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Abstract

In this work, we formulate a clustering-induced multi-task learning method for feature selection in 

Alzheimer’s Disease (AD) or Mild Cognitive Impairment (MCI) diagnosis. Unlike the previous 

methods that often assumed a unimodal data distribution, we take into account the underlying 

multipeak1 distribution of classes. The rationale for our approach is that it is likely for 

neuroimaging data to have multiple peaks or modes in distribution due to the inter-subject 

variability. In this regard, we use a clustering method to discover the multipeak distributional 

characteristics and define subclasses based on the clustering results, in which each cluster covers a 

peak. We then encode the respective subclasses, i.e., clusters, with their unique codes by imposing 

the subclasses of the same original class close to each other and those of different original classes 

distinct from each other. We finally formulate a multi-task learning problem in an ℓ2,1-penalized 

regression framework by taking the codes as new label vectors of our training samples, through 

which we select features for classification. In our experimental results on the ADNI dataset, we 

validated the effectiveness of the proposed method by achieving the maximal classification 

accuracies of 95.18% (AD/Normal Control: NC), 79.52% (MCI/NC), and 72.02% (MCI 

converter/MCI non-converter), outperforming the competing single-task learning method.

1 Introduction

From a computational modeling perspective, while the feature dimension of neuroimaging 

data is high in nature, we have a very limited number of observations/samples available. 

This so-called “small-n-large-p” problem has been of a great challenge in the field to build a 

robust model that can correctly identify a clinical label of a subject, e.g., AD, MCI, Normal 

Control (NC) [10]. For this reason, reducing the feature dimensionality, by which we can 

mitigate the overfitting problem and improve a model’s generalizability, has been 

considered as a prevalent step in building a computer-aided AD diagnosis system as well as 

neuroimaging analysis [6]. On the other hand, pathologically, since the disease-related 

atrophy or hypo-metabolism could happen in the part of a Region Of Interest (ROI), or 

cover small regions of multiple ROIs, it is difficult to predefine ROIs, and thus important to 

consider the whole brain features and then select the most informative ones for better 

diagnosis.

1Even though the term of “multimodal distribution” is generally used in the literature, in order to avoid the confusion with the 
“multimodal” neuroimaging, we use the term of “multipeak distribution” throughout the paper.
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The main limitation of the previous methods of Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA), and an embedded method such as ℓ1-penalized 

regression model is that they consider a single mapping or a single weight coefficient vector 

in reducing the dimensionality. But, if the underlying data distribution is not unimodal, e.g., 

mixture of Gaussians, then these methods would fail to find the proper mapping or 

weighting functions, and thus result in performance degradation. In this regard, Zhu and 

Martinez proposed a Subclass Discriminant Analysis (SDA) [12] that first clustered samples 

of each class and then reformulated the conventional LDA by regarding clusters as 

subclasses. Recently, Liao et al. applied the SDA method to segment prostate MR images 

and showed the effectiveness of the subclass-based approach [5].

In this paper, we propose a novel method of feature selection for AD/MCI diagnosis by 

integrating the embedded method with the subclass-based approach. The motivation of 

clustering samples per class is the potential heterogeneity within a group, which may result 

from (1) a wrong clinical diagnosis; (2) different sub-types in AD (e.g., amnestic/non-

amnestic); (3) conversion of MCI non-converter or NC to AD after the follow-up time. 

Specifically, we first divide each class into multiple subclasses by means of clustering, with 

which we can approximate the inherent multipeak data distribution of a class. Note that we 

regard each cluster as a subclass by following Zhu and Martinez’s work [12]. Based on the 

clustering results, we encode the respective subclasses with their unique codes, for which we 

impose the subclasses of the same original class close to each other and those of different 

original classes distinct from each other. By setting the codes as new labels of our training 

samples, we finally formulate a multi-task learning problem in an ℓ2,1-penalized regression 

framework that takes into account the multipeak data distributions, and thus help enhance 

the diagnostic performances.

2 Materials and Image Processing

We use the ADNI dataset publicly available on the web2. Specifically, we consider only the 

baseline Magnetic Resonance Imaging (MRI) and 18-Fluoro-DeoxyGlucose (FDG) Positron 

Emission Tomography (PET) data acquired from 51 AD, 99 MCI, and 52 NC subjects. For 

the MCI subjects, they were further clinically subdivided into 43 MCI Converters (MCI-C) 

and 56 MCI Non-Converters (MCI-NC), who progressed and did not progress to AD in 18 

months, respectively.

The MR images were preprocessed by applying the prevalent procedures of Anterior 

Commissure (AC)-Posterior Commissure (PC) correction, skull-stripping, and cerebellum 

removal. Specifically, we used MIPAV software3 for AC-PC correction, resampled images 

to 256×256×256, and applied N3 algorithm [8] for intensity inhomogeneity correction. 

Then, structural MR images were segmented into three tissue types of Gray Matter (GM), 

White Matter (WM) and CSF with FAST in FSL package4. We finally parcellated them into 

93 ROIs by warping Kabani et al.’s atlas [4] to each subject’s brain space. Regarding FDG-

PET images, they were rigidly aligned to the respective MR images, and then applied 

2Available at ‘http://www.loni.ucla.edu/ADNI’
3Available at ‘http://mipav.cit.nih.gov/clickwrap.php’
4Available at ‘http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’
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parcellation propagated from the atlas by registration. For each ROI, we used the GM5 

tissue volume from MRI, and the mean intensity from FDG-PET as features. Therefore, we 

have 93 features from an MR image and the same dimensional features from an FDG-PET 

image.

3 Method

Throughout the paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its 

i-th row and j-th column are denoted as xi and xj, respectively. We further denote the 

Frobenius norm and ℓ2,1-norm of a matrix X as  and 

, respectively, and the ℓ1-norm of a vector as ||w||1 = Σi |

wi|.

3.1 Preliminaries

Let X ∈ RN×D and y ∈ RN denote, respectively, the D neuroimaging features and clinical 

labels of N samples. Assuming that the clinical label can be represented by a linear 

combination of the neuroimaging features, many research groups have utilized a least square 

regression model with various regularization terms. In particular, despite its simple form, the 

ℓ1-penalized linear regression model has been widely and successfully used in the literature 

[1, 11], as formulated as follows:

(1)

where λ1 denotes a sparsity control parameter. Since this method finds a single optimal 

weight coefficient vector w that regresses the target response vector y, it is classified into a 

single-task learning (Fig. 1(a)) in machine learning.

If there exists additional class-related information, then we can further extend the ℓ1-

penalized linear regression model into a more sophisticated ℓ2,1-penalized one as follows:

(2)

where Y = [y1, · · ·, yS] ∈ RN×S is a target response matrix, W = [w1, · · ·, wS] ∈ RD×S is a 

weight coefficient matrix, S is the number of response variables, and λ2 denotes a group 

sparsity control parameter. In machine learning, this framework is classified into a multi-

task learning6 (Fig. 1(b)) because it needs to find a set of weight coefficient vectors by 

regressing multiple response values, simultaneously.

5Based on the previous studies that showed the relatively high relatedness of GM compared to WM and CSF, we use only features 
from GM in classification.
6To regress each response value is considered as a task.
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3.2 Clustering-Induced Multi-task Learning

Because of the inter-subject variability [3, 7], it is likely for neuroimaging data to have 

multiple peaks in distribution. In this paper, we argue that it is necessary to consider the 

underlying multipeak data distribution in feature selection. To this end, we propose to divide 

classes into subclasses and to utilize the resulting subclass information for guiding feature 

selection by means of a multi-task learning.

To divide the training samples of each original class into their respective subclasses, we 

exploit a clustering technique. Specifically, thanks to its simplicity and computational 

efficiency, especially in a high dimensional space, we use a K-means algorithm. Note that 

the resulting clusters are regarded as subclasses, following Zhu and Martinez’s work [12]. 

We then encode the subclasses with their unique labels, for which we use discriminative 

sparse codes to enhance classification performance. Let K(+) and K(−) denote, respectively, 

the number of clusters/subclasses for the original classes of ‘+’ and ‘−’. Without loss of 

generality, we define sparse codes for the subclasses of the original classes of ‘+’ and ‘−’ as 

follows:

(3)

(4)

where l ∈ {1, · · ·, K(+)}, m ∈ {1, · · ·, K(−)}, 0K(+) and 0K(−) denote, respectively, zero row 

vectors with K(+) and K(−) elements, and  and  denote, 

respectively, indicator row vectors in which only the l-th/m-th element is set to 1/−1 and the 

others are 0. Thus, the full code set is defined as follows:

(5)

Fig. 2 presents a simple toy example of finding subclasses and defining the respective sparse 

code vectors. It is noteworthy that in our sparse code set, we reflect the original label 

information to our new codes by setting the first element of the sparse codes with their 

original label. Furthermore, by setting the indicator vectors  and  to be 

positive and negative, respectively, the distances become close among the subclasses of the 

same original class while distant among the subclasses of the different original classes.

Using the newly defined sparse codes, we assign a new label vector yi to a training sample xi 

as follows:

(6)

where yi ∈ {+, −} is the original label of the training sample xi, and γi denotes the cluster to 

which the sample xi was assigned by the K-means algorithm. In this way, we extend the 

original scalar labels of +1 or −1 into sparse code vectors in .
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Thanks to our new sparse codes, it becomes natural to convert a single-task learning in Eq. 

(1) into a multi-task learning in Eq. (2) by replacing the original label vector y in Eq. (1) 

with a matrix . Therefore, we have now (1 + K(+) + 

K(−)) tasks. Note that the task of regressing the first column response vector y1 corresponds 

to our binary classification problem between the original classes of ‘+’ and ‘−’. Meanwhile, 

the tasks of regressing the remaining column vectors  formulate new binary 

classification problems between one sub-class and all the other subclasses. It should be 

noted that unlike the single-task learning that finds a single mapping w between regressors 

X and the response y, the clustering-induced multi-task learning finds multiple mappings 

{w1, · · ·, w(1+K(+)+K(−))}, and thus allows us to efficiently use the underlying multipeak data 

distribution in feature selection.

3.3 Feature Selection and Classifier Learning

Because of the ℓ2,1-norm regularizer in our objective function of Eq. (2), after finding the 

optimal solution, we have some zero row-vectors in W. In terms of the linear regression, the 

corresponding features are not informative in regressing the response values. In this regard, 

we finally select the features whose weight coefficient vector is non-zero, i.e., ||wi||2 > 0. 

With the selected features, we then train a linear Support Vector Machine (SVM) for making 

a diagnostic decision.

4 Experimental Results and Analysis

4.1 Experimental Setting

We considered three binary classification problems: AD/NC, MCI/NC, and MCI-C/MCI-

NC. In the classification of MCI/NC, we labeled both MCI-C and MCI-NC as MCI. Due to 

the limited number of samples, we applied a 10-fold cross-validation technique in each 

binary classification problem. Specifically, we randomly partitioned the samples of each 

class into 10 subsets with approximately equal size without replacement. We then used 9 out 

of 10 subsets for training and the remaining one for testing. For performance comparison, 

we took the average of the 10 cross-validation results.

Regarding model selection, i.e., number of clusters K, sparsity control parameters of λ1 in 

Eq. (1) and λ2 in Eq. (2), and the soft margin parameter C in SVM [2], we further split the 

training samples into 5 subsets for nested cross-validation. To be more specific, we defined 

the spaces of the model parameters as follows: K ∈ {1, 2, 3, 4, 5}, C ∈ {2−10, . . . , 25}, λ1 ∈ 

{0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5}, and λ2 ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 

0.15, 0.2, 0.3, 0.5}. The parameters that achieved the best classification accuracy in the inner 

cross-validation were finally used in testing.

To validate the effectiveness of the proposed Clustering-Induced Multi-Task Learning 

(CIMTL) method, we compared it with the Single-Task Learning (STL) method that used 

only the original class label as the target response vector. For each set of experiments, we 

used 93 MRI features and/or 93 PET features as regressors in the respective least square 

regression models. Regarding the neuroimaging fusion of MRI and PET [9], we constructed 

a long feature vector by concatenating features of the modalities. It should be noted that the 
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only difference between the proposed CIMTL method and the competing STL method lies 

in the way of selecting features, i.e., single-task learning vs. multi-task learning. We used 

five quantitative metrics for comparison: ACCuracy (ACC), SENsitivity (SEN), SPECificity 

(SPEC), Balanced ACcuracy (BAC), and Area Under the receiver operating characteristic 

Curve (AUC).

4.2 Classification Results and Discussion

We summarized the performances of the competing methods with various modalities for AD 

and NC classification in Table 1. The proposed method showed the mean ACCs of 93.27% 

(MRI), 89.27% (PET), and 95.18% (MRI+PET). Compared to the STL method that showed 

the ACCs of 90.45% (MRI), 86.27% (PET), and 92.27% (MRI+PET), the proposed CIMTL 

method improved by 2.82% (MRI), 3% (PET), and 2.91% (MRI+PET). The proposed 

CIMTL method achieved higher AUC values than the STL method for all the cases. It is 

also remarkable that, except for the metric of SPEC with PET, 90.33% (STL) vs. 88.33% 

(CIMTL), the proposed CIMTL method consistently outperformed the competing STL 

method over all the metrics and modalities.

In the discrimination of MCI from NC, as reported in Table 2, the proposed CIMTL method 

showed the ACCs of 76.82% (MRI), 74.18% (PET), and 79.52% (MRI+PET). Meanwhile, 

the STL method showed the ACCs of 74.85% (MRI), 69.51% (PET), and 74.85% (MRI

+PET). Again, the proposed CIMTL method outperformed the STL method by improving 

ACCs of 1.97% (MRI), 4.67% (PET), and 4.67% (MRI+PET), respectively. We believe that 

the high sensitivities and the low specificities for both competing methods resulted from the 

imbalanced data between MCI and NC. In the metrics of BAC and AUC that somehow 

reflect the imbalance of the test samples, the proposed method achieved the best BAC of 

75.44% and the best AUC of 77.91% with MRI+PET.

Lastly, we conducted experiments of MCI-C and MCI-NC classification, and compared the 

results in Table 3. The proposed CIMTL method achieved the best ACC of 72.02%, the best 

BAC of 70.33%, and the best AUC of 69.64% with MRI+PET. In line with the fact that the 

classification between MCI-C and MCI-NC is the most important for early diagnosis and 

treatment, it is remarkable that compared to the STL method, the propose method improved 

the ACCs by 4.62% (MRI), 5.15% (PET), and 7.4% (MRI+PET), respectively.

For interpretation of the selected features, we built a histogram of the frequency of the 

selected ROIs of MRI and PET over CVs per binary classification. By setting the mean 

frequency as the threshold, features from the following ROIs were mostly selected: 

subcortical regions (e.g., amygdala, hippocampus, parahippocampal gyrus) and temporal 

lobules (e.g., superior/middle temporal gyrus, temporal pole).

Regarding the identified subclasses, we computed the statistics (mean±std) of the optimal 

number of clusters determined in our cross-validation: 2.5±1.7/2.5±1.2 (AD/NC), 

3.1±1.1/2.9±1.2 (MCI/NC), 3.4±0.8/3.8±1.3 (MCI-C/MCI-NC). Based on these statistics, 

we can say that there exists heterogeneity in a group, and by reflecting such information in 

feature selection, we could improve the diagnostic accuracy.
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5 Conclusion

In this paper, we proposed a novel method that formulates a clustering-induced multitask 

learning by taking into account the underlying multipeak data distribution of the original 

classes. In our experiments on the ADNI dataset, we proved the validity of the proposed 

method and showed its significantly better performance than the competing methods in the 

three binary classifications of AD/NC, MCI/NC, and MCI-C/MCI-NC.
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Fig. 1. 
In the response vector/matrix, the colors of blue, red, and white represent 1, −1, and 0, 

respectively. In multi-task learning, each row of the response matrix represents a newly 

defined sparse code for each sample by the proposed method.
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Fig. 2. 
A toy example of finding subclasses and defining the respective sparse code vectors. (+, 1) : 

, (+, 2) : , (−, 1) : 

, and (−, 2) : .
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