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Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analy- 

ses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas 

segmentation framework has consistently obtained results with superior accuracy in various evaluations. We 

compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against 

segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parame- 

ters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a con- 

sensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our 

evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer 

segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older 

age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of 

aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated 

inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We 

also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly 

in the deep structures. 
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. Introduction 

Segmentation of brain anatomy has been a key image processing

tep in neuroimaging studies, as it enables assessment of regional brain

olumes in a range of neurological diseases and conditions for image-

ased diagnosis, monitoring of disease progression, and tracking of

euro-developmental and aging-related brain changes ( Giorgio 2013 ;

anowitz et al., 2014 ; Raz et al., 2010 ; Wierenga et al., 2014 ). Vol-

metric analyses of cortical structures provided markers of neuro-

egeneration in various disorders including multiple sclerosis (MS),
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chizophrenia (SCZ) and Alzheimer’s disease (AD), as well as in normal

ging ( Bonilha et al., 2008 ; Brewer et al., 2009 ; Bakkour et al., 2013 ;

haril et al., 2007 ; Dicks et al., 2019 ). Previous studies also reported sig-

ificant associations between volumes of sub-cortical deep brain struc-

ures, including the thalamus, caudate, putamen and amygdala, and

europsychiatric and neuro-degenerative conditions such as AD and

CZ, suggesting that both cortical and subcortical structures are vari-

bly related to different neurodegenerative conditions ( Ferreira et al.,

017 ; Janowitz et al., 2014 ; Apostolova et al., 2006 ; Goldstein et al.,

999 ; Satterthwaite et al., 2016 ). 
ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 
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Table 1 

General Characteristics of datasets that were used in validation experiments. 

CN MCI AD Total 

Dataset1: EADC-ADNI 

Count 

Age 

Sex(M/F) 

44 

76.18 ± 7.45 

22/22 

45 

74.44 ± 8.00 

26/19 

45 

74.45 ± 8.10 

21/24 

134 

75 ± 7.84 

69/65 

Dataset2: ADNI 1.5T, ADNI 3T ∗ 

Count 

Age 

Sex(M/F) 

37 

75.72 ± 4.20 

15/22 

53 

76.02 ± 7.90 

35/18 

23 

75.03 ± 8.36 

08/15 

113 

75.72 ± 6.97 

58/55 

∗ For each subject Dataset2 includes a pair of 1.5T and 3T scans acquired on same day. 
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4 http://www.hippocampal-protocol.net/SOPs/index.php . 
Multiple algorithms and methods have been developed for segment-

ng anatomical regions of interest (ROIs) in a fully automated way. One

f the most widely used automated segmentation methods is the pub-

icly available FreeSurfer software package ( Fischl et al., 2002 ; 2004 ).

reesurfer combines a surface-based stream for cortical segmentation

ith a volume-based stream for segmentation of subcortical structures.

he surface-based stream first calculates an initial surface that delin-

ates the white matter, and then refines this surface to calculate the

ial surface. The volume-based stream uses a subject-independent prob-

bilistic atlas, which is automatically derived from a training set con-

isting of multiple hand-labeled atlas images. After a high dimensional

onlinear volumetric alignment of the target image to a common atlas

pace, ROI labels are automatically assigned to each voxel by finding

 segmentation that maximizes the probability of the input data given

he prior probabilities from the training set. At present, an important

ody of literature and neuropsychiatry findings are based on Freesurfer

egmentations ( Kikinis et al., 2010 ; Rohrer2011 ; Messina et al., 2011 ;

abuncu et al., 2011 ). Freesurfer has been widely tested for its accuracy,

recision and repeatability. However, various evaluations have also re-

ealed limitations of that approach ( Mccarthy 2015 ; Keller et al., 2012 ;

ulder et al., 2014 ), which might be critical in aging and multi-site

tudies. 

Instead of relying on a single atlas, the multi-atlas segmentation

MAS) framework utilizes multiple reference atlas images that are in-

ependently warped to the target image space, and their reference la-

els are fused together to derive a consensus segmentation. This process

as important advantages, the most notably the robustness against in-

ividual registration errors by the virtue of the ensemble label fusion

rocess. The MUSE algorithm ( Doshi et al., 2016 ) extended the ensem-

le approach to multiple deformable registration algorithms applied at

ifferent regularizations, allowing a higher variation within the ensem-

le. Additionally, in the label fusion step, MUSE uses a spatially adaptive

trategy to select atlases based on their local similarity to the target im-

ge. Effectively, atlases most similar to a target image being segmented

ave more influence on its segmentation. Even more importantly, this

rocess is spatially-adaptive, i.e. atlases most suitable for someone’s

ippocampus segmentation might not necessarily be best for thalamus

egmentation. MUSE was the top-ranking method in the MICCAI-SATA

hallenge on deep brain segmentation ( Asman et al., 2013 ), and has

een used in several studies ( Habes et al., 2016 ; Satterthwaite et al.,

016 ; Wee 2017 ; Tian et al., 2018 ). 

Our primary motivation herein was to evaluate brain anatomy seg-

entations obtained using these two automated methods in multi-site

rain aging studies. Importantly, our comparative evaluations included

oth versions v6.0 and v5.3 of Freesurfer, thus also providing a compar-

son between newer and older Freesurfer versions. This comparison may

e informative for guiding processing pipeline updates in longitudinal

tudies that previously used older versions of Freesurfer for segmen-

ation. Accurately measuring subtle brain aging changes, and particu-

arly hippocampal volume change, is important for early identification

f pathologic processes. Moreover, being able to perform multi-site stud-

es has become critical, as large consortia of meta- and mega-analyses

re being formed in order to achieve a sufficiently large sample size,
n view of the heterogeneity and complexity of brain aging. Toward

his goal, we utilized expert-based manual hippocampus segmentations

rovided by the EADC-ADNI Harmonized Protocol project for manual

ippocampal segmentation (HarP) ( Frisoni et al., 2015 ), and same-day

can/re-scan images from 1.5T and 3T MRI scans in ADNI. 

. Materials and methods 

.1. MR imaging data 

We used two publicly available datasets for quantitative evalua-

ions ( Table 1 ). The first dataset (Dataset1) was provided by the EADC-

DNI Harmonized Protocol project for manual hippocampal segmen-

ation (HarP) ( Frisoni et al., 2015 ). The main aim of the HarP project

as to harmonize existing protocols for manual segmentation of hip-

ocampus in order to derive standardized ground truth labels that will

e used as benchmark. The HarP dataset included T1-weighted scans

f 135 ADNI subjects (Mean Age: 75.014, Slice Thickness: 1.2 mm,with

4 Controls, 45 MCI, 45 AD) and left and right hippocampal labels for

hese scans delineated by expert raters. 4 Due to mismatch related to im-

ge format conversion for one subject scan, our final sample included a

otal of 134 subjects. 

Our Second dataset (Dataset2) consisted of T1-weighted scans of 113

DNI-1 subjects who underwent 1.5T and 3T T1-weighted MR Imaging

t the same day or within similar dates (12 scans within 1 month; 4

cans within 2 months; 1 scan within 3 months). All subjects belonged

o the patient group with mean age of 75.7. High resolution struc-

ural scans were acquired using 1.5T (TR = 2400 ms,Flip Angle = 8°,

ith acquisition matrix of 256 × 256 × 166, yielding voxel size of

.9 × 0.9 × 1.2 mm) and 3T (TR = 2300 ms, Flip Angle = 8°, with acqui-

ition matrix of 256 × 256 × 170, yielding voxel size of 1.0 × 1.0 × 1.2)

R scanners from different vendors (GE, Philips and Siemens). 

.2. ROI segmentation methods 

.2.1. Freesurfer volumetric segmentation 

FreeSurfer is a software package to analyze and visualize structural

euroimaging data ( Fischl et al., 2002 , 2004 ). A widely used function-

lity of Freesurfer is to perform cortical and subcortical segmentation.

reesurfer segmentation consists of surface and volume-based streams

ith multiple processing steps. After transformation to Tailarach space,

he target image is corrected for intensity inhomogeneities (bias field)

nd non-brain tissues are removed automatically. A high dimensional

onlinear volumetric alignment to the atlas space is performed for trans-

erring atlas label information to the target image. The alignment in-

ludes surface deformation to optimally place gray matter (GM) / white

atter (WM) and GM / cerebro-spinal fluid (CSF) boundaries, and sur-

ace inflation and registration to spherical atlas to parcellate cerebral

ortex into units based on gyral and sulcal structure. The final segmen-

ation is based on both a subject-independent probabilistic atlas, which

http://www.hippocampal-protocol.net/SOPs/index.php
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as built from a training set with manual labels, and subject-specific

easured values. The final label assignment at each image voxel is

chieved by finding the segmentation that maximizes the probability of

nput signal given the prior probabilities from the training set. Freesurfer

egments the brain into 34 cortical ROIs per hemisphere, which were

efined based on a parcellation scheme on an inflated representation of

ortex ( Desikan et al., 2006 ). 

We applied Freesurfer v5.3 and v6.0 (released in April 2017) seg-

entation using the default parameters ( recon-all -i T1image -s sub -sd

UBJECTS\_DIR -all ) for 1.5T scans. For 3T scans, we run Freesurfer

ith the “− 3T ”’ flag ( recon-all -i T1image -s sub -sd SUBJECTS\_DIR − 3T

all ). Freesurfer volume estimates were calculated using Desikan Killiany

tlas for all subjects using the command asegstats2table . 

.2.2. MUSE segmentation 

The MUSE algorithm follows the multi-atlas image registration and

abel fusion framework. In this framework, multiple atlases with man-

ally or semi-automatically drawn reference labels are independently

egistered to the target scan using deformable registration. Candidate

abels from multiple registrations are fused together to calculate a con-

ensus segmentation. Image preprocessing in MUSE included inhomo-

eneity correction with N4 ( Tustison et al., 2010 ) and multi-atlas skull-

tripping ( Doshi et al., 2016 ). After skull-stripping, 11 atlas images are

arped to the target image using 2 different deformable registration al-

orithms DRAMMS ( Ou et al., 2011 ) and ANTS ( Avants et al., 2014 ),

nd using two different regularization parameter values for these al-

orithms, resulting in a high variation within the ensemble, which is

esirable to be able to better capture the inter-individual variability in

arget anatomy. The label fusion includes a local similarity term to select

ocally optimal atlases and an intensity term to refine the segmentation

onsistently with the target image’s intensity profile. MUSE reference

tlases included 153 anatomical ROIs. We run MUSE using the default

arameters. 

.3. Quality control of segmentations 

Freesurfer and MUSE segmentations were subjected to a quality con-

rol (QC) procedure that aimed to detect and exclude cases with gross

rrors in the segmentations, which typically happen due to major fail-

res of atlas to target image registrations. We should note that this

s different from extensive QC on individual ROIs performed in stud-

es with relatively modest sample sizes. In this analysis, we mainly fo-

used on establishing an automated and reproducible processing proce-

ure, in view of large scale datasets. Accordingly, cases were flagged

or exclusion only if overall segmented ROI did not overlap with the

ctual brain boundaries. The QC procedure involved automatic ranking

f scans based on a quality score derived from ROI volumes, followed

y visual inspections of the segmentations guided by the ranking score.

 quality score is automatically calculated for each segmentation mask

y comparing ROI volumes extracted from this mask against the distri-

utions obtained from the entire sample. Specifically, we used PCA to

educe data dimensionality by projecting ROI values to a lower dimen-

ional space that optimally explains the variance of the data, and we

alculated the Mahalanobis distance of each sample to the sample mean

n the PCA space. We used an in-house visualization tool for visual in-

pections, which displayed boundaries of segmented ROIs on a subset

f image slices in axial, sagittal and coronal views. A binary QC flag,

.e. accept or exclude, was assigned to each segmentation, based on the

onsensus of two independent raters. 

.4. Determination of common ROI labels 

As the reference label definitions are different for Freesurfer and

USE, a direct comparison of ROIs is not possible. Particularly, the cor-

ical ROIs are substantially different both in terms of naming of anatom-

cal regions and in the details of the delineation of their boundaries.
herefore, a direct comparison of the exact volumes produced by these

wo methods could not be applied, hence we focused on analyzing age

rends and inter-scanner consistency. In order to facilitate this process,

e applied a semi-automated process to identify approximate correspon-

ences between the two atlas ROI definitions. We computed MUSE and

reesurfer segmentations of a single reference scan and calculated the

ercent overlap between each pair of ROIs from the two methods. MUSE

nd Freesurfer ROIs were matched to each other using a greedy match-

ng algorithm guided by the maximum percent overlap between ROI

airs. The matching algorithm allowed grouping of multiple ROIs in one

et to find the optimal coverage of a single ROI in the other set. Matched

OIs have been inspected by two manual raters (DS and MH) based on

he ROI names and spatial correspondences between them. Revisions

ave been done after mutual agreement of the two raters. The final set

f ROIs included 7 deep structure regions and 31 cortical regions. A

isualization of the matched ROIs between MUSE and Freesurfer is pre-

ented in Fig. 1 . A complete list of the matching between MUSE and

reesurfer ROIs is given in suppl. Fig. 1. 

We also computed a set of composite ROIs in order to perform com-

arative analyses at a coarser level. Composite ROIs included 6 lobe

evel regions, the “cortex ” ROI that is the combination of all cortical

M ROIs, and the “sub-cortex ” ROI that combines all sub-cortical GM

OIs. 

.5. Statistical analyses 

In Dataset1, for which manual hippocampus labels were available,

he agreement between Freesurfer and MUSE against manual labels was

easured by comparing the volumes of segmented hippocampus ROIs.

ote that as the delineations of the hippocampus region were different

n the reference atlases for each method and in manual segmentations,

 direct calculation of the overlap between segmentations, e.g. by calcu-

ating the Dice score between them, was not suitable for comparisons. 

We used Pearson pairwise correlation ( r ) and Lin’s Concordance

orrelation Coefficient ( CCC ) to measure the reproducibility between

anually segmented hippocampal labels and labels automatically seg-

ented using MUSE and Freesurfer. Pearson correlation is a measure of

inear associations of ROI volumes obtained using different segmenta-

ion methods. Concordance correlation coefficient measures the agree-

ent between ROI volumes from two segmentation methods and penal-

zes differential mean shifts between them. The concordance correlation

oefficient is defined as: 

 𝑐 = 

2 𝜌𝜎𝑥 𝜎𝑦 

𝜎2 
𝑥 
+ 𝜎2 

𝑦 
+ 

(
𝜇𝑥 − 𝜇𝑦 

)2 

here 𝜇x and 𝜇y are the means and 𝜎x and 𝜎y are the variances of the

wo variables, and 𝜌 is the correlation coefficient between them. 

We computed Bland-Altman plots between gold standard (Manual)

OI volumes and the ROI volumes calculated using the three automatic

egmentations. A Bland-Altman plot is a graphical method that is ex-

ensively used for comparing the agreements of two measurements of

he same variable and for detecting the presence of systematic bias and

mount of variation between the two. 

We tested the significance of age bias of volume differences between

utomated and ground-truth segmentations using a linear regression

odel for each method separately. We fitted a linear model (estimated

sing OLS) in R4.0.0 to predict the delta (difference in volume) between

round truth segmentations and those obtained by each of the three

ethods, Freesurfer v6.0, Freesurfer v5.3 and MUSE, with Age as the

redictor variable. The regression model was: 

𝑉 𝑘 ( 𝑖 ) = 𝐶 0 + 𝛽1 ∗ Ag e 𝑖 

here k is the segmentation method for which the volume difference

rom manual segmentation is calculated and Age i represent i th subject’s

ge. P -values were corrected using FDR correction for multiple com-

arisons of same subject across different methods. In order to assess
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Fig. 1. ROI atlas denoting common GM ROIs in MUSE and Freesurfer. 

Table 2 

Left, Right & Total hippocampus volumes computed using manual ground-truth, Freesurfer and MUSE segmentations. 

Method Hippo. R Hippo. L Hippo. Total 

Manual 

Freesurfer-v5.3 

Freesurfer-v6.0 

MUSE 

2769.165 ± 590.64 

3158.656 ± 729.29 

3288.765 ± 637.11 

3362.186 ± 606.61 

2664.277 ± 593.87 

3071.671 ± 704.73 

3177.69 ± 595.06 

3085.091 ± 585.19 

5433.442 ± 1154.88 

6230.328 ± 1378.62 

6466.45 ± 1197.69 

6447.28 ± 1162.57 

Manual – Freesurfer-v5.3(% vol diff) 

Manual – Freesurfer-v6.0(% vol diff) 

Manual – MUSE(% vol diff) 

14.06 

18.76 

21.41 

15.29 

19.27 

15.79 

14.66 

19.01 

18.65 
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he significance of the correlation between volume difference and age

or different diagnosis groups, we stratified subjects based on diagnosis

CN, MCI and AD) and ran separate linear regression models for each

ethod and each diagnosis group (9 different models in total). 

We used the Dataset2 for evaluating the robustness of each segmen-

ation method to scanner variations between 1.5T and 3T scanners. For

ach method, we calculated Pearson pair-wise correlations ( r ) and con-

ordance correlation coefficients between individual ROI volumes cal-

ulated from each pair of matching 1.5T and 3T scans. This analysis was

erformed for cortical and subcortical structures individually, as well as

or each composite ROI. 

To determine the significance of the differences between methods we

sed the Wilcoxon signed rank test between the ROI correlation values

cross scanners obtained by the two methods. We applied two indepen-

ent tests, one by grouping together correlation values of all cortical

OIs, and the second by grouping correlation values of all subcortical

OIs. A non-parametric test was used to avoid any normality assump-

ions and the p -values were corrected for multiple comparisons. 

. Experimental results 

All 132 subjects in Dataset1 were segmented using fully automated

reesurfer and MUSE pipelines. Average run time per scan for MUSE

as approximately 50.4 min for individual registrations (running them

n parallel) and 61.17 min for subsequent label fusion. The actual com-

utation time depends on the number of atlases chosen for MUSE. Run

ime per scan for Freesurfer was approximately 9.22 h for the entire

ipeline using a single thread. 

In our visual inspection of segmentation results from Dataset1

nd Dataset2, all MUSE segmentations passed the visual QC. For the

reesurfer segmentations, 2 cases from Dataset1 were flagged for exclu-
ion due to gross errors (suppl. Fig. 2). The final sample included 132

ubjects for Dataset1 and 113 subjects for Dataset2 after exclusion of

he flagged cases. 

.1. Analysis of hippocampal volume differences 

Mean volumes of right and left hippocampi calculated from auto-

atic and manual segmentations are given in Table 2 . 

Fig. 2 shows the age trends of hippocampus volumes for man-

al and automatic segmentations. We found that MUSE and manual

egmentations had a similar slope (s_ MUSE = − 34.04, s_ Manual = − 31.29),

hile Freesurfer segmentation had a significantly higher slope with age

s_ Freesurfer-v5.3 = − 52.57,s_ Freesurfer-v6.0 = − 44.44). Note that differences in

ntercepts between methods are expected and they are due to differences

n ROI definitions. Age trends of hippocampal volumes for CN, MCI and

D subjects are shown in Fig. 3 . 

We verified possible bias in volume estimations using Bland Altman

lots. Fig. 4 shows trends of volume differences of Freesurfer and MUSE

egmentations from manual segmentations, plotted against mean hip-

ocampus volumes. 

The estimated regression line indicates a negative trend for

reesurfer, suggesting that larger hippocampus volumes lead to a larger

ifference in volume estimation in comparison to manual segmenta-

ions. For MUSE, regression line shows a constant difference trend for

ncreasing hippocampus volumes. Bland Altman plots of volume differ-

nces against age are shown in Fig. 5 . Similarly, both Freesurfer versions

6.0 and v5.3 has a negative slope, indicating a bias towards underseg-

entation of hippocampus for older people, and hence introduction of

purious age trends. The age bias in Freesurfer segmentations was also

resent when the subjects were grouped by disease category (CN, MCI,

D) (suppl. Fig. 3). 
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Fig. 2. Hippocampal volumes calculated from MUSE 

(Green), Freesurfer-v6.0(Blue), Freesurfer-v5.3(Purple) and 

manual(Pink) segmentations, plotted against age at scan 

time. 

Fig. 3. Hippocampal volumes calculated from MUSE, and manual segmentation, plotted against age at scan time and grouped by disease category. Normal, MCI and 

AD subjects are shown with Pink, Green and Blue colors, respectively. 
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Fig. 4. Bland-Altman plots showing comparisons between hippocampal volumes calculated from Freesurfer-v6.0 and manual segmentations (left), Freesurfer-v5.3 

and manual segmentations(middle) and MUSE and manual segmentations (right), against hippocampus volume. The black solid line represents the mean difference 

and dotted lines show upper and lower limits defined as 1.96 standard deviation from mean. X-axis and Y-axis denotes the mean values ((M1 + M2)/2) and difference 

(M1-M2) respectively. Regression lines have been fit to the data points for each automatic method to visualize potential bias. 

Fig. 5. Scatter plot of differences showing hippocampal volumes calculated from Freesurfer-v6.0 and manual segmentations (left), Freesurfer-v5.3 and manual 

segmentations (middle), and MUSE and manual segmentations (right), against subject’s age at scan time. 

Table 3 

Age correlations of volume differences between automated and ground-truth segmentations. 

ΔMUSE ΔFS_v5.3 ΔFS_v6.0 

Predictors Estimates p pcorr Estimates p pcorr Estimates p pcorr 

(Intercept) 1218.99 < 0.001 ∗ ∗ ∗ 2388.45 < 0.001 ∗ ∗ ∗ 2016.43 < 0.001 ∗ ∗ ∗ 

Age − 2.74 0.53265 0.53265 − 21.28 0.00105 ∗ ∗ 0.00315 ∗ ∗ − 13.15 0.00324 ∗ ∗ 0.00487 ∗ ∗ 

Observations 132 132 132 
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Linear regression models showed that the observed age bias was

ignificant in both Freesurfer-v5.3 and Freesurfer-v6.0 ( Table 3 ). The

olume difference of Freesurfer-v5.3 from the ground-truth segmenta-

ion had a higher negative slope with higher age, with a difference of

1.28 mm 

3 per year of Age, 95% CI, p < 0.05, FDR corrected. 

Results of regression models assessing the age bias for different seg-

entations across each diagnosis group are given in supplementary Ta-

le S1. We found that the age bias was predominantly driven by for the

CI subjects, both for Freesurfer-v5.3 and v6.0. 

.2. Reproducibility analysis across field strengths 

We compared volumes of matched ROIs for 1.5T and 3T same day

can pairs segmented using the automated methods. This comparison

ncluded all individual and composite ROIs. We calculated the Pearson

nd Concordance correlations between 1.5T and 3T volumes for each

OI. Concordance correlation values for all individual ROIs are shown

n Fig. 6 . 

Freesurfer-v6.0 obtained higher correlations for all ROIs compared to

reesurfer-v5.3, suggesting that the major version update in Freesurfer
esulted in considerable differences in the final segmentation, improv-

ng the overall accuracy. MUSE obtained consistently higher correlation

ompared to Freesurfer-v5.3, while in cortical ROIs Freesurfer-v6.0 and

USE showed comparable performance. Importantly, the differences

etween Freesurfer and MUSE were higher in the segmentation of the

eep structures, MUSE obtaining higher correlations in all deep struc-

ures except hippocampus. Scatter plots for the volumes of selected deep

tructures for each method against ground truth segmentation volumes

re given in Fig. 7 . The distribution of correlation coefficients from all

OIs for each method is presented in Fig. 8 . 

The results for composite ROIs were similar, with higher correla-

ions for MUSE in subcortical regions, while in cortical regions MUSE

nd Freesurfer-v6.0 had comparable reproducibility at lobe level ROIs

suppl. Fig. 4). The Wilcoxon-tests comparing Freesurfer and MUSE seg-

entations indicated that correlations of ROI volumes across scanners

ere significantly different between MUSE and both Freesurfer versions

or sub-cortical ROIs. For the deep structures, the differences were sig-

ificant between MUSE and Freesurfer-v5.3, but not for Freesurfer-v6.0

 Table 4 ). 
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Fig. 6. Concordance correlation between ROI volumes of 1.5T and 3T ADNI scan pairs obtained using Freesurfer-v6.0, Freesurfer-v5.3 and MUSE segmentations. 

The ROIs are grouped as cortical and subcortical, and sorted by MUSE correlation values in decreasing order, separately for each group, to better highlight the 

differences. 

Table 4 

Mean correlation, concordance correlation and Wilcox p -values for segmentation of matching 1.5T and 3T ADNI scan pairs 

by each Freesurfer version and MUSE. 

Cortical Sub-cortical 

Freesurfer-v5.3 Freesurfer-v6.0 MUSE Freesurfer-v5.3 Freesurfer-v6.0 MUSE 

Mean Correlation 0.8867 0.8982 0.9045 0.83992 0.88656 0.97425 

Mean Concordance Correlation 0.83678 0.85236 0.87805 0.78113 0.85295 0.96042 

Wilcox signed rank p -val 0.0029 0.5052 0.03125 0.01796 

Wilcox signed rank (FDR corr) 0.0058 0.5167 0.03125 0.03125 
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. Discussion 

Freesurfer is one of the most widely used tools in neuroimaging re-

earch for segmenting brain anatomy. Although Freesurfer is extensively

alidated and it has been used in a large number of studies, various stud-

es have also reported high rates of failures resulting in exclusion of large

umber of scans, inconsistencies in segmentations and age related bias

 Wenger et al., 2014 ; Cherbuin et al., 2009 ). 

In recent years, methods that use the multi atlas label fusion

ramework have obtained state-of-the-art accuracy, showing that con-

ensus segmentation using multiple atlases may significantly improve

he segmentation accuracy, while making it also more robust to spo-

adic registration errors/imperfections ( Iglesias and Sabuncu, 2015;

arfield, 2017 ). 

Herein we evaluated MUSE by comparing it to Freesurfer, which is

he current standard for brain anatomy segmentation. While the accu-

acy, reliability and reproducibility of Freesurfer has been well tested

cross various studies and segmentation tools, it has not been compared

ith current multi-atlas methods. 

Importantly, Freesurfer had a major revision update in 2017 (v6.0).

ver 1600 neuroimaging publications used Freesurfer for quantifica-

ion of brain volumes (as listed in pubmed.gov). Most of these pub-

ications used previous versions dating before the Freesurfer-v6.0 re-

ease. Considering that previous stable version of Freesurfer (v5.3) has
een used by a large number of studies in the past, we performed com-

arisons using both versions of Freesurfer. Our hypothesis was that

USE would overcome some of Freesurfer’s limitations. We specifically

ocused on two tasks, which are important in multi-site aging stud-

es: bias of segmentation with age, and reproducibility across differ-

nt field strengths. The latter was a test of inter-scanner reproducibil-

ty, an issue that is of rapidly rising significance with the emergence

f large-scale meta/mega-analyses that pool data from multiple studies

 Thompson et al., 2014 ; Davatzikos, 2018 ). 

Automatic segmentation methods typically use a reference atlas with

anually defined ROI labels and apply image registration for transfer-

ing these labels to target image space. Freesurfer is based on the reg-

stration of a single probabilistic atlas, and label assignment based on

oth aligned atlas probabilities and target image intensities. In contrast,

ulti-atlas techniques take advantage of the consensus labeling of mul-

iple atlases. The advantage of the multi atlas approach is twofold: a)

ultiple atlases allow capturing a broader anatomical variation, e.g. by

ncluding atlases from subjects with different sex and age, thereby al-

owing the label fusion algorithm to select subject-appropriate atlases

n a regional basis; and b) even when the image registration fails for

ne or more atlas images, the voting between multiple atlases presum-

bly helps obtain a correct segmentation, unless there is a systematic

egistration error that affects a majority of the atlases. Specifically, in

USE, two different registration algorithms were used to increase the
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Fig. 7. Scatter plots of ROI volumes for segmentations of 1.5T and 3T ADNI scan pairs. The plots show the volumes of 3 deep structures, thalamus, putamen and 

hippocampus, calculated using Freesurfer-v6.0(left), Freesurfer-v5.3(middle) and MUSE (right). 

Fig. 8. Histogram showing the distribution of Concor- 

dance Correlation between 1.5T and 3T ADNI scan 

pairs calculated using Freesurfer-v6.0(blue), Freesurfer- 

v5.3 (purple) and MUSE (green). 
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ariations within the ensemble, and a local similarity ranking strategy

as used to give more weights to atlases locally more similar to the

arget scan in the fusion. 

We found that hippocampus segmentations by both Freesurfer-v6.0

nd Freesurfer-v5.3 showed a bias towards over-segmentation of larger

ippocampi, and under-segmentation of hippocampi in smaller or older

ndividuals, although this age bias was reduced with the newer version.

n the other hand, MUSE segmentations were more consistent with

round-truth segmentations, without bias with subject age or hippocam-

us volume. This is an important finding, when evaluating age effects on

rain volumes. Our results suggest that Freesurfer introduces spurious

ge effects, which can obviously lead to false biological interpretations.

ne reason could be that Freesurfer does not use the population-based

pecific template. 

In our reproducibility analyses, we found that MUSE obtained con-

istently higher correlations between ROI volumes calculated across the

wo scanners in comparison to Freesurfer 5.3. Importantly, we also

ound that Freesurfer 6.0 segmentations showed consistent improve-

ent in all ROIs compared to Freesurfer-v5.3. While Freesurfer 6.0 was

omparable to MUSE for cortical ROIs, in deep structures MUSE ob-

ained very consistent segmentations across subjects with higher corre-

ations compared to both Freesurfer versions. This finding is consistent

ith previously reported state-of-the-art accuracy of MAS methods in

egmentation of deep structures, and could be explained by the advan-

age of using a model based (i.e. a-priori defined ground-truth ROI la-

els) consensus labeling in these regions where the tissue contrast alone

s not informative enough to guide the segmentation. 

High number of Freesurfer exclusions based on detailed visual ver-

fication of individual ROIs was previously reported ( Mccarthy 2015 ;

andifar et al., 2017 ). Such an extensive QC was out of scope of our anal-

sis that focused on mostly automated processing in view of largescale

atasets. In our QC for detecting gross errors, MUSE outperformed

reesurfer in terms of overall failure rates. While ~1% of all segmenta-

ions (2 scans from 247 in total) were excluded due to Freesurfer failures

ased on our case by case visual QC of general segmentation quality, all

USE segmentations have obtained a positive QC result. The robustness

f MUSE was expected, as multiple atlases provide various representa-

ions of the anatomy, while the label fusion of multiple warped atlases

llows the method to correct the effect of individual registrations that

ailed, unless the failure is not systematic to a majority of the atlases. 

This work has also some limitations. A major problem for a system-

tic comparison is the limited availability of ground truth segmenta-

ions. Manual segmentation of anatomical ROIs is a difficult and time

onsuming task. For this reason, there are very few datasets that provide

anually segmented ROI labels. Also, because Freesurfer and MUSE use

heir own atlas sets with different ROI label denotations, a direct com-

arison of the two methods is not possible. MUSE uses a set of 35 scans

nd their semi-automatically segmented ROI labels as reference atlases.

e did not prefer to use these scans in our comparisons, as this would

e biased towards MUSE, even with cross-validation. Also, our exper-

ments were limited to comparisons between Freesurfer and the multi

tlas segmentation approach. In recent years deep learning methods ob-

ained state of the art accuracy in various problems in neuroimaging.

hile a comparison to more recent deep learning methods for segmen-

ation would be very informative, this is out of the scope of this paper. 

Our comparative evaluations have shown that MUSE, a multi-atlas

OI segmentation method, can help alleviate some of the limitations

f Freesurfer and related methods, by virtue of leveraging multiple

tlases, registration methods and parameters, thereby offering both

he advantages of a consensus-based methods and of regional adap-

ivity of the atlases to the target anatomy. Critically, MUSE also dis-

layed significantly higher inter-scanner consistency, thereby offering

romise that multi-site, multi-study meta/mega-analyses can be per-

ormed more accurately. Given these favorable results and increasing

vailability of parallel and cloud computing capacities, multi-atlas seg-

entation has a great potential of becoming the standard approach
or segmentation of brain images in population studies and in clinical

pplications. 
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