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We develop a multivariate analysis of brain anatomy to identify the relevant shape deformation patterns
and quantify the shape changes that explain corresponding variations in clinical neuropsychological mea-
sures. We use kernel Partial Least Squares (PLS) and formulate a regression model in the tangent space of
the manifold of diffeomorphisms characterized by deformation momenta. The scalar deformation
momenta completely encode the diffeomorphic changes in anatomical shape. In this model, the clinical
measures are the response variables, while the anatomical variability is treated as the independent var-
iable. To better understand the ‘‘shape—clinical response’’ relationship, we also control for demographic
confounders, such as age, gender, and years of education in our regression model. We evaluate the pro-
posed methodology on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline
structural MR imaging data and neuropsychological evaluation test scores. We demonstrate the ability
of our model to quantify the anatomical deformations in units of clinical response. Our results also dem-
onstrate that the proposed method is generic and generates reliable shape deformations both in terms of
the extracted patterns and the amount of shape changes. We found that while the hippocampus and
amygdala emerge as mainly responsible for changes in test scores for global measures of dementia
and memory function, they are not a determinant factor for executive function. Another critical finding
was the appearance of thalamus and putamen as most important regions that relate to executive func-
tion. These resulting anatomical regions were consistent with very high confidence irrespective of the
size of the population used in the study. This data-driven global analysis of brain anatomy was able to
reach similar conclusions as other studies in Alzheimer’s disease based on predefined ROIs, together with
the identification of other new patterns of deformation. The proposed methodology thus holds promise
for discovering new patterns of shape changes in the human brain that could add to our understanding of
disease progression in neurological disorders.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recently, there has been widespread interest within the neuro-
imaging community about machine learning and shape analysis
techniques. This has provided effective tools for learning patterns
in morphological shape changes occurring in the human brain dur-
ing healthy aging and disease progression. Some of these studies ex-
hibit potential for prognosis and prediction of neurological diseases.
Traditional brain imaging studies have used the brain anatomy as
the outcome variable and have correlated changes in the brain anat-
omy to age, gender, and cognitive status. However, only recently,
there have been very few attempts that try and predict cognitive
function from brain MRI, specifically to determine the extent to
which changes in the brain anatomical structure account for the var-
iance of cognitive function in normal aging and Alzheimer’s disease.

Alzheimer’s disease is a neurological disorder that is character-
ized by severe cognitive decline and distinctive neuroanatomical
shape changes. Cognitive decline is measured by clinical tests for
neuropsychological function. The complex and subtle shape
changes that occur during disease progression can be extracted
from structural information available in MR brain images. In previ-
ous work, Large Deformation Diffeomorphic Metric Mapping
(LDDMM) has been used for the characterization of anatomical
changes associated with various diseases (Ashburner et al., 2003;
Twining and Marsland, 2003; Miller et al., 2005), including the anal-
ysis of changes in anatomy with normative aging (Davis et al., 2007).
Most of the earlier studies on characterization of neuroanatomical
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changes have focused on the statistical analysis of deformation
maps, either using the associated Jacobian of the transformations,
as in the now ubiquitous deformation-based morphometry (Ash-
burner et al., 1998; Mechelli et al., 2005), or have done the analysis
directly on the displacement maps. Most of the recent studies using
large deformation diffeomorphic transformations have focused on
the characterization of group differences in the shape of specific
substructures, such as the hippocampus (Wang et al., 2007). In an-
other substructure focussed study, Miller et al. (2012) performed
statistical analysis on surface-based deformation markers to char-
acterize differential atrophy in amygdala between the mild cogni-
tive impairment (MCI) and the AD group. More recently, Li et al.
(2012) studied variety of sparse regression methods on summary
measures derived only from left and right hippocampus, such as vol-
umes and surface deformations of hippocampi.

In this article, we present a multivariate analysis of diffeomor-
phic transformations of the whole brain for relating complex ana-
tomical changes with neuropsychological responses, such as
clinical measures of cognitive abilities, audio-verbal learning, logi-
cal memory, and measures of executive functions. Rather than
using the associated Jacobian of transformations or the vector-val-
ued velocity or deformation fields, we formulate the regression
problem in terms of scalar initial momenta maps that completely
encode the geodesics on the manifold of diffeomorphisms. Defor-
mation momenta are a scalar-valued signature that summarize
the complete shape variability information for an individual (Via-
lard et al., 2011). The scalar momenta are comprised of both the lo-
cal divergence and curl components of associated deformation
fields and not only the local scaling represented by the Jacobians.
We use kernel Partial Least Squares (kernel PLS) to study covari-
ance of the anatomical structures in the entire brain volume with-
out any segmentation or a priori regions of interest identification.
The methodology helps us extract and identify shape deformation
patterns in brain anatomy that relate to observed clinical scores
depicting cognitive abilities. Furthermore, this regression scheme
under the LDDMM framework enables us to visualize and quantify
the amount of localized shape atrophy observed and relate it to
attenuation in neuropsychological response. Another interesting
question about the interpretation of relationship between vari-
ables in regression concerns the confounding effect of extraneous
variables, which may lead to false interpretation in the statistical
analysis. Frank (2000) gives a comprehensive account of such is-
sues. Since we attempt to understand the ‘‘neuroanatomical
shape—neurological response’’ relationship, this particularly is of
considerable importance for our shape analysis and regression
modeling. Both the anatomical shape and clinical response are well
known to be affected by several demographic variables. We formu-
late a modeling approach that takes into account a control for these
variables in order to avoid spurious interpretations of our results.
We also report the prediction accuracy to understand the stability
of the model and find the results comparable to some of those re-
ported in previous attempts. Our results also show that anatomical
measures, such as cortical thickness, hippocampal volume and
atrophy in amygdala, putamen and thalamus emerge naturally as
in previous studies of Alzheimer’s and related dementia.

The details about some of the closest works to this study are
covered in the next section. We detail the specifics of our proposed
methodology in Section 3. Section 4 details about our extensive
experiments with the ADNI data and comparisons with other
regression methodologies such as Relevance Vector Regression
(RVR). Analysis of stability of the regression estimates and applica-
tions to multi-modal image analysis using our proposed method
are also presented in this section. Finally, we summarize and con-
clude with the discussion about the scope and the impact of this
study to neuroimaging community in Section 5.
2. Related work

Several studies have used machine learning methodologies to
predict cognitive and disease states from neuroimaging data. Some
of these works in Alzheimer’s disease are by Vemuri et al. (2008);
Davatzikos et al. (2008); Fan et al. (2008); Cuingnet et al. (2011);
Zhang et al. (2011) and Li et al. (2012) (see Weiner et al., 2012
for detailed review on this ongoing research). Vemuri et al.
(2008) used linear support vector machines (SVM) to build classi-
fiers to discriminate Alzheimer’s disease from cognitively normal
patients using tissue densities extracted from structural MR brain
images. In another study, Davatzikos et al. (2008) used high-
dimensional pattern classification to develop efficient classifiers
on a smaller cohort comprising of individuals with AD and fronto-
temporal dementia (FTD). Disease categorization between AD and
FTD was performed based on features summarizing the amount of
gray matter and white matter in brain tissues. Extensive analysis is
presented in Cuingnet et al. (2011), summarizing disease categori-
zation performances of classifiers targeting primarily the classifica-
tion between AD, MCI (convertors and nonconvertors) and control
groups. This study evaluates multiple feature extraction methodol-
ogies such as voxel based summaries, cortical thickness and the
hippocampus volume. Zhang et al. (2011) proposed a multi-kernel
method to combine both structural and functional imaging modal-
ities and evaluated their method on the classification of MCI group.
Batmanghelich et al. (2013) have recently developed approximate
inference algorithm to solve probabilistic models based on classifi-
cation of disease phenotypes: AD, MCI and healthy controls, utiliz-
ing features derived from both the structural MRI as well as from
genetic sequences in the form of single nucleotide polymorphisms
(SNPs). However, this framework in its current form, is also not
generalizable to regression with continuous clinical variables.

While many of above studies involve categorical classifications
of disease, regression-based predictive analysis of continuous clin-
ical measures have been given little attention. Modeling symptom-
atic measures of neuropsychological response as a function of
anatomy has recently found increasing interest within the neuro-
imaging community. The progression of disease associated with
aging such as the AD is characterized by gradual and continuous
changes. Thus, regression analysis using continuous clinical re-
sponse variables is a natural choice and more informative of dis-
ease progression than just the classification-based approach for
the study of such neurological disorders. Cohen et al. (2011) give
a comprehensive review of such techniques and covers a gamut
of studies that relate continuous clinical variables with neuroimag-
ing data in various neurological disorders. Another review article
by Filipovych et al. (2011) also suggests the use of clustering-based
approaches for categorical analysis and high-dimensional pattern
regression approaches for understanding continuous clinical
progression.

Some of the works to predict neuropsychological characteristics
from imaging data in Alzheimer’s disease are from Duchesne et al.
(2009) and more recently by Stonnington et al. (2010) and Wang
et al. (2010). Duchesne et al. (2009) have used linear regression
models on features derived from MRI data to predict clinical de-
cline for the Mild Cognitive Impairment (MCI) disease group. The
latter two works, however, are more closely related and compara-
ble to our study. They have considered a continuum of disease
states in Alzheimer’s and have used similar predictive modeling
on the ADNI neuroimaging and neuropsychological data. For com-
parison, we report the correlation of predicted vs. actual value for
test data (rtest) in leave-one-out cross-validation as reported in
these studies. Stonnington et al. (2010) employed Relevance Vector
Regression (RVR) techniques on the ADNI baseline MR scans and
baseline clinical evaluation scores for a continuum of disease



Fig. 1. Tangent space at the atlas (I) and emanating geodesics towards contributing
images. The geodesics in red and blue represent regression coefficient for clinical
variables and need to be estimated. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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states, with the similar datasets as has been used in this study.
They reported the best numbers for prediction to be around
rtest ¼ 0:48 for mmse (Mini Mental State Examination score). The
estimated prediction accuracy using leave-one-out cross-valida-
tion obtained in our work is: rtest ¼ 0:52 for mmse (rtest ¼ 0:53 after
control for confounders). Wang et al. (2010) have employed regio-
nal-based clustering approach on tissue density maps (TDM) for
feature selection, followed by RVR based bagging model. Although
they report higher correlation, Wang et al. (2010) used only a sub-
set of the baseline MRI scans from ADNI, and their response vari-
able was the average clinical score over timepoints. We perform
a detailed comparison of our results with these related works in
Section 5.

Deformation momenta have been previously used for statistical
analysis. Singh et al. (2010); Singh et al. (2012) used scalar defor-
mation momenta to build models to explain covariance of shape
and clinical data in the form of latent directions extracted in the
two spaces but did not develop models summarizing functional
relationship between anatomy and clinical variables. These models
hence were not directly applicable for the prediction of continuous
clinical response. Besides neuroimaging, momenta under the cur-
rents framework have been used as summary measure of shape
changes in a cardiac study. Mansi et al. (2011) evaluate the regio-
nal impact of valve regurgitation and heart growth upon the end-
diastolic right ventricle (RV) using shape changes summarized by
deformation momenta. With the motivation of addressing problem
of multicollinearity in high dimensional regression problem this
work also employs partial least squares regression and reports im-
proved predictions when compared to using principal component
analysis (PCA) regression. This work applies the PLS method on
moments using L2 scalar product between moments which is ill-
defined. The regression coefficient thus obtained does not have a
strict interpretation within the metric space of momenta and
hence such an L2 based analysis is not intrinsic to the manifold.

Some of the other works that have recently provided more in-
sights in the understanding of Alzheimer’s disease dynamics in-
clude those by Lorenzi et al. (2011); Lorenzi et al. (2012) and
Niethammer et al. (2011); Hong et al. (2012). Lorenzi et al.
(2011) have developed a hierarchical approach that combines sub-
ject specific tissue atrophy to obtain population level longitudinal
changes. This framework is used to investigate the effects of posi-
tivity of CSF Ab1�42 levels on brain atrophy in healthy aging. In the
work that followed, Lorenzi et al. (2012) suggest a methodology to
decompose individual’s brain atrophy into complementary compo-
nents comprising of AD specific and healthy aging based on the
projections defined under stationary velocity fields (SVF) frame-
work. Niethammer et al. (2011) proposed a novel idea of general-
izing the notion of least squares regression to manifold of
diffeomorphisms that is effective in summarizing changes in atro-
phy along with age for a single individual. Hong et al. (2012) fur-
ther extend geodesic regression to derive an approximate
algorithm under metamorphosis framework. This method of geo-
desic regression, in its current form, is generally applicable to
explaining atrophy with aging. The anatomical shape is treated
as a response variable to independent aging progression. These
methods are not applicable where neuropsychological characteris-
tics are sought to be modeled as a functions of anatomy.

The focus of pattern recognition and machine learning methods
for both classification and regression analysis in recent neuroimag-
ing studies has primarily been to predict. Even though these ap-
proaches were able to extract and visualize the pattern-maps of
brain atrophy that are most informative for prediction, none of
the above studies answered questions about interpretation of the
model in a way that would enable them to quantify the amount
of anatomical shape changes. Our goal here is centered around
quantifying the shape deterioration observed in brain tissue that
would explain continuous clinical progression. An important sta-
tistical consideration towards this end is the need to control for
the confounding variables, such as age, gender, handedness, and
patient education. Previous predictive-modeling approaches have
not included any explicit control for such confounding variables
and does bring into question the biological interpretability of the
patterns recognized by the regression coefficients obtained in
these approaches. We address this by formulating a regression
model between the residual in deformation momenta and residu-
als in clinical response, obtained after regressing out confounders
such as age, gender, and education.

3. Methods

The focus of this work is to build regression models to study
nonlinear geometry changes in the complex anatomy of human
brain. In our proposed methodology, we use deformation momenta
as signature representations of infinite dimensional diffeomorphic
shape changes. Geometric regression models on brain anatomy
using deformation momenta are formulated as kernel variants of
high-dimensional regression methods such as the partial least
squares (PLS) or the relevance vector regression (RVR). We further
discuss the geometrical interpretation of regression estimates on
the manifold of diffeomorphisms (Fig. 1). Fig. 2 summarizes the
key steps of this regression modeling.

3.1. Atlas building and deformation momenta

We use the general framework of computational anatomy by
Dupuis et al. (1998) in which the anatomical variation within a
population is characterized by a template or an atlas and the space
of transformations that maps the atlas to each individual subject of
the population. We follow the now well-established framework of
large deformation diffeomorphic transformations. We briefly re-
view the mathematical framework as it is central to the subse-
quent statistical analysis. Let X be the coordinate space of the
atlas. Diffeomorphic transformations are continuously differentia-
ble with a differentiable inverse. This definition implies that the set
of all diffeomorphisms of X has a group structure. A convenient
and natural machinery for generating diffeomorphic transforma-
tions is by the integration of ordinary differential equations
(ODE) on X defined via the smooth time-indexed velocity vector
fields vðt; yÞ : ðt 2 ½0;1�; y 2 XÞ ! R3. The function /v ðt; xÞ given
by the solution of the ODE dy

dt ¼ vðt; yÞ with the initial condition
yð0Þ ¼ x defines a diffeomorphism of X. In other words, yðtÞ de-
notes the path of each voxel along the flow while x denotes the
starting location in the coordinate grid, X. Thus, /v ðt; xÞ ¼ yðtÞ, rep-
resents the diffeomorphism of the entire grid as a function of time,
t. One defines a Riemannian metric on the space of diffeomor-
phisms by inducing an energy via a Sobolev norm with the partial
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Fig. 2. Shape—clinical response regression modeling framework. Block A. represents initial shape feature extraction process, Block B. represents the regression on manifold
and Block C. represents the interpretation of the estimated regression coefficient on the manifold and quantifying corresponding anatomical shape deformations.
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differential operator L on these velocity fields. The distance be-
tween the identity transformation and a diffeomorphism w is de-
fined as the minimization

dðid;wÞ2 ¼min
Z 1

0
hLvðt; �Þ;vðt; �Þidt : /vð1; �Þ ¼ wð�Þ

� �
: ð1Þ

The distance between any two diffeomorphisms is defined as
dð/;wÞ ¼ dðid;w � /�1Þ.

This Riemannian metric defined on the space of diffeomor-
phisms can now be used to compute a deformation that matches
two images. If the problem is to register an image I over the target
image J, then image at time t is defined as It ¼ I � /�1

0;t , i.e., I0 ¼ I. The
goal is to generate the diffeomorphism / parameterized by the
‘optimal’ time-varying velocity field v that best aligns It with J.

It has been shown in Miller et al. (2002); Miller and Younes
(2001) that the distance metric in Eq. (1) on diffeomorphisms also
establishes the notion of distance between two anatomical images,
I and J. The length of the shortest path on diffeomorphisms con-
necting images I to J defines a metric on the image orbit under
the group action of diffeomorphisms. For exact matching where
I � /�1 ¼ J, the distance between images is written as,

dðI; JÞ2 ¼ min
v: _/t¼vtð/tÞ

Z 1

0
hLvðt; �Þ;vðt; �Þi2dt: ð2Þ

Motivated from the above, for inexact matching, a penalization to
force closeness of the match is usually added (Miller et al., 2002;
Miller and Younes, 2001) resulting in the minimization problem:

EðvÞ ¼ min
v: _/t¼vtð/tÞ

Z 1

0
hLvðt; �Þ;vðt; �Þi2dt þ 1

r2 kI � /�1 � Jk2
L2 ; ð3Þ

where r is a free parameter controlling the tradeoff between exact-
ness of the match and smoothness of the velocity fields. The exis-
tence of a minimizer in Eq. (3) is shown in Dupuis et al. (1998).

3.1.1. Shooting-based image matching and deformation momenta
The minimizer in Eq. (3) solves the LDDMM image matching

problem. An important consequence is that the Euler–Lagrange
equations associated with the LDDMM problem coincide with the
Euler–Lagrange equations of geodesics on the group of diffeomor-
phisms. As shown in Younes et al. (2009), the geodesic equations
are completely determined via the initial momenta Lv0, and fur-
thermore it is in the direction of the gradient of deforming image.
The vector image, a0rI (or the scalar image, a0) is referred to as the
initial momenta. The scalar quantity, a0 completely encodes the
geodesic flow from the initial image to the final image for the met-
ric defined by the choice of operator L as per Eq. (1) and the gradi-
ent of the initial image, rI.

A very effective and standard algorithm for the solution of above
LDDMM problem was proposed by Beg et al. (2005). While the en-
ergy minimization of EðvÞ over v is efficient in matching complex
shapes, at convergence, this algorithm does not yield accurate esti-
mates of the initial momenta. Vialard et al. (2011) has suggested
another algorithm to accurately estimate the initial momenta. This
shooting algorithm optimizes directly on scalar initial momenta by
solving the adjoint system of Hamiltonian equations.

The minimization of the functional in Eq. (3) can be done effi-
ciently by ensuring the accuracy of estimated initial velocity, and
thus the initial momenta, when the optimization is carried over
the set of geodesic flows as in Vialard et al. (2011). The time inte-
gral over velocity can be replaced by the Hamiltonian of the system
at t ¼ 0 expressed in terms of initial momenta, að0Þ. This leads to
minimization of the functional, Pðað0ÞÞ over initial momenta:

Pðað0ÞÞ ¼ hrI0að0; �Þ;KHrI0að0; �ÞiL2 þ 1
r2 kI1 � Jk2

; ð4Þ

âð0; :Þ ¼ arg min
að0;�Þ

Pðað0ÞÞ;

subject to the geodesic evolution constraints given by:

vðtÞ þ KHrItaðtÞ ¼ 0; ð5Þ
@taðtÞ þ r � ðaðtÞvðtÞÞ ¼ 0; ð6Þ
@tIt þrIt � vðtÞ ¼ 0: ð7Þ

Eq. (7) is the infinitesimal action of the velocity field v on the image,
while (6) is the conservation of momenta.

The gradient for energy functional in (4) is expressed in terms of
time-dependent Lagrangian multiplier over the path of geodesics.
The gradient of P is given by:

rað0ÞP ¼ �âð0Þ þ rI0 � KHðað0ÞrI0Þ; ð8Þ

âð0Þ is computed by solving the following system of adjoint equa-
tion by backward time-integration:
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@t Ît þr � ðv ÎtÞ þ r � ðav̂Þ ¼ 0; ð9Þ
@tâþ v � râ�rI � v̂ ¼ 0; ð10Þ
v̂ þ KHðÎtrI � arâÞ ¼ 0; s ð11Þ

subject to initial conditions

bI1 ¼ J � I1;

âð1Þ ¼ 0;

and aðtÞ and It are the solution of the system of shooting Eqs. (5)–(7).
Thus, to estimate að0Þ for matching image I to target image J, a gra-
dient descent based iterative algorithm is implemented. Since the
gradient of energy functional as per Eq. (8) is dependent upon the
values of the adjoint variable, âð0Þ at t ¼ 0, the Eqs. (9)–(11) are inte-
grated backward in time in every iteration. Thus, the gradient des-
cent step on initial momenta is taken based on computed gradient
of energy as per Eq. (8) using these adjoints until convergence.

3.1.2. Atlas construction
The empirical estimate of Fréchet mean of images, I can now be

presented using the distance metric on images defined in Eq. (2).
The goal is to compute the unbiased atlas image, I that minimizes
the sum of squared distances to the given population of images
(Joshi et al., 2004). Given a collection of anatomical images
fIi; i ¼ 1; . . . ;ng, the atlas can be defined as a solution to the mini-
mum mean square energy criteria,

I ¼ arg min
I

MðIÞ ¼ arg min
I

1
N

Xn

k¼1

dðI; IkÞ
2
:

The minimum mean squared energy atlas construction problem
is that of jointly estimating an image I and n individual
deformations.

The algorithm described in Section 3.1.1 is effective for image
matching but is numerically unstable when a template estimation
is involved. The numerical instabilities of geodesic shooting-based
template construction algorithms are studied in Singh et al. (2013).
The problem of instabilities is not well understood and remains a
key concern to investigate in future. Therefore, we present an alter-
native method to estimate the atlas and the geodesics emanating
from it towards each of the contributing images. In our study,
the atlas construction step is decoupled from the geodesic shoot-
ing-based image matching optimization because the template con-
struction using scalar deformation momenta is known to suffer
from numerical instabilities and is difficult to converge to a stable
mean image. Therefore, for template construction, we have used
the standard algorithm mentioned in Joshi et al. (2004) that does
not involve geodesic shooting based optimization. The accurate
shooting-based deformation momenta are estimated by solving N
image matching problems as a secondary step. Following is the
two-step approach used in this study to estimate deformation mo-
menta that accurately encode geodesics:

1. Estimating the unbiased atlas, I using the truncated mean or the
least-trimmed square minimization as per the framework of
Joshi et al. (2004) and

2. Estimating the initial momenta from this atlas by registering, I
to all images individually using the iterative backward-integra-
tion based gradient descent algorithm as described in
Section 3.1.1.

For the atlas construction step, we note that both the estimate of
the mean anatomy and the stable convergence of the estimation
algorithm can be affected by outliers, often resulting from errors
during automated image preprocessing such as poor skull-strip-
ping. As the number of images used in atlas construction increases,
thorough hand-validation of each input image becomes prohibitive.
To mitigate the effects of such outliers, we compute a truncated
mean in place of the full mean, where at each iteration of the atlas
estimation algorithm all deformations are updated, but the estimate
of the mean is updated based on the current most-central 90% of the
deformations using the distance metric, dðI; IkÞ as per Eq. (2).

For the second step, atlas image I is registered to each image to
solve the n LDDMM image matching problems thereby resulting in
the estimate of n geodesics emanating from the atlas towards each
image. The geodesic equations are completely determined via the
initial momenta, Lv0 corresponding to each individual image
deformation direction. This implies that for each of the n image
matching problems, the initial velocity is given by the equation
Lv ið0; xÞ ¼ ai

0ðxÞrIðxÞ. The quantity ai
0 completely encodes the geo-

desic flow from the atlas image to each of the individual images,
i.e., ai

0’s have all that we need to know to traverse the geodesic
joining the atlas to the contributing images.

The two-step approach above not only improves the accuracy of
the initial momenta computation but also decouples the individual
subjects by recomputing deformation fields from the atlas to indi-
vidual subjects. This allows separation between training and test-
ing data, which is important for prediction-based regression
modeling. Another benefit is that one can choose any atlas and
model the shape variations from any coordinate system of choice.

3.2. GPU implementation

Two main challenges exist in implementing the LDDMM atlas
building framework: the intensive computational cost and large
memory requirements. Even with a very low-resolution time dis-
cretization, and efficient multithreaded implementation, atlas gen-
eration takes lot of time and memory on a high-end, multi-core,
shared-memory machine. This makes parameter tuning and
cross-validation schemes impractical, and limits the size of the
population for which an atlas can reasonably be generated.

We implemented the GPU version of the algorithm as in Joshi
et al. (2004). For a fixed atlas image I, the n individual deformations
are updated by performing a gradient step of (3). This is imple-
mented as a parallel alternating algorithm by interleaving the up-
dates of the optimal deformations and the estimate of the atlas
image I. These deformations are completely independent of each
other, naturally yielding to a distributed memory implementation.
Further, the parallel nature of many of the image processing algo-
rithms used in the deformation update process lend themselves to
an efficient and massively parallel GPU-based implementation. An
implementation of LDDMM atlas building for use on a GPU com-
puting cluster was therefore developed, based on MPI and the
GPU image processing framework by Ha et al. (2009). Individual
deformation calculations are distributed across computing nodes,
and nodes further distribute deformation calculations among
GPUs. In this manner, the only inter-GPU and inter-node commu-
nication required is in the atlas update step. Inter-GPU atlas com-
putation is done in host (node) shared memory, and inter-node
atlas computation is efficiently done by a parallel-reduce summa-
tion MPI call.

The GPU cluster used consists of 64 8-core computing nodes
and 32 NVIDIA Tesla s1070 computing servers, each containing
four GPUs. Each node controls two of the four GPUs contained in
a s1070. Using 55 nodes of the GPU cluster, the resulting imple-
mentation generated the atlas of the population of 566 brain
images with much higher time discretization in under 40 min.

3.3. Partial Least Squares (PLS) on manifold

The statistical analysis pertaining to data configuration with
high dimensions but a small number of observations has been re-
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ferred to as a ‘high dimensional low sample size’ (HDLSS) (Hall
et al., 2005) problem. This has also been popular in the probability
and statistics literature as the ‘small n large p’ problem (Portnoy,
1984; Bai and Yin, 1993). This characteristic property is typical to
the neuroimaging data where the dimensionality of the acquired
images far outpaces the number of subjects in the study. The sta-
tistical technique of Partial Least Squares (PLS) has been shown
to be effective in the HDLSS regression setting where the problem
is particularly susceptible to multicollinearities. There are several
variants of PLS both for univariate and multiple response setting
(Phatak and Jong, 1997; Boulesteix and Strimmer, 2007). We re-
view the PLS regression problem under the Euclidean setup and
adopt this technique to model the regression in the tangent space
of the manifold of the group of diffeomorphisms acting on images.

The PLS regression is a supervised dimensionality reduction
technique based on a latent decomposition model. This is done
by extracting a small number of latent components or projection
scores that are linear combinations of the original variables to
avoid multicollinearity. Unlike Principal Component Regression
(PCR) (Jolliffe, 1982), where the dimensionality reduction of the
data is carried out independent of the response variable by maxi-
mizing the variance within the regressors alone, PLS models the
regression by maximizing the covariance between the regressors
and response. The latent components are extracted in the indepen-
dent and dependent data spaces such that the covariance between
the two is maximum.

We discuss here the formulation of regression modeling to pre-
dict q-dimensional response variable, y1; y2; . . . ; yq represented by a
vector y, using p predictor variables, x1; x2; . . . ; xp represented by a
vector x. If we denote the n observations as ðxi; yiÞi¼1;...;n, the data
matrices X and Y can be formulated as:

X ¼ x1x2 � � � xn
� �T and Y ¼ y1y2 � � � yn

� �T
:

The matrix X is n� p where n� p and the matrix Y is n� q.
PLS decomposes the matrices, X and Y into latent components of

the form:

X ¼ TPT þ E;

Y ¼ UQ T þ F;
ð12Þ

where T and U are the matrices of extracted scores while the matri-
ces P and Q represent the loadings. The matrices E and F are the er-
ror matrices respectively. In its classical form, PLS method is based
on the nonlinear iterative partial least squares (NIPALS) algorithm
due to Wold (1975) which solves the following optimization prob-
lem to estimate weight vectors w and c:

fw; cg ¼ arg max
w;c

covðt; uÞ2 ¼ arg max
w;c

covðXw;YcÞ2;

subject to wT w ¼ 1; cT c ¼ 1. The covðt; uÞ denotes the sample
covariance between score vectors, t and u. The above optimization
problem can be solved by the Singular Value Decomposition
(SVD) of the matrix XT Y by using the square root transformation
resulting in the equivalent formulation:

w; c ¼ arg max
w;c

wT XT Yc; ð13Þ

subject to wT w ¼ cT c ¼ 1. NIPALS algorithm, based on similar prin-
ciples as the power method, is a robust procedure for solving singu-
lar valued decomposition problems. The NIPALS algorithm
initializes a random estimate of u and iteratively updates u until
converge according to the sequence:

(1) w ¼ XT u
uT u,

(2) w ¼ w
wT w,

(3) t ¼ Xw,
(4) c ¼ YT t
tT t

,
(5) c ¼ c

cT c,
(6) u ¼ Yc.

After convergence, the loading vectors, p and q are extracted by
regressing out t and u from X and Y respectively as per regression
equations in (12) using least-squares estimates such that:

p ¼ XT t
tT t

and q ¼ YT u
uT u

:

The above process for estimation of score and loading vectors is re-
peated on the rank-one deflation of matrices X and Y to compute the
successive latent variables. There are several variants of PLS algo-
rithm which primarily differ in the deflation step. For this study,
we focus on the most widely used variant based on the assumption
that PLS score vectors, ftigl

i¼1 are good predictors of response, Y. This
added asymmetry of predictor and response is encoded in the defla-
tion scheme such that the component of the regression of Y on t is
removed from Y at each iteration of PLS:

X  X � ttT X
tT t

and Y  Y � ttT Y
tT t

: ð14Þ

The regression problem for PLS can also be written in the form
that relates the input data matrices X and Y as:

Y ¼ XBþ F;

where B is the regression coefficient and F is the error matrix. The
matrix B is of the form:

B ¼WðPT WÞ�1
CT :

As derived in Rosipal and Trejo (2002) using the relations between
W; T;U and P from Manne (1987); Höskuldsson (1988) and Rännar
et al. (1994), the expression for B takes the form:

B ¼ XT UðTT XXT UÞ�1
TT Y : ð15Þ

Notice that in this resulting expression, B, (a) depends upon the
data inner product matrix XXT and (b) is invariant of scalings of
score vectors in matrices T and U.

3.3.1. Kernel partial least squares regression
The kernel version of PLS algorithm as in Rosipal and Trejo

(2002) attempts to find the relationship between datablocks when
the dependent variable, xi is an element of the Reproducing Kernel
Hilbert space, H equipped with the inner product. The goal is to
formulate the PLS model in the Hilbert space, H. We denote the
matrix of inner products (Gram matrix) of the data points in H

as G. The NIPALS algorithm described above can be extended to
use this inner product matrix, G of the data points. This can be seen
by merging steps 1 to 3 to give the following algorithm:

(1) t ¼ Gu,
(2) t ¼ t

jjtjj,

(3) c ¼ YT t,
(4) c ¼ c

jjcjj,
(5) u ¼ Yc,
(6) u ¼ u

jjujj.

Similar to the deflation Eq. 14 for the Euclidean case, the defla-
tion of Gram matrix, G can be written as:

G ðI � ttTÞGðI � ttTÞ:

Moreover, we can write the regression coefficient for the regres-
sion with kernel Gram matrix, eB as:

eB ¼ UðTT GUÞ�1
TT Y: ð16Þ
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For prediction on the test data we need to get the Gram matrix
for test data that comprises of the inner products of test data points
with the training data points. Also, the estimate of B as in Eq. (15)
can be obtained by linear combination of input data points i.e., the
B ¼ XT eB.

3.3.2. On the manifold of diffeomorphisms
We utilize this machinery provided by the kernel PLS method-

ology and extend this idea to regression on a manifold (Fig. 1).
We do this by incorporating the innerproduct structure of the
manifold of diffeomorphisms into the PLS framework. Given the
Fréchet mean atlas of the image ensemble, the initial
velocities (v i

0; i ¼ 1; . . . ;n) and corresponding initial momenta
(ai

0; i ¼ 1; . . . ;n) for all contributing images defined in the tangent
space at the atlas obtained as a consequence of solving the LDDMM
energy minimization problem, we can construct a kernel formula-
tion of the PLS algorithm.

The Sobolev operator mentioned in Section 3 which also relates
to deformation momenta (Section 3.1.1) as Lv ¼ �arI, defines the
kernel function for the mapping. Here, L is the self-adjoint differen-
tial operator of the form:

L ¼ �ar2 � brþ cI; ð17Þ

where the first two terms controls the smoothness of the registra-
tion while the last term ensures the invertibility of the operator.
These operators are borrowed from the theory of fluid mechanics
and were introduced in image registration by Christensen et al.
(1996). Holden (2008) review the class of such operators for fluid
image registration in detail. The compact self-adjoint smoothing
operator, K is thus related to operator L as:

KLv ¼ v :

For a pair of geodesics emanating from the atlas towards each
image, we can compute the inner product between initial velocities
v i

0 and v j
0 in the tangent space at the atlas and relate it to the inner

product between initial momenta as:

hv i
0;v

j
0iV ¼ hLv

i
0;v

j
0iL2 ¼ hrIai;KHðrIajÞiL2 : ð18Þ

Now, if we were given only the initial deformation momenta, ai
0

and aj
0 and the common gradient image,rI, we represent this inner

product between a pair of initial deformation momenta as:

hai
0;a

j
0iV� ¼ hrIai;KHðrIajÞiL2 ; ð19Þ

where V� represents the space of deformation momenta.
As detailed in Section 3.3.1, for the kernel extension of the PLS

formulation, the space, H is the Hilbert space of momenta maps, V�

equipped with the inner product defined by Eq. (18). The initial
momenta, ai

0 capture the shape variations from the atlas in the
form of the geodesic direction it encodes.

Now, we define the anatomical shape vs. clinical response
regression on the manifold of diffeomorphism (in the space of mo-
menta maps, V�). Specifically, the problem is to find a direction
governing the geodesic flow that predicts the clinical response y.
For single clinical measure represented by a univariate response
variable, y, this can be modeled as per the regression set up:

y ¼ ha0;baiV� þ �; ð20Þ

for a given geodesic characterized by the initial momenta a0. Note
that a0 2 V� is an initial momenta map image for the geodesic cor-
responding to the regressor shape data and y the univariate depen-
dent response. ba 2 V� is the regression coefficient that needs to be
estimated under the PLS formulation. We use the subscript a with
the regression coefficient to emphasize that it represents a defor-
mation momenta map. To solve this, projection operations in the
PLS formulation must all be carried out in the tangent space using
the Sobolev inner product in the space of momenta as per Eq.
(19). We further define ba as a linear combination of input data
points, ai

0; i ¼ 1; . . . ;n and represent:

ba ¼
Xn

i¼1

ai
0
~bi: ð21Þ

The regression problem in (20) becomes:

y ¼ ha0;
Xn

i¼1

ai
0
~biiV� þ � ¼

Xn

i¼1

~biha0;ai
0iV� þ �:

This implies that the regression is formulated using only inner
product evaluations of the input data points. Further, the kernel
PLS algorithm can be written entirely in terms of the kernel Gram
matrix G of inner products hai

0;a
j
0iV� between all data points in vec-

tor space V�. For solving this kernel PLS problem, we use the kernel
algorithm presented in Section 3.3.1. Given the initial momenta
maps for each individual, we can compute the Gram matrix, G of
Sobolev innerproducts on the tangent space pairwise for all geode-
sics. The kernel PLS performed up to l latent vectors yields the esti-
mate of ~b which can then be transformed to ba, into the space of
initial momenta using (21), and interpreted as a scalar momenta
map image representing a geodesic direction for this regression.

We also note that this framework extends naturally for multi-
variate response using the kernel PLS when q > 1. This implies that
we learn multiple clinical tasks simultaneously for prediction as
per the kernel PLS formulation in Section 3.3.1. However, for mul-
tivariate response there in no direct interpretation of the regres-
sion coefficient, B on the manifold of diffeomorphisms without
ignoring the correlations within the dependent outcome variable.
The following section covers the details about interpretation of
the PLS and the regression coefficient in the tangent space for uni-
variate response.

3.4. Interpreting b: quantifying shape changes

To quantify the local anatomical deformations corresponding to
the evolution of the atlas for changing clinical response, we inter-
pret the regression coefficient as the direction governing the geo-
desic flow that best predicts the clinical response y.

In matrix notation, the inner product can be interpreted as:

hLv i
0;v

j
0i ¼ hai

0;a
j
0iV� ¼ aT

i Maj;

where

M ¼ rITðKHrIÞ;

and ai are vectorized into momenta ai for computations in matrix
notation.

Note that M is never computed since the kernel algorithms uti-
lize the precomputed Gram matrix, G of innerproducts.

The regression problem in (20) can be written for training and
test data in matrix notation as:

ytest ¼ aT
testMba þ �;

where ba is the vectorized form of the regression coefficient ba (in
image domain). Since, PLS gives the solution estimate ~bPLS to:
ytest ¼ Gtest

~bPLS þ �, or equivalently for the problem:
ytest ¼ aT

testMAT
train

~bPLS þ �, we have,

ba ¼ AT
train

~bPLS:

Here, the matrix Atrain is the matrix of all initial momenta for the
training data (ai’s) augmented row-wise. The ba vector can further
be converted back to the momenta map image, ba.

The regression coefficient, ba thus obtained lies in the space of
momenta. ba can be interpreted as the initial momenta for the atlas



Table 1
Response variables: total of 566 MRI imaging data.

n l r Range

adastotal11 548 11.9276 6.6093 1.00–42.67
adastotalmod 544 18.7096 9.4361 1.67–54.67
mmse 565 26.6690 2.7564 18–30
cdrsb 566 1.8498 1.8754 0–9
trailsA 548 47.9854 26.9674 17–150
trailsB 539 135.1095 80.2142 0–300
clock 550 4.0745 1.1452 0–5
logicimm 566 8.1343 4.9335 0–22
logicdel 566 5.6961 5.4836 0–22
avltimm 549 32.1421 11.8276 0–69
avltdel 549 3.5883 3.9993 0–15
digit 546 37.1282 13.3481 0–80
bnt 544 25.2188 4.9519 1–30
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image corresponding to a particular geodesic. Moreover, the direc-
tion represented by the initial velocity, vb corresponding to initial
momenta ba (obtained from the evolution EPDiff equation:
Lv0 ¼ �arI) is the direction for the geodesic flow, the magnitude
of which can be interpreted as quantifying the units of the re-
sponse variable with respect to units of deformation. Moving along
the geodesic direction represented by ba, the response variable y
can be directly related to the amount of deformation. We can shoot
with ba to quantify change in response y per unit of deformation
corresponding to the initial momenta for regression. Traveling
along this geodesic, the atlas deforms along the direction of clinical
progression and the distance traveled is related to the change in
clinical response. Since the inner product (Eq. (19)) is linear, this
interpretation is analogous to the way we talk about regression
coefficients as slope in classical linear regression.
4. Results

We performed a comprehensive analysis of the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database for the baselines.
The results section details our extensive study on the structural
Magnetic Resonance Image (MRI) and clinical data from ADNI.
The next section (4.1) begins with a description of the ADNI data.
Section 4.2 explains the pipeline of our methodology. Section 4.3
reports the detailed analysis of the results of our method including
the stability of regression estimates using bootstrap. We further re-
port results of our proposed method on prospective applications
such as prediction of rate of cognitive decline and multi-modal im-
age analysis for detection of individuals at high risk of developing
AD in Sections 4.4 and 4.5.
4.1. DATA: MRI and clinical variables

All the baseline and screening T1 weighted, bias-field-corrected
and N3 scaled structural Magnetic Resonance Images were down-
loaded from the ADNI. The brainmasks for skull stripping and
Talairach transforms that had passed ADNI QA were also retrieved
and matched against the images. The corresponding neuropsycho-
logical data was also downloaded from ADNI. We included only the
subjects for which the clinical scores were recorded within
3 months of their MRI scans. The above filtering procedure from
the ADNI database resulted in a total of 566 subjects. The popula-
tion of subjects downloaded primarily consisted of three diagnostic
groups: Healthy Individuals or Normals (NL, N = 153), Mild Cogni-
tive Impairment (MCI, N = 265) and Alzheimer’s Disease (AD,
N = 132) and 16 subjects without any diagnosis information. In this
paper we consider the AD, MCI and NL subjects as a continuous
class rather than discrete classes.

We used thirteen global cognitive and functional assessment
test scores for the analysis (Table 1). The first two were variants
of the modified Alzheimer’s Disease Assessment Scale modified
cognitive battery (adas-cog): (a) One that includes delayed word
recall and number cancelation (adastotalmod); and (b) The other
that does not include delayed word recall and number cancelation
(adastotal11). The next two were the Mini Mental State Examina-
tion (mmse) and the Clinical Dementia Rating scale, Sum of Boxes
(cdrsb). Episodic memory was assessed using the Rey Auditory
Verbal Learning Test (AVLT) and the Logical Memory test of the
Wechsler Memory Scale-Revised. Both memory tests had immedi-
ate recall (avlt.imm, logic.imm) and 30 min delayed recall (avlt.del,
logic.del). Boston Naming Test score (bnt) is also included. Note the
AVLT used the immediate recall after the 5th learning trial. The
tests for executive functions: Trail Making Test (trailsA & trailsB),
constructional ability: Clock Drawing Test (clock), and working
memory: Digits Span Forward Test (digit) were also considered.
Preprocessing the MRI involved skull stripping and registration to
Talairach coordinates using Freesurfer (Dale et al., 1999) as a part
of ADNI preprocessing pipeline. We performed the tissue-wise
intensity normalization for white matter, gray matter, and cerebro-
spinal fluid using the expectation maximization (EM) based seg-
mentation followed by the histogram matching for each region.

4.2. Procedure

Fig. 2 summarizes the key steps of our regression modeling
framework. It starts from preprocessed MR brain images and fol-
lows three steps of processing. (A) The first step computes a stable
and unbiased atlas and estimates the geodesics emanating from
this estimated atlas towards each subject. This is analogous to
shape feature-extraction such that the estimated initial deforma-
tion momenta are compact representations of anatomical shape
variations corresponding to each subject.

(B) We compute the Gram matrix of pairwise inner products
and solve the regression model for shape–clinical response regres-
sion using kernel PLS or kernel RVR to give the estimate of the
regression coefficient that encodes a geodesic direction. (C) Finally,
we deform the atlas image and segmented ROIs from the atlas
along this estimated geodesic via geodesic shooting to quantify
the amount of shape deformations.

PLS and RVR both work on the kernel Gram matrices of size
N � N, where N is the number of subjects in the study. Thus, the
running time of the entire procedure is dominated by the deforma-
tion momenta estimation step, Block A, that works on all p voxels
of the image. Each gradient descent iteration for momenta compu-
tations involves forward integration of shooting equations (5)–(7)
followed by backward integration of adjoint equations in (9)–
(11). These set of equations involve gradient and divergence com-
putation operations that are linear in p. The integration is domina-
tion by convolution with the kernel, K, which is done in Fourier
domain. Thus, the order of complexity for one gradient descent
step for an individual deformation is Oðkp log pÞ, where k is the
number of intervals of discretized time for the integration.

4.2.1. Registration parameters
The registration parameters were fixed a priori in the beginning

of the analysis. The smoothness and invertibility of deformation
fields are controlled by the parameters of the fluid operator L as
mentioned in Eq. (17). In our experiments, these parameters are
fixed to the standard values of a ¼ 0:01, b ¼ 0:01, and c ¼ 0:001.
These fluid parameters have been used in previous studies in Davis
et al. (2007); Singh et al. (2010); Singh et al. (2012) and are known
to ensure sufficient smoothness of deformations fields for registra-
tion of MRI brain images. The parameter r that controls the trade-
off between the exactness of the match and smoothness regularity



Table 2
Demographic info.
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term in Eq. (3) was also set a priori to the least possible value that
ensured successful registration and also resulted in smooth and
invertible deformation fields. The r ¼ 1 was selected for the image
intensity range between ½0;1�. Ten timesteps were used during
integration of EPDIFF for forward and backward adjoints.

Using the framework discussed in Section 3.1.2, we generated
the atlas with the 566 subjects on the GPU cluster. To assess the
stability of atlas construction, we generated atlases using trun-
cated mean with different percentage of outliers removed each
time. Fig. 3 shows the atlas obtained for first two trimming levels.
The generated atlases were stable and did not change up to 30% of
truncation. Thus, as a conservative estimate and with the assump-
tion that there are no more than 10% outliers in the preprocessed
imaging data, we selected the atlas with 10% trimming level. The
difference in average image residuals with 10% trimming and
without trimming was less than 3%. We did the accurate estima-
tion of geodesics by computing initial momenta ai

0 via registering
the atlas to each individual subjects MRI by the iterative gradient
descent using shooting optimization and backward integration
scheme as detailed in Section 3.1.1. We evaluated the underlying
smooth deformations, /i corresponding to estimated momenta
for stability and invertibility. We deformed the atlas forward using
the estimated deformation field (/) and the subject’s MRI back-
ward using inverse of this deformation field (/�1). The underlying
Jacobian images for the deformation and the difference images for
matching of the deformed images with the the corresponding tar-
get endpoints were confirmed visually for all the subjects.

Using the inner product (Eq. (19)), we performed the kernel-PLS
on initial deformation momenta with the smoothing kernel against
the clinical response variables (Section 3.3.2). We assessed the sta-
bility of the model by evaluating the accuracy of prediction on the
regression model using the leave-one-out cross-validation (LOO-
CV) scheme. The atlas, deformation momenta and regression mod-
el were recomputed each time using only the training data and the
resulting regression model was tested on the left-out individual.
Further, the stability of resulting regression coefficients were eval-
uated using bootstrap experiments. Finally, we quantified the
deformations by shooting the atlas using an appropriately scaled
regression coefficient (Section 3.4). The amount of deformation
was visualized by overlaying the log of Jacobians of deformations
over the atlas achieved at the end point of the geodesic. To further
evaluate the stability of modeling we also did the regression of ini-
tial momenta with clinical variables using RVR. For details about
RVR, see Appendix B and refer to Tipping (2001).
Fig. 3. Stability of atlas using trimmed mean.
We controlled for confounding demographic variables using the
regression procedure described in Appendix A. Table 2 details the
demographic information such as age, gender, handedness, and
years of education for the population under consideration. The ef-
fect of age for instance can be seen by visualizing the regression
coefficient obtained from the regression of shape with age. In this
case, we performed the linear regression of initial momenta and
visualized the regression coefficient by shooting the atlas along
the geodesic encoded by the coefficient (Fig. 15 in Suppl.). Figure 16
(in Suppl.) shows the regression of individual clinical variables
with demographic variables. In general, the ADAS, MMSE score
and TrailsA score reported some correlation with years of educa-
tion with p-values 0.001, 0.000 and 0.004 while no such trend
was observed with age. These p-values correspond to the signifi-
cance test for correlation using the null hypothesis that r=0. Table 3
details the residuals in the clinical response obtained after regress-
ing out age, gender and education.

To control for confounders, we repeated the PLS and cross-val-
idation analysis with the residuals in momenta and residuals in
clinical scores; the residuals were from their respective regressions
with confounding variables. We ensured the training and test data
separation right at the first step, i.e., the residuals were computed
under complete isolation in the cross-validation (refer Appendix
A).
4.3. Analysis

The goal of our regression analysis is to relate anatomical shape
changes and neurological response and to quantify the shape
changes that are most predictive of clinical decline. Table 4 reports
the correlation of predicted vs. actual value, rtest, for test data in
leave-one-out cross-validation for two independent regression
schemes (PLS and RVR). The table also reports comparisons of
the analysis done with and without the control for demographics.
In terms of execution time PLS outperformed RVR for the same in-
put—up to three orders of magnitude for all the clinical variables.
For detailed analysis, we have focussed on the results obtained
for regression with adas, mmse and trailsA. This is because the pre-
dicted adas reported best correlation with actual adas for regres-
sion with anatomical shape. The mmse score was selected since
Diagnosis 153 Normals, 265 MCI, 132 AD, 16 no diagnosis
Education l ¼ 15:43 and r ¼ 3:14
Age l ¼ 75:45 and r ¼ 7:01
Gender 268 Females and 302 males
Handedness 530 Right and 36 left

Table 3
Residuals in clinical response after regressing out demographic variables.

n r Range

adastotal11 548 6.5218 �10.3468 to 30.0943
adastotalmod 544 9.3098 �17.5333 to 35.1846
mmse 565 2.6859 �8.5865 to 5.0305
cdrsb 566 1.8554 �2.6515 to 7.4980
trailsA 548 26.7489 �32.5173 to 106.2147
trailsB 539 77.8597 �149.5055 to 194.6877
clock 550 1.1225 �4.0949 to 1.6570
logicimm 566 4.7171 �9.5218 to 13.2546
logicdel 566 5.2864 �8.8638 to 15.2274
avltimm 549 11.3933 �31.2308 to 37.6304
avltdel 549 3.9245 �5.0557 to 11.8789
digit 546 12.8555 �41.2448 to 42.7871
bnt 544 4.7129 �24.2047 to 9.1309



Table 4
Leave one out cross-validation – correlation of predicted vs. actual for test data.

Without control Control for demographics

Kernel PLS
(rtest)

Kernel RVR
(rtest)

Kernel PLS
(rtest)

Kernel RVR
(rtest)

adastotal11 0.53 0.52 0.56 0.55
adastotalmod 0.57 0.56 0.60 0.59
mmse 0.52 0.49 0.53 0.49
cdrsb 0.54 0.50 0.59 0.53
trailsA 0.35 0.34 0.40 0.37
trailsB 0.34 0.32 0.39 0.36
clock 0.30 0.29 0.32 0.29
logicimm 0.46 0.44 0.53 0.50
logicdel 0.45 0.43 0.50 0.48
avltimm 0.47 0.44 0.45 0.43
avltdel 0.37 0.34 0.38 0.34
digit 0.36 0.33 0.38 0.34
bnt 0.42 0.39 0.41 0.35

Table 5
Leave one out cross-validation for multivariate kernel
PLS with control for confounders.

Kernel PLS (rtest)

adastotal11 0.56
adastotalmod 0.60
mmse 0.53
cdrsb 0.58
trailsA 0.32
trailsB 0.41
clock 0.32
logicimm 0.53
logicdel 0.52
avltimm 0.48
avltdel 0.40
digit 0.38
bnt 0.41
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it reported the best improvement in prediction when compared to
that reported in previous studies. Similarly, the trailsA test was se-
lected since it reported the best numbers within all the regression
results of shape with clinical scores for test of executive function.

The LOOCV predicted scores vs. actual scores correlation plots
for adas, mmse, and trailsA regression are shown in Fig. 4 for PLS
with residuals. Together with rtest, we also report the slope of cor-
relation fit between actual clinical score and predicted score, m,
and the normalized root mean squared error of cross-validation
(NRMSE). Here,

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mean Squared Error of Prediction

p
Range

:

4.3.1. Cross-validation accuracies and regression geodesics
We noticed in general that predictive power in terms of cross-

validation correlation values between actual and predicted
response variables (rtest) improved after adding the control of con-
founding demographic variables in the regression. Moreover, the
cross-validation performance results for PLS and RVR were compa-
rable. The most stable regression results were obtained for regres-
sion with adas (adastotalmod: rtest ¼ 0:60 for PLS, rtest ¼ 0:59 for
RVR after control for confounders).

For visualizing the direction and the amount of local anatomical
deformations, we present the Jacobians of the deformation of the
atlas image at different points along the regression geodesic for
regression with residuals in Fig. 5. Visualizations for these defor-
mations without controlling for demographics are detailed in Fig-
ure 17 in Suppl. Selected slices from this 3D overlay capture
relevant regions of the neuro-anatomical structures, such as hippo-
campus, amygdala and ventricles, pertinent to cognitive impair-
ment in Alzheimer’s and related dementia. Fig. 5 shows the local
shape deformation patterns that overlay the atlas image for the
kernel PLS regression geodesic shooting results for adas, mmse
and trailsA. We notice the expansion of the lateral ventricles and
CSF with increasing adas residual scores. The most critical observa-
tion is the clearly evident shrinkage of the hippocampus and amyg-
dala along this geodesic direction. Such patterns of atrophy are
known to characterize the disease progression in AD and related
dementia.

The RVR analysis also resulted in very similar shape deforma-
tion patterns as were obtained with PLS. For comparison, Fig. 6
shows the deformation patterns for the regression geodesic ob-
tained for RVR analysis with adas. This suggests that our proposed
methodology of regression on the shape manifold of diffeomor-
phisms is generic and generate reliable shape deformation patterns
under different choices of regression schemes.

The other global measures of dementia such as mmse and cdrsb
also reported good numbers. The mmse score regression particu-
larly showed improvement in prediction accuracy over results re-
ported by some of the previous work (refer Section 5). For mmse
score, we found the rtest ¼ 0:52 for PLS and rtest ¼ 0:49 for RVR.
The analysis with the mmse residuals reported rtest ¼ 0:53 for PLS
and rtest ¼ 0:49 for RVR. We again noticed the corresponding shape
changes obtained in traversing along mmse regression geodesic
(Figure 17) for mmse showed patterns dominating in hippocam-
pus, amygdala and CSF shape changes – the expansion CSF regions
and the shrinking hippocampus and amygdala with decreasing
mmse from the mean mmse of 26.58. The pattern maps looked
very similar when this analysis was done with residuals in mmse
(Fig. 5 for mmse). Overall, in terms of predictive accuracy and
shape deformation patterns extracted, our method fared well for
regression with global measures of cognition and memory scores.

For regression with tests for executive function, the cross-vali-
dation correlation results were not very promising. Other than
the tests for global measures of dementia and memory functions,
our best results were for regression with the trailsA executive func-
tion score: correlation values for cross-validation, rtest ¼ 0:35 for
PLS, rtest ¼ 0:34 for RVR, rtest ¼ 0:40 for PLS with residuals and
rtest ¼ 0:37 for RVR with residuals. However, we found interesting
shape-changes trends for regression with trailsA. We noticed that
no shape variations in hippocampus or amygdala were reported
when the atlas was deformed along the geodesic direction for the
trailsA score (Fig. 5). While the hippocampus and amygdala
emerge as mainly responsible for regression with global measures
of dementia and changes in memory function, they does not seem
be a determinant factor for the executive function.

4.3.2. Region-of-interest based validations
To verify this observation further, we evolved the left and the

right hippocampus and amygdala along the estimated regression
geodesic encoded by deformation momenta. For this purpose, the
atlas image, I was segmented for the hippocampus and the amyg-
dala. The smooth segmented regions were then deformed along the
geodesics represented by the regression coefficients for each clini-
cal variable. Since v ¼ KHðarIÞ, such an evolution of segmenta-
tions effectively is governed by only the momenta at the
boundaries of hippocampus and amygdala in the atlas, I. Table 7
details the difference in the volume of these tissues obtained after
traversing along the geodesic in the direction, one standard devia-
tion away along the corresponding clinical variable and one stan-
dard deviation opposite to it. With clinical scores for global
measures of Alzheimer’s dementia i.e., adas and mmse, we noticed
clear trends in tissue atrophy while not much was seen for execu-
tive function score trailsA. Fig. 7 also shows this comparison in
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hippocampus and amygdala atrophy for adas, mmse and trailsA
score. The volume change is reported at multiple timepoints away
from the atlas on the estimated geodesic, both in the direction of
dementia and opposite to it. This also suggests the clear atrophy
in right and left hippocampi and amygdalae with increasing adas
and decreasing mmse as compared to that with trailsA. The chang-
ing shape of these substructures for along changing adas score is
also visualized in Figure18 in Suppl.

4.3.3. Stability of regression coefficient
An important consideration for regression analysis under the

HDLSS regime is the effect of size of the population on the esti-
mates of regression coefficient. To assess the robustness of the pro-
posed method when population size is varied, bootstrap
experiments were performed by sampling with replacement, the
momenta and clinical response pair. The regression coefficient
was estimated for each the bootstrap replicate. The 99% confidence
bounds were computed based on the percentile of the empirical
distribution of 1000 bootstrap replicates (Efron and Tibshirani,
1993). Brain regions were extracted where regression coefficient
is different from zero with 99% confidence i.e., the regions where
zero does not lie within the 99% confidence interval. These maps
represent anatomical regions that have high weights in regression
coefficient with low standard error. It was observed that high
regression weights were concentrated on boundaries of relevant
regions even when the sample size was varied with
N ¼ 250;300;350;400;450;500. For instance, Fig. 9 details the
width of the confidence interval in these regions of high weight
and high confidence of the regression coefficients for regression
with ADAS score (adastotalmod). It clearly exhibits the consistent
patterns around the boundaries of hippocampus and amygdala
for different population size. More regions emerge when sample
size is increased along with consistent appearance of hippocampus
and amygdala. Bootstrap confidence results for stability of regres-
sion with mmse and trailsA are detailed in Figures 19 and 20 in
Suppl.

Fig. 8 compares extracted regions with high regression weights
and high confidence for PLS regression with adas, mmse and trailsA
score. Hippocampus and amygdala are the most important regions
among all the voxels in the brain for regression with adas and
memory scores. However, neither the hippocampus, nor the amyg-
dala regions are high weights regressors for the executive function



Fig. 5. PLS WITH RESIDUALS: Deformation of atlas with changing clinical residual score. The middle column represents the atlas with zero average clinical residual. Red
denotes the regions of local expansion and blue denotes the regions of local contraction. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. RVR WITH RESIDUALS: Deformation of atlas with changing adastotalmod residual score.

Table 6
Leave one out cross-validation for predicting rate of
cognitive decline.

Kernel PLS (rtest)

adastotal11 0.39
adastotalmod 0.40
mmse 0.41
cdrsb 0.41
trailsA 0.18
trailsB 0.16
clock 0.20
logicimm 0.23
logicdel 0.18
avltimm 0.26
avltdel 0.03
digit 0.18
bnt 0.21

Table 7
Volume changes (mm3) in hippocampus and amygdala along extracted regression coeffici

Left Amygdala Right Amygdala

adastotalmod �105.47 �99.609
mmse 85.938 89.844
trailsA �1.9531 �7.8125
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score, trailsA. A critical finding was the appearance of thalamus
and putamen as most important regions that relate to executive
function. Atrophy in putamen and thalamus is known to be related
to cognitive performance in neurodegenerative disorders such as
the Alzheimer’s disease and the Huntington’s disease (de Jong
et al., 2008; Braak and Braak, 1991; Kassubek et al., 2005). These
resulting anatomical regions were consistent with very high confi-
dence irrespective of the size of the population used in the study
(Fig. 8 and Figure 20 in Suppl.).

Further, we extend the regression methodology with control for
demographic confounders to learn all thirteen clinical variables
simultaneously using multivariate kernel PLS as explained in Sec-
tion 3.3.1. Table 5 details the cross-validation results. The results
are similar to separate learning of clinical variables. We do not
get any improvement in predictive power while predicting multi-
ple variables together.
ent from �r to þr of change in clinical response.

Left Hippocampus Right Hippocampus

�76.172 �99.609
54.688 80.078
35.156 25.391
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Fig. 7. Change in volume compared to change in clinical residual in terms of standard deviations (r). To capture the tissue atrophy towards neurodegeneration, the X-axis for
mmse score is reversed for comparison.

Fig. 8. Bootstrap width of the 99% confidence interval (CI-width) for PLS. With 99%

confidence, regions in red have regression coefficient different from zero. Coeffi-
cients are concentrated around hippocampus and amygdala that relate to test
scores for memory: MMSE and ADAS. However, putamen and thalamus are more
important for regression with executive function score, Trails. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 8
ADNI data details.

Diagnosis 54 Stable NL controls, 127 MCI, 61 AD

Education l ¼ 15:27 and r ¼ 3:23
Age l ¼ 75:56 and r ¼ 6:65
Gender 98 Females and 144 Males
Handedness 229 Right and 13 Left
APOE positive 13 NL’s, 70 MCI’s, 41 AD’s
Follow-up From baseline up to 48 months
MCI-C/NC status 54 out of 127 MCI converted to AD
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4.4. Extension to predicting rate of cognitive decline

The early detection of Alzheimer’s disease is of high clinical rel-
evance. Timely detection of memory loss or cognitive impairment
is important to assess the risk of AD and other dementia in elderly
population. It is therefore important to not only relate the anatom-
ical shape with current neuropsychological function at baseline but
also to answer questions about the future trends of cognitive func-
tion decline. The anatomical shape regression framework pre-
sented in this work can be extended to relate the rate of change
of clinical response using only the information available from base-
line scans. For this purpose we extract the information that de-
scribes the linear trend in terms of the slope of the regression
with cognitive decline for clinical measures obtained from mea-
surements done on a subject for subsequent visits. The slope of
the linear regression for clinical scores regression along time for
each subject can be related to shape anatomical variation across



Fig. 9. Bootstrap stability of regression coefficient as a function of sample size for PLS regression with ADAS. Red denotes regions where regression coefficient is different from
zero with 99% confidence. Regions with high confidence increase with sample size. Regression coefficient is consistent around hippocampus and amygdala regions with
changing sample size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the population of subjects. The ‘‘anatomical shape vs. rate of clini-
cal decline’’ model thus learned on training data is used to predict
the rate of the cognitive decline of the new subject using only the
baseline MRI scan. The ADNI data consists of follow-up clinical
measurements at an interval of 6 months from baseline for up to
48 months. For this part of the study, we selected all the subjects
that had at least three or more clinical follow-ups recorded so as
to get an estimate of the trend in linear least squares sense. The
slope thus obtained was regressed against the corresponding
deformation momenta using the kernel PLS (Section 3.3.1) with
the control of demographic confounders (Section Appendix A). Ta-
ble 6 reports the correlation of predicted vs. actual rates of clinical
change residuals for leave-one-out cross-validation. In general, the
baseline anatomical shape did not offer much predictive power for
prediction of the rate of clinical decline. Relatively, we obtained the
best correlation of predicted and actual rates of decline, rtest ¼ 0:41
for regression with global measures of dementia i.e., adas, mmse
and cdrsb.

4.5. Extension to combining multiple imaging modalities and genetic
risk factors for prediction of MCI conversion to AD

We further extend this analysis to combine high-dimensional
imaging modalities with several other low-dimensional disease
risk factors. The motivation is to discover new imaging biomarkers
and use them in conjunction with other known biomarkers for
prognosis of individuals at high risk of developing AD. This frame-
work also has the ability to assess the relative importance of imag-
ing modalities for predicting AD conversion. Mild cognitive
impairment (MCI) is an intermediate stage between healthy aging
and dementia. Patients diagnosed with MCI are at high risk of
developing Alzheimer’s Disease (AD), but not everyone with MCI
will convert. Accurate prognosis for MCI patients is an important
prerequisite for providing the optimal treatment and management
of the disease. Decreased synaptic response and brain function can
be measured using functional imaging modalities, such as [18F]-
fluorodeoxyglucose Positron Emission Tomography (FDG-PET).
Additional potential risk biomarkers include blood and cerebrospi-
nal fluid (CSF) markers, including genetic susceptibility assessed by
apolipoprotein E (APOE) genotype and plaque deposition assessed
by concentration of Ab-42 and ptau 181. The challenge for predict-
ing conversion is to combine these heterogeneous data sources,
some of which are high-dimensional (MRI and PET) and some
low-dimensional (clinical, CSF, APOE carrier), by selecting features
that optimally weight the relative contribution from each
modality.

This data-driven formulation finds the optimal combination of
these high-dimensional modalities that best characterize the dis-
ease progression. The goal to assess the combined predictive capa-
bility of this model for early detection of conversion of MCI to AD
by using only the information available at baseline.

Since the anatomical shape and neuronal metabolic activity are
two separate measures obtained from independent imaging
modalities, we combine the two to form a product space of the
joint imaging modalities. To make pattern analysis robust, we pro-
pose a supervised dimensionality reduction to represent this high-
dimensional data in terms of a few features, specifically selected to
best explain factors relevant to dementia. Further, the extracted
imaging features are used in conjunction with APOE genotype
and/or CSF biomarkers for assessing the risk of conversion of an
MCI individual to AD. Fig. 10 summarizes our feature selection
and classification framework.

4.5.1. Combining structure & function
The shape space represented by the space of deformation mo-

menta, S, and the space of neuronal metabolic activity represented
by 3D-SSP, P, are both high-dimensional spaces. We define the
combined space of imaging modalities, M such that: M ¼ S � P.
Inner product between a pair mi ¼ ðai; piÞ 2M and
mj ¼ ðaj; pjÞ 2M is defined via a their convex combination as:
hmi;mjiM ¼ ghai;ajiS þ ð1� gÞhpi; pjiP . The factor, g is interpretable
as a relative weight when both the modalaties are normalized to
have unit variance.

4.5.2. Supervised dimensionality reduction via partial least squares
The structural and functional information extracted from two

imaging modalities results in a feature space with much higher
dimension than the population size. We adapt the PLS methodol-
ogy for the purpose of extracting relevant features from the combi-
nation of shape and 3D-SSP data supervised by the clinical scores
such as MMSE, ADAS, CDR and clinical cognitive status that are
treated as global measures of dementia. The idea is to ensure that
during dimensionality reduction we retain those dimensions in
imaging data that not only explain variability within imaging data
but also retain the variability that is relevant to dementia. We find
directions m̂ in the combined product space of imaging modalities,
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Fig. 10. MCI-C/MCI-NC prediction framework. Block A: Feature extraction process from high-dimensional imaging data. Block B: Classification.
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M, and directions ŷ in the clinical response space, Y, that explain
their association in the sense of their common variance. The pro-
jections of shape and pet data along the directions, m̂i are treated
as the features for the classifier. For the symmetric PLS, the maxi-
mum number of possible latent vectors are limited by the inherent
dimensionality of the two spaces, i.e., by minðdimðMÞ;dimðYÞÞ.
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Fig. 11. Shape and PET weighting factor, g for different classifiers based on AUC.

Table 9
MCI-C vs. MCI-NC classification results for gOPT.

AUC Acc (%) Sen (%) Spec (%) g

QDA 0.72 66.14 64.81 67.12 0.8
LDA 0.69 63.78 74.07 56.16 0.7
SVM 0.69 64.57 72.20 58.90 0.8
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Fig. 12. Receiver operating characteristic curves (ROC) for MCI-C/MCI-NC classification w
and PET as per gOPT.
The projection scores, thus obtained by PLS, have combined
information of anatomical shape and glucose metabolic activity
that is used as features together with low-dimensional modalities
such as genetic biomarkers of APOE carrier status and/or CSF bio-
marker available from spinal tap tests.

4.5.3. APOE carrier status—genetic biomarker
A confirmed risk factor for Alzheimer’s disease is the status of

apolipoprotein E (APOE) gene in an individual. APOE exhibit poly-
morphisms with three major isomorphisms or alleles: APOE e2,
APOE e3 and APOE e4. Majority of the population with late-onset
of AD is found to be dominant in APOE e4 allele. APOE carrier status
is computed based on the allele copy inherited from parents in an
individual. We consider the binary status for APOE genetic risk
based on whether the individual has at least one copy of allele e4
and treat those subjects as APOE-carrier.

4.5.4. Prediction of conversion to AD
Distinguishing the probable convertors from the population of

MCI is a binary classification problem. While there are several
ways to look at this problem, we present here a formulation of
the classifier supervised by the AD group and healthy control group
(NL). In other words, the classifier is trained on the AD and NL but
is used as a ‘‘recommender’’ for the test MCI subject. Based on the
classification score obtained on the MCI subject, the prediction of
the classifier is interpreted. We denote the test MCI subject as
‘‘AD-like’’ when the classifier recommends AD and treated as pre-
dicted MCI-C otherwise termed as ‘‘Stable-MCI’’ or predicted MCI-
NC. The classifier accuracy is assessed by comparing the predicted
MCI-C or MCI-NC status with the conversion status from the fol-
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Fig. 13. Shape: Discriminating regions obtained from classifier weights for predic-
tion of MCI conversion to AD. Log of Jacobians overlaid on atlas. Red denotes regions
of local expansion and blue denotes regions of local contraction. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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low-up study for that test MCI subject. The proposed methodology
is evaluated using the LDA, its quadratic variant–Quadratic Dis-
criminant Analysis (QDA), and SVM as binary classifiers. Table 8
lists the details of the ADNI cohort used for this study.

Fig. 11 shows area under the receiver operating characteristic
curve (AUC) as a function of the weighting factor, g, for the three
separate classifiers discriminating MCI-C vs. MCI-NC. The accuracy
of prediction of MCI to AD conversion and the associated g is given
in Table 9. The reported numbers correspond to optimal g, based
on AUC. QDA performed the best with accuracy of 66% and AUC
of 0.72 at g ¼ 0:8. Also, the optimal combination of PET and shape
performed much better as compared to only using PET or anatom-
ical shape information irrespective of the choice of classifier used
(Fig. 12). The analysis was repeated using only the left and right
hippocampus volumes for predicting MCI conversion. The AUCs
and accuracies for prediction using hippocampus volumes ob-
tained for three classifiers were: accuracy = 60.7%, AUC = 63.8%
for LDA, accuracy = 61.6%, AUC = 63.8% for QDA and accu-
racy = 58.9%, AUC = 63.4% for SVM. Overall, our proposed method
resulted in improved prediction when compared to using only
the hippocampus volumes for predicting MCI conversion.

Besides APOE carrier status, the above analysis was also done
after adding log transformed CSF-biomarkers: Ab-42 and ptau181

concentration, which reduced the study sample-size to only: 29
NL, 36 AD and 59 MCI. With CSF-biomarkers, a slight increase in
accuracy was observed for QDA: accuracy = 68% and AUC = 0.72
(g ¼ 0:8).

The log Jacobians of the deformation, overlaid on atlas image I,
resulting from evolving I along the geodesic represented by the
classifier weights are shown in Fig. 13. The selected slices from this
3D overlay shown here capture relevant regions of the neuro-ana-
tomical structures, such as hippocampus, pertinent to cognitive
impairment in Alzheimer’s and related dementia. Similarly, the
PET classifier weights are translated back in the Z-score space of
3D-SSP (Fig. 14).

The spatial patterns of anatomical shape changes were primar-
ily the expansion of lateral ventricles and CSF, together with the
shrinkage of the cortical surface. Another critical observation was
the clearly evident shrinkage of the hippocampus and cortical
and sub-cortical gray matter along the discriminating directions.
Such patterns of atrophy are well known to characterize the dis-
ease progression in AD and related dementia. We observed that
Fig. 14. FDG-PET: Discriminating regions obtained from classifier weigh
the shape component dominated the model with up to 80% contri-
bution compared to only 20% contribution from the PET compo-
nent, irrespective of the classifier used.
5. Discussion and conclusion

This paper presents a novel approach to study the nonlinear
changes in geometry of local anatomical regions in the brain and
accounts for the shape variations that relate to clinical response
for neuropsychological functions. More generally, the proposed
methodology enables us to investigate high-dimensional, nonlin-
ear trends in shape variations in an ensemble of complicated
shapes that can be treated as regressors for the prediction of
Euclidean response variables.

We utilize computational differential geometry to model shape
variations on the manifold of diffeomorphisms and statistical ma-
chine learning techniques to model prediction-based shape regres-
sion on this manifold-valued shape data. We harness the
properties of the Hilbert space of momenta, V� equipped with
the inner product to compare geodesic trends. Kernel Partial Least
Squares (kernel PLS) enables us to study the high dimensional
covariance of the anatomical structures in the entire brain volume,
without any segmentation or a priori regions of interest identifica-
tion, directly on the tangent space at the atlas. Furthermore, this
regression scheme under the LDDMM framework enables us to
visualize and quantify the amount of localized shape atrophy ob-
served and relate it to attenuation in neuropsychological response.

5.1. Comparison to previous work

We compare the predictive accuracy results with some of the
previous closest works (refer Section 2) that have formulated pre-
dictive models for clinical response using shape information ex-
tracted from the structural MRI. Using Relevance Vector
Regression (RVR), Stonnington et al. (2010) has reported the best
numbers for LOOCV predictive accuracy to be around rtest ¼ 0:57
for ADAS-cog and rtest ¼ 0:48 for mmse, using the ADNI baseline
MRI scans and baseline clinical evaluation scores. The LOOCV accu-
racy of prediction attained by our kernel PLS modeling on manifold
gives rtest ¼ 0:60 for ADAS-cog. For mmse, we found further im-
proved accuracy with rtest ¼ 0:53. In another related work, Wang
et al. (2010) has employed a regional based clustering approach
on tissue density maps (TDM) for feature selections, followed by
RVR-based machine learning bagging predictive models on sub-
sampled ADNI data to give a much more successful model using
the baseline MRI scans (rtest ¼ 0:75), with average mmse over time-
points taken at an interval of 6-months. It is important to note that
the study in Wang et al. (2010) is done on the very different and
sampled subset of the ADNI data. Moreover, the response variable
that this RVR regression model predicts is different from our work
and that of Stonnington et al. (2010). Their approach also differs
fundamentally from ours at the bagging framework setup, where
they build ensemble regressors derived from multiple bootstrap
training samples. Thus, we stress that the numbers presented in
Wang et al. (2010) are not directly comparable to that reported
in our work. In contrast, the regression modeling and the indepen-
ts for prediction of MCI conversion to AD in 3D-SSP Z-score space.
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dent and dependent data as presented in the work of Stonnington
et al. (2010), are much closer in principle to our work and hence we
can draw a direct comparison to their approach. Furthermore, both
Stonnington et al. (2010) and Wang et al. (2010) use segmentation
of individual tissue types—gray matter (GM), white matter (WM),
cerebro spinal fluid (CSF) or Tissue Density Maps (TDM) and do
subsequent feature extraction. However, in our study we consider
raw MRI as a whole without any segmentation. This enables us to
talk about anatomical shape changes more naturally since the re-
sults and its interpretability can be directly translated back to ori-
ginal structural MRI space.

5.2. Stability of modeling and generalizability properties: RVR vs. PLS

To answer the question about stability of our modeling in gen-
eral and choice of regression schemes in particular, we have also
reported results with the RVR style of formulation as used in both
of the above related works under discussion. We also stress that
the method of analysis proposed in this paper is generic. We can
use any choice of regression analysis as long as it can be kernelized,
i.e., valid regression schemes that can be formulated as inner prod-
ucts of the mapped data. We notice that in the comparative study
for the choice of two such schemes, kernel PLS and kernel RVR, re-
ported stable results. The pattern maps obtained using two inde-
pendent regression methodologies yield very similar geodesics of
regression coefficients for all the clinical response variables. The
leave-one-out predictive accuracy obtained in both are also com-
parable. In terms of execution times we found PLS to be much fas-
ter than RVR; up to three orders of magnitude for all the clinical
variables.

5.3. Deformation based morphometry and LDDMM momenta

The scope of LDDMM based methods is much beyond just their
predictive capabilities and the potential to extract relevant defor-
mation patterns. The LDDMM framework although computation-
ally more intensive, has several advantages over conventional
Jacobian based statistical analysis akin to deformation based mor-
phometry (DBM) (Mechelli et al., 2005). Deformation momenta ob-
tained in LDDMM are scalar-valued signatures that summarize the
voxel-wise large deformation information about anatomical vari-
ability. The scalar momenta are comprised of both the local diver-
gence and curl components of associated deformation fields and
not just the local scaling represented by the Jacobians. Another
important difference between these two approaches is the inter-
pretation of the resulting coefficients in regression analysis. In
DBM, even though the regression coefficients can be visualized to
understand the patterns or weight maps of clusters important for
prediction, the scaling of the regression coefficient does not tie
with the inherent nonlinearity of the underlying space. The scaled
coefficients cannot be naturally interpreted under the nonlinear
regression framework. In LDDMM, since the statistics are done
on Riemannian manifold of diffeomorphism, the regression coeffi-
cient has a meaning as a mathematical quantity—it is an element of
V�. The amount of scaling of the regression coefficient translates
naturally to how far along the geodesic we intend to travel away
from the Fréchet mean image in deformations—which correspond
to scaled units of changes in clinical response.

The proposed modeling enables us to identify local shape defor-
mation patterns by performing a global analysis of the structure of
the human brain. We notice that the evolving atlas shows distinct
trends in hippocampus and amygdala shape changes whenever the
regressed response variable is a measure of memory and cognitive
function, the determinants of Alzheimer’s disease progression.
Putamen and thalamus were found to be important to the regres-
sion with executive function. The results were consistent with both
the PLS as well as the RVR. These resulting anatomical regions were
consistent with very high confidence irrespective of the size of the
population used in the study.

We stress the fact that no additional clinical prior on the hippo-
campus was added and no priori information about the disease
state was used in modeling. This is unlike most of the contempo-
rary shape analysis studies in AD and related dementia, where
the statistics are performed on the specific region of interests al-
ready clinically known to be affected. The style of global analysis
presented in this paper holds promise for discovering new patterns
of shape changes in the human brain that could add to our under-
standing of disease progression in AD.
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