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Highlights

• We propose a registration model with inferred spatially adaptive regular-

isation

• The effects of this regularisation prior are shown on tensor based mor-

phometry.

• The inferred prior leads to better localisation of deformations.

• We illustrate how this leads to a more realistic description of registration

uncertainty.

• We demonstrate how Bayesian model comparison can be used in registra-

tion.
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Abstract

This paper introduces a novel method for inferring spatially varying regularisa-

tion in non-linear registration. This is achieved through full Bayesian inference

on a probabilistic registration model, where the prior on the transformation

parameters is parameterised as a weighted mixture of spatially localised com-

ponents. Such an approach has the advantage of allowing the registration to be

more flexibly driven by the data than a traditional globally defined regularisation

penalty, such as bending energy. The proposed method adaptively determines

the influence of the prior in a local region. The strength of the prior may be

reduced in areas where the data better support deformations, or can enforce a

stronger constraint in less informative areas. Consequently, the use of such a

spatially adaptive prior may reduce unwanted impacts of regularisation on the

inferred transformation. This is especially important for applications where the

deformation field itself is of interest, such as tensor based morphometry. The

proposed approach is demonstrated using synthetic images, and with application

∗Data used in preparation of this article were obtained from the Alzheimers Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI and/or provided data but
did not participate in analysis or writing of this report. A complete listing of ADNI investiga-
tors can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf
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to tensor based morphometry analysis of subjects with Alzheimer’s disease and

healthy controls. The results indicate that using the proposed spatially adap-

tive prior leads to sparser deformations, which provide better localisation of

regional volume change. Additionally, the proposed regularisation model leads

to more data driven and localised maps of registration uncertainty. This paper

also demonstrates for the first time the use of Bayesian model comparison for

selecting different types of regularisation.

1. Introduction

Non-linear image registration is a fundamental tool in medical image analysis

with a great many applications (Sotiras et al., 2013). One widely explored appli-

cation of non-linear registration is the analysis of human brain morphology from

structural magnetic resonance (MR) images. In this context, non-linear image

registration has been used to accurately quantify localised cross-sectional dif-

ferences between populations, such as subjects with Alzheimer’s disease (AD)

compared to normal ageing. It has also been used to measure longitudinal

changes within individuals. Differences in morphology between populations can

be identified using approaches such as tensor based morphometry (TBM) ((Ash-

burner and Friston, 2000; Chung et al., 2001)), where statistical analysis is per-

formed on the Jacobian tensor of deformation fields calculated from registering

individual subjects to a common space. TBM offers a whole brain approach to

statistical analysis, and has the potential to extract rich features that accurately

summarise anatomical differences.

TBM features are wholly defined by the registration process, which is com-

plicated by the fact that non-linear registration is an ill-posed problem. In a

typical structural MR image there are more than one million voxels in the hu-

man brain, where the intensity of a voxel is a noisy surrogate of tissue type.

As such, there is a great deal of ambiguity in matching intensities, making it

implausible for a unique voxelwise mapping to be determined purely from the

image data.
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1.1. Regularisation

As no unique mapping can be determined purely from the data, a “reason-

able” mapping between images is sought. This is achieved through the use of a

data matching term and regularisation, which maximises the similarity of image

appearance whilst maintaining a plausible deformation, i.e. with an appropri-

ate magnitude of displacement and spatial smoothness. Regularisation can be

considered as a prior on the set of expected deformations, which reduces the

space of potential solutions and hence limits the variance of any estimated solu-

tion. The form of bias induced by the prior is generally selected based on some

physical model of deformation, such as linear elasticity (Miller et al., 1993) or

thin-plate spline bending energy (Bookstein, 1997).

Regularisation models are commonly described as having the same effect

across the image. However, such models may well be unreasonable in brain

registration for two reasons: Firstly, different regions of the image contain dif-

ferent amounts of information. Uninformative image areas should be strongly

influenced by the priors as they contain little information, whereas feature-rich

regions should be given more freedom. Furthermore, the magnitude of anatom-

ical mis-correspondence is likely to be variable across space, and some regions

will require more complex deformations than others to allow an adequate map-

ping. Therefore, the use of a global spatial regularisation prior may introduce

either an unwanted or insufficient bias on the deformation in certain image re-

gions. This could have substantial adverse effects on an application, such as

TBM, which directly relies on the interpretability of the deformation field.

1.1.1. Previous Approaches to Spatially Varying Regularisation in Registration

There have been several previous works on the use of spatially varying regu-

larisation in non-linear registration. These include approaches that vary based

on tissues or structures derived from segmentations (Lester et al., 1999; Da-

vatzikos, 1997; Staring et al., 2007; Schmah et al., 2013). These approaches

are ideal in cases when an informative deformation prior is known for a specific

region or tissue type, which can be robustly defined. However, in the majority
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of registration applications, this is unlikely to be the case.

More data driven approaches have been proposed, which include anisotropic

smoothing of image similarity gradients according to image information (Her-

mosillo et al., 2002; Papież et al., 2013). Alternative approaches include weight-

ing similarity gradients based on measures of local image reliability (Tang et al.,

2010). These approaches allow the image information to affect the local regu-

larisation strength, although are still somewhat ad-hoc, being dependent on the

definition of a heuristic weighting between regularisation and data fidelity.

Inference of geometric deviation from an estimated atlas for use as a spatial

prior is an alternative approach to define regularisation priors, (Allassonniére

et al., 2007) proposed a small deformation Bayesian framework for atlas esti-

mation and registration. (Gori et al., 2013) proposed a Bayesian approach for

estimating an atlas and structure specific regularisation terms for a registration

model based on the metric of currents. A recently published approach by Xu et

al. propose a method for deriving an average atlas and a spatial distance metric

based on the geometric variability of the atlas (Xu et al., 2014). (Zhang et al.,

2013) proposed a generative registration model using Geodesic shooting for at-

las and regularisation estimation, this works was extended to sparsely estimate

the principal geodesic modes of variation(Zhang and Fletcher, 2014). (Durrle-

man et al., 2013) also estimate sparse parametrisations of variability from an

estimated atlas.

Most similarly to this work, Risholm et al. (Risholm et al., 2010b, 2013)

presented a Bayesian inference scheme that allows linear elastic parameters to

be inferred from the data. These parameters can also vary spatially, as demon-

strated in (Risholm et al., 2011b). This approach does not require the defini-

tion of strong heuristics, although informative priors are required for the elastic

model parameters. The limitations of the framework lie in the numerical in-

tegration inference strategy, which comes with vast computational complexity.

Modern sampling techniques may help alleviate this burden (Zhang et al., 2013).
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1.2. Contribution of this Paper

This paper proposes a novel non-linear registration model and Bayesian in-

ference scheme that allows for data-driven spatially varying regularisation. This

approach alleviates the difficulties associated with previous attempts at spatially

varying regularisation. Firstly, it is fully data driven, requiring no segmentations

or informative priors. Secondly, the trade-off of data fidelity and regularisation

is inferred directly from the data and finally, inference is tractable.

This work follows from our previous conference paper (Simpson et al., 2013b),

with a second-order inference scheme for the regularisation parameters, a full

mathematical derivation and broader validation. Additionally, this paper in-

vestigates objective Bayesian model comparison and the effects of the spatially

varying prior on registration uncertainty. The proposed framework describes

registration using a hierarchical probabilistic model, with a transformation prior

that is parameterised by a set of hyper-parameters. Each hyper-parameter influ-

ences a spatially localised region of the prior. Through the use of full Bayesian

inference, posterior distributions of hyper-parameter weights can be inferred

alongside the transformation. This allows the effects of the prior to be locally

determined during the registration.

This approach is demonstrated through an application of TBM on synthetic

images, as well as comparing subjects with AD to healthy controls. Our results

demonstrate the strength of our approach in terms of reducing false positive

results, which may improve interpretability. We also highlight additional bene-

fits of the proposed framework including: objective comparison of regularisation

models, and more reasonable uncertainty estimates of the deformation fields.

2. Method

2.1. Model

Image registration can be described in a probabilistic manner using a gen-

erative model of the target image, y, which is predicted by the deformed source

image, t(x,w). Here, t is a transformation model, x is the source image and
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w parametrises the transformation. In this paper, a cubic B-spline free form

deformation model (Rueckert et al., 1999; Andersson et al., 2007) is used for t,

with w corresponding to the control point displacement. However, in principle

any deformation model could be used.

The generative model also contains an additive noise term, e, which de-

scribes the error in model fit. In this work, e, is modelled as independently and

identically distributed across voxels and follows a normal distribution:

e ≈ N (0, Iφ−1α) (1)

, where I is an identity matrix the size of the number of voxels, Nv. φ corre-

sponds to the noise precision (inverse variance) of the additive Gaussian noise

under the assumption of being independently distributed. α corresponds to the

virtual decimation factor (Groves et al., 2011), which is a data driven term used

to compensate for spatial covariance in the residual, weakening the assumption

of independent noise. The assumption of identically distributed noise could also

be relaxed in this approach as in (Simpson et al., 2012a). The full generative

model for registration is therefore given as:

y = t(x,w) + e. (2)

2.2. Prior Distributions

Prior information is used to constrain the parameters of the model to plau-

sible values. The noise in model fit, φ, is well defined by the data, so an un-

informative Gamma distribution prior can be used, P (φ) = Ga(a0, b0), where

a0 = 10e10, b0 = 10e−10. As motivated in Section 1.1, for the problem of non-

linear registration an informative prior on the transformation parameters, p(w),

is required to ensure a reasonable result.

2.2.1. Priors on Transformation Parameters

Spatial regularisation for non-linear registration can be encoded as a prior on

the transformation parameters. Commonly such priors penalise deviation from
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the identity transformation, functioning as an elastic type of regularisation.

Here, the prior on w is described using a multivariate normal distribution:

p(w) = N (0,Σ). (3)

The mean of the prior is set to 0, representing the identity transformation. Σ de-

scribes the expected variance, and covariance of the transformation parameters.

This definition allows the specification of highly complex and rich priors. Most

commonly, bending or linear elastic energy priors have been encoded in such

a form (Ashburner and Friston, 1999). Simpler constraints, such as penalising

the magnitude of the deformation parameters could also be straightforwardly

included.

2.2.2. Multiple Sparse Priors

In this work, the multiple sparse priors (MSP) approach of Friston et al. (Fris-

ton et al., 2008) is adopted to allow spatially varying regularisation for non-

linear registration. The MSP model was previously demonstrated for use in the

M/EEG inverse problem. Friston et al. define the prior covariance matrix to

be a weighted mixture of n covariance components: Σ =
∑n
i exp(λi)Σi, where

each Σi has a pre-defined form, which is chosen to have limited spatial sup-

port, making Σi a spatially localised covariance component. The number and

form of these components is optional . λi is a scalar weight associated with

each covariance component that is inferred from the data. λi appears within

an exponential to ensure a positivity constraint on the weighting factor for each

Σi.

As in Friston et al. the prior covariance components, Σi, are constructed

from columns of a spatial coherence prior, G. Here, G is a squared exponen-

tial Gaussian process (GP) prior (Rasmussen and Williams, 2006), which can

equivalently be considered as the Green’s function of a discrete diffusion pro-

cess (Harrison et al., 2007). The graph encoding the distance between nodes

is an adjacency matrix, A, where Aij = 1 when transformation parameters wi
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Figure 1: An illustration of how Σ is created. The leftmost plot shows the GP covariance
matrix G(σ) as calculated from equation 4 on a 12 by 10 control point grid. The middle plot
illustrates the basis function Σi associated with the ith column of G(σ), where the black circle
indicates the primarily affected control point and the relative size of the red circles illustrates
the magnitude of the covariances of the nearby control points. The rightmost plot illustrates
how a randomly weighted combination of spatially localised covariance components leads to
the complete spatially varying prior covariance matrix, Σ. For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.

and wj are spatially adjacent, and 0 elsewhere. G can be written as:

G(σ) = exp(σA) ≈
m=4∑

m=0

σm

m!
Am. (4)

The parameter σ controls the local coherence between adjacent control points,

and takes values between 0 (independence of parameters) and 1 (maximally cor-

related). This approximation to the Green’s function only accounts for 4th order

neighbouring control points, as defined by the maximum value of m, which al-

lows sparse priors, with compact spatial support. For non-linear registration, the

consideration of 4th order covariance neighbours provides an adequate balance

between connectedness and sparsity. For a given prior component: Σi = qiq
T
i ,

where qi corresponds to the ith column in G(σ).

Each prior component, Σi, strongly controls the variance of a control point

displacement, in a given direction, and the covariance with neighbouring control

points, with a weaker influence on these neighbours’ variance. The scale of this

component is dictated by the exponential of its control parameter, λi, which is

inferred from the data. Figure 1 illustrates the stages used to create Σ.

In the present model, there is a univariate normal prior distribution placed

on each λi ∈ {λ} where {λ} = {λ1, λ2, ..., λNc
} and Nc is the number of trans-
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Figure 2: A graphical description of the probabilistic registration model where the directions
of the arrows describe the probabilistic dependencies. Symbols in circles are random variables,
those in squares have fixed values. Grey containers are observations. Plates correspond to the
dimensionality of the variable.

formation parameters. The prior on λi is written as:

P (λi) = N (η, ρ2). (5)

Due to the exponential parametrisation of λi, this effectively functions as a

log-normal hyperprior on the weights of each Σi (Friston et al., 2007). The

selection of P (λ) is discussed in section 2.5, and the rationale for choosing a

normal prior, as opposed to a Gamma distribution, which was used as a prior

on a single regularisation parameter, is discussed in section 2.3.1.

2.3. Model Inference

The generative model and priors defined in the previous sections describe

a hierarchical probabilistic model that is described graphically in Figure 2.

Bayesian inference is used to infer the unobserved random variables in this

hierarchical model. Numerical integration approaches, such as Markov chain

Monte Carlo, are often computationally prohibitive in problems with many pa-

rameters. For this reason, mean-field variational Bayes (Attias, 2000) (VB) was

chosen as the inference strategy. VB allows tractable, approximate full Bayesian

inference, and has been previously demonstrated for use in high resolution non-

linear registration (Simpson et al., 2012b).

VB approximates the posterior distribution of model parameters using para-

metric distributions. In this work, mean-field VB is used, hence the posterior

10
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distribution on the model parameters is approximated as:

p(w, φ, λ|y) ≈ q(w, φ, {λ}) ≈ q(w)q(φ)

n∏

i

q(λi). (6)

The variational Bayesian cost function is the negative variational free energy,

F , which is a lower bound on the log model evidence (Beal, 2003). As F =

logP (y) − KL, where KL is the always positive Kullback-Leibler distance be-

tween the unknown true posterior and our approximate posterior distributions,

the maximisation of F leads to the minimisation of KL. The derivation of F for

this model is given in Appendix A, and a condensed form is given in equation

14.

Typically, the functional forms of the approximate posterior distributions

can be derived algebraically from the model formulation. In this case:

q(w) = N (µ,Υ) (7)

q(φ) = Ga(a, b) (8)

, where µ is the mean of the posterior distribution on the transformation pa-

rameters, and Υ describes the posterior covariance of these parameters. a and

b are the shape and scale parameters of q(φ), respectively.

Through the calculus of variations, iterative analytic updates can be found

for the parameters of the approximate posterior distributions q(w) and q(φ).

Briefly, the nature of these updates involves finding the zero-derivative of the

functional F with respect to a particular parameter group. As an example, the

optimal value of q(w) would be found conditional on the approximate posterior

distribution of the other model parameters q(φ)
∏
i q(λi).

2.3.1. Regularisation Parameters

Unlike the single regularisation hyper-parameter case described in previous

work (Simpson et al., 2012b), where q(λ) can also be derived as following a

Gamma distribution, the spatially localised hyper-parameters cannot be alge-

braically determined as following a particular distribution. This is because λi
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appears within a matrix inverse in F (see Appendix B), which also complicates

the marginalisation of these parameters.

To allow inference, and marginalisation, of these parameters within a tractable

framework, two further approximations are required. Firstly, the Laplace ap-

proximation is used to assume a normal posterior form for q(λi) = N (λ̂i, σ
2
i ).

Secondly, it is assumed that the prior covariance matrix only depends on the

first order moments of λi, which greatly simplifies the marginalisation of q(λi)

and the estimation of σ2
i . The expectation of the prior covariance matrix, Σ,

can now be written as:

< Σ >∏Nc
i q(λi)

=

Nc∑

i

exp(λ̂i)Σi (9)

, where the angular brackets correspond to an expectation of the encompassed

term with respect to the subscript.

2.3.2. Inference of Transformation and Noise Parameters

The updates for the transformation and noise parameters are derived in

the same way as (Simpson et al., 2012b), taking the expectation of the prior

covariance matrix with respect to
∏
i q(λi) as given in equation 9. As t(x,w)

is non-linear with respect to the transformation parameters, w, a first order

Taylor series approximation is used to locally linearise the function about the

current mean estimate. This requires the calculation of the matrix of partial

derivatives, J, of t(x,w) with respect to w about the current mean µold, Jij =

∂t(x,w)i
∂wj

|w=µold
. The transformation mean, µ, and covariance Υ are updated

by:

Υ = (αφ̄JTJ + Σ−1)−1 (10)

µnew = Υ
[
αφ̄JT(Jµold + k)

]
(11)

, where k is the vector representing the residual image y − t(x,w). µnew de-

scribes the current estimated transformation parameters, and is dependent on

the old estimated values, µold. φ̄ = ab, which is the expectation of the estimated

noise precision.

12
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The posterior parameters of q(φ) are updated by:

b = b0 +
Nvα

2
(12)

1

a
=

1

a0
+

1

2
α(kTk + Trace(ΥJTJ)) (13)

where Nv is the count of voxels within the masked region.

2.3.3. Inference of Regularisation Parameters

A different, but consistent inference mechanism is required to infer the spa-

tial prior parameters, {λ}, from the data. As described in section 2.3.1, the

Laplace approximation uses a Taylor series expansion of F to estimate a nor-

mal distribution for q(λ). Based on this approximation, these parameters can

be inferred through Newton’s method updates with respect to the variational

Bayesian cost function, F . Given the mean-field approximation in equation 6,

and the resulting F described in Appendix A, the optimistion of {λ} purely

involves terms from the minimisation of the Kullback-Liebler distance between

the prior and posterior distributions of w, as {λ} is a component of the prior on

w (see equation 9), and the prior and posterior of λi. The terms from F that

contain {λ̂}, or Σ, are:

F =
1

2

(
− log |Σ| − Trace(ΥΣ−1)− µΣ−1µ− 1

ρ2

∑

i

(λ̂i − η)2

)
+const

[
{λ̂},Σ

]

(14)

, where const
[
{λ̂},Σ

]
contains all terms that are constant with {λ̂} and Σ.

The derivation of the 1st and 2nd order partial derivatives of equation 14

are given in full in Appendix B. The derivative of F with respect to the mean

of each local regularisation control parameter, λ̂i, can be expressed as:

∂F
∂λ̂i

=
1

2

[
−Trace

(
Υ
∂Σ−1

∂λ̂i

)
+ Trace

(
Σ
∂Σ−1

∂λ̂i

)
− µT ∂Σ−1

∂λ̂i
µ

]
− λ̂i − η

ρ2

(15)

where,
∂Σ−1

∂λ̂i
= −Σ−1 exp(λ̂i)ΣiΣ

−1 (16)
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The second partial derivative, taking advantage of the approximation that

∂2Σ
∂λ̂2

= 0, is simply written as:

∂2F
∂λ̂i

2 = Trace

(
exp(λ̂i)Σi

∂Σ−1

∂λ̂i
− 1

ρ

)
. (17)

As such, q(λi) can be updated according to the derivatives in equations 15

and 17, where,
1

σ2
i

= −∂
2F
∂λ2i

(18)

, and the posterior mean λ̂ is updated by:

λ̂ = λ̂+
∂F
∂λi

σ2
i . (19)

2.4. Model Comparison

The negative variational free energy, F , is an objective means for allowing

comparison of models without requiring ground truth, or gold standard infor-

mation. F summarises the fit of the data, and the deviation of the model

parameters from their prior distributions. Unlike the Bayesian information cri-

teria, F only penalises model parameters that deviate from the prior, and the

cost of a parameter that retains the same distribution as the prior is zero. In the

case of the proposed model, this means that the complexity of having additional

λ parameters that only take the prior distribution, have no additional cost.

Although F has been previously used for model comparison in the medical

image analysis domain (Groves et al., 2009; Penny et al., 2005; Friston et al.,

2008), to the best of the authors’ knowledge it has never been used in medical

image registration. However, previous attempts at probabilistic model selection

have appeared using the minimum description length (Van Leemput, 2009) and

(Marsland et al., 2008) and information theoretic model selection approaches

include (Schnabel et al., 2001; Rohde et al., 2003; Hansen et al.).

2.5. Selection of p(λ)

The prior on the regularisation control parameters, p(λ), has an important

effect. If there is little information from the data to suggest a value for these

14
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parameters, then they will tend to take the values of the prior. As described

previously, p(λ) = N (η, ρ). As our interests lie in a more interpretable formula-

tion of registration, we therefore only wish to see deformations that are reliably

driven by the data. As such, a low value for η would be preferable, such that

in the absence of information to suggest otherwise, transformation parameters

would tend towards the identity transformation. Conversely, we want the value

of λ to be strongly driven by the data, hence, we choose a large value for ρ. The

influence of p(λ) can be thought of as selecting the prior probability of different

scales of deformations being allowable. In this work a weakly informative prior

is chosen, where η = −6 and ρ = 40.

2.6. Implementation and Initialisations

This algorithm was implemented within the FMRIB Non-linear Image Reg-

istration Tool (FNIRT) (Andersson et al., 2007), which provides the facility

for efficient calculation of the Hessian of the transformation parameters, JTJ.

The algorithm uses a 3 level multi-resolution scheme where the image is down-

sampled, initially by a factor of 4, then 2, then full-resolution. The B-spline

knots are super-sampled through interpolation at each new level to yield a higher

resolution grid. The final spacing is given in the experimental description. The

original regularisation model is bending energy, described as an inverse covari-

ance matrix, the scale of which is either adaptively inferred, as in (Simpson

et al., 2012b), or manually selected.

In terms of initialisation, at the first multi-resolution level, {λ̂} are set to

give an initial control point variance of 2mm. The first three updates at the first

level perform a global scaling of the initial prior matrix. Subsequent iterations

treat each λ independently.

Between multi-resolution levels, {λ̂} is interpolated using trilinear interpola-

tion. A maximum of 20 iterations was run for each multi-resolution level, with

convergence defined by: kTk + µΣ−1µ, which is the sum of squared differences

plus the deviation of the transformation mean, from the prior instead of F for

computational convenience.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Synthetic Experiments

Synthetic 2D images were created to demonstrate the effects of this algo-

rithm, see top row of Figure 3. 10 instances of two 2D phantom images, 30×30

pixels, were created with varying SNR. As reference image, a circle with a radius

of 10 pixels, and a floating image, which is two pixels thinner on one side. An

ideal transformation that links these two images should be spatially localised

to the area of shrinkage and have very high confidence in the transformation

parameters at all other locations.

3.1. Visualisation of Uncertainty

The distributions of the posterior transformation parameters q(w) and of

the transformation prior p(w) are multivariate Normal. In order to display the

uncertainty of the posterior, or the support of the prior, in this work the sum

of the variance in each direction is summed and the result is square rooted to

give an uncertainty value in pixels/mm. This is approximated as the variance

at each of the knot points and interpolated over the image using the B-spline

basis set.

3.2. Example Registration

An example set of images and registration results at two SNRs is given in

Figure 3. The log Jacobian maps show that when using the proposed prior the

deformation is well localised to the region of change, as opposed to using an

adaptive bending energy prior as in (Simpson et al., 2012b), where the defor-

mation propagates across the entire circle, despite there being no local image

information to support this. The reason for this localisation is that the spa-

tial prior only supports deformation within certain areas. Consequently, this

provides a more interpretable estimation of registration uncertainty, where the

uncertain regions are only in the areas of change rather than across the image.

3.3. Model Comparison

Bayesian model selection can be used to objectively choose model parameters

that cannot be inferred directly from the data. Here, we investigate the effects
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Figure 3: Illustrative simulated registration examples. The results were calculated using a
B-spline knot spacing of 5 pixels, for the proposed prior σ = 0.1. These parameters values
were chosen as they provide relatively good results at both SNRs in terms of F , see Figure
4. The top row shows the synthetic reference and floating image at two signal to noise ra-
tios (SNRs). The second row shows the resulting log Jacobian map, illustrating expansion or
contraction, when using the proposed prior or an adaptive level of bending energy. The third
row illustrates the standard deviation of the proposed spatial prior, which is well localised to
the region of deformation. The final row shows the uncertainty of the posterior distribution
of transformation parameters using either the proposed prior or bending energy. For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version
of this article.

of the number of transformation parameters, in terms of B-spline knot spacing,

as well as the form of the spatial prior on F at two SNRs. This is plotted in
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Figure 4: Bayesian model comparison, using the negative variational free energy F , com-
paring regularisation strategy and B-spline knot spacing using simulated images. The legend
describes the regularisation strategy, where σ is the parameter of the GP prior in equation 4.
Global refers to the use of a global weight for the GP prior. For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.

Figure 4. For both SNRs, using the proposed prior leads to an improvement

in F over bending energy and a global version of the Gaussian process prior

henceforth GP prior, where σ = 0.2 is shown as it gave the best average values

for F , despite the increased number of parameters. The exception to this is

where a 4 pixel B-spline knot spacing resolution was used with low SNR data,

where bending energy fares slightly better. Interestingly, a slightly higher value

of σ is preferable at lower SNR, which leads to greater spatial covariance in the

prior. A 5 pixel knot spacing seems to provide the best balance of complexity

and data fitting at both SNRs for this example.

4. Real Data Experiments

4.1. Materials

Data used in the preparation of this article were obtained from the Alzheimers

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The

ADNI was launched in 2003 by the National Institute on Ageing (NIA), the Na-

tional Institute of Biomedical Imaging and Bioengineering (NIBIB), the FDA,

private pharmaceutical companies and non-profit organizations, as a $60 mil-

lion, 5-year public-private partnership. The primary goal of ADNI has been
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to test whether serial MRI, positron emission tomography (PET), other bio-

logical markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment (MCI) and early

Alzheimers disease (AD). Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen the time and cost of

clinical trials. ADNI is the result of efforts of many coinvestigators from a broad

range of academic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada.

60 structural MR images acquired on 3T scanners were taken from the ADNI

database, 30 of these subjects suffered from AD, the other 30 are healthy controls

(HC). There were 18 males with AD and 12 male HC. The age means and

standard deviations were 74.3 (8.4) for AD and 70.1 (13.95) for HC. The AD

subjects were taken from 10 different sites and the HC from 7.

4.2. Cross Sectional TBM

A single high-resolution representative atlas was constructed for use in the

tensor based morphometry experiments. Having a common atlas allows direct

comparison of the TBM results from the different regularisation approaches.

To prevent bias towards a particular regularisation strategy, an entirely dif-

ferent approach was used to create the atlas. The atlas was created by first

probabilistically segmenting the images into grey and white matter, followed by

co-registering these probability maps into a common space using the geodesic

shooting approach (Ashburner and Friston, 2011) within SPM12 beta. The

bias corrected images were then resampled into the atlas space and averaged to

create the atlas.

Each of the bias field corrected subject images was rigidly registered to the

template image using FLIRT (Jenkinson and Smith, 2001). Subsequently, each

image was non-linearly registered to the atlas space using one of six regular-

isation strategies: a fixed level of bending energy (Andersson et al., 2007), a

globally adaptive level of bending energy, where the level is inferred from the
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data as in (Simpson et al., 2012b), a global GP prior and the proposed prior

where σ = {0.05, 0.1, 0.15}. All registrations were run to a 10mm B-spline knot

spacing. 10mm was selected for computational reasons, as the current imple-

mentation does not provide an efficient mechanism for the inversion of sparse

matrices. Following registration, the logarithm of the voxelwise determinant

of the Jacobian of the mean transformation, µ, is calculated. This provides a

measure of local expansion or contraction.

For the proposed method, p(λ) = N (−6, 40). For the proposed model σ was

selected to be 0.1 based on the model comparison described in section 4.2.1.

For the global GP prior, different σ values were tested, but σ = 0.1 gave the

highest score in terms of F so is presented in all experiments. Two example

registrations are given in Figures 5 and 6.

4.2.1. Model comparison

Model comparison can be used to find the ideal value of σ. In this case we

compared the F for an adaptive level of bending energy, a global GP prior with

σ = 0.1, and the proposed prior with σ = 0.05, σ = 0.1 and σ = 0.15. The

results of this model comparison are illustrated in Figure 7. σ = 0.1 was chosen

for illustration as it generally outperformed σ = 0.15 and adaptive bending

energy, with less variability than σ = 0.05.

4.2.2. Jacobian Analysis

The distinction between the proposed prior, and a global prior can be seen

in terms of the distribution of local volume change as given by the log Jacobian,

an example histogram of which is given in figure 8. The proposed prior prohibits

much displacement in uninformative regions, thus leads to large regions of no

volume change. Furthermore, in informative regions the registration is free to

follow the data completely leading to more substantial volume changes, which

are seen in the tails of the distributions. This emphasises the well supported

signal from the data, and reduces other effects. This can be measured using the

kurtosis of the log Jacobian distribution, where higher kurtosis implies a more
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Figure 5: An example slice illustrating a 3D registration where the substantial volume changes
are quite sparsely distributed. In this case, the three methods produce quite different log
Jacobian maps. The adaptive global bending energy infers a inflexible transformation prior, as
insufficient information globally suggests more flexibility is needed. The fixed level of bending
energy produces a lot of changes across the brain, the causes of some are not immediately
apparent from visual inspection of the data. The global GP prior, which does not encourage
particularly strong spatial smoothness performs similarly. Conversely, using the proposed
prior leads to a sparser set of volume changes that subjectively seem more reasonable, and
contain less false positives. For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.

peaked distribution, with heavier tails. Figure 9 shows a boxplot of the kurtosis

of the log Jacobian maps across the population.

4.2.3. Population Statistics

The log Jacobian maps were analysed using a general linear model, where

statistical differences were evaluated between subject groups. The Jacobian
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Figure 6: An example slice illustrating a 3D registration where there are changes distributed
across the whole brain. As can be seen, all four methods produce similar log Jacobian maps.
The proposed spatial prior shows fairly wide flexibility across the image with more flexibility in
the anterior, as there are more substantial changes there. This illustrates that the proposed
prior is appropriate even in cases where the changes are widely distributed. The spatial
uncertainty is much lower and more focal than when using either of the adaptive global
priors. For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.

maps were not smoothed prior to analysis. All the analyses were performed

using tools from the FSL library1. Age and total intracranial volume (TIV),

as estimated by combining the white matter, grey matter and CSF maps from

SPM, were used as co-regressors. Figure 10 shows the results of these statistical

analyses.

1www.fmrib.ox.ac.uk/fsl/
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Adaptive Bending Global σ = 0.1 Proposed σ = 0.05 Proposed σ = 0.1 Proposed σ = 0.15
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F

Figure 7: Bayesian model comparison of the different regularisation strategies for population
to atlas registration. F was significantly lower for σ = 0.15 than all other methods (paired
t-test, p < 0.05). σ = 0.05 and σ = 0.1 are fairly similar, and weakly significantly better than
the adaptive bending energy regulariser (paired t-test, p < 0.06) and the global GP prior
(paired t-test, p < 0.12). As σ = 0.1 has a smaller inter-quartile range, and similar median
to σ = 0.05, this was used in future experiments.
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Figure 8: Histograms of the log Jacobian values from the registrations in figure 6. The left
image shows the overall distributions, whereas the right plot focuses on the tails of the same
distributions. As can be seen, using the proposed prior leads to substantially heavier tails.
In this case, the kurtosis varies from 7.7, for adaptive bending energy, 8.6, for the fixed level
of bending energy, 9.1 for the global GP prior, which encourages less smooth deformations
than bending energy, and 15.0 for the proposed regularisation prior. For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.

5. Discussion

This paper has demonstrated that a spatially adaptive transformation prior

can be estimated alongside the non-linear registration parameters from a pair

of images. The current framework was implemented using a B-spline FFD
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Figure 9: Boxplots illustrating the distribution of kurtosis in the log Jacobian maps between
the different priors across the 60 registrations. The proposed prior has significantly higher
kurtosis then the other methods (p < 0.05 paired t-test).

Figure 10: Population t-statistics (uncorrected) comparing the population with AD and HC.
As can be seen, the fixed level of bending energy and global GP prior leads to more widespread
changes, particularly in the white matter visible in the bottom row. These may be false positive
effects caused by higher global variance than the other methods, or lower spatial smoothness
in the case of the global GP prior. The proposed prior leads to focal contractions of high
significance in the gray matter and expansion of the ventricles, which may be more plausible.
For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.

transformation model but the method itself is independent of the transformation

model. The inferred spatial prior aims to reduce the Kullback-Leibler distance

between the prior and posterior distributions of the transformation parameters

and consequently derives information from the data in terms of the level of
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local image information, and areas where deformations occur. In other areas,

the spatial prior has very low variance allowing little displacement to occur. This

can lead to sparse deformations, as shown in Figure 5, where the registration is

very free in informative areas allowing larger volume changes, and constrained

in other areas prohibiting volume change. This leads to distributions of log

Jacobians that have higher kurtosis. We postulate that this may lead to a

reduction is weaker false positives, and emphasises true volume changes in the

data.

This model can be thought of as equivalent to a sparse deformation model,

where the hyper-parameters controlling regularisation {λ} can effectively switch

off transformation parameters in non-informative regions, therefore the defor-

mation in those locations cannot be uncertain, as it not being estimated. For

alternative applications to TBM, a map of inactive regions may be useful, as

the alignment of these regions cannot be deemed trustworthy, an intuition for

these locations can be seen in the proposed prior maps in Figures 5 and 6.

In computational terms, the current implementation is quite expensive, which

limits the B-spline knot resolution that this method has been tested on. The

computational bottleneck lies in the numerical inverse of the matrices Σ and

Υ−1. Future work would seek to find efficient means of inverting the matri-

ces, possibly using a sparse Cholesky decomposition that allows updating, or

through separating the matrix into blocks as in (Harrison et al., 2008).

Ideally, a regularisation strategy would not enforce sparsity on the covariance

matrix. Instead, it may be more appropriate to have a spatially adaptive prior as

a mixture of precision, rather than covariance components. This would permit

longer range covariance in the prior, which cannot occur in the proposed work.

A difficulty with such an approach is learning a suitable set of prior components

to use, and ensuring that the resulting prior matrix is positive-definite.

In the current implementation, the subject images were registered to the

atlas to allow the deformation fields (and therefore the Jacobian maps) to be in

a common space. However, in a generative model such as this, it would be more
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appropriate to register the smooth atlas image to the subject for estimating

the deformation field. As we are currently using a small deformation model,

the inverse is not always well defined and therefore such an approach may not

be ideal. Future work will implement this model within a large deformation

transformation model, such as a stationary velocity field.

A straightforward extension of this work would investigate the use of a pop-

ulation prior distribution of p(λ) that has a variable mean and variance across

the image. Furthermore, local covariance components could be merged together

where appropriate as in (Friston et al., 2008).

Registration uncertainty has been demonstrated to be useful in improving

hippocampal subfield segmentations (Iglesias et al., 2013), estimating dose de-

livery in radiotherapy (Risholm et al., 2011a), assisting neurosurgical decision

making (Risholm et al., 2010a) and improving classification (Simpson et al.,

2013a). Future work could also investigate the use of posterior deformation

distributions to identify whether an individual belongs to a sub-population of

the data, either globally or for a specific structure. This work demonstrates

how strongly the registration uncertainty depends on the prior information, as

well as the local image information. The use of a global spatial prior leads

to a global variance contribution, which is modified based on the local image

information. Conversely, with an adaptive spatial prior, areas that are informa-

tive are given freedom to move, but because they are informative regions, they

consequently lead to low variance. As opposed to areas that are uninformative,

which are given little freedom in the prior and therefore have a tight posterior

distribution as there is no evidence to suggest that they should move.

We believe that this paper provides the first example of Bayesian model

comparison for non-linear registration, as demonstrated for choosing the form

of the regularisation model. Future work will also investigate finding an optimal

B-spline knot spacing or transformation model for a given application.
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6. Conclusions

This paper has described a spatially adaptive regularisation prior model and

inference scheme for non-linear registration. The components are optimised

using the variational Bayesian cost function, which aims to reduce the Kullback-

Leibler distance between the prior and posterior distribution of transformation

parameters. This approach leads to better feature localisation and a reduction of

false positives in tensor based morphometry, through having a spatial prior that

adapts to the local data. Further advantages are Bayesian model comparison

and allowing for more plausible measures of registration uncertainty.

Acknowledgements

I. Simpson was supported by the NIHR Queen’s Square Dementia BRU.

M.J. Cardoso was supported by EPSRC (EP/H046410/1). Marc Modat is sup-

ported by the UCL Leonard Wolfson Experimental Neurology Centre. Sebastien

Ourselin receives funding from the EPSRC (EP/H046410/1, EP/J020990/1,

EP/K005278), the MRC (MR/J01107X/1), the EU-FP7 project VPH-DARE@IT

(FP7-ICT-2011-9-601055), the NIHR Biomedical Research Unit (Dementia) at

UCL and the National Institute for Health Research University College London

Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact

Initiative).

Data collection and sharing for this project was funded by the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant

U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-

12-2-0012). ADNI is funded by the National Institute on Aging, the National

Institute of Biomedical Imaging and Bioengineering, and through generous con-

tributions from the following: Alzheimers Association; Alzheimers Drug Dis-

covery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-

Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and

Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company

Genentech, Inc.; Fujirebio; GE Healthcare; ; IXICO Ltd.; Janssen Alzheimer

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharma-

ceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.;

Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies;

Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier;

Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of

Health Research is providing funds to support ADNI clinical sites in Canada.

Private sector contributions are facilitated by the Foundation for the National

Institutes of Health (www.fnih.org). The grantee organization is the Northern

California Institute for Research and Education, and the study is coordinated

by the Alzheimer’s Disease Cooperative Study at the University of California,

San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging

at the University of Southern California.

Appendix A. Derivation of the Variational Free Energy

The negative variational free energy, F , is a lower bound of the log model

evidence, and is the measure that VB seeks to maximise (Beal, 2003). Max-

imisation of F is equivalent to minimisation of the Kullback-Leibler distance

between the true and approximate posterior distributions. For a model with

parameters Θ, F is composed of two terms:

F =

∫
q(Θ) logP (y|Θ)dΘ +

∫
q(Θ)(logP (Θ)− log q(Θ))dΘ (A.1)

= Lav −DKL(q(Θ)||P (Θ)) (A.2)

where Lav is the marginal value of the log likelihood with respect to the approx-

imate posterior distribution, q(Θ), and DKL is the Kullback-Leibler distance

between the approximate posterior and prior distributions.

The mean-field approximation assumes independence of groups of parame-

ters, and for the model in question: q(Θ) = q(w)q(φ)
∏
i q(λi). Therefore, for

the proposed model Lav is calculated as the expectation of the likelihood with

respect to the approximate posterior distributions:

Lav =

∫
q(w)q(φ)

I∏

i

q(λi)(logP (y|Θ)dwdφdλi (A.3)
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This results in the following expression for the marginal likelihood:

Lav =
αNv

2
(log(a) + ψ(b))− αφ̄

2
(kTk + Tr(ΥJTJ)) (A.4)

where ψ is the digamma function.

Similarly, DKL comprises the integral of the second term of equation A.1.

Due to the mean-field approximation, DKL(Θ) is split into approximate poste-

rior parameter groups:

DKL(q(Θ)||P (Θ)) = DKL(q(w)||p(w)) + DKL(q(φ)||P (φ))

+
I∑

i

DKL(q(λi)||P (λi)) (A.5)

These are the standard Kullback-Leibler distances between either normal, or

Gamma distributions and can be found in the literature (Roberts and Penny,

2002).

Closed form updates for the parameters of the approximate posterior distri-

butions can be derived using the calculus of variations. This involves finding

the derivative of the functional F with respect to a set of model parameters,

given the current posterior distribution on the conditionally independent model

parameters. In practical terms, this involves equating the log-likelihood and

prior probabilities, marginalised over the independent posterior distributions,

with the approximate log posterior distribution. For example, if:

M = log p(y|x,w, φ) + log p(w) + logP (φ) +
∑

logP (λ) (A.6)

then the updated distribution for q(w) can be found as:

log q(w) =<M >q(φ)
∏

i q(λi) (A.7)

where the angled brackets correspond to taking an expectation of the bracketed

term with respect to the sub-scripted terms. The full derivation of the updates

for q(w) and q(φ) are not given here, but can be found in previous work (Simpson

et al., 2012b).
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Appendix B. Regularisation Parameters

The terms of F that relate to the prior covariance matrix, Σ are given as:

F =
1

2

(
− log |Σ| − Trace(ΥΣ−1)− µΣ−1µ− 1

ρ2

∑

i

(λ̂i − η)2

)
+ const{λ̂i}

(B.1)

As can be seen, Σ appears twice within a matrix inverse. As {λ} parameterises

Σ, rather than Σ−1, q(λ) does not have an algebraically defined posterior distri-

bution. Instead, the Laplace approximation is used to assume a normal posterior

distribution, by taking a Taylor series expansion of F around the current mean.

Furthermore, it is assumed that Σ only depends on the first order moments of

λ, as described in equation 9.

Appendix B.1. First Order Derivative

Each of these terms can be analytically differentiated with respect to the

posterior mean of a given regularisation parameter, λ̂i:

− ∂

∂λ̂i
log |Σ| =

∂

∂λ̂i
log |Σ−1| = 1

|Σ−1|
∂|Σ−1|
∂λ̂i

(B.2)

= Trace

(
Σ
∂Σ−1

∂λ̂i

)
(B.3)

where the identity ∂ log |X|
∂X = Trace(X−1∂X) has been used.

The quantity ∂Σ−1

∂λ̂i
can be analytically calculated as:

∂Σ−1

∂λ̂i
= −Σ−1 exp(λ̂i)ΣiΣ

−1 (B.4)

where the identity ∂A−1

∂x = −A−1 ∂A∂xA−1 has been used.

The next term is simply:

− ∂

∂λ̂i
Trace(ΥΣ−1) = −Trace

(
Υ
∂Σ−1

∂λ̂i

)
(B.5)

The derivative of the third term is:

− µTΣ−1µ = −µT ∂Σ−1

∂λ̂i
µ (B.6)
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The derivative of the final term is:

∂

λ̂i

(λ̂i − η)2

2ρ2
=

2λ̂i − 2η

2ρ2
=
λ̂i − µλ
ρ2

(B.7)

This gives the complete derivative of F with respect to λ̂i as:

∂F
∂λ̂i

=
1

2

[
−Trace

(
Υ
∂Σ−1

∂λ̂i

)
+ Trace

(
Σ
∂Σ−1

∂λ̂i

)
− µT ∂Σ−1

∂λ̂i
µ

]
− λ̂i − η

ρ2

(B.8)

Appendix B.2. Second Order Derivatives

The second order derivatives of F wrt. λ̂i can be used to estimate the step

size for the parameter updates. To get the step size of each parameter update,

the second derivative of λ̂i wrt. F can be calculated:

∂2F
∂λ̂i

2 =
∂

∂λ̂i

1

2
Trace

([
Σ
∂Σ−1

∂λ̂i
−Υ

∂Σ−1

∂λ̂i
− µµT ∂Σ−1

∂λ̂i

])

=
1

2
Trace

(
∂Σ

∂λ̂i

∂Σ−1

∂λ̂i
+ Σ

∂Σ−2

∂λ̂i
2 −Υ

∂Σ−2

∂λ̂i
2 − µµT

∂Σ−2

∂λ̂i
2

)

=
1

2
Trace

(
exp(λ̂i)Σi

∂Σ−1

∂λ̂i
+
(
Σ−Υ− µµT

) ∂2Σ−1

∂λ̂i
2 −

1

ρ2

)
(B.9)

where,

∂2Σ−1

∂λ̂i
2 = − ∂

λ̂i

(
Σ−1 exp(λ̂i)ΣiΣ

−1
)

(B.10)

= −
(
∂Σ−1

∂λ̂i
exp(λ̂i)ΣiΣ

−1 + Σ−1 exp(λ̂i)ΣiΣ
−1 + Σ−1 exp(λ̂i)Σi

∂Σ−1

∂λ̂i

)

and the identity ∂XY = (∂X)Y + X(∂Y) has been used.

This work makes the assumption that Σ only depends on the first order

moment of λ̂i. This means that ∂2Σ−1

∂λ̂i
= 0, which leads to a simplification of

equation B.9 as given in equation 17.
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Papież, B., Heinrich, M., Risser, L., Schnabel, J., 2013. Complex lung motion

estimation via adaptive bilateral filtering of the deformation field, in: Medical

Image Computing and Computer-Assisted Intervention. Springer, pp. 25–32.

Penny, W., Trujillo-Barreto, N., Friston, K., 2005. Bayesian fMRI time series

analysis with spatial priors. NeuroImage 24, 350–362.

Rasmussen, C., Williams, C., 2006. Gaussian processes for machine learning.

volume 1. MIT press Cambridge, MA.

Risholm, P., Balter, J., Wells, W., 2011a. Estimation of delivered dose in radio-

therapy: the influence of registration uncertainty. Medical Image Computing

and Computer-Assisted Intervention , 548–555.

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Risholm, P., Janoos, F., Norton, I., Golby, A.J., Wells III, W., 2013. Bayesian

characterization of uncertainty in intra-subject non-rigid registration. Medical

image analysis .

Risholm, P., Pieper, S., Samset, E., Wells, W., 2010a. Summarizing and visual-

izing uncertainty in non-rigid registration, in: Medical Image Computing and

Computer-Assisted Intervention. volume 6362, pp. 554–561.

Risholm, P., Ross, J., Washko, G., Wells, W., 2011b. Probabilistic elastography:

Estimating lung elasticity, in: Information Processing in Medical Imaging.

Springer. volume 6801, pp. 699–710.

Risholm, P., Samset, E., Wells, W., 2010b. Bayesian estimation of Deformation

and elastic parameters in non-rigid registration, in: Workshop on Biomedical

Image Registration. Springer, pp. 104–115.

Roberts, S., Penny, W., 2002. Variational Bayes for generalized autoregressive

models. IEEE Transactions on Signal Processing 50, 2245–2257.

Rohde, G., Aldroubi, A., Dawant, B., 2003. The adaptive bases algorithm for

intensity-based nonrigid image registration. IEEE Transactions on Medical

Imaging 22, 1470–1479.

Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D., 1999.

Nonrigid registration using Free-Form Deformations: application to breast

MR images. IEEE Transactions on Medical Imaging 18, 712–721.

Schmah, T., Risser, L., Vialard, F., 2013. Left-invariant metrics for diffeo-

morphic image registration with spatially-varying regularisation, in: Medical

Image Computing and Computer-Assisted Intervention. Springer, pp. 203–

210.

Schnabel, J., Rueckert, D., Quist, M., Blackall, J., Castellano-Smith, A.,

Hartkens, T., Penney, G., Hall, W., Liu, H., Truwit, C., 2001. A generic

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

framework for non-rigid registration based on non-uniform multi-level free-

form deformations. Medical Image Computing and Computer-Assisted Inter-

vention , 573–581.

Simpson, I., Schnabel, J., Andersson, J., Groves, A., Woolrich, M., 2012a. A

probabilistic non-rigid registration framework using local noise estimates. Pro-

ceedings of IEEE International Symposium on Biomedical Imaging 2012 ,

688–691.

Simpson, I., Schnabel, J., Groves, A., Andersson, J., Woolrich, M., 2012b. Prob-

abilistic inference of regularisation in non-rigid registration. NeuroImage 59,

2438–51.

Simpson, I., Woolrich, M., Andersson, J., Groves, A., Schnabel, J., 2013a. En-

semble learning incorporating uncertain registration. Medical Imaging, IEEE

Transactions on 32, 748–756.

Simpson, I., Woolrich, M.W., Cardoso, M., Cash, D., Modat, M., Schnabel, J.,

Ourselin, S., 2013b. A Bayesian Approach for Spatially Adaptive Regularisa-

tion in Non-rigid Registration, in: Medical Image Computing and Computer-

Assisted Intervention. Springer, pp. 10–18.

Sotiras, A., Davatzikos, C., Paragios, N., 2013. Deformable medical image

registration: A survey. Medical Imaging, IEEE Transactions on 32, 1153–

1190.

Staring, M., Klein, S., Pluim, J., 2007. Nonrigid registration with tissue-

dependent filtering of the deformation field. Physics in medicine and biology

52, 6879.

Tang, L., Hamarneh, G., Abugharbieh, R., 2010. Reliability-driven, spatially-

adaptive regularization for deformable registration. Workshop on Biomedical

Image Registration , 173–185.

Van Leemput, K., 2009. Encoding probabilistic brain atlases using Bayesian

inference. IEEE Transactions on Medical Imaging 28, 822–837.

36



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Xu, H., Thirion, B., Allassonnière, S., 2014. Probabilistic atlas and geometric

variability estimation to drive tissue segmentation. Statistics in medicine 33,

3576–3599.

Zhang, M., Fletcher, P.T., 2014. Bayesian principal geodesic analysis in diffeo-

morphic image registration, in: Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2014. Springer, pp. 121–128.

Zhang, M., Singh, N., Fletcher, P.T., 2013. Bayesian estimation of regulariza-

tion and atlas building in diffeomorphic image registration, in: Information

Processing in Medical Imaging, Springer. pp. 37–48.

37


