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Abstract The abnormal deposition of amyloid-β protein in
the brain plays an important role in Alzheimer’s disease (AD),
being considered a potential clinical biomarker. To investigate
genetic associations with amyloid-β we used biomarker data
and genome-wide variants from individuals with AD and
mild cognitive impairment in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database.We used a standard
linear model and retested the associations with a mixed linear
model to correct the residual sample structure. Both methods’
results showed two identical significant SNPs associated with
the A β-42 levels in CSF (rs2075650 at intron region
TOMM40 with p-value≥1×10–16 and rs439401 in the
intergenic region of LOC100129500 and APOC1 with
p-value≥1×10-9) and highlighted APOC1 and TOMM40,

which are well-known genes previously associated with
AD. Extending our analysis, we considered possible
candidate genes mapped to SNPs with p-value≥1×10-6
to explore gene-set enrichment e gene-gene network
analysis, which reveals genes related to synaptic trans-
mission, transmission of nerve impulses, cell-cell signal-
ing and neurological processes. These genes require fine
mapping and replication studies to allow more detailed
understanding of how they may contribute to the genetic
architecture of AD.
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Introduction

Alzheimer’s disease (AD) is the most common progressive
neurodegenerative disease and represents a major cause of
disability for elderly patients with dementia worldwide
(Alzheimer’s Association 2013). AD can be divided into three
phases, an initial presymptomatic phase, a prodromal stage
known as mild cognitive impairment (MCI) and a third
stage when patients show dementia with impairments
in multiple domains and inability to perform daily activities
(Trojanowski et al. 2010). Recently, the National Institute on
Aging in collaboration with the Alzheimer’s Association pro-
posed changes to the guidelines to assess brain changes asso-
ciated with dementias. It is noteworthy that more research is
needed to confirm reliable biomarkers (Hyman et al. 2012;
Alzheimer’s Association 2013).

The neuropathological characteristics of AD include the
deposition of β-amyloid peptide (Aβ) in the brain and blood
vessels (forming amyloid or senile plaques) causing amyloid
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angiopathy and tau protein hyperphosphorylation forming
neurofibrillary tangles (Braak and Braak 1991; Tarawneh
andHoltzman 2010).With AD progression, there is a decrease
in Aβ concentrations in the cerebrospinal fluid (CSF) and an
increase in Aβ concentrations in the blood plasma, potentially
clinical biomarkers (Graff-Radford et al. 2007; Rosemberg
and Lyketsos 2008). Because it is detectable in the CSF and
blood plasma, this biomarker has been used for clinical diag-
nosis (Koyama et al. 2012).

The individuals in the ADNI showed differences in Aβ-42
levels collected from the CSF and plasma, with Aβ-42 levels
higher in the CSF. These differences prompted several studies
based on the ADNI data (Kim et al. 2011; Trojanowski et al.
2010; Han et al. 2010; Shaw et al. 2009). For this study, our
aims were to identify AD genes and validate candidate genes
using an approach based on gene-gene interactions using
GWAS hits as a starting point. This study differs from others
in two points. First, we assessed the results from genome-wide
scans of two linear methods; second, we investigated gene
links and genetic interactions using a guilt-by-association
method to assess the evidence of genes in the architectural
genetic base of AD.

Materials and Methods

Subject and Biomarker Descriptions

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu). The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies and non-profit organizations
as a $60 million, 5-year public-private partnership. The
primary goal of the ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness as well as lessen the time and
cost of clinical trials.

The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of
California-San Francisco. The ADNI is the result of efforts
of many co-investigators from a broad range of academic
institutions and private corporations, and the subjects were
recruited from over 50 sites across the US and Canada. The
initial goal of the ADNI was to recruit 800 adults, ages 55 to

90, to participate in the research with approximately 200 cog-
nitively normal age-matched individuals to be followed for
3 years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years (www.
adni-info.org).

For each individual, the ADNI provides measures of Aβ-
42, and we observed significant differences between the CSF
and plasma levels (see boxplot in Fig. 1). The levels were
observed using data from 380 individuals for CSF and 654
individuals for plasma, collected at baseline diagnostic exam-
inations. The measurements of Aβ-42 levels met all quality
control (QC) requirements, and more details about the bio-
markers have been previously reported in ADNI publications
(Petersen et al. 2010). As previously mentioned, Aβ-42 levels
in CSF are higher than in plasma. Considering the null hy-
pothesis that the AB-42 levels are equal across each diagnostic
(NC, MCI, AD), we used the Kolmogorov-Smirnov test to
access differences between the Aβ-42 level distribution for
NC, MCI and AD individuals. For Aβ-42 levels in the CSF,
we performed a pairwise sample test for NC-MCI, NC-AD
and MCI-AD that resulted in p-values of 5.231e–09, 1.676e–
14 and 0.01, respectively. The distributions show significant
differences in CSF between the groups. However, the null
hypothesis was not rejected for the plasma level distribution.
In the pairwise diagnostic analysis of the distributions,
the Kolmogorov-Smirnov test did not show significance
(p-values≥0.05).

SNP Data Set

The ADNI used the Illumina Human 610-Quad BeadChip,
which allows geneticists to investigate more than 610,000
SNPs. However, this study was restricted to autosomal SNPs
with minor allele frequency (MAF) greater than 0.01 and
SNPs with an ‘rs’ identifier and 95 % genotyping rate, and
we considered SNPs in Hardy-Weinberg equilibrium. The
MAF threshold was used to exclude rare SNPs for our
analysis.

Statistical Association Analyses

We conducted genome-wide scans using two linear models to
estimate the main effects of SNPs after basic filters. The first
method is a standard linear regression model (SLRM) for
quantitative trait association implemented in PLINK software
(http://pngu.mgh.harvard.edu/_purcell/plink/), release v1.07
(Purcell et al. 2007). We retested the association analysis
using EMMAX (Efficient Mixed-Model Association
eXpedited), which is more robust than SLRM. EMMAX
takes into account a kinship matrix to prevent false-
positive associations by correcting for hidden sample
relatedness of the ADNI Cohort. EMMAX builds a ma-
trix with genetic relatedness measures for the modeling
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sample structure based on all autosomal SNPs and esti-
mates the contribution of the individual’s relatedness matrix
to phenotypic variance (Kang et al. 2010). By conducting the
statistical association tests with SLM and EMMAX, we re-
strict the most significant results to the expected threshold
p-value≤1×10-8.

Enrichment Gene Set Analysis and Functional Analysis

First, we use DAVID (Database for Annotation, Visualization
and IntegratedDiscovery) for enrichment analyses of all mapped
genes, which contain significant SNPs (p-value≤1×10−5), in a
common way to investigate the functional terms (Huang et al.
2009a, b). We used the Functional Annotation Clusteringmod-
ule from DAVID to map gene sets. Despite the broad set of
parameters, we performed DAVID by setting only the classifi-
cation stringency parameter to its highest level. Second,
network-based approaches were used to discover relations be-
tween candidate genes from genome-wide scans and well-
known disease genes. We use GeneMANIA (Montojo et al.
2010) by Cytoscape (Saito et al. 2012) to explore gene-gene
networks constructed from heterogeneous data. GeneMANIA
was proposed for predicting gene functions in real time, and it
is composed of a heuristic algorithm derived from a ridge
regression to integrate multiple networks through a process
of label propagation. Using a guilt-by-association approach,
GeneMANIA bases its prediction on data from a wide variety
of public and curated databases, including Gene Expression
Omnibus, BIOGRID and Pathway Commons (Edgar
et al. 2002; Cerami et al. 2011; Chatr-Aryamontri et al.
2013). The networks generated byGeneMANIA can be treated
as multi-graphs, and often six types of edges compose each
network, including co-expression, co-localization, genetic

interaction, physical interaction, predicted function and shared
protein domain edges. Using GeneMANIA we queried
links between the set of genes (with SNPs that reached
a p-value≤1×10−5) highlighted by the association analysis
and the list of Alzheimer’s disease genes highlighted in the
meta-analyses of the AlzGene database. We restricted the
neighborhood to only the two gene lists and treated each type
of data with equal weight to construct our networks.

Results

Genome-Wide Association Analysis

First we analyzed the genotype and baseline CSFAβ-42 levels
for 380 individuals.We then considered the genotype data and
plasma Aβ-42 levels for 654 individuals (see a summary of
the individuals in Table 1).

We conduct our GWAS analysis with SLM and EMMAX,
both of which identify the same significant top SNPs (consid-
ering the expected threshold p-value≤1×10-8). The two SNPs
significantly associated with CSF Aβ-42 levels at baseline
were rs2075650 in the intron region of TOMM40 and
rs439401 in the intergenic region of LOC100129500 and
APOC1. Results for both linear analyses are presented in
Table 2. SNPs were significant for both analyses even consid-
ering a rigid Bonferroni correction. The SNP rs2075650
reached a p-value of 9.24E-16 for EMMAX analysis, a p-
value of 9.34E-16 using SLM and a Bonferroni p-value of
5.039E-10, whereas rs439401 achieved a p-value of 4.84
E-09 for EMMAX, a p-value of 8.23E-09 for SLM and
Bonferroni p-value of 0.004. Annotations for these SNPs are
presented in Table 2.

Fig. 1 Distribution of Aβ-42 levels in the CSF and plasma. To illustrate
the distributions we considered 346 individuals from the ADNI cohort
common to both sources (more details in Material and Methods).

Wilcoxon signed-ranked test was used in statistical comparison to show
significant differences (p-value=2×2E-16)

J Mol Neurosci



For the CSF Aβ-42 levels, the genomic inflation
factor (GIF) based on the median chi-squared statistic
was 1.10 and the mean chi-squared statistic was 1.11,
suggesting population stratification or residual sample
relatedness. The GIF for plasma Aβ-42 levels based on
the median chi-squared statistic was 1, and the mean
chi-squared statistic was 0.989, representing a low risk
of confounding factors. We focused on two SNPs with

the highest p-values for graphic analysis. SLM and
EMMAX presented two identical SNPs. We then drew
the main basic GWAS plots for the significant associ-
ations provided by EMMAX analysis (see Fig. 2a).
Both SNPs were not in linkage disequilibrium (see
Fig. 2D1 and D2) considering the SNP genotype data
set for 380 individuals and 645 individuals of plasma
samples.

Table 1 Details of experimental
designs performed CSF

Diagnostic AΒ-42 levels Individuals Age mean

Mean SD Mean SD

NC 205.67 55.72 NNC=107; male=56; female=51

NMCI=179; male=120; female=59

NAD=94; male=54; female=40

75.44 5.16

MCI 163.00 55.41 74.81 7.62

AD 142.82 39.56 75.08 8.02

Plasma

Diagnostic AΒ-42 levels Individuals Age mean

Mean SD Mean SD

NC 37.19 11.66 NNC=192; male=106; female=86

NMCI=314; male=209; female=105

NAD=148; male=80; female=68

75.75 4.95

MCI 36.26 12.54 75.29 7.19

AD 36.43 10.50 75.54 7.49

Abbreviations: CSF cerebrospinal fluid, AD Alzheimer’s disease, MCI mild cognitive impairment, NC normal
control, N number, SNP single nucleotide polymorphism, SD standard deviation

Table 2 Top SNPs with p-value≤10−5

CSF-BL-Aβ42

EMMAX Standard linear model

CHR GENE SNP P CLASS CHR GENE SNP P CLASS

19 TOMM40 rs2075650 9.24E-16 INTRON 19 TOMM40 rs2075650 9.34E-16 INTRON

4 LOC100129500 | APOC1 rs439401 4.84E-09 INTERGENIC 19 LOC100129500 |
APOC1

rs439401 8.23E-09 INTERGENIC

19 TOMM40 rs157580 1.48E-07 INTRON 19 TOMM40 rs157580 1.74E-07 INTRON

8 PXDNL rs2915495 7.32E-07 INTRON 8 PXDNL rs2915495 1.89E-06 INTRON

14 PRIMA1 | C14orf86 rs4900200 1.66E-06 INTERGENIC 10 LHPP rs7090933 2.30E-06 INTRON

10 LHPP rs7090933 7.20E-06 INTRON 14 PRIMA1 | C14orf86 rs4900200 2.59E-06 INTERGENIC

7 WDR60 | LOC154822 rs2527214 8.74E-06 INTRON 7 WDR60 | LOC154822 rs2527214 6.20E-06 INTERGENIC

14 ADCK1 | NRXN3 rs11628271 9.88E-06 INTERGENIC 13 LOC100287432 |
LOC144776

rs1948851 6.50E-06 INTERGENIC

1 FMO4 | BAT2D1 rs7523796 9.92E-06 INTERGENIC 9 STOM | GGTA1 rs7044653 8.36E-06 INTERGENIC

16 GRIN2A |
LOC100287628

rs13332694 8.49E-06 INTERGENIC

PL-BL-Aβ42

EMMAX Standard linear model

CHR GENE SNP P CLASS CHR GENE SNP P CLASS

21 C21orf131 | NCAM2 rs2186867 7.51E-07 INTERGENIC 21 C21orf131 | NCAM2 rs2186867 6.45E-07 INTERGENIC

4 UGT2B7 rs7375178 5.97E-06 INTRON 4 UGT2B7 rs7375178 5.54E-06 INTRON

1 LOC728510 | SLC30A10 rs12121613 9.68E-06 INTERGENIC 1 LOC728510 |
SLC30A10

rs12121613 9.68E-06 INTERGENIC

SNPs associated with CSF and Plasma BL-Aβ42

Abbreviations: CSF cerebrospinal fluid, BL baseline, Chr chromosome, SNP single nucleotide polymorphism

J Mol Neurosci



Gene-Set Enrichment Analysis of Top Results

We carried out an analysis with DAVID to explore functional
terms associated without a set of associated genes. DAVID
results (see Table 3) show the functional enrichment terms
with high significance when compared with the theoretical
threshold (1.3) (Huang et al. 2009a, b). The two clusters of
annotations are directly related to the neurological pro-
cesses, including synaptic transmission and transmission
of nerve impulses, and trait class, which includes psychiatric
traits.

Gene-Gene Interactions Network Analysis

GeneMANIA was used to construct the gene-gene networks
(Figs. 4a and b). First, we carried out GeneMANIA to explore
relations between all mapped genes for SNPs, which repre-
sents the main association results. Not all genes are recognized
by GeneMANIA. Fifteen genes remained in Fig. 4a. Genetic
interaction edges and co-expression edges support the major
part of the relations between genes. One exception can be
highlighted for the gene pair NCAM2 and GRIN2A, which
shows a physical interaction edge.

Fig. 2 aManhattan plot from EMMAX association analyses displays the
three most significant associated SNPs with CSF Aβ-42 levels for
baseline diagnostics. The blue and red lines represent the −log10(10−6)
and −log10(10−8) statistical significance threshold. b The regional
association plot was drawn using LocusZoom software and shows the
two most significant SNPs (red circles) and their genes (dark blue
arrows) from EMMAX association analysis. c Q-Q plot of EMMAX p-

values.D1 and D2 are plots of the linkage disequilibrium structure
for the two significant SNPs. For draw D1 we considered 380
individuals with CSF Aβ-42 levels, and for draw D2 we
considered 654 individuals with plasma Aβ-42 levels. The
linkage disequilibrium structures were created by Haploview on
chromosome 19 and were considered a 50-kb window between each
SNP to calculate the D’ values

Table 3 Functional annotation
clustering by DAVID Annotation cluster 1 Enrichment score: 2.4 p-value

GOTERM_BP_FAT Synaptic transmission 8.1E-4

GOTERM_BP_FAT Transmission of nerve impulse 1.3E-3

GOTERM_BP_FAT Cell-cell signaling 6.0E-3

GOTERM_BP_FAT Neurological system process 4.0E-2

Annotation cluster 2 Enrichment score: 1.89 p-value

GOTERM_BP_FAT Regulation of catabolic process 1.7E-3

GENETIC_ASSOCIATION_DB_DISEASE_CLASS Psych 3.3E-2

GENETIC_ASSOCIATION_DB_DISEASE_CLASS Neurological 3.6E-2

Terms related to the list of genes presented in the Table 2
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Using GeneMANIAwe extended our analysis to discover
relations between well-known Alzheimer’s disease genes, re-
ported in AlzGene, and genes from association results. The
resulting network (Fig. 4-b) supports the genetic interaction
and co-expression edges. In addition, GeneMANIA presents
the shared protein domain edge links between MS4A4E and
MS4A6A, APOE and APOC1, and BIN1 and CD2AP.
Physical interaction edges are presented for the following
gene pairs: NCAM2 and GRIN2A, STOM and MS4A6A,
and APOE and FMO4. Finally, one pathway edge appears
between BIN1 and PICALM.

We compute two topology network properties, the node
degree and number of multi-edged node pairs (Table 4).
These simple measures help to quantify the evidence of inter-
actions between the associated genes and the most associated
AD genes highlighted by AlzGene. The degree expresses the
number of edges with other genes in the network, whereas the
number of multi-edge node pairs expresses how often a node
is linked with other nodes by more than one type of edge. The
gene GRIN2A is the most central gene, which is the gene with
more edges than the others, interacting with the neighborhood
of genes with 17 edges, being 2 genes in the neighborhood
partners of multi-edges. APOC1 and TOMM40 interact by

eight and seven edges, respectively. APOC1 has five multi-
edge partners, including APOE. This may suggest co-
participation of the genes in the Alzheimer’s disease pathway.

Discussion

In this study, we investigated CSFAβ-42 as a quantitative bio-
marker to discover genetic variant associations using genotype
data obtained from the ADNI cohort. The use of phenotypes as
quantitative traits in GWAS has been successfully carried out to
test associations between biomarkers and SNPs. Additionally,
the biomarkers have increased power over case-control designs
(Potkin et al. 2009; Han et al. 2010; Kim et al. 2011).

TOMM40, translocase of outer mitochondrial membrane
40 homolog is essential for mitochondrial protein import.
Aging decreases the number of mitochondria and also in-
creases the risk of developing AD (Humphries et al. 2005).
TOMM40 alleles have been associated with an increased risk
of developing LOAD (Devi et al. 2006; Roses et al. 2010).
TOMM40 is adjacent, approximately 15 kb upstream ofAPOE
and established as one of the susceptibility genes for LOAD
(Corder et al. 1993). TOMM40 variable-length poly-T

Fig. 3 Mean of Aβ-42 levels in
the function of genotypes over all
diagnostic groups (NC, MCI and
AD) for the most significant
associated SNPs

Fig. 4 GeneMANIA networks showing the interaction results of associated genes and highly associated AD genes
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sequence polymorphism (rs10524523) in combination with
APOE alleles (E2, E3, E4) has been reported to influence
LOAD (Roses et al. 2010). Recently, the impact of
TOMM40 poly-T in combination with APOE alleles (E2,
E3, E4) on LOAD incidence was assessed in a group of 414
LOAD patients, 173 centenarians and 305 neurologically
healthy individuals. The study demonstrated poly-T affecting
the LOAD risk in some analyses (Maruszak et al. 2012).

Using quantitative traits in a GWAS, the TOMM40 gene,
specifically SNP rs2075650, has been identified as a suscep-
tible putative locus associated with AD (Han et al. 2010).
However, CSF biomarkers (Aβ-42, t-tau, p-tau181p, p-
tau181p/Aβ-42 and t-tau/Aβ-42) from the ADNI data show
rs2075650 (TOMM40) associated with Aβ-42, p-tau181p/Aβ-
42 and t-tau/Aβ-42 (Kim et al. 2011). An intronic SNP
(rs2075650; TOMM40) is associated with Aβ-42 in AD and
MCI subjects. rs2075650 has previously been described as
having a positive association with APOE as a quantitative trait
(Potkin et al. 2009).

Apolipoprotein C1 (ApoC1) encoded byAPOC1 is a mem-
ber of the apolipoprotein family. According to the Allen
Institute Human Brain Atlas, APOC1 presents a selective pat-
tern of expression in the hippocampus, a region known to be
involved in AD. APOC1 appears to be regulated in the tem-
poral and visual cortex (http://human.brain-map.org/).
Moreover, APOC1 has been studied in microarray
expression analysis of post mortem samples from patients
with LOAD and matched controls. However, few studies
have correlated the APOC1 gene with LOAD, suggesting
their role in the AD pathology of this neurodegenerative
disease (Ki et al. 2002; Zhou et al. 2014).

The product of proline-rich membrane anchor 1, PRIMA1,
functions to organize acetylcholinesterase (AChE) into tetra-
mers and to anchor AChE at the neural cell membranes, hav-
ing therapeutic relevance for Alzheimer’s disease, as shown in
knockout mice (García-Ayllón et al. 2014). Although the rel-
evance of the PRIMA1 gene to Alzheimer’s disease has been
reported, no study has addressed the rs4900200 polymor-
phism, first reported in this study.

As shown in Table 2, the association test allowed us to
identify eight polymorphisms (rs2915495, rs7090933,
rs2527214, rs11628271, rs7523796, rs1948851, rs7044653
and rs13332694) that have not been previously reported in
association with AD or neurodegenerative diseases.
Furthermore, we also present the interaction of genes already
described in the literature to be associated with Alzheimer’s
disease and suggest new candidate genes via network
approaches.

Network approaches were essential for assisting our anal-
ysis of genetic association data from different points of view.
Our study used GeneMANIA as an integrative tool that found
curated relationships between the above-discussed genes. We
are convinced that if a gene is related to a disease, this might
rule significant biological mechanisms involved in the patho-
physiology and lead to susceptibility to developing complex
diseases such as AD. We assume that if a gene has the same
co-expression and the gene is in the same biological pathway,
there is strong evidence of complementarity in the progressive
development of the phenotype.

Conclusion

Our genome-wide scan analysis of the ADNI cohort identified
some putative loci that are in genetic association with Aβ-42
levels in CSF and moderately associated with Aβ-42 levels in
plasma. Extending our analysis using network approaches
could emphasize new potential targets, which need more ex-
tensive molecular understanding concerning what is truly
causal for LOAD. Thus, our analysis demonstrates that quan-
titative traits observing the Aβ-42 biomarker level and using
genome-wide screening can reveal additional insights into the

Table 4 Topological properties of the GeneMANIA networks (see Fig. 4)

No. Gene symbol Degree Partners of multi-edges

1 GRIN2A 17 2

2 FMO4 15 1

3 MS4A6A 14 1

4 SLC30A10 14 3

5 BIN1 13 2

6 LHPP 13 2

7 APOE 11 3

8 STOM 11 0

9 CD33 10 2

10 ABCA7 9 0

11 CLU 9 0

12 PRIMA1 9 2

13 NRXN3 9 1

14 APOC1 8 5

15 NCAM2 8 2

16 CR1 7 1

17 TOMM40 7 1

18 UGT2B7 7 1

19 CD2AP 7 1

20 ADCK1 6 3

21 PICALM 6 0

22 PXDNL 4 0

23 PRRC2C 4 0

24 WDR60 3 3

25 MS4A4E 1 0

This table presents a ranking of genes by the node degree. A higher node
degree expresses more interactions between the gene and the neighbor-
hood. The column partners of multi-edge express how often a node is
liked with other nodes by more than one type of edge
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mechanism that connects these biomarkers with potentially
new candidate genes for AD and MCI.

Further studies with independent, larger sample sizes will
be important to confirm these findings. In addition, further
studies might confirm whether a panel of genetic markers
can be combined with CSF and plasma analyses to better
predict longitudinal outcomes or responses to emergent ther-
apeutics. In future studies, it will also be important to consider
the interaction of SNPs, diagnosis and gene analyses to further
investigate the associations with biomarker levels.
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