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Abstract

Most studies evaluating Alzheimer’s disease (AD) biomarkers longitudinally have studied patients 

with mild cognitive impairment (MCI) who progress to AD; data on normal subjects are scarce. 

We studied which biomarkers best predict cognitive decline on the Alzheimer’s Disease 

Assessment Scale-Cognitive Subscale (ADAS-Cog) among those with normal cognition at 

baseline, and derived cut points to predict decline. We studied 191 subjects in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) who had normal cognition at baseline, 2 + visits (mean 

follow-up 3.1 years), and data on neuropsychological tests, cerebrospinal fluid (CSF) biomarkers, 

and structural MRI. We used repeated measures linear regression of log ADAS-Cog on age, race, 

gender, education, APOE4 status, baseline biomarker values, and follow-up time; an interaction 

between biomarker and time assessed predictive power. Neuropsychological tests did not 

significantly predict ADAS-Cog decline, while both MRI variables and CSF biomarkers did; CSF 

markers were the strongest predictors. Optimal cut points for baseline CSF markers to distinguish 

decliners were < 220 pg/ml (Aβ42), ≥61 pg/ml (t-tau), ≥21 pg/ml (p-tau), ≥0.31 (t-tau/Aβ42), and 

≥0.10 (p-tau/Aβ42). For progression to MCI/AD (n = 28), the best markers were t-tau, t-tau/Aβ42, 

and p-tau/Aβ42, with optimal cut points of 58, 0.31, and 0.08, respectively. The optimal cut points 

across all markers and cut points predicted decline in ADAS-Cog, as well as transition to MCI, 

with a 65% accuracy. Our findings support current models of AD progression and suggest it is 

feasible to establish biomarker criteria to predict cognitive decline in individuals with normal 

cognition. Larger studies will be needed to more accurately characterize optimal cut points.
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INTRODUCTION

There is increasing consensus among Alzheimer’s disease (AD) investigators that clinical 

dementia represents a late stage of illness emerging many years after the first development 

of pathological changes. Based on a growing body of biomarker evidence, Jack et al. [1] 

proposed a model for the temporal sequence of pathological and clinical changes, and a 

recent revision of this model incorporates additional new evidence [2]. The model 

establishes a hypothetical framework for biomarker changes in the course of disease, relying 

on results from several studies including the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI). These longitudinal studies have established the utility of cerebrospinal fluid (CSF) 

and neuroimaging measures for identifying the presence of AD pathology and for predicting 

the progression from mild cognitive impairment (MCI) to AD dementia [3, 4].

Improving the diagnostic accuracy for AD and establishing the etiological diagnosis for 

MCI represent important advances, but there is an increasingly urgent need to develop 

predictors of AD during presymptomatic stages. Failures of recent late-stage trials of 

disease-modifying drugs targeting the amyloid-β peptide (Aβ42) may have been due to their 

application too late in the course of disease. Neuroimaging [4–6], CSF [7, 8], and 

pathological studies [9–12] suggest that changes in Aβ42 occur very early in the evolution of 

AD, and anti-Aβ42 therapeutics may not be effective in symptomatic stages of disease when 

Aβ42 accumulation has already plateaued.

Unfortunately, there is a paucity of data regarding biomarker changes in older adults with 

normal cognition at baseline. Gustafson et al. [13] and Stomrud et al. [14] studied small 

numbers of non-demented subjects (n = 55 and n = 57, respectively), and found that Aβ42 

and tau predicted decline in the Mini-Mental Status Exam (MMSE) and clinically significant 

memory impairment over a 10-year and 3-year period, respectively. Jack et al. [15] studied 

116 ADNI subjects with normal cognition at baseline over a one-year follow-up period and 

found an increase in t-tau among cognitively normal individuals but no changes in CSF 

Aβ42 or hippocampal volume. Lo et al. [16] also studied cognitively normal ADNI 

participants at baseline, but data on CSF biomarkers was limited to 36 normal subjects with 

a 3-year maximum follow-up. These studies support the concept of stage-specific biomarker 

changes, but models have not been developed to predict future decline among cognitively 

normal individuals in relation to biomarker values.

In the current study, we examined the potential for baseline values of neuropsychological 

tests, CSF biomarkers, and brain volumes to predict decline among individuals with normal 

cognition at baseline. We studied 191 ADNI subjects who were followed for a mean of 3.1 

years, and had complete data on cognitive tests, neuroimaging, and CSF biomarkers. We 

determined which of these indices individually predicted decline on the Alzheimer’s Disease 

Assessment Scale-Cognitive Subscale (ADAS-Cog), and estimated cut points for the 

biomarkers that best predicted cognitive decline.
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METHODS

Data used in the preparation of this article were obtained from the ADNI database (http://

adni.loni.usc.edu/). The ADNI was launched in 2003 by the National Institute on Aging 

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food 

and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5-year public-private partnership. The primary goal of 

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography, other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of MCI and early AD. Determination of sensitive 

and specific markers of very early AD progression is intended to aid researchers and 

clinicians to develop new treatments and monitor their effectiveness, as well as lessen the 

time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California–San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1,500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally 

recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-

date information, see http://www.adni-info.org/.

All ADNI CSF samples are collected according to a standard protocol (http://www.adni-

info.org/Scientists/Pdfs/CSFBiomarkerTestInstr.pdf) and are then sent to a central location 

for analysis (ADNI Biomarker Core, University of Pennsylvania Medical School) for 

analysis, using methods described in the literature [17]. Test-retest R-squares have been high 

at the ADNI Biomarker Core, typically on the order of 90% or higher, depending on the 

marker (http://www.alz.org/research/funding/partnerships/2013meeting/5-biomarkers-core-

adni.pdf)

In the ADNI database, there were 391 subjects who were cognitively normal at baseline, and 

had two or more follow-up visits. Of these, 191 had complete data on cognitive tests, APOE 

status, CSF biomarker concentrations, and brain volumetric measurements at baseline, as 

well as ADAS-Cog scores over time. These subjects were included in the study (Table 1).

The cognitive tests for which there were complete data were the MMSE [18], Trails A and B 

[19], Animal Fluency [20], American National Adult Reading Test [21], Rey Auditory 

Verbal Learning Test [22], Boston Naming Test [23], and Weschsler Logical Memory [24]. 

We also included the Functional Activities Questionnaire [25] as a measure of the ability to 

perform instrumental activities of daily living. Complete or nearly complete data were also 

available for the CSF markers (Aβ42, t-tau, p-tau, t-tau/Aβ42, and p-tau/Aβ42). Three persons 

were missing data on t-tau, and these individuals were omitted in analyses of t-tau and the t-
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tau/Aβ42 ratio. For brain structure, data were available for total brain volume, ventricular 

volume, and right and left hippocampal volume. Five persons were missing data on 

hippocampal volume, and these individuals were omitted in the analyses for that biomarker.

ADAS-Cog is an integer ranging from 0 to 70 [26]; here we treated it as continuous. The 

mean score in our sample at baseline was 6.3 (s.d. 3.0). Figure 1 shows the distribution of 

ADAS-Cog scores at baseline (n = 191). Log[ADAS-Cog] was distributed more normally 

than ADAS-Cog itself, and this was used as the outcome for regression models. Conversion 

to MCI was relatively rare during follow-up (28/191, 15%), and we thus preferred a 

continuous variable as a more sensitive measure of decline than conversion to MCI. 

However, we also ran supplementary analyses using conversion to MCI as the outcome.

We used repeated measures linear regression (PROC MIXED, SAS) of log[ADAS-Cog] on 

age, race, gender, years of education, APOE4 status, and baseline values of biomarkers 

(each separately), as well as a continuous variable for time in months (visits were every 6 

months until 12 months, and yearly thereafter). The ability of a biomarker to predict decline 

was assessed by an interaction term between the baseline value of the biomarker and time. 

We used an exchangeable correlation matrix to account for the association between data 

points for the same subject. Subjects had a minimum of 2 visits and a maximum of 9 visits 

(median = 5). Follow-up continued until the last visit in these analyses.

To determine optimal cut points for variables which predicted an increase (worsening) of 

log[ADAS-Cog] over time, we iteratively separated the subjects into two groups using 

different cut points for the baseline values of each predictor, and ran separate models for 

each group. We did this until we found the cut point for each biomarker separately which 

best divided subjects into two groups: an affected group which showed the maximum 

possible decline during follow-up (always > 12%), while at the same time defining an 

unaffected group which showed no appreciable (always ≤ 3%) change over follow-up. These 

cut points were model-based and hence ‘adjusted for’ or ‘averaged over’ demographic 

variables such as gender, age, race, and education, as well as APOE status. An additional 

search for model-free cut points, that might incorporate more than one predictor, was 

conducted using a classification tree algorithm, Classification and Regression Trees (CART) 

[27], implemented in R [28]. The CART algorithm selects optimal cut points by recursively 

partitioning the observations to achieve the maximum reduction in the Gini index, a measure 

of disparity between the predicted and observed values. The CART cut points were not 

adjusted for demographic covariates; however, we also tried adding dichotomous 

demographic variables for age, gender, race, and education to the CART trees.

We conducted supplementary analyses, using survival analysis (SAS PHREG), in which the 

outcome was defined as a transition to MCI (n = 25) or AD (n = 3) during follow-up 

(dichotomous outcome). The same set of predictor variables was used as in the ADAS-Cog 

analysis. Time in this analysis was follow-up time. Follow-up in these analyses stopped at 

last visit, or at time of transition. The predictive value of the baseline biomarker was 

assessed by its p-value in the model. Optimal cut points for predicting progression to MCI or 

AD were determined by simple trial and error using cut points suggested by the survival 
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analysis (after dichotomizing biomarkers to maximize the odds ratio for transition to MCI or 

AD), and also by the use of the same CART algorithm described above.

RESULTS

Table 1 provides descriptive variables for the data set. The 191 individuals averaged 3.1 

years of follow-up (sd 2.3). Overall, ADAS-Cog scores worsened an average of 7.5% over 3 

years (p = 0.0007), adjusted for covariates (Table 2). Forty-four (23%) individuals had 

ADAS-Cog total scores which increased by 3 or more points (1 s.d.) over follow-up (32% 

increase over 3 years, based on model prediction).

Dividing the group into decliners and non-decliners (ADAS-Cog change >0 versus ≤0), 88 

(46%) subjects declined over time, while 103 (54%) did not. Based on the model, the 

predicted increase in ADAS-Cog over three years was 24% (<0.0001) for the decliners, and 

the predicted decrease among non-decliners was 10% (p = 0.0007). Through follow-up, 163 

patients remained classified as cognitively normal while 25 and 3 patients converted to MCI 

and AD, respectively.

Table 2 illustrates results for the basic model with demographic variables at baseline, APOE 

status, and the variable for time of follow-up. Greater age at baseline, male gender, lower 

education, and presence of the APOE4 variant predicted higher (worse) ADAS-Cog scores 

over all follow-up times. Race was not a significant predictor of ADAS-Cog (partly due to 

the small number of non-whites), but was nevertheless retained in all models. The variable 

for time reflects change in ADAS-Cog over follow-up. There was a significant worsening 

over time, reflected in a positive coefficient for the time variable, which was highly 

significant.

Table 3 summarizes those predictors which interacted significantly (at p ≤ 0.05) with the 

time variable, indicating a significant difference in change over time between those with 

different baseline levels of these variables. In all cases, the direction of the interaction 

conformed to what would be expected, i.e., those with lower values of Aβ42 worsened on 

ADAS-Cog over time more than those with higher values of Aβ42. In general the cognitive 

tests at baseline did not predict cognitive decline, with the exception of category fluency, 

which had borderline significance (p = 0.05). Three of four variables for brain structure at 

baseline all predicted decline, with p-values of about 0.01. The strongest predictors of 

decline, with the lowest p-values for the interaction term, were the CSF biomarkers Aβ42, p-

tau, and p-tau/Aβ42 (p = 0.0007, 0.006 and 0.003, respectively). CSF t-tau and t-tau/Aβ42 

also predicted decline (p = 0.04 and 0.01, respectively) but less robustly than other CSF 

measures.

Table 4 shows the optimal cut points and the predicted change in ADAS-Cog scores over 3 

years for different biomarkers, each considered separately. The cut points were chosen to 

divide subjects into two groups: those whose cognition got worse over follow-up and those 

who did not. We defined these two groups as 1) those whose ADAS-Cog scores worsened 

>10% over time, and 2) those without appreciable change in ADAS-Cog scores over time. 

An additional search for cut points without using the regression model, and potentially 
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incorporating more than one predictor, was conducted using CART. The search led to the 

cut points using t-tau and right hippocampal volume, which best predicted decline versus 

non-decline with 65% accuracy, 74% sensitivity, and 57% specificity. Those with t-tau ≥85 

and those with 52 ≤ t-tau <85 and right hippocampal volume <3900 mm3 were predicted to 

decline, while those with the converse were predicted to not decline. Adding demographic 

variables to the cut points did not improve prediction.

In supplementary analyses, we modeled the transition to MCI or AD among those normal at 

baseline. We found that t-tau (p = 0.03), t-tau/Aβ42 (p = 0.06), and p-tau/Aβ42 (p = 0.04), 

were the only significant (or borderline significant) predictors of transition to MCI/AD. We 

then searched for optimal cut points using the model. The model-based optimal cut points 

were reasonably similar to the optimal cut points associated with worsening on ADAS-Cog, 

i.e., t-tau ≥ 58, t-tau/Aβ42 ≥ 0.31, and p-tau/Aβ42 ≥ 0.08. The rate ratios for those with levels 

higher than the cut points vs. those below the cut points were 2.88 (p = 0.04), 3.72 (p = 

0.007), and 1.57 (p = 0.36), respectively, suggesting that the t-tau/Aβ42 ratio was the marker 

for which the most discriminatory cut point could be derived to differentiate persons with 

greatest risk of transition to MCI or AD. The above results did not change when we omitted 

the 3 cases in which normal subjects progressed directly to AD. Trying various cut points of 

t-tau/Aβ42 (not model-based, without adjusting for demographics), we found that a cut point 

of t-tau/Aβ42 ≥ 0.34 was best, predicting transition to MCI with 65% accuracy, 68% 

sensitivity, and 64% specificity. Using additional biomarker predictors or demographics did 

not improve this prediction.

DISCUSSION

Development of tools to predict AD represents an essential step in therapeutic strategies to 

ameliorate, delay, or prevent disease. Recent advances in the application of biomarkers have 

changed our conceptualization of early cognitive decline, and MCI due to AD has emerged 

as a specific etiological diagnosis [29]. We also recognize, however, that even the earliest 

symptomatic stages likely emerge only after AD pathology has advanced over the course of 

many years [1, 2]. Changes in CSF markers, in vivo amyloid imaging, and functional 

imaging studies have been demonstrated in groups at high risk for AD [1, 2], but to date we 

cannot accurately predict development of cognitive decline in asymptomatic individuals. 

While longer follow-up in larger cohorts will be needed to establish reliable criteria, our 

findings suggest that predicting decline in cognitively normal individuals may be possible 

using currently available biomarkers.

In this study, we emphasize ADAS-Cog as our main outcome measure rather than transition 

from normal to MCI or AD. The latter, while arguably preferable because of the clearly 

defined clinical endpoint, was less powerful and less sensitive than analyses of ADAS-Cog 

because transitions were relatively rare (15%) and because transition is a dichotomous rather 

than a continuous measure. Among those who were judged to be cognitively normal at 

baseline, the strongest predictors of decline on the ADAS-Cog were CSF biomarkers, but 

volumetric MRI measures were also predictive. Among cognitive tests, only category 

fluency reached borderline significance.
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Our data suggest it may be possible to define cut points for baseline values of predictive 

biomarkers which separate cognitively normal individuals into those predicted and not 

predicted to decline cognitively over time. The cutpoints suggested here are based on results 

from the single centralized ADNI laboratory [17]. An inter-laboratory comparison, including 

the ADNI central laboratory, using uniform methods, suggested reasonably low intra and 

inter-lab variability [30]. However our suggested cutpoints may not be applicable to other 

labs using different collection and analysis procedures.

Few such cut points have been published in the literature, and most focus on differentiating 

AD patients versus either MCI or normal subjects. Shaw et al. [31] published cut points for 

differentiating normal subjects from AD patients, based on the same central ADNI lab used 

here. These cut points for Aβ42, t-tau, p-tau, t-tau/Aβ42, and p-tau/Aβ42 were < 192 pg/ml, > 

93 pg/ml, > 23 pg/ml, > 0.39, and 0.10, respectively. Our cut points for predicting decline in 

ADAS-Cog among cognitively normal individuals were in most cases less extreme (Aβ42 < 

220 pg/ml, t-tau ≥ 61 pg/ml, t-tau/Aβ42 > 0.30, p-tau/Aβ42 ≥ 0.10). In general, these cut 

points tended to divide the group approximately in half, which is logical given that ADAS-

Cog scores worsened in about half over time, while the other half remained unchanged or 

improved. Our best cut points based on transition to MCI or AD were also less extreme (t-

tau > 58 pg/ml, p-tau ≥ 21 pg/ml, t-tau/Aβ42 > 0.31, and p-tau/Aβ42 > 0.08) than those that 

discriminate individuals with AD from those with normal cognition or MCI. This finding 

might be expected in that those who have already transitioned to MCI as a group are 

expected to have worse values of biomarkers than normal individuals, and cut points for 

further transition to AD might be expected to be more extreme. It is interesting to note that 

baseline CSF measures incorporating Aβ42 (i.e., Aβ42 level and p-tau/Aβ42 ratio) most 

strongly predicted decline on the ADAS-Cog while CSF tau levels played a greater role in 

predicting transitions from normal cognition to MCI or AD. This suggests that Aβ42 may 

serve as an early marker of initial cognitive decline, but tau may be a better predictor of later 

clinical progression. This analysis was based on very small numbers of transitions (25 MCI, 

3 AD) and warrants further examination. Nevertheless, our findings are consistent with 

hypothetical models in which changes in tau reflect a later stage of AD progression than 

Aβ42.

Future studies over longer periods in larger cohorts should be able to more accurately 

determine optimal cut points to predict initial cognitive decline as well as transition of 

cognitively normal individuals to MCI and AD. It is encouraging to note that reasonably 

accurate predictions appear feasible using commonly available biomarkers. Refinement of 

these studies as well as incorporation of additional biomarkers will support the design of 

trials that push interventions to asymptomatic stages of AD during which they may be more 

effective in modifying the course of disease.
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Fig. 1. 
Distribution of ADAS-Cog at baseline.
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Table 1

Descriptive statistics, baseline values for patients normal at baseline (n = 191)

All (n = 191) No Conversion (n = 163) Conversion to MCI or AD (n = 
28)

p value conversion 
versus no conversion

Age, years 74.5 ± 5.5 74.3 ± 5.5 75.9 ± 5.2 0.16

Male gender, n (%) 98 (51%) 82 (50%) 16 (57%) 0.50

White, n (%) 178 (93%) 155 (95%) 23 (82%) 0.01

Years schooling 16.1 ± 2.7 16.1 ± 2.8 15.7 ± 2.5 0.43

APOE ε4 carriers 44 (23%) 37 (23%) 7 (25%) 0.79

FAQ ≥ 1 18 (9%) 12 (7%) 6 (21%) 0.02

ADAS-cog Total 6.3 ± 3.0 6.1 ± 3.1 7.2 ± 2.7 0.09

Cognitive tests

Mini-cog 5.3 ± 0.9 5.4 ± 0.9 5.2 ± 0.9 0.27

MMSE 29.0 ± 1.1 29.0 ± 1.1 29.2 ± 0.8 0.44

ANART, # errors 9.8 ± 7.9 9.4 ± 7.6 12.3 ± 9.1 0.07

AVLT trial 5 11.0 ± 2.4 11.2 ± 2.3 10.0 ± 2.3 0.01

AVLT Short Recall 8.1 ± 3.2 8.4 ± 3.2 6.6 ± 2.8 0.01

Animal Fluency 20.2 ± 5.5 20.5 ± 5.6 18.5 ± 4.7 0.07

Trails A (secs) 35.3 ± 11.8 34.8 ± 10.8 38.1 ± 16.6 0.18

Trails B (secs) 86.1 ± 42.1 84.7 ± 42.5 94.2 ± 39.4 0.28

Logical memory

 Immediate 13.8 ± 3.4 14.1 ± 3.3 12.3 ± 3.5 0.01

 Delayed 13.0 ± 3.4 13.3 ± 3.2 11.2 ± 4.0 0.00

 Boston Naming 27.9 ± 2.3 28.1 ± 2.2 26.9 ± 2.8 0.02

Brain volume measures

Whole-brain (mm3) 1,059,037 ± 106,185 1,060,978 ± 107,004 1,047,738 ± 102,419 0.55

Ventricle (mm3) 35956 ± 19092 35233 ± 18900 40167 ± 20006 0.21

L.Hippocampus (mm3) 3618 ± 412 3631 ± 414 3546 ± 402 0.32

R.Hippocampus (mm3) 3670 ± 446 3688 ± 434 3564 ± 502 0.17

Cerebrospinal fluid

tau (pg/mL) 71.4 ± 30.7 69.5 ± 30.3 82.3 ± 31.3 0.04

p-tau (pg/mL) 23.5 ± 11.6 22.8 ± 10.8 27.3 ± 15.1 0.06

Aβ42 (pg/mL) 218.4 ± 63.6 221.9 ± 63.5 197.5 ± 61.4 0.06

tau/Aβ42 ratio 0.38 ± 0.26 0.36 ± 0.25 0.48 ± 0.30 0.03

p-tau/Aβ42 ratio 0.13 ± 0.10 0.12 ± 0.09 0.17 ± 0.16 0.01

AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ANART, American National Adult Reading 
Test; AVLT, Rey Auditory Verbal Learning Test; FAQ, Functional Activities Questionnaire; MCI, mild cognitive impairment; MMSE, Mini-
Mental Status Exam.
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Table 2

Estimated parameters from regression model for change in log ADAS-Cog over follow-up, for those normal at 

baseline

Effect Parameter estimate Difference per 1-unit increase, % p value

Age, 10 years 0.15 ± 0.05 16.1 0.0031

Male gender 0.19 ± 0.06 20.5 0.0009

Race, white 0.05 ± 0.11 4.9 0.6528

Education, years −0.03 ± 0.01 −3.1 0.0023

APOE ε4 carriers 0.14 ± 0.06 14.9 0.0273

Visit time (in months) 0.002 ± 0.00 0.2 0.0007
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Table 3

Summary of interaction models*

Interaction Terms p value#

Cognitive test

 Animal Fluency*visit 0.05

Brain volumetric measures

 Whole-brain volume*visit 0.02

 L hippocampal volume*visit (n = 186) 0.02

 R hippocampal volume*visit (n = 186) 0.008

Cerebrospinal fluid

 tau*visit (n = 188) 0.04

 p-tau*visit 0.006

 Aβ42*visit 0.0007

 tau/Aβ42*visit (n = 188) 0.01

 p-tau/Aβ42*visit 0.003

#
These models included an interaction term between the marker and the variable for time. The p value is the p-value of the interaction term. A 

significant interaction means that the decline over time depends on the level of the baseline value of the biomarker.
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Table 4

Predicted 3-year change in ADAS-cog stratified by optimal cut points of predictors*

3-year % Change in ADAS-Cog p value

Cognitive test

Animal fluency

 <22 (n = 110) 12.4 <0.0001

 ≥22 (n = 81) −0.2 0.96

Brain volumetric measures

Whole-brain volume

 <1,080,000mm3 (n = 104) 14.8 <0.0001

 ≥1,080,000mm3 (n = 87) 0 0.99

L-hippocampal volume, mm (n = 186)

 <3,600 mm3 (n = 88) 14.2 <0.0001

 ≥3,600 mm3 (n = 98) 2.1 0.45

R hippocampal volume, mm (n = 186)

 <3,700 mm3 (n = 95) 13.5 <0.0001

 ≥3,700 mm3 (n = 91) 1.9 0.51

Cerebrospinal Fluid

Total tau (n = 188)

 ≥61 (n = 91) 13.6 <0.0001

 <61 (n = 91) 1.3 0.68

p-tau

 ≥21 (n = 89) 13.1 <0.0001

 <21 (n = 102) 1.4 0.64

Aβ42

 <220 (n = 90) 16.7 <0.0001

 ≥220 (n = 101) −0.2 0.95

Total tau/Aβ42 ratio (n = 188)

 ≥0.31 (n = 89) 16.0 <0.0001

 <0.31 (n = 99) 0.1 0.98

p-tau/Aβ42 ratio

 ≥0.10 (n = 85) 16.1 <0.0001

 <0.10 (n = 106) 0.4 0.88

*
Based on iteratively choosing cut points for each individual marker, and running survival analyses for each of the two resulting groups, in which 

3-year percent change is predicted via the coefficient for ‘time’. All models adjusted for age, race, gender, education, and APOE status.
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