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ARTICLE INFO ABSTRACT

Keywords: Automatic segmentation of brain anatomy has been a key processing step in quantitative neuroimaging analy-
MRI ses. An extensive body of literature has relied on Freesurfer segmentations. Yet, in recent years, the multi-atlas

Segmentation segmentation framework has consistently obtained results with superior accuracy in various evaluations. We
;Eess;rfer compared brain anatomy segmentations from Freesurfer, which uses a single probabilistic atlas strategy, against
Brain segmentations from Multi-atlas region Segmentation utilizing Ensembles of registration algorithms and parame-
ROI ters and locally optimal atlas selection (MUSE), one of the leading ensemble-based methods that calculates a con-

sensus segmentation through fusion of anatomical labels from multiple atlases and registrations. The focus of our
evaluation was twofold. First, using manual ground-truth hippocampus segmentations, we found that Freesurfer
segmentations showed a bias towards over-segmentation of larger hippocampi, and under-segmentation in older
age. This bias was more pronounced in Freesurfer-v5.3, which has been used in multiple previous studies of
aging, while the effect was mitigated in more recent Freesurfer-v6.0, albeit still present. Second, we evaluated
inter-scanner segmentation stability using same day scan pairs from ADNI acquired on 1.5T and 3T scanners. We
also found that MUSE obtains more consistent segmentations across scanners compared to Freesurfer, particularly
in the deep structures.

1. Introduction

Segmentation of brain anatomy has been a key image processing
step in neuroimaging studies, as it enables assessment of regional brain
volumes in a range of neurological diseases and conditions for image-
based diagnosis, monitoring of disease progression, and tracking of
neuro-developmental and aging-related brain changes (Giorgio 2013;
Janowitz et al., 2014; Raz et al., 2010; Wierenga et al., 2014). Vol-
umetric analyses of cortical structures provided markers of neuro-
degeneration in various disorders including multiple sclerosis (MS),
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schizophrenia (SCZ) and Alzheimer’s disease (AD), as well as in normal
aging (Bonilha et al., 2008; Brewer et al., 2009; Bakkour et al., 2013;
Charil et al., 2007; Dicks et al., 2019). Previous studies also reported sig-
nificant associations between volumes of sub-cortical deep brain struc-
tures, including the thalamus, caudate, putamen and amygdala, and
neuropsychiatric and neuro-degenerative conditions such as AD and
SCZ, suggesting that both cortical and subcortical structures are vari-
ably related to different neurodegenerative conditions (Ferreira et al.,
2017; Janowitz et al., 2014; Apostolova et al., 2006; Goldstein et al.,
1999; Satterthwaite et al., 2016).

3 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement List.pdf.
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Table 1
General Characteristics of datasets that were used in validation experiments.
CN MCI AD Total

Dataset1: EADC-ADNI
Count 44 45 45 134
Age 7618 +7.45 7444 +8.00 74.45+8.10 75+7.84
Sex(MJF) 22/22 26/19 21/24 69/65
Dataset2: ADNI 1.5T, ADNI 3T
Count 37 53 23 113
Age 75.72 + 420 76.02+7.90 75.03 +836 75.72+6.97
Sex(MJF) 15/22 35/18 08/15 58/55

* For each subject Dataset2 includes a pair of 1.5T and 3T scans acquired on same day.

Multiple algorithms and methods have been developed for segment-
ing anatomical regions of interest (ROIs) in a fully automated way. One
of the most widely used automated segmentation methods is the pub-
licly available FreeSurfer software package (Fischl et al., 2002; 2004).
Freesurfer combines a surface-based stream for cortical segmentation
with a volume-based stream for segmentation of subcortical structures.
The surface-based stream first calculates an initial surface that delin-
eates the white matter, and then refines this surface to calculate the
pial surface. The volume-based stream uses a subject-independent prob-
abilistic atlas, which is automatically derived from a training set con-
sisting of multiple hand-labeled atlas images. After a high dimensional
nonlinear volumetric alignment of the target image to a common atlas
space, ROI labels are automatically assigned to each voxel by finding
a segmentation that maximizes the probability of the input data given
the prior probabilities from the training set. At present, an important
body of literature and neuropsychiatry findings are based on Freesurfer
segmentations (Kikinis et al., 2010; Rohrer2011; Messina et al., 2011;
Sabuncu et al., 2011). Freesurfer has been widely tested for its accuracy,
precision and repeatability. However, various evaluations have also re-
vealed limitations of that approach (Mccarthy 2015; Keller et al., 2012;
Mulder et al., 2014), which might be critical in aging and multi-site
studies.

Instead of relying on a single atlas, the multi-atlas segmentation
(MAS) framework utilizes multiple reference atlas images that are in-
dependently warped to the target image space, and their reference la-
bels are fused together to derive a consensus segmentation. This process
has important advantages, the most notably the robustness against in-
dividual registration errors by the virtue of the ensemble label fusion
process. The MUSE algorithm (Doshi et al., 2016) extended the ensem-
ble approach to multiple deformable registration algorithms applied at
different regularizations, allowing a higher variation within the ensem-
ble. Additionally, in the label fusion step, MUSE uses a spatially adaptive
strategy to select atlases based on their local similarity to the target im-
age. Effectively, atlases most similar to a target image being segmented
have more influence on its segmentation. Even more importantly, this
process is spatially-adaptive, i.e. atlases most suitable for someone’s
hippocampus segmentation might not necessarily be best for thalamus
segmentation. MUSE was the top-ranking method in the MICCAI-SATA
challenge on deep brain segmentation (Asman et al., 2013), and has
been used in several studies (Habes et al., 2016; Satterthwaite et al.,
2016; Wee 2017; Tian et al., 2018).

Our primary motivation herein was to evaluate brain anatomy seg-
mentations obtained using these two automated methods in multi-site
brain aging studies. Importantly, our comparative evaluations included
both versions v6.0 and v5.3 of Freesurfer, thus also providing a compar-
ison between newer and older Freesurfer versions. This comparison may
be informative for guiding processing pipeline updates in longitudinal
studies that previously used older versions of Freesurfer for segmen-
tation. Accurately measuring subtle brain aging changes, and particu-
larly hippocampal volume change, is important for early identification
of pathologic processes. Moreover, being able to perform multi-site stud-
ies has become critical, as large consortia of meta- and mega-analyses
are being formed in order to achieve a sufficiently large sample size,

in view of the heterogeneity and complexity of brain aging. Toward
this goal, we utilized expert-based manual hippocampus segmentations
provided by the EADC-ADNI Harmonized Protocol project for manual
hippocampal segmentation (HarP) (Frisoni et al., 2015), and same-day
scan/re-scan images from 1.5T and 3T MRI scans in ADNL

2. Materials and methods
2.1. MR imaging data

We used two publicly available datasets for quantitative evalua-
tions (Table 1). The first dataset (Dataset1) was provided by the EADC-
ADNI Harmonized Protocol project for manual hippocampal segmen-
tation (HarP) (Frisoni et al., 2015). The main aim of the HarP project
was to harmonize existing protocols for manual segmentation of hip-
pocampus in order to derive standardized ground truth labels that will
be used as benchmark. The HarP dataset included T1-weighted scans
of 135 ADNI subjects (Mean Age: 75.014, Slice Thickness: 1.2 mm,with
44 Controls, 45 MCI, 45 AD) and left and right hippocampal labels for
these scans delineated by expert raters.* Due to mismatch related to im-
age format conversion for one subject scan, our final sample included a
total of 134 subjects.

Our Second dataset (Dataset2) consisted of T1-weighted scans of 113
ADNI-1 subjects who underwent 1.5T and 3T T1-weighted MR Imaging
at the same day or within similar dates (12 scans within 1 month; 4
scans within 2 months; 1 scan within 3 months). All subjects belonged
to the patient group with mean age of 75.7. High resolution struc-
tural scans were acquired using 1.5T (TR = 2400 ms,Flip Angle = 8°,
with acquisition matrix of 256 x 256 x 166, yielding voxel size of
0.9 x 0.9 x 1.2 mm) and 3T (TR = 2300 ms, Flip Angle = 8°, with acqui-
sition matrix of 256 x 256 x 170, yielding voxel size of 1.0 x 1.0 x 1.2)
MR scanners from different vendors (GE, Philips and Siemens).

2.2. ROI segmentation methods

2.2.1. Freesurfer volumetric segmentation

FreeSurfer is a software package to analyze and visualize structural
neuroimaging data (Fischl et al., 2002, 2004). A widely used function-
ality of Freesurfer is to perform cortical and subcortical segmentation.
Freesurfer segmentation consists of surface and volume-based streams
with multiple processing steps. After transformation to Tailarach space,
the target image is corrected for intensity inhomogeneities (bias field)
and non-brain tissues are removed automatically. A high dimensional
nonlinear volumetric alignment to the atlas space is performed for trans-
ferring atlas label information to the target image. The alignment in-
cludes surface deformation to optimally place gray matter (GM) / white
matter (WM) and GM / cerebro-spinal fluid (CSF) boundaries, and sur-
face inflation and registration to spherical atlas to parcellate cerebral
cortex into units based on gyral and sulcal structure. The final segmen-
tation is based on both a subject-independent probabilistic atlas, which

4 http://www.hippocampal-protocol.net/SOPs/index.php.
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was built from a training set with manual labels, and subject-specific
measured values. The final label assignment at each image voxel is
achieved by finding the segmentation that maximizes the probability of
input signal given the prior probabilities from the training set. Freesurfer
segments the brain into 34 cortical ROIs per hemisphere, which were
defined based on a parcellation scheme on an inflated representation of
cortex (Desikan et al., 2006).

We applied Freesurfer v5.3 and v6.0 (released in April 2017) seg-
mentation using the default parameters (recon-all -i T1image -s sub -sd
SUBJECTS\_DIR -all) for 1.5T scans. For 3T scans, we run Freesurfer
with the “~3T"” flag (recon-all -i T1image -s sub -sd SUBJECTS\ DIR —3T
-all). Freesurfer volume estimates were calculated using Desikan Killiany
Atlas for all subjects using the command asegstats2table.

2.2.2. MUSE segmentation

The MUSE algorithm follows the multi-atlas image registration and
label fusion framework. In this framework, multiple atlases with man-
ually or semi-automatically drawn reference labels are independently
registered to the target scan using deformable registration. Candidate
labels from multiple registrations are fused together to calculate a con-
sensus segmentation. Image preprocessing in MUSE included inhomo-
geneity correction with N4 (Tustison et al., 2010) and multi-atlas skull-
stripping (Doshi et al., 2016). After skull-stripping, 11 atlas images are
warped to the target image using 2 different deformable registration al-
gorithms DRAMMS (Ou et al., 2011) and ANTS (Avants et al., 2014),
and using two different regularization parameter values for these al-
gorithms, resulting in a high variation within the ensemble, which is
desirable to be able to better capture the inter-individual variability in
target anatomy. The label fusion includes a local similarity term to select
locally optimal atlases and an intensity term to refine the segmentation
consistently with the target image’s intensity profile. MUSE reference
atlases included 153 anatomical ROIs. We run MUSE using the default
parameters.

2.3. Quality control of segmentations

Freesurfer and MUSE segmentations were subjected to a quality con-
trol (QC) procedure that aimed to detect and exclude cases with gross
errors in the segmentations, which typically happen due to major fail-
ures of atlas to target image registrations. We should note that this
is different from extensive QC on individual ROIs performed in stud-
ies with relatively modest sample sizes. In this analysis, we mainly fo-
cused on establishing an automated and reproducible processing proce-
dure, in view of large scale datasets. Accordingly, cases were flagged
for exclusion only if overall segmented ROI did not overlap with the
actual brain boundaries. The QC procedure involved automatic ranking
of scans based on a quality score derived from ROI volumes, followed
by visual inspections of the segmentations guided by the ranking score.
A quality score is automatically calculated for each segmentation mask
by comparing ROI volumes extracted from this mask against the distri-
butions obtained from the entire sample. Specifically, we used PCA to
reduce data dimensionality by projecting ROI values to a lower dimen-
sional space that optimally explains the variance of the data, and we
calculated the Mahalanobis distance of each sample to the sample mean
in the PCA space. We used an in-house visualization tool for visual in-
spections, which displayed boundaries of segmented ROIs on a subset
of image slices in axial, sagittal and coronal views. A binary QC flag,
i.e. accept or exclude, was assigned to each segmentation, based on the
consensus of two independent raters.

2.4. Determination of common ROI labels

As the reference label definitions are different for Freesurfer and
MUSE, a direct comparison of ROIs is not possible. Particularly, the cor-
tical ROIs are substantially different both in terms of naming of anatom-
ical regions and in the details of the delineation of their boundaries.
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Therefore, a direct comparison of the exact volumes produced by these
two methods could not be applied, hence we focused on analyzing age
trends and inter-scanner consistency. In order to facilitate this process,
we applied a semi-automated process to identify approximate correspon-
dences between the two atlas ROI definitions. We computed MUSE and
Freesurfer segmentations of a single reference scan and calculated the
percent overlap between each pair of ROIs from the two methods. MUSE
and Freesurfer ROIs were matched to each other using a greedy match-
ing algorithm guided by the maximum percent overlap between ROI
pairs. The matching algorithm allowed grouping of multiple ROIs in one
set to find the optimal coverage of a single ROI in the other set. Matched
ROIs have been inspected by two manual raters (DS and MH) based on
the ROI names and spatial correspondences between them. Revisions
have been done after mutual agreement of the two raters. The final set
of ROIs included 7 deep structure regions and 31 cortical regions. A
visualization of the matched ROIs between MUSE and Freesurfer is pre-
sented in Fig. 1. A complete list of the matching between MUSE and
Freesurfer ROIs is given in suppl. Fig. 1.

We also computed a set of composite ROIs in order to perform com-
parative analyses at a coarser level. Composite ROIs included 6 lobe
level regions, the “cortex” ROI that is the combination of all cortical
GM ROIs, and the “sub-cortex” ROI that combines all sub-cortical GM
ROIs.

2.5. Statistical analyses

In Datasetl1, for which manual hippocampus labels were available,
the agreement between Freesurfer and MUSE against manual labels was
measured by comparing the volumes of segmented hippocampus ROIs.
Note that as the delineations of the hippocampus region were different
in the reference atlases for each method and in manual segmentations,
a direct calculation of the overlap between segmentations, e.g. by calcu-
lating the Dice score between them, was not suitable for comparisons.

We used Pearson pairwise correlation (r) and Lin’s Concordance
Correlation Coefficient (CCC) to measure the reproducibility between
manually segmented hippocampal labels and labels automatically seg-
mented using MUSE and Freesurfer. Pearson correlation is a measure of
linear associations of ROI volumes obtained using different segmenta-
tion methods. Concordance correlation coefficient measures the agree-
ment between ROI volumes from two segmentation methods and penal-
izes differential mean shifts between them. The concordance correlation
coefficient is defined as:
= 2po,0, i
o2 +0')2, + (py - ,uy)
where u, and u, are the means and o, and o, are the variances of the
two variables, and p is the correlation coefficient between them.

We computed Bland-Altman plots between gold standard (Manual)
ROI volumes and the ROI volumes calculated using the three automatic
segmentations. A Bland-Altman plot is a graphical method that is ex-
tensively used for comparing the agreements of two measurements of
the same variable and for detecting the presence of systematic bias and
amount of variation between the two.

We tested the significance of age bias of volume differences between
automated and ground-truth segmentations using a linear regression
model for each method separately. We fitted a linear model (estimated
using OLS) in R4.0.0 to predict the delta (difference in volume) between
ground truth segmentations and those obtained by each of the three
methods, Freesurfer v6.0, Freesurfer v5.3 and MUSE, with Age as the
predictor variable. The regression model was:

AV, (i) = Cy + B, * Age;

where k is the segmentation method for which the volume difference
from manual segmentation is calculated and Age; represent ith subject’s
age. P-values were corrected using FDR correction for multiple com-
parisons of same subject across different methods. In order to assess
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Fig. 1. ROI atlas denoting common GM ROIs in MUSE and Freesurfer.

Left, Right & Total hippocampus volumes computed using manual ground-truth, Freesurfer and MUSE segmentations.

Method

Hippo. R

Hippo. L Hippo. Total

Manual
Freesurfer-v5.3
Freesurfer-v6.0

2769.165 + 590.64
3158.656 + 729.29
3288.765 + 637.11

MUSE 3362.186 + 606.61
Manual - Freesurfer-v5.3(% vol diff) 14.06
Manual - Freesurfer-v6.0(% vol diff) 18.76
Manual - MUSE(% vol diff) 21.41

2664.277 + 593.87 5433.442 + 1154.88
3071.671 + 704.73 6230.328 + 1378.62
3177.69 + 595.06 6466.45 + 1197.69
3085.091 + 585.19 6447.28 + 1162.57

15.29 14.66
19.27 19.01
15.79 18.65

the significance of the correlation between volume difference and age
for different diagnosis groups, we stratified subjects based on diagnosis
(CN, MCI and AD) and ran separate linear regression models for each
method and each diagnosis group (9 different models in total).

We used the Dataset2 for evaluating the robustness of each segmen-
tation method to scanner variations between 1.5T and 3T scanners. For
each method, we calculated Pearson pair-wise correlations (r) and con-
cordance correlation coefficients between individual ROI volumes cal-
culated from each pair of matching 1.5T and 3T scans. This analysis was
performed for cortical and subcortical structures individually, as well as
for each composite ROL

To determine the significance of the differences between methods we
used the Wilcoxon signed rank test between the ROI correlation values
across scanners obtained by the two methods. We applied two indepen-
dent tests, one by grouping together correlation values of all cortical
ROIs, and the second by grouping correlation values of all subcortical
ROIs. A non-parametric test was used to avoid any normality assump-
tions and the p-values were corrected for multiple comparisons.

3. Experimental results

All 132 subjects in Dataset]l were segmented using fully automated
Freesurfer and MUSE pipelines. Average run time per scan for MUSE
was approximately 50.4 min for individual registrations (running them
in parallel) and 61.17 min for subsequent label fusion. The actual com-
putation time depends on the number of atlases chosen for MUSE. Run
time per scan for Freesurfer was approximately 9.22 h for the entire
pipeline using a single thread.

In our visual inspection of segmentation results from Datasetl
and Dataset2, all MUSE segmentations passed the visual QC. For the
Freesurfer segmentations, 2 cases from Dataset]l were flagged for exclu-

sion due to gross errors (suppl. Fig. 2). The final sample included 132
subjects for Dataset]l and 113 subjects for Dataset2 after exclusion of
the flagged cases.

3.1. Analysis of hippocampal volume differences

Mean volumes of right and left hippocampi calculated from auto-
matic and manual segmentations are given in Table 2.

Fig. 2 shows the age trends of hippocampus volumes for man-
ual and automatic segmentations. We found that MUSE and manual
segmentations had a similar slope (s_yysg=—34.04, S_panuai=—31-29),
while Freesurfer segmentation had a significantly higher slope with age
(S_Freesurfer-vs.3=—52-57,S_reesurfer-ve.0=—44.44). Note that differences in
intercepts between methods are expected and they are due to differences
in ROI definitions. Age trends of hippocampal volumes for CN, MCI and
AD subjects are shown in Fig. 3.

We verified possible bias in volume estimations using Bland Altman
plots. Fig. 4 shows trends of volume differences of Freesurfer and MUSE
segmentations from manual segmentations, plotted against mean hip-
pocampus volumes.

The estimated regression line indicates a negative trend for
Freesurfer, suggesting that larger hippocampus volumes lead to a larger
difference in volume estimation in comparison to manual segmenta-
tions. For MUSE, regression line shows a constant difference trend for
increasing hippocampus volumes. Bland Altman plots of volume differ-
ences against age are shown in Fig. 5. Similarly, both Freesurfer versions
v6.0 and v5.3 has a negative slope, indicating a bias towards underseg-
mentation of hippocampus for older people, and hence introduction of
spurious age trends. The age bias in Freesurfer segmentations was also
present when the subjects were grouped by disease category (CN, MCI,
AD) (suppl. Fig. 3).



D. Srinivasan, G. Erus and J. Doshi et al.

Hippocampus Volume(mm?)

Hippocampus Volume(mm?)

Hippocampus Volume(mm?)

Neurolmage 223 (2020) 117248

~ R A—— Fig. 2. Hippocampal volumes calculated from MUSE
anu? ~_Y‘—~ UK i (Green), Freesurfer-v6.0(Blue), Freesurfer-v5.3(Purple) and
st G s al(Pink) segmentations, plotted against age at scan
FSV6.0:y=4445x1979126 | onualdin sm > P 8 8
40000 FS-6.3 - y=-52.56x+10163.28 time.
8000
6000
4000
®
2000
60 &5 70 75 80 85 90
Age (Yrs)
Manual MUSE
\
10000 — Nonnam‘ =-49.58x+10020.4 — 10000 ® o Normal: y=-50.62x+11734.97
|
9000 — MCI:v=—30_65x+75‘99,76 £ — MCI:y=-Z":6.64x+9085.59
——  AD: y=-40.83x+7771.92 £ 900 ° & —— AD:y=-32.39x+8192.94
8000 E
s 8000
7000 = E
6000 @ 7000
0
- o
5000 £ 6000
[1:]
4000 8
§ 5000
3000 =
. T 4000
2000
65 70 75 80 85 90
Age (in yrs) Age (in yrs)
FreeSurfer-v5.3
FreeSurfer-v6.0 I ‘ ‘
11000 b " l i s L12490 P = ‘ Normal: ¥=—76.93x4‘-13060.85
= Normal: y=-68.93x . u=_fR +
10000 —— MCLy=51.13x+10199.40 E 10000 MC). y=52 67-A(A2B B8
> =4 : E AD: y=-51.32x+9133.44
2000 e = | AD: y=-40.60x+8776.72 D
e ®° ° ‘ £
8000"\’—‘5“-\ o 3 ° S 8000 -
‘ [ ) 'l\..~ LJ ‘ ® =
7000 ‘!‘f.‘%d:i.":?‘ﬁ.\.ﬁ—.—L @
|
I ® Tocwl—_| 2 6000
6000 ‘e%m. il £
® Y Py M
5000 $e.° @™ ‘.‘ P 8
. . * | 2 4000 -
4000 ° L =
. =
3000
60 65 70 fio 80 85 90 60
Age (in yrs) Age (in yrs)

Fig. 3. Hippocampal volumes calculated from MUSE, and manual segmentation, plotted against age at scan time and grouped by disease category. Normal, MCI and
AD subjects are shown with Pink, Green and Blue colors, respectively.
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Fig. 5. Scatter plot of differences showing hippocampal volumes calculated from Freesurfer-v6.0 and manual segmentations (left), Freesurfer-v5.3 and manual
segmentations (middle), and MUSE and manual segmentations (right), against subject’s age at scan time.

Table 3

Age correlations of volume differences between automated and ground-truth segmentations.

Apuse AFs_vs.s AFS_V6.0
Predictors Estimates p pcorr Estimates  p pcorr Estimates P pcorr
(Intercept) 1218.99 <0.001*** 2388.45 <0.001*** 2016.43 <0.001***
Age -2.74 0.53265 0.53265 -21.28 0.00105** 0.00315** -13.15 0.00324** 0.00487**
Observations 132 132 132

Linear regression models showed that the observed age bias was
significant in both Freesurfer-v5.3 and Freesurfer-v6.0 (Table 3). The
volume difference of Freesurfer-v5.3 from the ground-truth segmenta-
tion had a higher negative slope with higher age, with a difference of
21.28 mm? per year of Age, 95% CI, p < 0.05, FDR corrected.

Results of regression models assessing the age bias for different seg-
mentations across each diagnosis group are given in supplementary Ta-
ble S1. We found that the age bias was predominantly driven by for the
MCI subjects, both for Freesurfer-v5.3 and v6.0.

3.2. Reproducibility analysis across field strengths

We compared volumes of matched ROIs for 1.5T and 3T same day
scan pairs segmented using the automated methods. This comparison
included all individual and composite ROIs. We calculated the Pearson
and Concordance correlations between 1.5T and 3T volumes for each
ROI. Concordance correlation values for all individual ROIs are shown
in Fig. 6.

Freesurfer-v6.0 obtained higher correlations for all ROIs compared to
Freesurfer-v5.3, suggesting that the major version update in Freesurfer

resulted in considerable differences in the final segmentation, improv-
ing the overall accuracy. MUSE obtained consistently higher correlation
compared to Freesurfer-v5.3, while in cortical ROIs Freesurfer-v6.0 and
MUSE showed comparable performance. Importantly, the differences
between Freesurfer and MUSE were higher in the segmentation of the
deep structures, MUSE obtaining higher correlations in all deep struc-
tures except hippocampus. Scatter plots for the volumes of selected deep
structures for each method against ground truth segmentation volumes
are given in Fig. 7. The distribution of correlation coefficients from all
ROIs for each method is presented in Fig. 8.

The results for composite ROIs were similar, with higher correla-
tions for MUSE in subcortical regions, while in cortical regions MUSE
and Freesurfer-v6.0 had comparable reproducibility at lobe level ROIs
(suppl. Fig. 4). The Wilcoxon-tests comparing Freesurfer and MUSE seg-
mentations indicated that correlations of ROI volumes across scanners
were significantly different between MUSE and both Freesurfer versions
for sub-cortical ROIs. For the deep structures, the differences were sig-
nificant between MUSE and Freesurfer-v5.3, but not for Freesurfer-v6.0
(Table 4).
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differences.

Table 4

Mean correlation, concordance correlation and Wilcox p-values for segmentation of matching 1.5T and 3T ADNI scan pairs

by each Freesurfer version and MUSE.

Cortical Sub-cortical
Freesurfer-v5.3  Freesurfer-v6.0 ~ MUSE Freesurfer-v5.3  Freesurfer-v6.0 ~ MUSE
Mean Correlation 0.8867 0.8982 0.9045 0.83992 0.88656 0.97425
Mean Concordance Correlation 0.83678 0.85236 0.87805 0.78113 0.85295 0.96042
Wilcox signed rank p-val 0.0029 0.5052 0.03125 0.01796
Wilcox signed rank (FDR corr) 0.0058 0.5167 0.03125 0.03125

4. Discussion

Freesurfer is one of the most widely used tools in neuroimaging re-
search for segmenting brain anatomy. Although Freesurfer is extensively
validated and it has been used in a large number of studies, various stud-
ies have also reported high rates of failures resulting in exclusion of large
number of scans, inconsistencies in segmentations and age related bias
(Wenger et al., 2014; Cherbuin et al., 2009).

In recent years, methods that use the multi atlas label fusion
framework have obtained state-of-the-art accuracy, showing that con-
sensus segmentation using multiple atlases may significantly improve
the segmentation accuracy, while making it also more robust to spo-
radic registration errors/imperfections (Iglesias and Sabuncu, 2015;
Warfield, 2017).

Herein we evaluated MUSE by comparing it to Freesurfer, which is
the current standard for brain anatomy segmentation. While the accu-
racy, reliability and reproducibility of Freesurfer has been well tested
across various studies and segmentation tools, it has not been compared
with current multi-atlas methods.

Importantly, Freesurfer had a major revision update in 2017 (v6.0).
Over 1600 neuroimaging publications used Freesurfer for quantifica-
tion of brain volumes (as listed in pubmed.gov). Most of these pub-
lications used previous versions dating before the Freesurfer-v6.0 re-
lease. Considering that previous stable version of Freesurfer (v5.3) has

been used by a large number of studies in the past, we performed com-
parisons using both versions of Freesurfer. Our hypothesis was that
MUSE would overcome some of Freesurfer’s limitations. We specifically
focused on two tasks, which are important in multi-site aging stud-
ies: bias of segmentation with age, and reproducibility across differ-
ent field strengths. The latter was a test of inter-scanner reproducibil-
ity, an issue that is of rapidly rising significance with the emergence
of large-scale meta/mega-analyses that pool data from multiple studies
(Thompson et al., 2014; Davatzikos, 2018).

Automatic segmentation methods typically use a reference atlas with
manually defined ROI labels and apply image registration for transfer-
ring these labels to target image space. Freesurfer is based on the reg-
istration of a single probabilistic atlas, and label assignment based on
both aligned atlas probabilities and target image intensities. In contrast,
multi-atlas techniques take advantage of the consensus labeling of mul-
tiple atlases. The advantage of the multi atlas approach is twofold: a)
multiple atlases allow capturing a broader anatomical variation, e.g. by
including atlases from subjects with different sex and age, thereby al-
lowing the label fusion algorithm to select subject-appropriate atlases
on a regional basis; and b) even when the image registration fails for
one or more atlas images, the voting between multiple atlases presum-
ably helps obtain a correct segmentation, unless there is a systematic
registration error that affects a majority of the atlases. Specifically, in
MUSE, two different registration algorithms were used to increase the
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variations within the ensemble, and a local similarity ranking strategy
was used to give more weights to atlases locally more similar to the
target scan in the fusion.

We found that hippocampus segmentations by both Freesurfer-v6.0
and Freesurfer-v5.3 showed a bias towards over-segmentation of larger
hippocampi, and under-segmentation of hippocampi in smaller or older
individuals, although this age bias was reduced with the newer version.
On the other hand, MUSE segmentations were more consistent with
ground-truth segmentations, without bias with subject age or hippocam-
pus volume. This is an important finding, when evaluating age effects on
brain volumes. Our results suggest that Freesurfer introduces spurious
age effects, which can obviously lead to false biological interpretations.
One reason could be that Freesurfer does not use the population-based
specific template.

In our reproducibility analyses, we found that MUSE obtained con-
sistently higher correlations between ROI volumes calculated across the
two scanners in comparison to Freesurfer 5.3. Importantly, we also
found that Freesurfer 6.0 segmentations showed consistent improve-
ment in all ROIs compared to Freesurfer-v5.3. While Freesurfer 6.0 was
comparable to MUSE for cortical ROIs, in deep structures MUSE ob-
tained very consistent segmentations across subjects with higher corre-
lations compared to both Freesurfer versions. This finding is consistent
with previously reported state-of-the-art accuracy of MAS methods in
segmentation of deep structures, and could be explained by the advan-
tage of using a model based (i.e. a-priori defined ground-truth ROI la-
bels) consensus labeling in these regions where the tissue contrast alone
is not informative enough to guide the segmentation.

High number of Freesurfer exclusions based on detailed visual ver-
ification of individual ROIs was previously reported (Mccarthy 2015;
Zandifar et al., 2017). Such an extensive QC was out of scope of our anal-
ysis that focused on mostly automated processing in view of largescale
datasets. In our QC for detecting gross errors, MUSE outperformed
Freesurfer in terms of overall failure rates. While ~1% of all segmenta-
tions (2 scans from 247 in total) were excluded due to Freesurfer failures
based on our case by case visual QC of general segmentation quality, all
MUSE segmentations have obtained a positive QC result. The robustness
of MUSE was expected, as multiple atlases provide various representa-
tions of the anatomy, while the label fusion of multiple warped atlases
allows the method to correct the effect of individual registrations that
failed, unless the failure is not systematic to a majority of the atlases.

This work has also some limitations. A major problem for a system-
atic comparison is the limited availability of ground truth segmenta-
tions. Manual segmentation of anatomical ROIs is a difficult and time
consuming task. For this reason, there are very few datasets that provide
manually segmented ROI labels. Also, because Freesurfer and MUSE use
their own atlas sets with different ROI label denotations, a direct com-
parison of the two methods is not possible. MUSE uses a set of 35 scans
and their semi-automatically segmented ROI labels as reference atlases.
We did not prefer to use these scans in our comparisons, as this would
be biased towards MUSE, even with cross-validation. Also, our exper-
iments were limited to comparisons between Freesurfer and the multi
atlas segmentation approach. In recent years deep learning methods ob-
tained state of the art accuracy in various problems in neuroimaging.
While a comparison to more recent deep learning methods for segmen-
tation would be very informative, this is out of the scope of this paper.

Our comparative evaluations have shown that MUSE, a multi-atlas
ROI segmentation method, can help alleviate some of the limitations
of Freesurfer and related methods, by virtue of leveraging multiple
atlases, registration methods and parameters, thereby offering both
the advantages of a consensus-based methods and of regional adap-
tivity of the atlases to the target anatomy. Critically, MUSE also dis-
played significantly higher inter-scanner consistency, thereby offering
promise that multi-site, multi-study meta/mega-analyses can be per-
formed more accurately. Given these favorable results and increasing
availability of parallel and cloud computing capacities, multi-atlas seg-
mentation has a great potential of becoming the standard approach

Neurolmage 223 (2020) 117248

for segmentation of brain images in population studies and in clinical
applications.
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