDG-PET) image data of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), which finds more signals than
conventional methods.

2. A Hidden Markov Random Field Model

Let S be a finite lattice of N voxels in an image grid, usually
in a 3D space. Let � = {�s ∈ {0, 1} : s ∈ S} denote the set of
latent states on S, where �s = 1 if the null hypothesis at voxel
s is false and �s = 0 otherwise. For simplicity, we follow Sun
and Cai (2009) to call hypothesis s to be nonnull if �s = 1 and
null otherwise. We also call voxel s to be a signal if �s = 1 and
noise otherwise. Let � be generated from a two-parameter
Ising model with the following probability distribution

Pϕ(θ) = 1

Z(ϕ)
exp{ϕT H(θ)}

= 1

Z(β, h)
exp

{
β

∑
〈s,t〉

θsθt + h
∑
s∈S

θs

}
, (1)

where Z(ϕ) is the normalizing constant, ϕ = (β, h)T , H(θ) =
(
∑

〈s,t〉 θsθt,
∑

s∈S
θs)

T , and 〈s, t〉 denotes all the unordered pairs
in S such that for any s, t is among the six nearest neighbors
of voxel s in a 3D setting. This model possesses the Markov
property:

Pϕ(θs|θS\{s}) = Pϕ(θs|θN (s))

=
exp{θs(β

∑
t∈N (s)

θt + h)}
1 + exp{β ∑

t∈N (s)
θt + h} ,

where S \ {s} denotes the set S after removing s, and N (s) ⊂ S

is the nearest neighborhood of s in S. Some parameter inter-
pretations of β and h are given in Web Appendix A.

We assume the observed z-values X = {Xs : s ∈ S} are inde-
pendent given � = θ with

Pφ(x|θ) =
∏
s∈S

Pφ(xs|θs), (2)

where Pφ(xs|θs) denotes the following distribution

Xs|�s ∼ (1 − �s)N(μ0, σ
2
0) + �s

L∑
l=1

plN(μl, σ
2
l ) (3)

with (μ0, σ
2
0) = (0, 1), unknown parameters φ = (μ1, σ

2
1 ,

p1, . . ., μL, σ2
L, pL)T ,

∑L

l=1
pl = 1 and pl ≥ 0. In particular, the

z-value Xs follows the standard normal distribution under
the null, and the nonnull distribution is set to be the nor-
mal mixture that can be used to approximate a large collec-
tion of distributions (Magder and Zeger, 1996; Efron, 2004).
The number of components L in the nonnull distribution may
be selected by, for example, the Akaike or Bayesian informa-
tion criterion. Following the recommendation of Sun and Cai
(2009), we use L = 2 for the ADNI image analysis.

Markov random fields (MRFs; Bremaud, 1999) are a natu-
ral generalization of Markov chains (MCs), where the time
index of MC is replaced by the space index of MRF. It
is well known that any one-dimensional MC is an MRF,
and any one-dimensional stationary finite-valued MRF is an
MC (Chandgotia et al., 2014). When S is taken to be one-
dimensional, the above approach based on (1)–(3) reduces to
the HMC method of Sun and Cai (2009).

3. Hidden Markov Random Field LIS-Based
FDR Procedures

Sun and Cai (2009) developed a compound decision theoretic
framework for multiple testing under HMC dependence and
proposed LIS-based oracle and data-driven testing procedures
that aim to minimize the FNR subject to a constraint on
FDR. We extend these procedures under HMRF for image
data. The oracle LIS for hypothesis s is defined as LISs(x) =
P�(�s = 0|x) for a given parameter vector �. In our model,
� = (φT , ϕT )T . Let LIS(1)(x), . . ., LIS(N)(x) be the ordered LIS
values and H(1), . . .,H(N) the corresponding null hypotheses.
The oracle procedure operates as follows: for a prespecified
FDR level α,

let k = max

{
i :

1

i

i∑
j=1

LIS(j)(x) ≤ α

}
,

then reject all H(i), i = 1, . . ., k. (4)

Parameter � is unknown in practice. We can use the data-
driven procedure that simply replaces LIS(i)(x) in (4) with

L̂IS(i)(x) = P�̂(�(i) = 0|x), where �̂ is an estimate of �.
If all the tests are partitioned into multiple groups and each

group follows its own HMRF, in contrast to the separated LIS
(SLIS) procedure that conducts the LIS-based FDR procedure
separately for each group at the same FDR level α and then
combines the testing results, we follow Wei et al. (2009) to
propose a pooled LIS (PLIS) procedure that is more efficient
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in reducing the global FNR. The PLIS follows the same pro-
cedure as (4), but with LIS(1), . . ., LIS(N) being the ordered
test statistics from all groups.

Note that the model homogeneity, which is required in
Sun and Cai (2009) and Wei et al. (2009) for HMCs, fails
to hold for the HMRF model. In other words, P(�s = 1) for
the interior voxels with six nearest neighbors are different
to those for the boundary voxels with less than six nearest
neighbors. We show the validity and optimality of the oracle
HMRF-LIS-based procedures in Web Appendix B.

We now provide details of the LIS-based data-driven proce-
dure for 3D image data, where the parameters of the HMRF
model need to be estimated from observed test data.

3.1. A Generalized EM Algorithm

The observed likelihood function under HMRF, L(�|x) =
P�(x) = ∑

�
Pφ(x|�)Pϕ(�), is unbounded (see Web Ap-

pendix C for details). One solution to avoid the unbound-
edness is to replace the likelihood by a penalized likeli-
hood (Ridolfi, 1997; Ciuperca et al., 2003)

pL(�|x) = L(�|x)

L∏
l=1

g(σ2
l ), (5)

where g(σ2
l ), l = 1, . . . , L, are penalty functions that ensure

the boundedness of pL(�|x). We follow Ridolfi (1997) and
Ciuperca et al. (2003) to choose

g(σ2
l ) ∝ 1

σ2b
l

exp

{
− a

σ2
l

}
, a > 0, b ≥ 0,

where x ∝ y means that x = cy with a positive constant c in-
dependent of any parameter. Note that (5) reduces to the
unpenalized likelihood function when a = b = 0. When a > 0
and b > 1, the penalized likelihood approach is equivalent to
setting g(σ2

l ) to be the inverse gamma distribution, which is a
classical prior distribution for the variance of a normal distri-
bution in Bayesian statistics (Hoff, 2009). We do not impose
any prior distribution here. The choice of a and b does not
impact the strong consistency of the penalized maximum like-
lihood estimator (PMLE) based on the same penalty function
for a finite mixture of normal distributions (Ciuperca et al.,
2003; Chen et al., 2008). Such a penalty performs well in the
simulations, though formal proof of the consistency of PMLE
for hidden Ising model remains an open question.

We develop an EM algorithm based on the penalized likeli-
hood (5) for the estimation of parameters in the HMRF model
characterized by (1)–(3). We introduce unobservable categori
cal variables K = {Ks : s ∈ S}, where Ks = 0 if �s=0, and Ks ∈
{1, . . ., L} if �s = 1. Hence, P(Ks=0|�s=0) = 1 and we denote
P(Ks=l|�s=1) = pl. From (3), we let Xs|Ks ∼ N(μKs

, σ2
Ks

). To

estimate the HMRF parameters � = (φT , ϕT )T , (�, K, X) are
used as the complete data variables to construct the auxiliary
function in the (t + 1)st iteration of EM algorithm given the
observed data x and the current estimated parameters �(t):

Q(�|�(t)) = E�(t) [log P�(�, K, X)|x] +
L∑

l=1

log g(σ2
l ),

where P�(�, K, X) = Pϕ(�)Pφ(X, K|�) = Pϕ(�)
∏

s∈S
Pφ(Xs,

Ks|�s). The Q-function can be further written as follows

Q(�|�(t)) = Q1(φ|�(t)) + Q2(ϕ|�(t)),

where

Q1(φ|�(t)) =
∑

�

∑
K

P�(t)(�, K|x) log Pφ(x, K|�)

+
L∑

l=1

log g(σ2
l )

and

Q2(ϕ|�(t)) =
∑

�

P�(t)(�|x) log Pϕ(�).

Therefore, we can maximize Q(�|�(t)) for � by maximizing
Q1(φ|�(t)) for φ and Q2(ϕ|�(t)) for ϕ, separately.

Maximizing Q1(φ|�(t)) under the constraint
∑L

l=1
pl = 1 by

the method of Lagrange multipliers yields,

p
(t+1)
l =

∑
s∈S

w
(t)
s (l)∑

s∈S
γ

(t)
s (1)

, (6)

μ
(t+1)
l =

∑
s∈S

w
(t)
s (l)xs∑

s∈S
w

(t)
s (l)

, (7)

(σ2
l )(t+1) = 2a + ∑

s∈S
w

(t)
s (l)(xs − μ

(t+1)
l )2

2b + ∑
s∈S

w
(t)
s (l)

, (8)

where

ws(l) = γs(1)plfl(xs)

f (xs)
,

γs(i) = P�(�s = i|x),

fl = N(μl, σ
2
l ), and f =

L∑
l=1

plfl.

For Q2(ϕ|�(t)), taking its first and second derivatives with
respect to ϕ, we obtain

U(t+1)(ϕ) = ∂

∂ϕ
Q2(ϕ|�(t))

= E�(t) [H(�)|x] − Eϕ[H(�)],

I(ϕ) = − ∂2

∂ϕ∂ϕT
Q2(ϕ|�(t)) = Varϕ[H(�)].

Maximizing Q2(ϕ|�(t)) is then equivalent to solving the non-
linear equation:

U(t+1)(ϕ) = E�(t) [H(�)|x] − Eϕ[H(�)] = 0. (9)
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It can be shown that equation (9) has a unique solution and
can be solved by the Newton-Raphson (NR) method (Stoer
and Bulirsch, 2002). However, a starting point that is not
close enough to the solution may result in divergence of the
NR method. Therefore, rather than searching for the solution
of equation (9) over all ϕ, we choose a ϕ(t+1) that increases
Q2(ϕ|�(t)) over its value at ϕ = ϕ(t). Together with the maxi-
mization of Q1(φ|�(t)), the approach leads to Q(�(t+1)|�(t)) ≥
Q(�(t)|�(t)) and thus pL(�(t+1)|x) ≥ pL(�(t)|x), which is
termed a GEM algorithm (Dempster, Laird, and Rubin,
1977). To find such a ϕ(t+1) that increases the Q2-function,
a backtracking line search algorithm (Nocedal and Wright,
2006) is applied with a set of decreasing positive values λm in
the following

ϕ(t+1,m) = ϕ(t) + λmI(ϕ(t))−1U(t+1)(ϕ(t)), (10)

where m = 0, 1, . . ., and ϕ(t+1) = ϕ(t+1,m) which is the first one
satisfying the Armijo condition (Nocedal and Wright, 2006)

Q2(ϕ
(t+1,m)|�(t)) − Q2(ϕ

(t)|�(t))

≥ αλmU(t+1)(ϕ(t))T I(ϕ(t))−1U(t+1)(ϕ(t)). (11)

Since I(ϕ(t)) is positive-definite, the Armijo condition guar-
antees the increase of Q2-function. In practice, α is chosen to
be quite small. We adopt α = 10−4, which is recommended by
Nocedal and Wright (2006), and halve the Newton–Raphson
step length each time by using λm = 2−m.

In the GEM algorithm, Monte Carlo averages are used via
Gibbs sampler to approximate the quantities of interest that
are involved with the intractable normalizing constant of the
Ising model. By the ergodic theorem of the Gibbs sampler
(Roberts and Smith, 1994) (see Web Appendix D for details),

U(t+1)(ϕ) ≈ 1

n

n∑
i=1

(
H(θ(t,i,x)) − H(θ(i,ϕ))

)
,

I(ϕ) ≈ 1

n − 1

n∑
i=1

(
H(θ(i,ϕ)) − 1

n

n∑
j=1

H(θ(j,ϕ))

)⊗2

,

where {θ(t,1,x), . . ., θ(t,n,x)} are large n samples successively gen-
erated by the Gibbs sampler from

P�(t)(θ|x) =
exp

{
β(t)

∑
〈s,r〉 θsθr + ∑

s∈S
h

(t)
s θs

}
Z

(
β(t), {h(t)

s }s∈S

) ,

with

h(t)
s = h(t) − log

(
1√
2πσ2

0

exp

{
− (xs − μ0)

2

2σ2
0

})

+ log

⎛⎝ L∑
l=1

p
(t)
l√

2πσ2(t)

l

exp

{
− (xs − μ

(t)
l )2

2σ2(t)

l

}⎞⎠

and Z

(
β(t), {h(t)

s }s∈S

)
being the normalizing constant, and

{θ(1,ϕ), ..., θ(n,ϕ)} are generated from Pϕ(θ). Here for vector v,
v⊗2 = vvT . Similarly,

C

Z(ϕ)
= Eϕ[exp{−ϕT H(�)}] ≈ 1

n

n∑
i=1

exp{−ϕT H(θ(i,ϕ))},

where C is the number of all possible configurations θ of �.
Then the difference between Q2-functions in the Armijo con-
dition can be approximated by

Q2(ϕ
(t+1,m)|�(t)) − Q2(ϕ

(t)|�(t))

≈ 1

n
(ϕ(t+1,m) − ϕ(t))T

n∑
i=1

H(θ(t,i,x))

+ log

(∑n

i=1
exp{−ϕ(t+1,m)T

H(θ(i,ϕ(t+1,m)))}∑n

i=1
exp{−ϕ(t)T

H(θ(i,ϕ(t)))}

)
.

Back to Q1(φ|�(t)), the local conditional probability of �

given x can also be approximated by the Gibbs sampler:

γ(t)
s (i) = P�(t)(�s = i|x) ≈ 1

n

n∑
k=1

1(θ(t,k,x)
s = i). (12)

3.2. Implementation of the LIS-Based FDR Procedure

The algorithm for the LIS-based data-driven procedure, de-
noted as LIS for single group analysis, SLIS for separate anal-
ysis of multiple groups, and PLIS for pooled analysis for mul-
tiple groups, is given below:

1. Set initial values �(0) = {φ(0), ϕ(0)} for the model param-
eters � of each group;

2. Update φ(t) from equations (6), (7) and (8);
3. Update ϕ(t) from equations (10) and (11);
4. Iterate Steps 2 and 3 until convergence, then obtain the

estimate �̂ of �;
5. Plug-in �̂ to obtain the test statistics L̂IS from equation

(12);
6. Apply the data-driven procedure (LIS, SLIS, or PLIS).

The GEM algorithm is stopped when the following stopping
rule

max
i

(
|�(t+1)

i − �
(t)
i |

|�(t)
i | + ε1

)
< ε2, (13)

where �i is the ith coordinate of vector �, is satisfied for
three consecutive regular Newton–Raphson iterations with
m = 0 in (10), or the prespecified maximum number of it-
erations is reached. Stopping rule (13) was applied by Booth
and Hobert (1999) to the Monte Carlo EM method, where
they set ε1 = 0.001, ε2 between 0.002 and 0.005, and the rule
to be satisfied for three consecutive iterations to avoid stop-
ping the algorithm prematurely because of Monte Carlo error.



Multiple Testing for Neuroimaging via Hidden Markov Random Field 5

Figure 1. Comparison of BH (©), q-value (�), Lfdr (�), OR (+), and LIS (�) for a single group with L = 1.

We used ε1 = ε2 = 0.001 in simulation studies and real-data
analysis. Constant α = 10−4 is recommended by Nocedal and
Wright (2006) for the Armijo condition (11), and the Newton–
Raphson step length in (10) is halved by using λm = 2−m .
In practice, the Armijo condition (11) might not be satisfied
when the step length ‖ϕ(t+1,m) − ϕ(t)‖ is very small. In this
situation, the iteration within Step 3 is stopped by an alter-
native criterion

max
i

(
|ϕ(t+1,m)

i − ϕ
(t)
i |

|ϕ(t)
i | + ε1

)
< ε3

with ε3 < ε2, for example, ε3 = 10−4 if ε2 = 0.001. Small a and
b should be chosen in (8). We choose a = 1 and b = 2.

4. Simulation Studies

The simulation setups are similar to those in Sun and
Cai (2009) and Wei et al. (2009), but with 3D data. The
performances of the proposed LIS-based oracle (OR) and
data-driven procedures are compared with the BH approach

(Benjamini and Hochberg, 1995), the q-value procedure
(Storey, 2003), and the local FDR (Lfdr) procedure (Sun and
Cai, 2007) for single group analysis; and the performances
of SLIS and PLIS are compared with BH, q-value, and the
conditional Lfdr (CLfdr) procedure (Cai and Sun, 2009) for
multiple groups. The Lfdr and CLfdr procedures are shown
to be optimal for independent tests (Sun and Cai, 2007; Cai
and Sun, 2009). For simulations with multiple groups, all
the procedures are globally implemented using all the lo-
cally computed test statistics based on each method from
each group. The q-values are obtained using the R package
qvalue (Dabney and Storey, 2014). For the Lfdr or CLfdr
procedure, we use the proportion of the null cases generated
from the Ising model with given parameters as the estimate
of the probability of the null cases P(�s = 0), together with
the given null and nonnull distributions without estimating
their parameters. For the LIS-based data-driven procedures,
the maximum number of GEM iterations is set to be 1000
with ε1 = ε2 = 0.001, ε3 = α = 10−4, a = 1 and b = 2. For the
Gibbs sampler, 5000 samples are generated from 5000 itera-
tions after a burn-in period of 1000 iterations. In all simula-
tions, each HMRF is on a N = 15×15×15 cubic lattice S, the
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Figure 2. Comparison of BH (©), q-value (�), Lfdr (�), OR (+), and LIS (�) for a single group with L = 2 (see 1a–2c),
and the one with L being misspecified (see 3a–c).

number of replications M = 200 is the same as that in Wei
et al. (2009), and the nominal FDR level is set at 0.10.

4.1. Single-Group Analysis

4.1.1. Study 1: L = 1. The MRF � = {�s : s ∈ S} is gen-
erated from the Ising model (1) with parameters (β, h), and
the observations X = {Xs : s ∈ S} are generated conditionally
on � from Xs|�s ∼ (1 − �s)N(0, 1) + �sN(μ1, σ

2
1). Note that

the MRF � is not observable in practice. Figure 1 shows
the comparisons of the performance of BH, q-value, Lfdr, OR
and LIS. In Figure 1(1a-1c), we fix h = −2.5, set μ1 = 2 and
σ2
1 = 1, and plot FDR, FNR, and the average number of true

positives (ATP) yielded by these procedures as functions of

β. In Figure 1(2a-2c), we fix β = 0.8, set μ1 = 2 and σ2
1 = 1,

and plot FDR, FNR and ATP as functions of h. In Figure
1(3a–c), we fix β = 0.8 and h = −2.5, set σ2

1 = 1, and plot
FDR, FNR and ATP as functions of μ1. The corresponding
average proportions of the nulls, denoted by P0, for each Ising
model are given in Figure 1(1d–3d). The initial values for the

numerical algorithm are set at β(0) = h(0) = 0, μ
(0)
1 = μ1 + 1

and σ
2(0)
1 = 2.

From Figure 1(1a–3a), we can see that the FDR levels of all
five procedures are controlled around 0.10 except one case of
the LIS procedure in Figure 1(3a) with the lowest μ1, whereas
the BH and Lfdr procedures are generally conservative. This
case of obvious deviation of the LIS procedure is likely caused
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Figure 3. Comparison of BH (©), q-value (�), CLfdr (�), SLIS (�), and PLIS (•) for two groups with L = 1. In (a), �
and � represent the results by PLIS for each individual group; for PLIS, while the global FDR is controlled, individual-group
FDRs may vary.

by the small lattice size N. As a confirmation, additional sim-
ulations by increasing the lattice size N to 30×30×30 yield
an FDR of 0.1019 for the same setup. From Figure 1(1b–
3b) and (1c–3c) we can see that the two curves of OR and
LIS procedures are almost identical, indicating that the data-
driven LIS procedure works equally well as the OR procedure.
These plots also show that the LIS procedure outperforms
BH, q-value and Lfdr procedures with increased margin of
performance in FNR and ATP as β or h increases or μ1 is
at a moderate level. Note that from Web Appendix A, we
can see that β controls how likely the same-state cases clus-
ter together, and (β, h) together control the proportion of the
aggregation of nonnulls relative to that of nulls.

4.1.2. Study 2: L = 2. We now consider the case where
the nonnull distribution is a mixture of two normal distribu-
tions. The MRF is generated from the Ising model (1) with
fixed parameters β = 0.8 and h = −2.5, and the nonnull dis-
tribution is a two-component normal mixture p1N(μ1, σ

2
1) +

p2N(μ2, σ
2
2) with fixed p1 = p2 = 0.5, μ2 = 2, and σ2

2 = 1. In
Figure 2(1a–c), σ2

1 varies from 0.125 to 8, and μ1 = −2. In Fig-
ure 2(2a–c), we fix σ2

1 = 1 and vary μ1 from −4 to −1. The

initial values are set at β(0) = h(0) = 0, p
(0)
1 = 1 − p

(0)
2 = 0.3,

μ
(0)
l = μl + 1, and σ

2(0)
l = σ2

l + 1, l = 1, 2.
Similar to Figure 1, we can see that the FDR levels of

all the procedures are controlled around 0.10, where BH and
Lfdr are conservative, and OR and LIS perform similarly and
outperform the other three procedures. In Figure 2(2a) at
μ1 = −1, additional simulations yield an FDR of 0.1035 when
the lattice size N is increased to 30×30×30 for the same setup.

The results from both simulation studies are very similar to
those in Sun and Cai (2009) for the one-dimensional case us-
ing HMC. It is clearly seen that, for dependent tests, incorpo-
rating dependence structure into a multiple-testing procedure
improves efficiency dramatically.

4.1.3. Study 3: misspecified nonnull. Following Sun and
Cai (2009), we consider the true nonnull distribution to be the
three-component normal mixture 0.4N(μ, 1) + 0.3N(1, 1) +
0.3N(3, 1), but use a misspecified two component normal mix-
ture p1N(μ1, σ

2
1) + p2N(μ2, σ

2
2) in the LIS procedure. The

unobservable states are generated from the Ising model (1)
with fixed parameters β = 0.8 and h = −2.5. The simulation
results are displayed in Figure 2(3a–c), the true μ varies from
−4 to −1 with increments of size 0.5. The initial values are set
at β(0) = h(0) = 0, p

(0)
1 = p

(0)
2 = 0.5, μ

(0)
1 = −μ

(0)
2 = −2, and

σ
2(0)
l = 2, l = 1, 2.
Figure 2(3a–c) shows that the LIS procedure performs sim-

ilarly to OR under misspecified model. Additionally, the obvi-
ous biased FDR level by the LIS procedure at μ = −1 reduces
to 0.1067 when the lattice size N is increased to 30×30×30.

4.2. Multiple-Group Analysis

Voxels in a human brain can be naturally grouped into multi-
ple functional regions. For simulations with grouped multiple
tests, we consider two lattice groups each with size 15×15×15.
The corresponding MRFs �1 = {�1s : s ∈ S} and �2 = {�2s :
s ∈ S} are generated from the Ising model (1) with param-
eters (β1 = 0.2, h1 = −1) and (β2 = 0.8, h2 = −2.5), respec-
tively. The observations Xk = {Xks, s ∈ S} are generated con-
ditionally on �k, k = 1, 2, from Xks|�ks ∼ (1 − �ks)N(0, 1) +
�ksN(μk, σ

2
k ), where μ1 varies from 1 to 4 with increments

of size 0.5, μ2 = μ1 + 1 and σ2
1 = σ2

2 = 1. The initial values

are β
(0)
1 = β

(0)
2 = h

(0)
1 = h

(0)
2 = 0, μ

(0)
2 = μ

(0)
1 = μ1 + 1, and

σ2(0)

1 = σ2(0)

2 = 2.
The simulation results are presented in Figure 3, which are

similar to that in Wei et al. (2009) for the one-dimensional
case with multiple groups using HMCs. Figure 3(a) shows
that all procedures are valid in controlling FDR at the pre-
specified level of 0.10, whereas BH and CLfdr procedures are
conservative. We also plot the within-group FDR levels of
PLIS for each group separately. One can see that in order
to minimize the global FNR level, the PLIS procedure may
automatically adjust the FDRs of each individual group, ei-
ther inflated or deflated reflecting the group heterogeneity,
while the global FDR is appropriately controlled. In Figure
3(b) and (c) we can see that both SLIS and PLIS outperform
BH, q-value and CLfdr procedures, indicating that utilizing
the dependency information can improve the efficiency of a
testing procedure, and the improvement is more evident for
weaker signals (smaller values of μ1). Between the two LIS-
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Figure 4. Z-values of the signals found by each procedure for the comparison between NC and MCI.

based procedures, PLIS slightly outperforms SLIS, indicating
the benefit of ranking the LIS test statistics globally. In partic-
ular, ATP is 8.3% higher for PLIS than for SLIS when μ1 = 1.

5. ADNI FDG-PET Image Data Analysis

Alzheimer’s disease (AD) is the most common cause of de-
mentia in the elderly population. Much progress has been
made in the diagnosis of AD including clinical assessment
and neuroimaging techniques. One such extensively used neu-
roimaging technique is FDG-PET imaging, which is used to
evaluate the cerebral metabolic rate of glucose (CMRgl). We
consider the FDG-PET image data from the ADNI database
(adni.loni.usc.edu) as an illustrative example.

The data set consists of the baseline FDG-PET images of
102 normal control (NC) subjects and 206 patients with mild
cognitive impairment (MCI), a prodromal stage of AD. Sixty
one brain regions of interest (ROIs) are considered (see Web
Appendix E for details), where the number of voxels in each
region ranges from 149 to 20,680 with a median of 2,517. The
total number of voxels of these 61 ROIs is N = 251, 500. The
goal is to identify voxels with reduced CMRgl in MCI patients
comparing to NC.

We apply the HMRF-PLIS procedure to the ADNI data,
and compare to BH, q-value and CLfdr procedures. We im-
plement the BH procedure globally for the 61 ROIs, whereas
we treat each region as a group for the q-value, CLfdr and
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Figure 5. Venn diagram for the number of signals found
by each procedure for the comparison between NC and MCI.
Number of signals discovered by each procedure: BH=8,541,
q-value=71,031, CLfdr=122,899, and PLIS=146,867.

PLIS procedures. For the BH and q-value procedures, a to-
tal number of N two-sample Welch’s t-tests (Welch, 1947) are
performed, and their corresponding two-sided p-values are ob-
tained. For the PLIS and CLfdr procedures, z-values are used
as the observed data x, which are obtained from those t statis-
tics by the transformation zi = �−1[G0(ti)], where � and G0

are the cumulative distribution functions of the standard nor-
mal and the t statistic, respectively. The null distribution is
assumed to be the standard normal distribution. The nonnull
distribution is assumed to be a two-component normal mix-
ture for PLIS. The LIS statistics in the PLIS procedure are
approximated by 106 Gibbs-sampler samples, and the Lfdr
statistics in the CLfdr procedure are computed by using the
R code of Sun and Cai (2007). All the four testing procedures
are controlled at a nominal FDR level of 0.001. In the GEM
algorithm for HMRF estimation, the initial values for β and
h in the Ising model are set to be zero. The initial values
for the nonnull distributions are estimated from the signals
claimed by BH at an FDR level of 0.1. The maximum num-
ber of GEM iterations is set to be 5000 with ε1 = ε2 = 0.001,
ε3 = α = 10−4, a = 1, and b = 2. For the Gibbs sampler em-
bedded in the GEM, 5000 samples are generated from 5000
iterations after a burn-in period of 1000 iterations. In this
data analysis, the GEM algorithm reaches the maximum it-
eration and is then claimed to be converged for five ROIs.
Among all 61 ROIs, the estimates of β have a median of 1.57
with the interquartile range of 0.36, and the estimates of h

have a median of −3.71 with the interquartile range of 1.52.
Such magnitude of parameter variation supports the multi-
region analysis of the ADNI FDG-PET image data because
even a 0.1 difference in β or h can result in quite different
Ising models, see Figure 1(1d) and (2d).

Figure 4 shows the z-values (obtained by comparing CM-
Rgl values between NC and MCI) of all the signals claimed
by each procedure. Figure 5 summarizes the number of vox-
els that are claimed as signals by each procedure. We can
see that PLIS finds the largest number of signals and cov-

ers 91.5%, 97.2%, and 99.9% of signals detected by CLfdr,
q-value, and BH, respectively. It is interesting to see that the
PLIS procedure finds more than 17 times signals as BH, twice
as many signals as q-value, and about 20% more signals than
the CLfdr procedure.

Detailed interpretations of the scientific findings are pro-
vided in Web Appendix E.

6. Concluding Remarks

In this article, we consider LIS-based FDR procedures based
on HMRF for 3D neuroimage data, where HMRF provides a
natural way of modeling spatial correlations. The procedures
aim to minimize the FNR while FDR is controlled at a pre-
specified level. We find brain regions are spatially heteroge-
neous, hence model each region separately by a single HMRF,
and implement the PLIS procedure to minimize the global
FNR. We propose a GEM algorithm based on the penalized
likelihood to obtain the HMRF parameter estimates, which
overcomes the unboundedness of the original likelihood func-
tion. Numerical analysis shows the superiority of the HMRF-
LIS-based procedures over commonly used FDR procedures,
illustrating the value of HMRF-LIS-based FDR procedures for
spatially correlated image data. The asymptotic properties of
the PMLE of HMRF and the data-driven HMRF-LIS-based
procedures are of interest for future research.

7. Supplementary Materials

Web Appendix A mentioned in Sections 2 and 4, Web Ap-
pendices B-D referenced in Section 3, Web Appendix E men-
tioned in Section 5, and a MATLAB package implementing
the proposed FDR procedure are available with this paper at
the Biometrics website on Wiley Online Library.
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