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Many brain morphometry studies have been performed in order to characterize the brain atrophy pattern of
Alzheimer's disease (AD). The earliest studies focused on the volume of particular brain structures, such as
hippocampus and entorhinal cortex. Even though volumetry is a powerful, robust and intuitive technique that
has yielded a wealth of findings, more complex shape descriptors have been used to perform statistical shape
analysis of particular brain structures. However, in shape analysis studies of brain structures the information
of the relative pose between neighbor structures is typically disregarded. This work presents a framework to
analyse pose information including the following approaches: similarity transformations with either pseudo-
Riemannian or left-invariant Riemannian metric, and centered transformations with a bi-invariant
Riemannian metric. As an illustration, an analysis of covariance (ANCOVA) and a discrimination analysis
were performed on Alzheimer's Disease Neuroimaging Initiative (ADNI) data.
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Introduction

Alzheimer's disease (AD) is the most common form of dementia.
The clinical sign is a progressive cognitive decline initially shown as
memory loss, and spreading later to all other cognitive faculties. Mild
cognitive impairment (MCI) is a relatively recent concept introduced
to recognize the intermediate cognitive state where patients are
neither cognitively intact nor demented (Petersen et al., 2001).

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller
et al., 2005a,b) is a large multi-site longitudinal structural MRI and
PET study of about 800 adults, ages 55 to 90, including 200 elderly
controls, 400 subjects with mild cognitive impairment, and 200
patients with AD. The ADNI was launched in 2003 by the National
Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private pharma-
ceutical companies and non-profit organizations, as a $60 million, 5-
year public–private partnership. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical
trials.

Nowadays several techniques for analysis of brain anatomy are
available. The oldest approach is the volumetry technique, which
measures the volume of specific brain structures. It relies on the
delineation of the regions of interest (ROI). Volumetry is a powerful,
robust and intuitive technique that has yielded a wealth of findings.
The volume and volume change of particular brain structures such as
entorhinal cortex, hippocampus, parahippocampal gyrus, and amyg-
dala (Laakso et al., 1995; Krasuski et al., 1998; Jack et al., 1999; Du et
al., 2001, 2003; Pennanen et al., 2004), have been long used as a
neuroimaging marker of dementia in both cross-sectional and
longitudinal studies.

More specific and subtle shape information of particular regions or
structures, such as the hippocampus, has been analyzed by means of
statistical shape analysis. In shape analysis theory, shape is often defined
as all the geometrical information of anobjectwhich is invariant to pose,
usually defined as the information about location, orientation and very
often size of the object. Therefore, pose and shape provide complemen-
tary information about the object of interest. Different shape features
have been used so far, such as landmark coordinates (Csernansky et al.,
2000, 2004), thickness or radial atrophy maps (Thompson et al., 2007;
Querbes et al., 2009), andmedial representations (Styner et al., 2003). In
all these shape analysis studies of a single structure, the pose
information is rejected during an alignment stage because pose mainly
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Table 1
Demographic data and cognitive scores of selected subjects. Age, MMSE and CDRSB
format: average (standard deviation, [min, max]).

Group Gender Age APOEf Baseline Baseline

(M/F) Distribution MMSE CDRSB

NOR 101/106 76 (5,[62,90]) (2, 29, 125, 46, 5) 29 (1,[26,30]) 0.0 (0.1,[0,0.5])
MCIs 66/23 75 (7,[55,88]) (0, 4, 50, 31, 4) 28 (2,[24,30]) 1.3 (0.6,[0.5,3])
MCIc 55/27 75 (7,[55,88]) (0, 1, 24, 41, 16) 27 (2,[24,30]) 1.9 (1.0,[0.5,5])
AD 89/87 75 (8,[55,91]) (0, 5, 57, 80, 34) 23 (2,[20,27]) 4.3 (1.6,[1,9])

1 http://adni.loni.ucla.edu/.
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depends on irrelevant external factors (e.g. patient's location and
orientation within the scanner).

However, the information of relative pose among different
structures belonging to a complex multi-structure system may be
useful for diagnosis, prognosis andmonitoring. In Rao et al. (2008) the
correlation of the anatomical information of the subcortical nuclei was
analyzed using point distribution models (PDM) after a global
alignment, which can be considered as a joint pose and shape
descriptor. A methodology to build statistical pose models was
introduced in Bossa and Olmos (2006) where the application was
on subcortical nuclei from the normal subjects. Statistical analysis of
pose and shape was performed in Bossa and Olmos (2007). The pose
and shape of the subcortical nuclei were also analyzed in a
longitudinal pediatric study on autism (Styner et al., 2006), with a
recent discrimination analysis (Gorczowski et al., 2010).

The aim of this work is twofold. First to revisit a methodology for the
statistical analysis of the relative pose information between objects
belonging to a multi-object set. A more general presentation is given,
including a comparison of the geodesics corresponding to the following
approaches: pseudo-Riemannian metrics, left-invariant Riemannian
metric on the group of similarity transformations, Sim(3), to our
knowledge not done before, and a bi-invariant metric on the group of
centered transformations, Rþ × SO 3ð Þ × R3� �

. The secondaim is to assess
the usefulness of the pose information of the subcortical nuclei in
Alzheimer's disease. In particular, an analysis of covariance (ANCOVA) of
the diagnostic label and an individual classification study betweennormal
subjects and patients were performed using pose parameters as features.

Materials and methods

Subjects

A subset of 554 elderly subjects from ADNI study (Mueller et al.,
2005a) was used in this work. All subjects underwent clinical/
cognitive assessment, as well as studies of certain AD biomarkers,
including apolipoprotein E (ApoE) genotype, at the time of the scan
acquisition. There are three common human ApoE isoforms (E2, E3
and E4). Each copy of the ApoE4 allele increases the risk of developing
AD, while ApoE2 may have a protective effect (Farrer et al., 1997;
Graff-Radford et al., 2002). An integer number, APOEf, was used to
quantify the risk of developing AD. The value from 1 to 5 means the
following combinations: E2–E2, E2–E3, E2–E4 or E3–E3, E3–E4, and
E4–E4, respectively.

As part of each subject's cognitive evaluation, the Mini-Mental
State Examination (MMSE) was performed to provide a global
measure of mental status based on the evaluation of five cognitive
domains: orientation, attention, calculation, registration, language
and recall (Cockrell and Folstein, 1988). The maximum score is 30
corresponding to a normal cognitive status, and scores of 24 or lower
are usually consistent with dementia. The Clinical Dementia Rating
(CDR) was also assessed as a measure of dementia severity by
evaluating six domains: memory, orientation, judgment and problem
solving, home and hobbies, personal care and community affairs
(Morris, 1993). The ‘sum-of-boxes’ CDR score (CDRSB) is a summary
of the different domains with a larger dynamic range (0–18)
compared to the global CDR. Higher scores of CDRSB correspond to
more severe dementia. The diagnosis of ADwasmade according to the
NINCDS–ADRDA criteria for probable AD (McKhann et al., 1984). More
details about the criteria for patient selection and exclusion can be
found in the ADNI protocol (Mueller et al., 2005a,b).

The distribution of subjects regarding the patient group was: 207
normal subjects (NOR), 176 AD patients, and 171 subjects with MCI.
MCI subjects were divided into two categories: MCI stable (MCIs,
N=89), formed by the subjects who remained with an MCI diagnosis
during a 3-year follow-up; MCI converter (MCIc, N=82), considering
patients who converted to AD during the 3-year follow-up. These
patient groups will be used to define several disease stages where the
performance of the candidate biomarkerswill be assessed. It should be
noted that clinical evidence of dementiawas only available for patients
at the AD group, and for patients belonging to theMCIc after the 3-year
follow-up. The percentage of MCIs patients that will convert to AD in
longer follow-up intervals is unknown. In spite of this limitation, in
this work we will use the NOR–MCIs comparison in order to
characterize a ‘potential early stage of the disease’, NOR–MCIc as an
intermediate stage and NOR–AD as the latest stage of the disease.
Table 1 provides a summary of demographic and cognitive scores.

MRI acquisition and image correction

High-resolution structural brain MRI scans were acquired at
multiple ADNI sites with 1.5 T MRI scanners using the standard MRI
protocol developed for ADNI (Jack et al., 2008). For each subject, a T1–
3DMRI scanwas collected using a sagittal 3Dmagnetization-prepared
rapid acquisition with gradient echo (MP-RAGE) sequence with voxel
size 0.94 mm×0.94 mm×1.2 mm. Additional image preprocessing
included geometric distortion correction, bias field correction and
geometrical scaling. The images were calibrated with phantom-based
geometric corrections to ensure consistency among scans acquired at
different sites. The pre-processed images were downloaded from the
ADNI website.1

Shape characterization and alignment

Baseline T1 MRI images were analyzed with the FIRST tool, from
FSL package (Smith et al., 2004), for automatic segmentation of the
following subcortical structures: caudate nucleus, accumbens nucleus,
putamen, pallidum, hippocampus, amygdala and thalamus. FIRST is
a model-based segmentation/registration tool that uses shape/
appearance models. Subcortical structures are parameterized as
surface meshes and modeled as a PDM, where point correspondence
is assumed. The point distribution was approximately uniform on the
surfaces. The number of points (above 600 points) was large
considering the object size and its spatial frequency.

Pose parameters are obtained from an alignment procedure. Point
correspondence between different subjects for each structure was
required because Procrustes alignment was used in this work.
Procrustes alignment is a typical method of choice when the shape is
characterized as a labeled point set (Dryden andMardia, 1998). If other
shape descriptors are used a different alignment strategymay be better
suited. It is worthy to note that the pose parameters will depend on the
selected alignment strategy and shape description, including the
number and distribution of points in the case of a PDM.

Pose characterization

Two geometric objects A and B have the same shape if there is a
geometric transformation T, such that T(A)=B. In this work, T includes

http://adni.loni.ucla.edu/
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translation, rotation and uniform scaling, and is denoted as similarity
transformation. More precisely, a point x∈R3 is transformed as

T xð Þ = sRx + b ð1Þ

where s∈Rþ is a scaling factor, R ∈ SO(3) is a rotation matrix, i.e. R is
a 3×3 real matrix such that RRT=RTR= I3 and det(R)=1, and
b = bx; by; bz

� �T ∈R3 is a 3D vector. Note that the similarity
transformations have 7 degrees of freedom. The pose of an object is
described by the transformation which relates the local coordinate
system of the object (or body-fixed frame) with the global coordinate
system (reference frame).

Similarity
The set of similarity transformationsdefined in Eq. (1) formsa group,

denoted here as Sim(3). Let (s,R,b) be the parameters that define T in
Eq. (1), then the group operation T2∘T1, which is the composition of
transformations, can be written in terms of the parameters as

s2;R2;b2ð Þ∘ s1;R1;b1ð Þ = s2s1;R2R1;b2 + s2R2b1ð Þ; ð2Þ

which is obtained by the consecutive application of the transforma-
tions T1 followed by T2.

In homogeneous coordinates a similarity transformation is written
as

T = sR b
0T 1

� �
ð3Þ

where 0=(0,0,0)T is the null vector inR3. It can be checked thatmatrix
multiplication coincides with the composition of transformations.

Centered transformations
There is an alternative characterization of the pose in which the

object is rotated and scaled with respect to a center of rotation, c∈R3,
fixed to the object, and finally the center is translated. A similar
description is used for rigid body dynamics in physics, where the
center of rotation is the center of mass. Each point x of the object can
be described by the pair x̃; c

� �
where x̃ = x−c. The transformation

rule of the pair x̃; c
� �

is given by

T x̃; c
� �� �

= sRx̃; c + b
� �

: ð4Þ

The group operation T2 ∘T1 is given now by

s2;R2;b2ð Þ∘ s1;R1;b1ð Þ = s2s1;R2R1;b2 + b1ð Þ; ð5Þ

therefore the corresponding group is Rþ × SO 3ð Þ × R3� �
, i.e. the direct

product of the following 3 groups: Rþ means positive changes in the
scale, SO(3) means rotations and R3 means translations of the centroid.

The drawback of this parameterization is given by the fact that the
pose parameters depend on the choice of c. On the other hand, the
correspondinggroup is thedirect productof smaller groups thanSim(3),
making the subsequent analysis easier.

Lie group structure of pose transformations
A Lie group is a group which is also a differentiable manifold.

Differentiable manifolds are curved spaces that are locally similar to
Euclidean spaces. The tangent space at the identity e of a Lie group G,
is a vector space denoted Lie algebra g=TeG. Let be v∈g, then there is
a diffeomorphism (i.e. a smooth and invertible mapping) denoted
exponential map, exp: g→G, from a neighborhood of the origin of g
to a neighborhood of the identity e of G. The exponential map
provides all the one-parameter subgroups,2 given by curves of the
2 A curve γ(t)∈G is denoted one-parameter subgroup if it is a 1-dimensional group
such that γ(t) ∘γ(s)=γ(t+ s), where s; t∈R.
form exp(vt), t∈R. The exponential map and its inverse, the
logarithm, log: G→g, are useful because they provide a representa-
tion of the group elements in terms of a vector space, where addition
and scalar multiplication (i.e. linear combinations) are well defined.
In the case ofmatrix groups, the exponential and logarithmmappings
coincide with the standard matrix exponential and logarithm,
respectively, allowing the use of fast computation schemes. Direct
computation with elements from a Lie group by means of their
logarithm representation was named Log–Euclidean framework
(Arsigny et al., 2006b). A limitation of the Log–Euclidean framework
is the lack of left- and right-invariance, therefore the results are
coordinate dependent.

Both, similarity group (Sim(3)) and centered transformations
Rþ× SO 3ð Þ× R3� �

, are Lie groups.

• The Lie algebra of the group Rþ× SO 3ð Þ× R3� �
is given by the direct

product of the corresponding Lie algebras, ℝ×so(3)×ℝ3 (Baker,
2002), where so(3) is the Lie algebra of SO(3) and includes the set of
skew–symmetric matrices. Let ν=(l, A, b)∈(ℝ×so(3)×ℝ3), then
the exponential map is given by

exp l;A;bð Þ = el; eA;b
� �

; ð6Þ

where eA is the matrix exponential of A. Because A is a skew–

symmetric 3×3 matrix, it can be written as

A =
0 −θz θy
θz 0 −θx
−θy θx 0

0
@

1
A; ð7Þ

then R=eA performs a rotation of angle θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2x + θ2y + θ2z

q
around

an axis given by (θx,θy,θz)/θ. A more detailed analysis of computing
statistics on SO(3) is given in (Moakher, 2003).

• The Lie algebra of Sim(3), denoted sim(3), consists ofmatrices of the
form

V =
l I3 + Að Þ d

0T 0

� �
; ð8Þ

where I3 is the 3×3 identity matrix. The exponential mapping is
given by the matrix exponential eV. When l=0 (i.e. there is no
scaling change) a subgroup of Sim(3) is obtained, denoted special
Euclidean group, SE(3), and a point x transformed by etV, describes a
ringlet shaped curve denoted screw motion.

Statistics of pose information
In order to perform statistical analysis on the elements of a Lie

group G, a distance d(g,h) between elements g,h∈G must be defined.
Lie groups are also Riemannian manifolds, and distances are defined
by selecting a Riemannian metric. Distances in Riemannian manifolds
are given by the length of the geodesic curve (the shortest path on the
manifold) connecting two elements. The Riemannian exponential,
Expg :TgG→G, is a local diffeomorphism that maps vectors from the
tangent space at g of G, TgG, to elements on the manifold, such that
Expg(tv),0≤ t≤1, is a geodesic starting at g, with initial velocity v and
whose length is ‖v‖ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
〈v; v〉g

q
, where 〈⋅, ⋅〉 g is a Riemannian metric

at g. Its inverse function is the Riemannian logarithm, Logg :G→TgG,

v = Logg hð Þ; ð9Þ

that is related to the Riemannian distance by d(g,h)=‖Logg(h)‖.
Metrics on Lie groups, and their induced distances, can be divided

into left-invariant (d(g1,g2)=d(h∘g1,h∘g2)), right-invariant (d(g1,g2)=
d(g1 ∘h,g1∘h)) and bi-invariant. Left-invariance means that the distance
between two pose elements do not depend on the choice of the
reference frame. On the other hand, right-invariant metrics provide
distances that are invariant to the choice of the object body-fixed frame.
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When a bi-invariant metric can be selected, geodesics coincide
with translated one-parameter subgroups (Sternberg, 1964) and any
geodesic can be written as g ∘exp(tv) for some g∈G and ν∈g. In
particular, the geodesic from g1 to g2 is given by

g1∘exp tvð Þ; ð10Þ

where v= log(g1−1 ∘g2) and 0≤ t≤1. The length of this geodesic is
‖v‖ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
〈v; v〉e

p
, where 〈⋅, ⋅〉 e is the bi-invariant Riemannian metric at

the origin. In the case of centered transformations, Rþ× SO 3ð Þ × R3� �
,

each of its building subgroups admit bi-invariant metrics. Therefore
Rþ× SO 3ð Þ × R3� �

admits bi-invariant metrics and the geodesics can
be computed as one-parameter subgroups by means of Eq. (10). The
distance between two centered transformations T1 and T2 is given by

d T1; T2ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nR‖log R−1

1 R2
� �

‖2 + ns‖log s2 = s1ð Þ‖2 + nT‖b2−b1‖
2

q
;

ð11Þ

where nR,ns,nTN0 are theweights corresponding to the rotation, scaling
and translation components, respectively.

Unluckily, a bi-invariant metric cannot always be defined. In these
cases the left-invariance is often preferred because it is a key
requirement in a larger set of applications. This is the case of the
similarity group Sim(3), where there is no bi-invariant metric due to
the lack of a bi-invariant metric on the simpler group SE(3) as it was
shown in Park (1995). A way of constructing left-invariant geodesics
on Sim(3) is given in Appendix A.

When there is no bi-invariant Riemannian metric, and bi-invariant
geodesics are still required, a bi-invariant pseudo-Riemannian metric
can be defined. The drawback of pseudo-Riemannian metrics, is that
there are zero-length geodesics connecting different elements in the
manifold (i.e. there are pairs of unequal elements whose distance is
zero). Geodesics for the bi-invariant pseudo-Riemannian metrics are
given by theone-parameter subgroups. Thepseudo-Riemannianmetrics
on the SE(3) group were described in Park (1995); Zefran et al. (1996,
1999) in the context of rigid body kinematics, and in the case of general
lineal transformations (pose+shearing) in (Woods, 2003).

Fig. 1 illustrates the trajectory of an object following a geodesic
generated by each one of the following metrics:

• One-parameter subgroups on Sim(3): they are the most invariant
trajectories. However, a Riemannian metric cannot be defined, and
either a pseudo-Riemannianmetric is used and zero-length geodesics
may appear, or a Log–Euclidean framework is used where distances
are non-invariant.
Fig. 1. Example of a square object following a trajectory given by: Sim(3) one-
parameter subgroup (top-left); Sim(3) left-invariant geodesic (top-right); centered
transformations with center c in the center of the object (bottom-left); and centered
transformations with center c at the top-right corner (bottom-right). In bottom panels,
the center c is indicated with a dot. A straight dashed-line connecting the top-right
corner of the object from initial to end pose is shown for comparison purposes.
• Left-invariant geodesics on Sim(3): they depend on weighting
factors and on the choice of the object local (body-fixed) frame. It is
important to note that the evolution of the scaling factor s is non-
monotonic along this trajectory, even in the case of a geodesic
connecting two pose elements where the object size is preserved. In
this case, the scale component of the initial velocity would be non-
zero, and statistics are computed on the initial velocity. This is an
undesirable effect when analyzing the pose subcortical brain
structures, because it can be erroneously concluded that there is a
scale difference between two object poses while they actually have
the same size.

• Bi-invariant geodesics on centered transformations: they do not
depend on either reference, or body-fixed frames. Additionally, they
donot dependon theweighting factors (nR,ns andnT). But theydepend
on a center of rotation c that is defined on the body-fixed frame.

In our opinion, the most natural pose characterization for the
application of subcortical nuclei is given by the bi-invariant geodesics
on centered transformations when the center c is appropriately chosen.
For the rest of the paper, only the characterization with centered
transformations was used, with center c defined as the center of mass of
the object.

Bi-invariant mean
Given a set of objects, it is very common to define a center or

representative object of the population under study, e.g. the mean is a
typical choice. Let gi be a set of elements belonging to a Riemannian
manifold M, and d(⋅, ⋅) a distance function, the Karcher mean m is
defined as (Karcher, 1977)

m = argmin
p∈M

∑
i
d2 p; gi
� �

: ð12Þ

WhenM is a Lie group that admits bi-invariant metrics, the Karcher
mean is denoted as bi-invariant mean (Arsigny et al., 2006a), and it can
be computed iteratively as follows (Pennec et al., 2006):

mk+1 = mk∘exp ∑
i
log m−1

k ∘gi
� �� �

: ð13Þ

Further statistical analysis is performed on vectors vi= log(m−1 ∘gi).

Relative pose in multi-object complexes

When dealing with a joint analysis of a set of structures, such as
subcortical nuclei within the brain, the global pose is non-informative
because it mainly depends on external factors, such as patient's pose
within the scanner. However, the relative pose between objects may be
a relevant information, but it was disregarded in many previous
morphometry studies focused on a single brain structure (Styner et al.,
2004; Ho and Magnotta, 2010; Gerardin et al., 2009; Sabattoli et al.,
2008; Thompson et al., 2004).

Global pose accounts for the position and orientation of patients
within the scanner, and head size, which are confounding factors.
Original MR images were aligned to a reference image by means of a
linear transformation (12 degrees of freedom). For each subcortical
structure, residual pose is obtained by means of Procrustes alignment
of the set of surface points. Regarding the scale parameter, a very
common approach is to normalize the point coordinates by the squared-
sum of their values, yielding a representation on the unit 3n-sphere,
where n is the number of points. Note that this scale factor depends on
the number and distribution of the points on the surface. An alternative
scale normalization is used in this work which is more directly related to
the volume of the object: landmark coordinates are divided by the cube
root of the volume yielding a shape description with unit-volume.

The reference object for each subcortical structure kwas defined as
the Procrustes mean shape Mk across subjects (Dryden and Mardia,



Fig. 2. Illustration of the mean pose (and mean shape) of the subcortical nuclei analyzed.

Table 2
Statistical significance (p-value) of the (M)ANCOVA of the subcortical nuclei pose
parameters vs Group variable. Results are given for each pose category and each structure
frombothhemispheres. Shadedcells denote significant values after correction formultiple
comparisons using Bonferroni criterion (pb0.05/42=1.2E−3).
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1998). The pose Ti, k of each structure and each subject i was obtained
by Procrustes alignment with the corresponding mean shape Mk. The
mean pose Tk was computed using Eq. (13). Fig. 2 illustrates the mean
shape at the corresponding mean pose of the selected structures.
Subsequent statistical analysis was performed on vi;k = log T

−1
k ∘Ti;k

� �
,

i.e. after mean pose subtraction, because they belong to an Euclidean

space and their norms are equal to the distances from the group
elements to the overall mean pose.

Statistical analysis

For the statistical analysis, the pose parameters were divided in
three natural categories: rotation, translation and scale. Univariate
(for scale) or multivariate (for rotation and translation) analyses of
covariance (M)ANCOVA were performed in order to identify those
pose parameters showing statistically significant differences between
patient groups. The parameters of each pose category were consid-
ered as dependent variables and the group label was the only
independent variable. Gender, age and handedness were considered
as confounding variables. (M)ANCOVA model assumptions about
homoscedasticity and Gaussianity were checked with Box's M and
Lilliefors tests, respectively.

Correction for multiple comparisons was performed using a
Bonferroni criterion approach. The total number of models was the
product of 3 pose categories and 14 subcortical structures. Accord-
ingly, the p-value threshold was set to 0.05/(3×14)=1.2×10−3.

Note that the MANCOVA was performed on a single tangent space
at the overall mean pose, which is valid when pose variations are
small. A more rigorous approach would be to compute distances on
the tangent space at themean of each group, as it was recently done in
Kendall's shape space (Huckemann et al., 2010).

Classification analysis

The assessment of the discrimination ability of the pose features
was performed using two techniques: standard Linear Discriminant
Analysis (LDA), and Distance-Weighted Discrimination (DWD)
(Marron et al., 2007).

DWD is a method similar to Support Vector Machines (SVMs), but
all sample points are used in the calculation of the discriminating axis.
Each point's contribution to the calculation is weighted inverse
proportionally to the distance from that point to the opposite
population. The DWD achieves a high robustness for high-dimen-
sional feature spaces with low sample sizes (HDLSS). The software for
DWD classification algorithm was downloaded from the author's web
page with suggested parameters. Although pose parameter analysis
does not suffer from HDLSS problem, the total number of pose
parameters in this study was 98 (14 subcortical structures with 7 pose
parameters for each structure), which is pretty high compared to the
number of subjects (188 in the smallest group). It is expected that the
DWD approach will provide a higher generalization and robustness
than LDA.

Four sets of input parameters for the classifiers were defined:

1. The 14 scale factors, because many previous neuroimaging studies
use only volume information for classification: 14 dimensions.

2. The whole set of pose parameters: 7×14=98 dimensions.
3. The scale parameters together with gender, age and APOE

genotype information: 14+3=17 dimensions.
4. The whole set of pose parameters together with gender, age and

APOE genotype information: 98+3=101 dimensions.

Classification performance was assessed by means of cross-
validation on independent training and testing datasets. The training
set (65% of the subjects, 135 NOR, 114 AD, 58 MCIs and 53 MCIc) and
testing set (35% of the subjects, 72 NOR, 62 AD, 31 MCSs and 29 MCIc)
were randomly selected. This random subsampling was repeated 100
times and the average classification accuracy was measured.

Results

MANCOVA

The first experiment was to assess statistically significant
differences in the pose parameters of the subcortical nuclei from the
different patient groups. Table 2 collects the p-values corresponding
to the (M)ANCOVA analysis when comparing groups at different
stages of the neurodegenerative process: NOR vs MCIs, NOR vs MICc
and NOR vs AD. The differences in the MCIs–MCIc comparison were
not statistically significant after correction for multiple comparisons.
For brevity reasons, only the results for the explanatory variables are
given, although the confounding variables gender and age were also
statistically significant in many subcortical structures while

image of Fig.�2
Unlabelled image


Table 3
Difference of normalized volume between patient groups. Shaded cells denote
statistically significant values.
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handedness was not significant for any structure. To facilitate a
comparison with volumetry studies, the average of the normalized
volume difference, volNOR−volpat

� �
= volNOR × 100, is given in Table 3.

In order to provide a rough illustration of the pose differences
between the patient groups, the mean pose of each patient group was
applied to the mean shape of each structure after global alignment.
Fig. 3 shows the contours of the subcortical structures at their mean
pose.

Classification

Regarding the classification analysis, the average accuracy score of
the 100 runs of the cross-validation is shown in Table 4. As expected,
Fig. 3. Illustration of the mean pose of sub
the DWDmethod provided a better generalization than LDA, as can be
seen from the difference of the performance between training and
testing sets. There is a slight improvement of accuracy when
considering the group comparisons in the order of the disease stages
MCIs, MCIc and AD. In general, the introduction of a larger amount of
information (from only the scale parameters to the whole set of pose
parameters together with the demographic information) yields a
slightly improved accuracy performance in both, training and testing
sets. The inclusion of gender, age and genetic information also
increases the accuracy.
Discussion

Volume can be considered as a simple, coarse and intuitive
anatomical descriptor, which is independent of the patient position
within the scanner. Many previous ROI-based volumetry studies
focused on structures such as entorhinal cortex, hippocampus, and
amygdala, which are known to present the largest atrophy at the
earliest stages of the neurodegenerative process (Laakso et al., 1996;
Apostolova and Thompson, 2008). However, it is known that
neurodegeneration spreads over many other regions, in particular
over the structures of the limbic system, such as thalami, which are
reported less frequently. The statistical techniques to assess signifi-
cant volume differences are simple univariate hypothesis tests, and
correction for multiple comparisons is not an issue. However, volume
is an unspecific anatomical descriptor. Recent works show that the
shape of a brain structure can be more useful than the volume for
population studies (Styner et al., 2004; Csernansky et al., 2000).
cortical nuclei for each patient group.

Unlabelled image
image of Fig.�3


Table 4
Classification accuracy for discrimination between patient groups. Format: average (standard deviation) [min, max]. Shaded cells denote accuracy for pose features.
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More complex shape descriptors typically involve vectors of large
dimensionality. For example, shape analysis of a single structure, such
as the hippocampus using coordinates of point sets on the surface as
shape descriptor, requires thousands of parameters. Statistical
analysis on such high dimensional feature space with relatively
small sample size (a few hundreds in the best cases) is problematic.

Relative pose information can be regarded as an interesting trade-
off for the following reasons. First, the dimensionality required in pose
characterization is not very high, just 7 parameters for each structure.
Accordingly, the multiple comparison corrections will not be very
severe. Second, the pose information3 can be considered as a
generalization of volume measurements, because in addition to
volume, it provides information about the location and orientation
of each object. Third, the pose information is complementary to shape,
because the relative pose between structures is typically disregarded
in the alignment stage performed in single-structure shape studies.

In this paper a methodology for analysis of the relative pose
information from a set of brain structures has been presented. A
general framework allowed us to compare several approaches to
perform statistical analysis: pseudo-Riemannian metrics, that were
proposed in Woods (2003) in the context of linear transformations
and in Park (1995); Zefran et al. (1996, 1999) for SE(3) group; Log–
Euclidean framework (Arsigny et al., 2006b); left-invariant Rieman-
nian metrics on the similarity group, which is, to our knowledge, a
novel contribution; and bi-invariant metrics on the group of centered
transformations. The first approach can be related to our previous
work (Bossa and Olmos, 2006), while the latter approach to Styner et
al. (2006); Gorczowski et al. (2010). The comparison of the geodesics
induced us to select the bi-invariant centered transformation
approach for the following reasons: it avoids the undesirable effect
of the non-monotonic trajectories of the scale parameter (see Fig. 1
and discussion below). Moreover, this approach allows a more clear
3 When the scale normalization is selected accordingly.
interpretation of the results because the contribution of each natural
category, either rotation or translation or scale, are independent. It
should be also noted that, to our knowledge, this is the first work
where the pose information provides positive results with clinical
data, because the pose was useless in a longitudinal study of autism
(Styner et al., 2006; Gorczowski et al., 2010) and only normal subjects
were considered in our previous work (Bossa and Olmos, 2006).

The application of the methodology was performed in order to
illustrate the usefulness of the pose information compared to the
volume information in a particular case. To our knowledge, this is the
first study considering the whole set of pose parameters of the
subcortical nuclei as a potential MRI marker of AD. Although the focus
of the paper was devoted to the methodological aspects rather than
extracting of clinical useful knowledge from the analyzed data, some
interesting results were obtained which deserve discussion.

Regarding the group analysis, it can be seen from Table 2 that the
pattern of significant pose differences was different at each group
comparison. At the earliest stage of the disease, represented here by
the NOR–MCIs comparison, statistical differences were found only for
the scale parameter of bilateral hippocampi and thalami. When
comparing NOR–MCIc groups, in addition to the previous differences,
an important asymmetry was found in the left hemisphere because all
subcortical nuclei showed statistically significant translations. It is
interesting to note that this left-hemisphere asymmetry was also
recently reported in Cherbuin et al. (2010). At the latest stage, when
comparing NOR–AD patients, a larger number of subcortical struc-
tures showed significant differences in the scale parameter, but also
interestingly, translations and rotations were significant in both
hemispheres. These pose differences were nicely illustrated in Fig. 3,
showing that while some subcortical structures show pose differences
along the complete time-course of the disease, such as the
hippocampus with an atrophic behavior or caudate nuclei with
translations, other structures only experience pose differences at
specific stages. Even though pose differences in the MCIs–MCIc
comparison were not statistically significant after the correction for

Unlabelled image
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multiple comparisons in this dataset, noticeable pose differences can
be observed in several subcortical structures in Fig. 3, in some cases
almost as large as the ones in the NOR–AD comparison.

On the other hand, Table 3 confirms that the volume of all
subcortical structures were smaller in the pathological than in the
NOR group, confirming that neurodegeneration is linked to atrophy of
subcortical structures. The magnitude of the atrophy increases along
the neurodegenerative process, especially of the hippocampi, with
cross-sectional atrophy values ranging from 8 to 16%, which are in
agreement with the atrophy values reported in the literature
(Apostolova and Thompson, 2008). In contrast, caudate nuclei did
not show significant volume differences at any disease stage, while
presenting significant translation in the left hemisphere for the NOR–
MCIc comparison and translations and rotations in both hemispheres
for the NOR–AD comparison.

Brainmorphometry techniques with better spatial resolution, such
as tensor-based morphometry (Bossa et al., 2010; Hua et al., 2008)
have shown significant patterns of local atrophy affecting several
cortical and subcortical structures. These anatomical changes may be
the origin of the observed significant translation and rotation
differences of structures such as the hippocampi, in addition to the
volume differences. Similarly, significant differences in the translation
of structures such as the caudate nuclei, do not experience significant
atrophy.

Regarding the classification analysis, a very recent study (Cuingnet
et al., in press) compared 10 different methods using the ADNI
database (150 subjects for training and 150 for testing). The methods
included the assessment of cortical thickness, voxel-based methods,
and hippocampus-based approaches. The highest accuracy score for
the NOR–AD classification was achieved by whole-brain methods, up
to 0.81 sensitivity and 0.95 specificity. The hippocampus-based
strategies obtained a similar sensitivity but a lower specificity
(between 0.63 for volume based methods and 0.84 for shape based
methods). In the case of NOR–MCIc, the sensitivity was substantially
lower. In this work, the average accuracy for the NOR–AD classifica-
tion was equal to 0.78 for the pose parameters, and 0.80 when gender,
age and genotype information are considered. The assessment of
accuracy was performed in Cuingnet et al. (in press) and in this work
with independent training and testing datasets. While Cuingnet et al.
(in press) used only a single random allocation of subjects with 50%
for training and testing, 100 random allocations with 65% training
were used here.

Several limitations of this study can be mentioned. Firstly, as the
segmentation of the subcortical nuclei is the starting point, the
segmentation errors will have an important influence in the results.
Secondly, the current work only looked across individuals at a single
snapshot of the evolving process. A longitudinal analysis of the pose
changes would be much more convenient in order to get more
accurate information about the time-course of the disease. Future
studies will be devoted to assess statistical differences between
temporal pose changes between different patient groups. Finally, as
the pose information is only a coarse descriptor of the anatomy and
complementary to shape, better classification results may be obtained
with a method with a joint pose+shape statistical analysis, following
our preliminary work (Bossa and Olmos, 2007).

Conclusions

Amethodology for the analysis of pose informationwas proposed in
this paper. Its application on the ADNI data obtained interesting results
both in a population statistical study aswell as in classification between
control and patient groups. A different pattern of subcortical nuclei pose
changes was found at each patient group comparison, which is in
agreement with the evolution of the disease. In particular significant
differences of translation and rotation parameters were found for NOR
vs MCI-converters comparison. These studies confirm the hypothesis
that the pose information provides a more detailed description of the
anatomical changes induced during the neurodegeneration process
than standard volumetry.
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Appendix A. Left-invariant geodesics on Sim(3)

In Park (1995), geodesics on SE(3) were obtained from the
geodesics on SO(3) andR3 using the following theorem: letM1 andM2

be two Riemannian manifolds, and let π :M1→M2 be a smooth
covering map and a local isometry (i.e. a Riemannian covering map),
then π maps geodesics into geodesics (Gallot et al., 1987). The
mapping πl (πr) for left- (right) invariant metrics, for the SE(3) case, is
given by

πl
R b
0T 1

� �� �
= R;bð Þ; πr

R b
0T 1

� �� �
= R;RTb
� �

; ðA:1Þ

where M1≡SE(3) with the left-(right-)invariant metric having a
block-scalar metric tensor at the identity andM2≡SO 3ð Þ × R3 with the
usual bi-invariant metric.

In the case of Sim(3), geodesics can be obtained using an
equivalent approach. Let ST(n) be the group of translation and scaling
in Rn, which elements are matrices of the form

Ts;b =
sIn b
0T 1

� �
ðA:2Þ

where b∈Rn, s∈Rþ. Then, the mapping πl :Sim(3)→SO(3)×ST(3)
given by

πl
sR b
0T 1

� �� �
= R; Ts;b
� �

ðA:3Þ

is a Riemannian covering map when Sim(3) and ST(3) are equipped
with block-scalar left-invariant metrics, and SO(3) with a bi-invariant
metric. Therefore, geodesics on Sim(3) are the liftings of the geodesics
on SO(3)×ST(3).

The geodesics on ST(3) can be obtained from geodesics on ST(1) as
follows: ST(1) equipped with a left-invariant metric is equivalent to
the Poincaré half-plane model (Stahl, 1993), that consists in the upper
half of the complex plane (x+ iy, yN0, x,y∈ℝ) with a metric given by
((dx)2+(dy)2)/y2. Geodesics in this space are given by vertical lines
ending in the real axis x+ iyet and half-circles whose origins are on
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the x-axis. All geodesics can be written as (aeti+b)/(ceti+d), where
a,b,c,d∈ℝ and ad−bcN0. Let b+ is→Ts, b be the isomorphism
between a complex number in the Poincaré half-plane model and a
matrix on ST(1). The distance between T1=Ts1,b1 and T2=Ts2,b2 is
given by

d T1; T2ð Þ = arccosh 1 +
b2−b1ð Þ2 + s2−s1ð Þ2

2s1s2

 !
: ðA:4Þ

It can be easily seen that a left-invariant geodesic on ST(n)
connecting T1=Ts1,b1 and T2=Ts2,b2 is given by Ts tð Þ;b1 + r tð Þ r̂, where
r̂ = b2−b1ð Þ= r, r=‖b2−b1‖, and γ(t)=r(t)+ is(t) is the geodesic
in the Poincaré half-plane model connecting γ(0)≡ is1 and γ(1)≡r+
is2.
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