
NeuroImage 189 (2019) 276–287
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
A parameter-efficient deep learning approach to predict conversion from
mild cognitive impairment to Alzheimer's disease

Simeon Spasov a,*, Luca Passamonti b, Andrea Duggento c, Pietro Li�o a,1, Nicola Toschi c,d,1, for
the Alzheimer's Disease Neuroimaging Initiative2

a University of Cambridge, Cambridge, Department of Computer Science and Technology, William Gates Building, 15 J J Thomson Ave, Cambridge, CB3 0FD, UK
b Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SZ,
Cambridge, UK
c Department of Biomedicine and Prevention, University of Rome "Tor Vergata”, Via Cracovia, 00133, Roma, RM, Italy
d A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
A R T I C L E I N F O

Keywords:
Deep learning
Neural networks
Classification
Mild cognitive impairment
Alzheimer's disease
Magnetic resonance imaging
ADNI
Early diagnosis
* Corresponding author.
E-mail addresses: ses88@cam.ac.uk (S. Spasov),

1 these authors contributed equally to this public
2 Data used in preparation of this article were o

investigators within the ADNI contributed to the des
A complete listing of ADNI investigators can be fou

https://doi.org/10.1016/j.neuroimage.2019.01.031
Received 22 August 2018; Received in revised form
Available online 14 January 2019
1053-8119/© 2019 Elsevier Inc. All rights reserved
A B S T R A C T

Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while
other MCI types tend to remain stable over-time and do not progress to AD. To identify and choose effective and
personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are
able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop
AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D
separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD
within 3 years.

Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuro-
psychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning
model compared to previous ones are the following: 1) our deep learning model is multi-tasking, in the sense that
it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classi-
fication, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier
employs fewer parameters than other deep learning architectures which significantly limits data-overfitting (we
use ~550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both
structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to
the MRI template, were used as separate input streams to extract as much information as possible from the MRI
data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease
Neuroimaging Initiative (ADNI), (n¼ 785 participants, n¼ 192 AD patients, n¼ 409 MCI patients (including both
MCI patients who convert to AD and MCI patients who do not covert to AD), and n¼ 184 healthy controls).

The most predictive combination of inputs were the structural MRI images and the demographic, neuropsy-
chological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algo-
rithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI
over the same time-period with an area under the curve (AUC) of 0.925 and a 10-fold cross-validated accuracy of
86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so
far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity
when classifying patients with AD from healthy controls. Our classification framework was also robust to the use
of different co-registration templates and potentially irrelevant features/image portions.

Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other
sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the
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flexibility to design a computer-aided diagnosis system targeting the prediction of several medical conditions and
neuropsychiatric disorders via multi-modal imaging and tabular clinical data.
1. Introduction

More than 30 million people have a clinical diagnosis of Alzheimer's
disease (AD) worldwide, and this number is expected to triple by 2050
(Barnes and Yaffe, 2011). This is due to increased life expectancy and
improvements in general health care (Ferri et al., 2005). AD is a form of
dementia characterized by β-amyloid peptide deposition and abnormal
tau accumulation and phosphorylation which eventually lead to neuronal
death and synaptic loss (Murphy and LeVine, 2010). AD-related neuro-
degeneration follows specific patterns which start from subcortical areas
in early disease stages and spread to the cortical mantle in later stages of
the disease (Braak and Braak, 1996). The classic clinical hallmark of the
most common form of AD (i.e., the amnestic type) is represented by
deficits in episodic memory, followed by visuo-spatial impairment,
spatio-temporal orientation problems, and eventually frank dementia.

Mild cognitive impairment (MCI) is a broad, ill-defined, and highly
heterogeneous phenotypic spectrum which causes relatively less notice-
able memory deficits than AD. Around 10%–15% of MCI patients per
year convert to AD over a relatively short time (Braak and Braak, 1995;
Mitchell and Shiri-Feshki, 2008), although the annual conversion rate
tends to progressively diminish. The mean conversion rate from MCI to
AD is approximately 4% per year. MCI patients who do not develop AD
tend to either remain stable, develop other forms of dementia, or even
revert to a ‘healthy’ state, which suggests that MCI is a highly variable
and common clinical conundrum which is likely dependent on different
etio-pathogenetic mechanisms.

AD-related neuropathology can be identified several years before
frank AD clinical manifestation (Braak and Braak, 1996; Delacourte et al.,
1999; Morris et al., 1996; Serrano-Pozo et al., 2011; Mosconi et al.,
2007), and this suggests that the development of AD might be predicted
before clinical onset via in vivo biomarkers (e.g. PET and MR imaging as
well as blood or cerebrospinal fluid (CSF) biomarkers) (Markesbery,
2010; Baldacci et al., 2018; Hampel et al., 2018; Teipel et al., 2018).
Magnetic resonance imaging (MRI)-based biomarkers have attracted in-
terest in diagnosis of AD as well in predicting MCI to AD conversion
because they do not involve the use of ionizing radiation like positron
emission tomography (PET), are less expensive that PET, and less inva-
sive than the use of cerebrospinal fluid (CSF) biomarkers. MRI-based
indices can also provide multi-modal information regarding the struc-
ture and function of the brain within the same scanning session, which is
typically advantageous in many clinical settings.

For these reasons, there has been a growing interest in developing
computational tools that are able, by using MRI-based measures, to
discriminate AD patients from healthy individuals, or, most importantly,
to discriminate the patients with stable MCI (sMCI) from those MCI pa-
tients who, in contrast, progress and develop AD (pMCI). To these ends,
different clinical data and imaging modalities have been used so far with
a variable rate of success, including for example, PET (Choi and Jin,
2018; Mosconi et al. 2004, 2007; Shaffer et al., 2013; Young et al., 2013),
MRI (Filipovych and Davatzikos, 2011; Moradi et al., 2015; Mosconi
et al., 2007; Tong et al., 2017, Young et al., 2013), cognitive testing
(Casanova et al., 2011; Moradi et al., 2015), and CSF biomarkers
(Davatzikos et al., 2011; Hansson et al., 2006; Riemenschneider et al.,
2002; Sonnen et al., 2010). In this context, Moradi et al. (2015) and Tong
et al., (2017) were amongst the first to: 1) perform feature selection to
extract informative voxels from MRI volumes via regularized logistic
regression, and 2) use the extracted voxels, along with cognitive mea-
sures, to produce support vector machine (SVM)-based predictions,
achieving an area under the Receiver Operating Characteristic (ROC)
curve (AUC) between 0.9 and 0.92. Similarly, Hojjati et al. (2017)
employed baseline resting state functional MRI data to achieve an AUC of
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0.95. In their study, the features were engineered by constructing a brain
connectivity matrix which is treated as a graph, and the extracted graph
measures represented the input of the SVM.

Most of these earlier studies employ a classification pipeline which
relies on two independent steps. First, independent component analysis
(ICA) (Shaffer et al., 2013), L1 regularization (Moradi et al., 2015; Tong
et al., 2017) or morphometry (Davatzikos et al., 2011; Fan et al., 2007), is
used to reduce the dimensionality of the data to a smaller set of
descriptive factors. Second, these factors are fed into a multivariate
pattern classification algorithm. The dimensionality reduction and clas-
sification algorithms are two separate mathematical models which
involve different assumptions, and this can result in a loss of relevant
information during the classification procedures (Nguyen and Torre,
2010). In addition, the most commonly employed classifiers, such as SVM
(Moradi et al., 2015; Hojjati et al., 2017; Tong et al., 2017) and Gaussian
Processes (Young et al., 2013), require the use of kernels, or data trans-
formations, which are often chosen from a limited and pre-specified set.
This process maps the data to a new space in which it is presumed to be
easier to separate. However, constructing or choosing an
application-specific kernel that acts as a reasonable similarity measure
for the classification task is not always possible or easy to achieve.

The use of two separate, and methodologically disjoint, analytical
pipelines as well as the need to construct ad hoc kernels can be avoided by
employing deep learning algorithms, which have greater representa-
tional flexibility than kernel-based methods and can also automatically
“learn” the necessary data transformations that maximize an arbitrary
performance metric. Recently, such deep-learning methods have been
applied to AD vs. healthy controls classification problems (Hosseini-Asl
et al., 2016; Liu et al., 2018; Payan and Montana, 2015) and pMCI vs
sMCI classification tasks (Choi and Jin, 2018; Lu et al., 2018a, b). Choi
and Jin (2018) and Lu et al. (2018a) have used deep-learning to achieve
one of the highest pMCI/sMCI classification performances to-date
(~84%–82% conversion rate accuracies for these studies respectively).
Their predictions were based on a single (albeit highly informative)
imaging modality (PET). A more formal summary of the recent studies
and classification methods is presented in Table 3.

The superior representational capacity of deep-learning methods
typically relies on a high number of neural network parameters.
Frequently, this can result in data overfitting, i.e. an apparently highly
satisfactory training performance which however does not generalize
well to unseen samples during testing or when applying the model.
Another problem is that the data-scarce nature of medical databases is
not typically sufficient to build a useful network architecture.

This study therefore aims to develop a parameter-efficient neural
network architecture, based on the most recent convolutional neural
network layers (i.e. the 3D separable and grouped convolutions) devel-
oped in the computer vision research field. Furthermore, we implement a
dual-learning approach which simultaneously learns multi-task classifi-
cation of pMCI vs. sMCI and AD vs. Health Controls (HC) by combining
several input streams such as structural MRI measures as well as de-
mographic, neuropsychological, and APOe4 genetic data (the APOe4
gene polymorphism is the only known genetic risk factor for AD in spo-
radic cases of AD). This new network design yields superior performance
on generic visual discrimination tasks like ImageNet (Russakovsky et al.,
2015; Chollet, 2017) while maintaining the number of overall network
parameters low to efficiently limit the data-overfitting problem. Finally,
we develop a novel feature extractor sub-network and we combine the
Tensorflow (Abadi et al., 2016) and Keras (Chollet et al., 2015) libraries
with our own implementation of 3D separable convolutions which is
freely available at https://github.com/simeon-spasov/MCI.

https://github.com/simeon-spasov/MCI


Table 1
Demographic, neuropsychological and cognitive assessment as well as APOe4 genotyping data were used in this study. The data is presented in a mean� std format.
Abbreviations: APOe4 - Apolipoprotein E; CDRSB – Clinical Dementia Rating Sum of Boxes; ADAS – Alzheimer's Disease Assessment Scale; RAVLT – Ray Auditory Verbal
Learning Test.

No. of
subjects

Age
(years)

Male/
Female

years in
education

APOe4
expression level

CDRSB ADAS11 ADAS13 RAVLT

0 1 2 immediate learning forgetting % forget

AD 192 75.6� 7 103/81 15� 2.9 57 86 41 4.4� 1.6 18.8� 6 29� 7.3 23� 7 1.7� 1.8 4.4� 1.9 89.4� 21.2
HC 184 74.6� 6 92/100 16.3� 2.7 144 43 5 0.2� 0.9 6� 3.8 9.3� 5.7 44� 10.5 6� 2.4 3.7� 2.7 33.1� 27.7
pMCI 181 73.7� 7 108/73 15.9� 2.8 61 90 30 2� 1 13.5� 4.2 21.9� 5.5 27.2� 6.5 2.9� 2.2 4.9� 2.1 78.3� 27
sMCI 228 72.2� 7 132/96 16� 2.8 145 67 16 1.2� 0.6 8.4� 3.3 13.5� 5.3 38.5� 10 4.75� 2.5 4.35� 2.6 50� 30
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2. Methods

2.1. Participants and data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer's disease (AD). The data comprised 435 men and 350 women
aged between 55 and 91 years. The majority of subjects identified as
white (>94%) and non-Hispanic (99.98%). All data we used is summa-
rized in Table 1. Differences in median age across groups were tested
using Friedman's ANOVA and group� gender interactions were tested
using Fisher's exact test. None of these interactions resulted statistically
significant (p> 0.05). For all participants, we employed the Magnetiza-
tion Prepared Rapid Gradient-Echo (MPRAGE) T1-weighted image
(structural MRI) as well as the following data: demographic data (age,
gender, ethnic and racial categories, education), neuropsychological
cognitive assessment tests like the dementia rating scale (CDRSB), the
Alzheimer's disease assessment scale (ADAS11, ADAS13), episodic
memory evaluations in the Rey Auditory Verbal Learning Test (RAVLT),
as well as APOe4 genotyping. All data used in this study is from baseline
assessments (no longitudinal data is used).

3. Data preprocessing

Prior to classification, all T1 weighted (T1w) images were registered
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to a common space (i.e. T1 template). In detail, two different T1 tem-
plates were used in order to assess the robustness of our classification
methodology to coregistration inaccuracies. First, we built a custom T1
template specific to this study. To this end, we employed all T1w images,
which (after N4 bias field correction) were nonlinearly co-registered to
each other and averaged iteratively (i.e. the group average was recreated
at the end of each iteration). The procedure was based on symmetrical
diffeomorphic mapping and employed five total iterations. The second
template was the Montreal Neurological T1 Template
(MNI152_T1_1mm). After the creation of both templates, all single-
subject T1w images were nonlinearly registered to both templates.
After co-registration to both templates we also extracted the local Jaco-
bian Determinant (JD) images of the nonlinear part of the deformational
field taking each image into template space, and masked out all non-
brain areas using brainmasks generated in template space using BET,
part of FSL (Jenkinson et al., 2012). The JD maps were used to com-
plement the MRI images as an additional input stream in our model (see
below). Additionally, in order to evaluate how much a priori knowledge
about AD brain pathophsyiology could improve our classification and
also howmuch irrelevant features hamper classification performance, we
defined a set of regions of interest (ROIs) which included only brain areas
known to be heavily involved in AD-related atrophy, namely parietal,
temporal and frontal lobes in order to perform an inclusion test (see
Fig. 4). This was based on the Hammers et al., (2003) atlas© Copyright

Imperial College of Science, Technology and Medicine 2007 (www.brain-development.org).
All template creation and registration procedures were performed

using the ANTs package (Avants et al., 2010, 2011). In detail, the
high-dimensional non-linear transformation (symmetric diffeomorphic
normalization transformation) model was initialized through a generic
linear transformation which consisted of center of mass alignment, rigid,
similarity and fully affine transformations followed by (metric:
Fig. 1. Overview of our multi-tasking neural
network methodology. We have designed a sub-
network (the multi-modal feature extractor) to
extract 4-d feature representations from the in-
puts of both tasks/datasets. This sub-network
(with θ network parameters) is applied on the
data from both the pMCI/sMCI and AD vs healthy
discrimination problems, as we assume the un-
derlying factors of the conditions are similar,
hence similar data transformations are likely to
be useful. We then employ two fully connected
layers, parametrized by φ and ψ, with sigmoid
outputs. The sigmoid outputs approximate the
conditional distribution of the labels for the two
problems given the inputs (pA(yjx) for the AD vs
healthy task and pM(yjx) for the pMCI vs sMCI
task). We learn the network parameters such that
our model outputs correspond to the true labels
in the dataset by minimizing the binary cross-
entropy between the observed and estimated
targets. The multi-modal feature extractor is
represented by a dashed-line rectangle in Fig. 1
and Fig. 3.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.brain-development.org


Fig. 2. Implementation of the convolutional, fully
connected and separable convolutional blocks
(conv block, FC and sep conv block respectively).
These blocks comprise several sequential opera-
tions – firstly a (separable) convolution or dense
layer followed by batch normalization and an ELU
activation function. Conv blocks use 3D Max
pooling with a window size of 3 and strides of 2 to
gradually decrease input image dimensionality.
Dropout is applied in all operational blocks.
Convolutional, fully connected and max pooling
layers require us to define hyperparameters, such
as kernel size, number of units. These are given in
brackets with some commonly used default values
for our network design.
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neighbourhood cross correlation, sampling: regular, gradient step size:
0.12, four multi-resolution levels, smoothing sigmas: 3, 2, 1, 0 voxels in
the reference image space, shrink factors: 6, 4, 2, 1 voxels. We also used
histogram matching of images before registration and data winsorisation
with quantiles: 0.001, 0.999. The convergence criterion was set to be as
follows: slope of the normalized energy profile over the last 10 iterations
<10–8). Co-registration of all scans required approximately 19200 h of
CPU time on a high-performance parallel computing cluster.

Numerical normalization for the co-registered MRI images was per-
formed per sample, i.e. each 3D volume was standardized to 0 mean and
unit standard deviation. The reasoning behind this is that brain atrophy
could be recognized as an in-sample shift in intensity for a certain area
compared to other regions. The normalization applied to the clinical
features, i.e. the demographic, neuropsychological, and APOe4 geno-
typing data, also follows the same feature scaling procedure, where the
values of each separate clinical factor are normalized between [0, 1]. On
the other hand, the extracted JD images were feature-scaled to have
voxel values in the [0; 1] range via subtracting the smallest value in the
entire JD image set, and dividing by the difference between the largest
and smallest values (also in the entire JD image set). This retains class-
wise differences in volumetric changes created when co-registering an
image to a template while rescaling the data to a global maximum and
minimum.

4. Deep learning architecture

4.1. Architecture overview

A high-level overview of the network design is shown in Fig. 1. In this
paper, we developed a feature extractor sub-network (referred to as the
multi-modal feature extractor in Fig. 1), inspired by the parameter-efficient
separable and grouped convolutional layers presented in AlexNet (Kriz-
hevsky et al., 2012) and Xception (Chollet, 2017; Velickovic et al., 2016).
In detail, the layers of the feature extractor are shared between two tasks
- MCI-to-AD conversion prediction and AD/HC classification (see Figs. 2
and 3). The assumption is that both problems share common underlying
factors, i.e. the MCI subjects who convert lie on a continuum between HC
and AD. This means similar data transformations are likely to be useful
for prediction of the two different problems. Also, this procedure in-
creases the number of samples the extractor network is trained on, hence
reducing overfitting. In addition, balancing between the two tasks can be
seen as imposing soft constraints on the network parameters, and if some
of the factors that explain the variations in our data are shared between
the two discrimination problems, overfitting is reduced further. The
feature extractor sub-network extracts 4-dimensional vectors for each of
the two classification problems. These resulting latent representations
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are then processed by two separate fully connected layers with sigmoid
activations and a binary cross-entropy loss applied at the output of each.
The outputs of the fully connected layers are in the 0 to 1 range. The
closer the activation is to 1, themore confident the model is that the input
pattern corresponds to a diseased individual (i.e. AD or pMCI, depending
on the classification task), and vice versa.
4.2. Mathematical formulation of model

We will denote the input data and labels as pairs (X, Y)¼ {(xA1,
yA1),…, (xAN, yAN), …, (xM1, yM1), …, (xAN', yAN’)}, where xAi is the i-th
observation from the Alzheimer's and healthy subset, and xMj is the j-th
observation from the pMCI vs sMCI subset. Both classification problems
have corresponding class labels yAi and yMj2 {0, 1}. We refer to the
empirical distributions over the AD/HC andMCI subsets as ~p A(x, y) and ~p
M(x, y) respectively. The model log likelihoods (i.e. the conditional
probabilities of the target variables, y, given the input data x which we
model with the neural network) for the two classification problems are
given by:

log pA(y
A
ijxAi; θ, φ)¼ fA(y

A; xA, θ, φ)
¼ -LA log pM(y

M
jjxMj; θ, ψ)¼ fM(y

M; xM, θ, ψ)¼ -UM (1)

The likelihood functions fA and fM are modelled as Bernoulli distri-
butions, parametrized by neural network-based transformations of the
input data as described in Fig. 1. The goal is to learn the network pa-
rameters such that we can approximate the true conditional probabilities
of the labels given the inputs via the likelihood functions given by eq. (1).
We use θ to denote the parameters in the multi-modal feature extractor
sub-network, and φ and ψ to denote the weights in the final fully con-
nected layers that output the class probabilities for the Alzheimer's vs
healthy and pMCI vs sMCI tasks respectively. Learning the network pa-
rameters can be represented as:

argmin ðθ;φ;ψÞ Ex; y� ~pMðx; yÞ ½UM� þ αЕx; y� ~pAðx; yÞ ½LA� (2)

As UM and LA represent negative log-likelihoods, the objective func-
tion given in eq. (2) can be viewed as minimizing the weighted sum
between two binary cross-entropy terms between the observed and
estimated (by our network) class probabilities. Intuitively, learning the
network parameters is akin to maximizing the probability of observing
the labels in both datasets under the model, given the input cognitive,
genetic andMRI biomarkers. We also introduced the α hyperparameter to
control the trade-off between the two tasks during learning, and use
α¼ 0.25 in all experiments. This is a heuristic choice based on the
observation that the AD/HC problem is much easier than the pMCI/sMCI
problem and that the model quickly achieves high validation accuracy



Fig. 3. Architecture of the neural network designed to take multiple 3D image
volumes and tabular clinical inputs. The design of the network relies on the
operational blocks shown in Fig. 2. For conv and sep conv blocks we use the
notation: kernel size, (sep) conv block, output channels. If the strides are different
from the default value of 1, the new stride value is shown in addition at the end.
The concatenation operation works by merging the activation maps along the
channel axis. Addition in the add block is performed element-wise between two
sets of activation maps of the same size along all dimensions. The operational
blocks are color-coded for the ease of the reader both in Fig. 2 and Fig. 3. Our
network relies on decreasing the dimensionality of the image inputs using
standard, separable and grouped convolutional blocks before concatenating the
image embeddings with the clinical features compressed via fully connected
blocks. The separable and grouped convolutions allow us to process the images
in a parameter-efficient manner while the residual connection (dashed arrow
from concatenate to add) facilitates training (Chollet, 2017). The multi-modal
feature extractor sub-network (within the dashed rectangle) outputs 4-d em-
beddings of the input data and passes it to a dense layer which produces a
prediction score. The same multi-modal feature extractor processes the inputs
from both the MCI/HC and pMCI/sMCI tasks. Two different dense layers pro-
duce the final prediction scores for the two classification problems.
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(see table 4 in Supplementary Material) when α¼ 0.25.

4.3. 3D convolutions

Convolutional layers employed in our study work by convolving an
input tensor, x, with a kernel of weightsW, then adding a bias term b, and
finally passing the result through a non-linearity. To extract a rich set of
representations we repeat this process with K different kernels (also
known as channels or filters) convolving the same tensor x, each resulting
in a new feature map hk. Hence, we can write:

hk¼ ƒ(Wk * x þ bk) (3)
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The feature map subscript is k¼ [1, …, K]. The function ƒ can be
selected from a range of differentiable non-linear transformations, such
as the sigmoid f(u) ¼ (1 þ exp(�u))�1 and the exponential linear unit, or
ELU, (Clevert et al., 2015): f(u)¼ u if u� 0 and f(u)¼ exp(u) - 1 if u< 0.
We employ the ELU transformation in our hidden layer activations and a
sigmoid output for label predictions. The set of K feature maps extracted
from the input x defines a single layer ℓ¼ [1, …, L] in our convolutional
neural network. Thus, the kth feature map at layer ℓ is denoted as hk

ℓ. To
construct a hierarchy of features we can use the outputs of layer ℓ-1 as
inputs to layer ℓ:

hk
ℓ¼ ƒ(Wk

ℓ
* h

ℓ�1 þ bk
ℓ) (4)

where h0 is x. Note that in eq. (4), hℓ�1¼ [h0
ℓ�1,…, hK

ℓ�1 ] is a 4-D tensor
- a collection of the K 3D feature maps extracted at layer ℓ-1. Conse-
quently, Wk

ℓ is also a 4-D tensor kernel of size N1xN2xN3xK. This filter is
multiplied element-wise during convolution with a N1xN2xN3 patch in
each of the K feature maps and the result is summed to produce a single
scalar element (after adding a bias term and passing through a non-linear
function). The convolutional procedure can be seen as sliding this kernel
with strides in all three dimensions to produce hk

ℓ. It is important to note
that the number of parameters needed to extract Kℓ feature maps in layer
ℓ from the Kℓ�1 feature maps in layer ℓ-1 is given by:

(N1*N2*N3*Kℓ�1 þ 1)*Kℓ (5)

where N1xN2xN3 is the filter size used (see section 3.8 for actual values
used in this paper).

4.4. Fully connected (dense) layers

Fully connected (FC) layers are designed to work on vectorized inputs
u. Each input ui has an associated weight wi. In order to produce an
output yk, we form the weighted sum of all inputs Σuiwi, then add a bias
term bk, and pass the result through a differentiable non-linear function
like the sigmoid or the exponential linear unit. We can repeat this pro-
cedure K times with different weight parameters to produce an output
vector y, which can be used as an input to another fully connected layer.
In our work we employ these dense connections to process the tabular
clinical features and to produce the final output predictions (or proba-
bility scores) of our model.

4.5. Batch normalization, dropout, L2 regularization

Several strategies are used in our network to battle overfitting. The
first one is batch normalization (Ioffe and Szegedy, 2015) which nor-
malizes a layer's outputs by subtracting their mean and dividing by their
standard deviation. This whitening procedure enforces a fixed distri-
bution of activations which stabilizes and accelerates the rate of training
of deep neural nets. We also implement dropout (Srivastava et al.,
2014), which works by randomly dropping units and their connections
during training. An intuitive explanation of its efficacy is that each unit
must learn to extract useful features on its own with different sets of
randomly chosen inputs. As a result, each hidden unit is more robust to
random fluctuations and learns a generally useful transformation.
Finally, L2 regularization penalizes weights of high absolute value,
hence directly limiting the capacity of our model, i.e. improving
overfitting.

4.6. Separable convolutions

The separable convolutions we employ are similar to standard con-
volutional layers but reformulate the procedure in two steps by per-
forming depthwise and then pointwise operations. Firstly, each input
channel is spatially convolved separately, then the resulting outputs are
mixed via pointwise convolutions with a kernel size of 1� 1� 1. The
depthwise procedure simply reformulates the convolutional operation



Fig. 4. Examples of the image inputs we employ in the classification framework for three different image slices. The upper row shows structural MRI images co-
registered to a custom common space. The middle row displays only the brain regions we retain in the atlas-masked tests (parietal, temporal and frontal lobes).
The third row shows the Jacobian Determinant images - they indicate the volumetric change a voxel in an unnormalised MRI image must undergo so as to conform to
the common template.
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from eq. (4) to:

hk
ℓ¼ ƒ (Wk

ℓ
* hk

ℓ�1 þ bk
ℓ) (6)

Note that the difference between eq. (4) and eq. (6) is the subscript k
in hk

ℓ�1, denoting that feature map k in layer ℓ (hk
ℓ) is only a function of

feature map k in layer ℓ-1 (hk
ℓ�1) in the separable convolutions case. On

the other hand, standard convolutions take all Kℓ�1 feature maps as an
input to produce a single output. Consequently, with our approach the
parameter count inWk

ℓ is reduced to (N1*N2*N3þ1)*Kℓ, which is ~Kℓ�1

times more parameter-efficient as compared to standard convolutions
(eq. (5)). The pointwise operation mixes all channels and requires
Kℓ*Kℓ�1 parameters. Hence, the overall number of weights in separable
convolutions is given by:

(N1*N2*N3þ1)*Kℓ þ Kℓ*Kℓ�1 (7)

Considering the kernel sizes and number of filters in our network
architecture, substituting a single conventional convolutional layer with
a separable one results in ~20 times less parameters for that layer. In
order to achieve the above operations, we implemented an ad-hoc 3D
separable convolution module as a custom Keras layer based on a Ten-
sorFlow backend (see https://github.com/simeon-spasov/MCI).

4.7. Grouped convolutions

The grouped layer can be viewed as a compromise between standard
convolutions and the separable case. This procedure splits the previous
layer's feature maps in two groups (G1 and G2) along the channel axis
and treats them as separate when applying further transformations (see
Fig. 3). As a result, only half of the channels are used to produce a single
output feature map. The grouped layer requires twice fewer parameters
than the standard convolutional approach, assuming the same overall
number of output feature maps is generated.

4.8. Network architecture

Since several different sequences of layers are frequently reused, they
are combined in operational blocks. Each block follows a similar pattern.
For instance, convolutional blocks, or conv blocks, used to processes the
3D MRI tensors, comprise a convolutional kernel with linear activations,
batch normalization and an exponential linear unit (ELU) transformation
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with dropout. In order to reduce the resulting spatial dimensions, max
pooling is used,where only the highest value in an imagepatch is retained,
with awindowof 3 pixels and a stride of 2. Each operation is applied to the
outputs of the previous one. On the other hand, the clinical features un-
dergo a series of transformations by dense, or FC (fully connected), blocks.
Since these blocks act on vectorized inputs, a linear dense layer is
employed instead but the same regularization precautions and activations
as in the conv block are applied. We also implement a separable convo-
lutions block, or sep conv block, which resembles the conv block but
substitutes traditional convolutions with separable ones and does not rely
on any pooling operations. All of these blocks are depicted in Fig. 2. Fig. 3
shows the neural network architecture we use for the AD/HC and pMCI/
sMCI classification problems. Firstly, two consecutive convolutional
blocks are used to reduce the dimensionality of the input MRI and Jaco-
bian images. We then concatenate the outputs of the second conv block
from theMRI and Jacobian images along the channel axis. Themajority of
the feature extraction is then performed by three sequential separable
convolutional blocks. The dimensionality of the activation maps remains
the same during this procedure. The output from the last sep conv block is
summed element-wise with the activation maps from the second conv
block in the add block (also known as a residual connection, introduced in
He et al., 2015 and Chollet, 2017). It has been shown that residual con-
nections facilitate training as the depth of the neural network increases.
We now split the result of the summation along the channel axis in two
groups to perform a grouped convolution. The motivation behind opting
for grouped convolutions is to further reduce the dimensionality of the
activation maps which is not possible by using the fully separable con-
volutions as outlined in eq. (6) but is more parameter-efficient than uti-
lizing traditional convolutions. At this stage of the image processing
pipeline the shape of the activation maps is 1� 2� 1 with 16 channels
after concatenation (8 channels in each group). We flatten the feature
maps to a 32-dimensional vector andapply a fully connected blockwith 10
output units. This 10-dimensional vector forms thefinal embedding of the
MRI and Jacobian images. The clinical features undergo 2 sequential
transformations by fully connected blocks with 32 and 10 units respec-
tively. The clinical features and image embeddings are concatenated and
processed by a fully connected block with 4 output units. All of these
operations acting on the MRI, Jacobian and clinical feature inputs which
ultimately compress the input data in a 4-dimensional vector comprise the
Multi-modal feature extractor. The parameters associated with the
multi-modal feature extractor are denoted by θ in the mathematical

https://github.com/simeon-spasov/MCI


Fig. 5. ROC curves of pMCI vs sMCI classification for four input combinations:
MRI images and clinical features; JD images and clinical features; Atlas-masked
MRI (or just masked MRI) images and clinical features, and finally MRI and
Jacobian Determinant images and clinical features. The MRI data was co-
registered to our custom template prior to performing classification. The grey
ROC curve at the diagonal was generated by randomly permuting the training
labels for the structural MRI and clinical features input combination and pre-
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formulation of ourmodel in section 3.2. In order to obtain a prediction for
each of the two tasks (AD/HC and pMCI/sMCI) we pass the 4-d output of
the feature extractor sub-network through two dense (fully connected)
layers (not blocks) with sigmoid activations and single output units. We
use φ and ψ in our mathematical formulation to denote the weights in
these final fully connected layers which model the class probabilities for
the AD/HC and pMCI/sMCI tasks respectively.

5. Implementation

All experiments were conducted using python version 2.7.12. The
neural network was built with the Keras deep learning library using
TensorFlow as backend. TensorFlow, which is developed and supported
by Google, is an open-source package for numerical computation with
high popularity in the deep learning community. The library allows for
easy deployment on multiple graphic processing units (GPUs) (CPU-based
experimentation would be prohibitive because of time constraints). The
Keras wrapper provides an application programming interface (API) for
quicker development and has all functionalities needed to implement the
network with the exception of 3D separable convolutions, which we built
as a custom layer in TensorFlow. In this paper we employed a Linux
machine and two Nvidia Pascal TITAN X graphics cards with 12 GB RAM
each. The model was parallelized across GPUs such that the feature
extractor network works on the AD vs HC and MCI-to-AD conversion
problems simultaneously to speed up training. Iterating over the whole
training set once, i.e. a single epoch, takes about 30 s and prediction for a
single MCI patient requires milliseconds. Since prediction would not
require model parallelization or a lengthy training process, a pre-trained
network is practical to be applied on a lower-end GPU (or possibly a
CPU) relatively cheaply in a realistic scenario. Across all experiments
certain network settings remain unchanged. These include the dropout
rate - set at 0.1 for all layers and blocks; the L2 regularization penalty
coefficient set at 5*10–5 for all parameters in convolutional and fully
connected layers; and the convolutional kernel weight initialization which
follows the procedure described by He et al., (2015). The objective
function loss is minimized using the Adam optimizer by Kingma and Ba
(2014) with an exponentially decaying learning rate:

lr ¼ 0.001*0.3 epoch / 10 (8)

All other parameters are kept at their default value provided in the
original Adam paper (Kingma and Ba, 2014). The network hyper-
parameters were picked because they resulted in sufficiently good per-
formance on the validation set. A training batch size of 6 samples for both
the AD and MCI conversion problems is randomly sampled from the
dataset when training the network until the dataset is exhausted.

6. Performance evaluation

For the evaluation of the classifier, we repeated the sampling strategy
to divide the samples in training, validation and test set splits. Since we
have 32 samples more in the MCI dataset (16 for pMCI and 16 for sMCI)
as compared to the AD/HC dataset, we used these 32 MCI subjects for
testing purposes by randomly sampling 16 subjects from the pMCI and
sMCI groups. The validation set comprised roughly 10% of the remaining
dataset (36 subjects from MCI and AD/HC respectively) and was also
generated by randomly picking in a balanced manner both from the
progressive and stable MCI groups and from the healthy and AD patients
as we were performing joint learning. Finally, the remaining 340 subjects
from both the AD/HC and MCI subsets respectively (i.e. a total of 680
subjects) comprised the training set. No data augmentation procedures
were used in this paper.

The model is trained for 40 epochs and the best performing model
with the lowest objective function value (eq. (2)) on the validation set is
saved and its performance is evaluated on the test set. This procedure is
then repeated 10 times with different sampling seeds so as to have
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different samples in the train/validation/test splits (or folds) and mini-
mize the effect of random variation. The number of subjects in each of the
training/validation/testing splits in maintained the same at 680/72/32
subjects respectively. The trained model is then evaluated on the inde-
pendent test set. The evaluation metrics used and reported in our results
are accuracy (ACC), sensitivity (SEN), specificity (SPE). We also perform
receiver operating characteristics (ROC) analysis and compute the AUC
across folds. The optimal operating point of the ROC curve was found via
Youden's J statistic. All accuracy, sensitivity and specificity results are
reported at the optimal operating point of the ROC curve. For the AD vs
HC task, we report the validation results as we only defined a test set for
the pMCI/sMCI classification problem (while the AD/HC task is a helpful
auxiliary problem, it turned out to be an extremely easy classification
problem which is not the focus of this paper).

7. Results

Firstly, we consider the classification performance of our network on
four different input biomarker combinations. The four input combina-
tions are: 1) clinical features and T1w MRI images; 2) clinical features
and Jacobian Determinant images; 3) clinical features and atlas-masked
T1wMRI images; and 4) clinical features, Jacobian Determinant and T1w
MRI images. We performed all of these experiments in custom template
space. In order to assess the robustness of the neural network model to
MRI structural misalignment, we also performed three experiments in the
MNI152_T1 template space with three different input combinations (all
input combinations except for number 3, i.e. clinical features and atlas-
masked T1w images). Under the assumption that using the custom
template will result in higher co-registration accuracy as compared to
using the MNI template, the purpose of these experiments is to assess the
robustness of the methodology to possible structural misalignment. In
addition, we assessed the performance of our model on the AD vs healthy
task with the same input variables as in the pMCI/sMCI problem. Both
MNI template and AD/HC results can be found in the Supplementary
Material.

7.1. Classification performance

Results are summarized in Fig. 5 and Fig. 6 and Table 2.
dicting using this random classifier.



Fig. 6. Box plots for AUC, accuracy, sensitivity and specificity for pMCI vs sMCI classification based on multi-stream integration of clinical features and MRI images
(co-registered to our custom template) over 10 separate test folds. The black line in each box represents the median value. The boxes encompass values between the
25th and 75th percentile whereas the tails - the top and bottom quartiles. Outliers are marked with a circle. The performance metrics correspond to the optimal
operating point of each classifier.

Table 2
A comparison table between the median performance metrics on the pMCI vs sMCI classification task using our neural network model.

pMCI vs sMCI

Input Modalities Custom template MNI152 template

AUC ACC SEN SPE AUC ACC SEN SPE

MRI and clinical 0.925 86% 87.5% 84% 0.917 85% 82% 87%
Atlas-masked MRI and clinical 0.922 84% 87.5% 94% – – – –

JD and clinical 0.874 83% 84% 78% 0.881 82% 82% 81%
MRI and JD and clinical 0.917 83% 87.5% 81% 0.899 83% 77% 88%
structural MRI 0.79 72% 63% 81%
Clinical data 0.88 81% 83% 81%
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The best performance metrics are achieved by including structural
MRI along with all clinical data (demographic, neuropsychological, and
APOe4 genotyping features). The median AUC across folds for the input
combination comprising structural MRI images and clinical features is
0.925 whereas when we remove brain areas not classically associated
with AD (i.e. using the atlas-masked images we employ in the inclusion
test; see Fig. 10 in Supplementary Material), the median AUC obtained is
0.922. Comparing these results across folds using a Mann-Whitney U test
indicated that removing brain structures unrelated to the development of
AD does not hinder or aid (P¼ 0.4) discrimination in pMCI and sMCI.
The median AUC when using JD images and clinical data was found to be
0.874 (Mann-Whitney test yielded p-value¼ 0.041 and 0.046 when
compared to the input combinations comprising structural MRI and
clinical data, and atlas-masked structural MRI and clinical data results,
respectively). Finally, the input combination comprising all types of input
streams - T1w images, JD data and clinical features resulted in an AUC of
0.917. Comparing this with the input variants comprising the structural
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MRI and clinical features, atlas-masked MRI and clinical features, or JD
images and clinical features yielded p-values of 0.36, 0.38 and 0.07
respectively (Mann-Whitney-U test). These results suggest that adding
structural MRI to the clinical features yields statistically significant
higher performance as opposed to using only JD data as an image input
stream. In addition, removing brain areas from structural MRI not clas-
sically associated with Alzheimer's disease did not show statistically
different classification results compared to the experiments which
retained all information. This suggests our model was not negatively
impacted by the inclusion of irrelevant or only partially relevant features.
In addition, this experiment corroborates the expectation that areas
associated with AD development would possess the highest discrimina-
tive power between pMCI and sMCI, and also demonstrates a possible
practical avenue for relating subsets of the input feature space to the
predicted outcome with deep learning methods.

The highest median classification accuracy we achieved was 86%,
which resulted from the experiments with structural MRI and clinical



Fig. 7. Training and validation losses for our CNN architecture which utilizes
structural MRI and clinical features. The standard deviation of the validation
loss encompasses the red area in the image, whereas the deviation of the
training loss is depicted in blue. The solid lines indicate the means of the losses
across the folds.

Table 3
A comparative table of methodologies on the pMCI vs sMCI classification task using the ADNI dataset. We provide a performance comparison table mainly for recent
studies achieving classification rates close to the state-of-the-art. The Methods column includes both the feature selection procedure(s) and the classification method.

Author Data AUC ACC SEN SPE Conversion
time

Validation and
Testing method

Method

Spasov et al.
(this
paper)

structural MRI þ cognitive
measures þ APOe4 þ demographics

0.925 86% 87.5% 85% 0–36 months 10-fold cross-
validation

CNN

Hojjati et al.
(2017)

rs-fMRI 0.95 91.4% 83.24% 90.1% 0–36 months 9-fold cross-
validation (report on
validation set)

Graph measures þ SVM

Moradi et al.
(2015)

structural MRI þ cognitive measures 0.9 82% 87% 74% 0–36 months 10-fold cross-
validation (report on
test set)

LASSO þ SVM

Liu et al.
(2017)

structural MRI þ FDG-PET þ cognitive
measures þ APOe4 þ demographics

0.92 84.6% 86.5% 82.4% 0–36 months holdout ICA þ Cox model

Korolev et al.
(2016)

structural MRI þ clinical data þ plasma-
proteomic data þ medications

0.87 80% 83% 76% 0–36 months 10-fold cross-
validation (report on
test set)

Joint Mutual
Information þ Kernel
Learning

Beheshti
et al.
(2017)

structural MRI 75.08 75% 77% 73% 0–36 months 10-fold cross-
validation

Morphometry þ t-
test þ SVM

Choi and Jin,
2018

flurodeoxyglucose and florbetapir PET 0.89 84.2% 81% 87% 0–36 months holdout CNN

Tong et al.
(2017)

structural MRI þ cognitive measures 0.92 84% 88.7% 76.5% 0–36 months 10-fold cross-
validation (report on
test set)

Elastic Net þ SVM

Lu et al.
(2018a)

FDG-PET – 82.5% 81.4% 83% 0–36 months 10-fold cross-
validation

NN
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data. The atlas-masked MRI and clinical data variant yielded the second
best result with 84% classification accuracy, whereas the JD images and
the clinical features gave 83% accuracy. Finally, employing all input
features also resulted in an accuracy of 83%. Across the classification
results from our four different input combinations the median sensitivity
varies between 85% and 87.5%, and the median specificity between 78%
and 94% (evaluated at the optimal operating point of each ROC curve
across the test folds).

Results from the classification performance on both the custom and
the MNI152 template are summarized in Table 2. We performed Mann
Whitney U tests across folds on the obtained AUCs corresponding to the
different input combination pairs (custom template vs MNI template).

The obtained p-values are 0.28, 0.42 and 0.24 for the structural MRI
and clinical features, Jacobian Determinants and clinical features, and
the combined inputs respectively. Consequently, no statistically signifi-
cant difference can be found between the performance of our classifier
while operating in the two different normalization spaces (custom tem-
plate vs. MNI).

In addition, in order to identify the relative contribution of the
structural MRI images compared to the clinical variables, we ran the
pMCI vs sMCI performance evaluation procedure using either structural
MRI images (not Jacobian determinant images), or clinical features as
inputs. Using the clinical features alone resulted in an AUC of 0.88
(average across folds), whereas using only the structural MRI data
resulted in an averaged AUC across the folds of 0.79. The ROC curves
associated with these experiments can be found in Fig. 9 in the Supple-
mentary Material.

Owing to the simpler nature of AD vs HC discrimination, regardless of
the input streams and the co-registration template, results are close to
100% on all performance metrics (summarized in table 4 in Supple-
mentary Material).
7.2. Classification variance and overfitting

Although we achieve high median performance on all metrics and on
both registration templates, dispersion can be further reduced. Fig. 7
shows the standard deviation of the mean training and validation losses
across the 10 test folds of the model utilizing structural MRI and clinical
features as inputs, which also achieved the highest classification
284
accuracy. It can be seen there is high overlap in the standard deviation
between the training and validation losses, indicating comparable per-
formance during both training and validation, hence no significant
overfitting.

Still, one factor which contributes to the higher validation variance
compared to the training loss curve is the number of samples. Since both
the validation and test sets comprise an order of magnitude less subjects
than the training set, we also expect the network to manifest higher
variance when evaluated on them. Secondly, although the weights were
optimized using a variant of stochastic gradient descent, the hyper pa-
rameters, such as the dropout rate, the L2 regularization hyper param-
eter, the initial learning rate and learning rate decay were set to pre-
defined values which gave good performance on only one of the vali-
dation folds. This was done for two reasons: 1) performing hyper
parameter search at each fold was deemed prohibitive given the number
of experiments we performed, and 2) hyper parameter search at each fold
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may yield less clinically relevant results since this cannot be replicated in
an applied clinical setting, which would require a pre-determined set of
hyperparameters. As the dataset is relatively small, we observed some
low level of overfitting or bias, depending on the specific data split
employed. High performance metric variance is most prevalent in the
sensitivity and specificity box plots since they are calculated only using
either the true positives or true negatives, i.e. half the test set. Accord-
ingly, some studies (Moradi et al., 2015; Hojjati et al., 2017; Tong et al.,
2017) repeat their cross-validation loops many times (such as 100 or
1000 times) in order to further reduce their performance variance, which
was not computationally feasible for our deep learning framework.

8. Discussion

Deep-learning algorithms extract a hierarchy of features from the
input data via flexible and non-linear transformations. These new data
representations are learnt in a manner that maximizes an arbitrary per-
formance metric, for example binary cross-entropy. Hence, instead of
relying on a priori knowledge or dimensionality reduction algorithms
which might result in non-optimal feature selection, deep-learning uses
the gradient in the performance metric to directly guide feature extrac-
tion, which can significantly improve classification results. In addition,
given that the feature representations are built in a multi-layered fashion
(where higher level features are derived from lower level ones), complex
and information-rich data as MRI images can be dealt with and incor-
porated easily into the classification process.

In this paper, we have developed a newmethod with the primary goal
to early identify the MCI patients with high risk of converting to Alz-
heimer's disease (AD) within 3 years, and the subsidiary aim to discrimi-
nate patients with AD from healthy controls. Our approach uses a
parameter-efficient deep convolutional neural network framework,
inspired by grouped and separable convolutions, to extract descriptive
factors from structural MRI images acquired at the baseline clinical visit.
Our work differs from previous ones because it takes into consideration
potential data paucity in medical records which necessitates the use of
design precautions that reduce the number of network parameters. This in
turn increases the generalization capability of our model to unseen test
samples (i.e. it reduces overfitting), and achieves state-of-the-art classifi-
cation performance when predicting MCI-to-AD conversion. The struc-
turalMRI imageswere complementedby standard cognitive tests (CDRSB,
ADAS, RAVLT), demographic information (age, gender, ethnicity, and
education) and APOe4 genetic status data collected at the baseline visit to
compute a combined score that is used to predict conversion fromMCI to
AD within 3 years since the baseline visit. We specifically selected these
MRI and clinical measures to create a classification approach that uses the
least invasive, least expensive and more commonly available diagnostic
tools in the clinical practice. In otherwords, theMRI and clinicalmeasures
that we included here can be typically collected in non-tertiary or highly
specialized medical centers, which maximizes the potential applicability
of our methods in the clinical practice. For example, we did not include
PET and CSF biomarkers as input measures as these measures are expen-
sive, less diffuse, and potentially more invasive diagnostic tools than the
MRI and clinical indices employed here.

We also exploited the AD and HC data to limit the effects of data
overfitting. This was achieved by multi-task learning in which the same
network layers are simultaneously used to extract representations from
the input biomarkers for both theMCI-to-AD conversion task and the AD/
HC classification problem. While previous methods employ pre-training
(Payan and Montana, 2015; Hosseini-Asl et al., 2016; Liu et al., 2018)
to reap similar benefits, this requires training the model twice, whereas
dual-learning is a single-stage procedure which facilitate training.
Furthermore, we assessed the performance of our methods using various
input combinations of structural MRI, the local Jacobian Determinant of
the deformational field computed during MRI co-registration, as well as
the clinical data. The best results were a mean AUC of 0.925 averaged
across 10 different testing folds with a mean MCI-to-AD conversion
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prediction accuracy of 86%, sensitivity of 87.5% and specificity of 85%
(see Table 2). In addition, the use of a custom template or MNI152
template does not impact the classification results (see Table 2) which
demonstrates the robustness of our network to possible structural
misalignment in the MNI space. By performing masking experiments
which occluded areas not typically associated with Alzheimer's Disease
(refer to Fig. 10 in Supplementary Material) we also demonstrate that our
framework is not negatively affected by potential inclusion of irrelevant
features. This supports the idea that deep learning methods are able to
identify/weight the most relevant features without being ‘con-
founded/thrown off’ by potentially misleading information from the
input MRI images.

Our algorithm is also innovative in: 1) the use of parameter-efficient
layers, such as grouped and separable convolutions (implemented as
custom Keras layers for 3D inputs), which reduces the number of network
parameters, hence overfitting; 2) the substitution of previously used
network pre-training (Payan and Montana, 2015; Hosseini-Asl et al.,
2016), with multi-task learning that utilizes AD/HC data to converge at a
single-stage training approach, and 3) the utilization of the Jacobian
Determinant as a complementary imaging input stream to maximize the
extracted information from the structural MRI.

Intuitively, neural network-based methods should perform better
than conventional approaches for feature extraction followed by a
separate classifier, as the feature selection process is directly driven by
the performance optimization procedures. However, this comes at the
cost of a relatively high number of network parameters compared to the
number of samples. As there are no formal estimates of the number of
training samples required for any given convolutional architecture to
achieve good generalization performances, we are driven by the meta-
heuristic necessity of minimizing the number of network weights and
maximizing the effective number of training examples to improve
generalization on an independent test set and consequently enable
applicability to clinical settings. Hence, our 3D model comprises 557,000
parameters, which is orders of magnitude lower than conventional 3D
CNNs and even lower than recent 2D CNNs, such as AlexNet (Krizhevsky
et al., 2012) and Xception (Chollet, 2017). This was achieved without
sacrificing network depth or structural complexity but rather it was ob-
tained via inserting efficient convolutional layers. To facilitate the
learning procedures and increase the training samples, we hypothesized
that using an auxiliary task and minimizing the joint training objective of
the MCI-to-AD conversion and AD/HC classification tasks would have
been an effective alternative to pre-training. In other words, AD/NC
discrimination in our algorithm is seen as a simpler and easier to achieve
classification task than MCI to AD conversion prediction. In addition, to
speed up training convergence and limit data overfitting, we worked
under the assumption that similar descriptive factors would have been
useful for both classification problems. All in all, given the comparable
performance of the network during training and validation (Fig. 7), we
are highly confident that our deep learning framework does not suffer
from significant overfitting (or underfitting) issues. We also assessed the
performance of our framework by randomly permuting the training la-
bels, which resulted in an AUC of 0.48 (Fig. 5). This further corroborates
the idea that the network does not suffer from overfitting problems.

In the context of computer vision research, deep-learning methodol-
ogies can also be implemented to develop clinically useful diagnostic tools
which use non-co-registered, or even non-pre-processed images, with the
caveat that this approach might lead to image artefacts that reduced the
discriminatory performance of the algorithm. In the context of our study,
this could mean learning to relate clinically irrelevant confounds with
disease outcomes.Aswith allmulticentric studies, careful andunifieddata
collection and processing is crucial to minimize this confound.

Our classification performances were higher than that reported in
previous studies except for the work by Hojjati et al. (2017) who out-
performed our current results via using rs-fMRI data. At the time of
writing, ADNI had made publicly available only a limited set of rs-fMRI
data (18 pMCI and 62 sMCI subjects) which made it difficult to predict
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how their analytical framework would have scaled to larger populations.
Furthermore, the study by Hojjati et al. (2017) does not explicitly
mention the use of a separate test set which limits the generalizability of
their findings (results are reported on a validation set instead of a dedi-
cated test set).

To our knowledge, the study by Liu et al., (2017) presented compa-
rable performance (at least in some metrics) to our model, with 84.6%
classification accuracy vs 86% for our work. Liu et al., (2017), however,
also included FDG-PET alongside the structural MRI and other bio-
markers that we have employed here which might have improved their
classification performance. Moradi et al., (2015) and Tong et al., (2017)
both employed very similar methodology to each other and a dataset
(structural MRI and cognitive tests) similar to the one we used here. Their
sensitivity metrics are comparable to our model (~87%–88% sensi-
tivity), however they achieve lower specificity (74%–76% vs. 85%–94%
specificity for our model). A possible explanation is the inclusion of
APOe4 and demographic data in our framework as well as the efficacy of
the neural network. Also, as is discussed in Moradi et al., (2015) the
diagnostic certainty (and hence labelling) and number of ADNI subjects
varies across studies, thus hampering direct comparisons. We also eval-
uated the classification performance of our deep learning framework
either solely on structural MRI inputs or clinical features. In our model,
the use of structural MRI data alone resulted in an averaged AUC of 0.79
(see table 2 or Fig. 9 in SupplementaryMaterial), which is higher than the
AUC reported in a recent study employing similar types of datasets
(Beheshti et al., 2017). On the other hand, when the clinical features
alone were used as an input into the deep-learning model, we obtained an
averaged AUC of 0.88 and an accuracy of 81%. Employing both structural
MRI images and clinical features simultaneously increases the average
AUC to 0.925 and accuracy to 86%.

In summary, we have developed a deep learning-basedmethod for the
prediction of MCI-to-AD conversion within 3 years, by combining base-
line (i.e., obtained during the first visit) structural MRI, demographic,
neuropsychological, and APOe4 genetic data from the ADNI database.
We achieved a very high predictive performance with an average AUC of
0.925, prediction accuracy of 86%, sensitivity of 87.5% and specificity of
85%. We recommend the use of a more efficient neural network archi-
tecture (i.e., using the deep-learning framework) which typically uses
fewer parameters than previous methods and therefore limits the prob-
lem of data overfitting. Our convolutional model is a generic framework
that is applicable to any 3D image dataset and can be flexibly imple-
mented to design computer-aided diagnostic systems to potentially tackle
prediction and classification problems in any medical condition via
multi-modal imaging measures and tabular clinical data.
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