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A B S T R A C T

Label fusion is one of the key steps in multi-atlas based segmentation of structural magnetic resonance (MR)
images. Although a number of label fusion methods have been developed in literature, most of those existing
methods fail to address two important problems, i.e., (1) compared with boundary voxels, inner voxels usually
have higher probability (or reliability) to be correctly segmented, and (2) voxels with high segmentation re-
liability (after initial segmentation) can help refine the segmentation of voxels with low segmentation reliability
in the target image. To this end, we propose a general reliability-based robust label fusion framework for multi-
atlas based MR image segmentation. Specifically, in the first step, we perform initial segmentation for MR images
using a conventional multi-atlas label fusion method. In the second step, for each voxel in the target image, we
define two kinds of reliability, including the label reliability and spatial reliability that are estimated based on
the soft label and spatial information from the initial segmentation, respectively. Finally, we employ voxels with
high label-spatial reliability to help refine the label fusion process of those with low reliability in the target
image. We incorporate our proposed framework into four well-known label fusion methods, including locally-
weighted voting (LWV), non-local mean patch-based method (PBM), joint label fusion (JLF) and sparse patch-
based method (SPBM), and obtain four novel label-spatial reliability-based label fusion approaches (called ls-
LWV, ls-PBM, ls-JLF, and ls-SPBM). We validate the proposed methods in segmenting ROIs of brain MR images
from the NIREP, LONI-LPBA40 and ADNI datasets. The experimental results demonstrate that our label-spatial
reliability-based label fusion methods outperform the state-of-the-art methods in multi-atlas image segmenta-
tion.

1. Introduction

MR imaging widely used in real-world clinical applications.
Accurate segmentation of brain MR images provides quantitative ana-
lysis of brain structures, thus facilitating MRI-based pathology detec-
tion and brain parcellation. For instance, many clinical applications
need the segmentation of MR images to describe how brain structures
change during the disease progression. As an example, the hippocampus
is known to be related with the Alzheimer's disease [1,2], and thus, it is
critical to accurately segment hippocampus from the whole brain for
computer-aided brain disease diagnosis. On the other hand, we usually
segment a brain MR image into multiple regions-of-interest (ROIs) be-
fore constructing brain networks for subsequent analysis in brain net-
work analysis [3–7]. However, it is time-consuming and usually error-

prone for experts to manually segment those large amounts of MR
images [8–10]. Hence, there is a largely unmet need to develop ad-
vanced automatic methods for brain ROI segmentation.
Recently, multi-atlas based segmentation methods have shown great

successes in segmenting medical images [11–26]. The assumption of
multi-atlas segmentation is that a voxel in the target image should have
the same label as its corresponding voxel in the atlas image, if their
local tissue shapes or appearances are similar. Typically, there are two
main steps for multi-atlas segmentation, i.e., (1) image registration
[27–32], and (2) label fusion. Specifically, in the image registration
step, each atlas image is warped onto the target image. Then, in the
label fusion step, labels from different atlases will be propagated to the
target image to obtain the final labels. In this work, we focus on the
label fusion step under the multi-atlas segmentation framework.
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In literature, numerous label fusion strategies have been proposed
for multi-atlas based brain MRI segmentation. Among them, majority
voting (MV) is the simplest one, where each atlas image is treated
equally when assigning labels to the target image [11]. As a more ad-
vanced strategy, locally-weighted voting (LWV) considers patch-wise
similarity between the target image and each atlas as the voting weight
for label assignment, and it has shown that LWV outperforms MV when
segmenting brain MRI [12]. To alleviate the registration errors, the
non-local mean patch-based method (PBM) has been proposed to pro-
pagate labels from not only the same location in the atlases, but also the
neighboring patches in the atlases. PBM seeks multiple candidates by
the pair-wise similarity between the target image patch and atlas image
patches within a search region, showing improved accuracy and ro-
bustness of the labeling results [13,14]. More recently, the sparse re-
presentation based PBM method (SPBM) is proposed for label fusion,
where only a small number of image patches (with high similarity to the
target image patch) will be selected for the subsequent label fusion by
using the l1-norm based sparsity constraint [15,16]. In addition, several
joint label fusion methods for brain MRI segmentation are proposed to
measure the joint labeling risk between two patches in atlases, thus
reducing the risks of labeling error [18,19]. Several multi-layer dic-
tionary learning methods [24,25] have been proposed for multi-atlas
segmentation. Song et al. progressively construct dynamic multi-layer
dictionary to reduce the gap between the image domain and the label
domain. Zu et al. [25] use a tree-like multi-layer dictionary to represent
the hierarchical patch for ROI segmentation. Instead of capturing the
complex brain with intensity features, deep learning method is used for
learning the representation of the original image patches, and use these
learnt features for label fusion [26]. However, most of the existing
methods treat each voxel in the target image equally and independently
in segmentation, without considering the specific location and relia-
bility of each voxel in the target image.
Previous studies [13,17,33] have shown that most of misclassified

voxels locate at the boundary of ROIs, while voxels far from the
boundary of ROIs are easier to be segmented correctly. In light of this,
we define the reliability for each voxel to measure whether a specific
voxel is easy to be correctly segmented. If a voxel has high reliability,
we assume that it is easy to correctly segment this voxel; and vice versa.
Consequently, those voxels with high reliability in the target image can
be used to help refine the label fusion of voxels with low reliability.
With this assumption, in this paper, we present a general reliability-

based robust label fusion framework for multi-atlas based MR image
segmentation, including three main steps: (1) initial segmentation, (2)
estimating voxel reliability, and (3) reliability-based robust label fu-
sion. Specifically, we first perform the initial segmentation using con-
ventional multi-atlas label fusion method (e.g., LWV and PBM, etc.), and
thus can obtain a normalized voting result (i.e., a soft label with a value
between 0 and 1) for each voxel after initial segmentation. In the
second step, for each voxel in the target image, we define two kinds of
reliability: (1) label reliability, and (2) spatial reliability. The label re-
liability is estimated based on the soft label, where we assume that a
voxel has higher label reliability to be correctly segmented if its soft
label has lower entropy. Meanwhile, the spatial reliability is estimated
based on the spatial structure of the target image label map from the
initial segmentation, where we assume a voxel has high reliability to be
correctly segmented if the label map around this voxel is continuous. In
the third step, we use voxels with the high label and spatial reliability to
help refine the label fusion process of those voxels with low reliability
in the target image. Our method is a general framework and can easily
be combined with existing state-of-the-art methods. To validate the
effectiveness of the proposed framework, we apply the proposed re-
liability-based strategy to four well-known label fusion approaches, i.e.,
LWV, PBM, JLF and SPBM, and obtain four novel reliability-based ro-
bust label fusion approaches, called label-spatial reliability-based LWV
(ls-LWV), label-spatial reliability-based PBM (ls-PBM), label-spatial re-
liability-based JLF (ls-JLF) and label-spatial reliability-based SPBM (ls-

SPBM), respectively. Experimental results on the NIREP, LONI-LPBA40
and ADNI datasets show that our method yields improved performance
in ROI segmentation of brain MRI, compared with several state-of-the-
art methods.
The major contributions of this work can be summarized as follows.

First, we estimate the reliability (i.e., label reliability and spatial relia-
bility) of each voxel based on results of initial segmentation, where
most of existing conventional multi-atlas label fusion method can be
used for initial segmentation. This helps us easily embed conventional
label fusion methods into our framework. Second, voxels with high re-
liability are used to help refine the label fusion process of the voxels
with low reliability in our framework. To the best of our knowledge,
this is among the first attempt to utilize the voxel reliability as the prior
knowledge for brain MRI segmentation. Third, we apply the proposed
reliability-based strategy to several state-of-the-art methods on the
NIREP, LONI-LPBA40 and ADNI datasets, with experimental results
demonstrating the superior performance of our method over the state-
of-the-art approaches in brain MRI segmentation. The code is now
publicly available.1

The remainder of the paper is organized as follows. In Section 2, we
describe the proposed reliability-based robust label fusion framework.
We present the materials used in the experiments, experimental set-
tings, and experimental results on the NIREP, LONI-LPBA40 and ADNI
datasets in Section 3. In Section 4, we compare the proposed method
with the state-of-the-art methods and investigate the influence of
parameters. Finally, a conclusion of this paper and the limitations of our
method as well as possible future work are presented in Section 5.

2. Method

In this section, we first introduce the notations used in this work,
and then present the definitions of the proposed label reliability and
spatial reliability. Finally, we elaborate our reliability-based robust
label fusion framework.

2.1. Notations

Denote T as the target image to be labeled. Let A={As|s=1, …,
N} and L={Ls|s=1, …, N} represent the N atlases and their corre-
sponding label maps, respectively. We first register each atlas image As

(s=1, …, N) and its corresponding label map Ls (s=1, …, N) onto the
target image space. The process of label fusion aims to determine the
label map LT for the target image. We denote PT(y) as the patch cen-
tered at the voxel y in the target image T, and P x( )As as the patch
centered at the voxel x in the atlas As. Also, we denote the neighbor-
hood of the voxel y in the target image T and atlases A as NT(y) and
NA(y), respectively. In the following, we briefly review two widely-used
label fusion methods, including (1) locally-weighted voting (LWV)
method [12] and (2) non-local mean patch-based method (PBM)
[13,14].
In LWV method, the patch-wise similarity between the target and

each atlas at the same location is used as the voting weight. Specifically,
the voting weight is calculated as follows,
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where yi represents the i-th voxel in target image and xs,i denote the i-th
voxel in the s-th atlas. I(yi) and I(xs,j) represent the normalized intensity
of voxels within the patch PT(yi) (extracted from the target image) and

1 https://github.com/sunmoon91/label-spatial-reliability.
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the patch P y( )A is (extracted from the atlas As), respectively. The term
||·||2 is the normalized l2-norm, and ϵ is a small constant to ensure
numerical stability. For the voxel yi of the target image to be seg-
mented, its label is estimated based on a weighted fusion strategy by
considering all labeled voxels at the same location within in the atlas
images:
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where ls,i is the label of the voxel xs,i (i.e., the i-th voxel in the s-th atlas
As). Note that {ls,i= c} is equal to 1 if xs,i is in the ROI c; and 0,
otherwise. Moreover, w y x( , )i s i, is a weight between the voxel yi in the
target image and the voxel xs,i in the atlas, depending on the similarity
of these two patches (i.e., PT(yi) and P y( )A is ).
Different from LWV, PBM propagates labels from not only voxels in

the same location, but also voxels nearby in the atlas images. It seeks
multiple candidates based on the pair-wise similarity between the
target image patch and atlas image patches within a certain region,
alleviating the registration error and improving the accuracy and ro-
bustness of the labeling results [13,14]. As illustrated in Fig. 1, the blue
rectangle in each atlas image represents the search region, the blue
square in the atlas image represents the candidate patch and the yellow
square in the target image represents the target patch. Mathematically,
the voting weight in PBM is calculated as follows,
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where yi and xs,j represent the i-th voxel in target image and j-th voxel in
s-th atlas, respectively. Here, I(yi) and I(xs,j) represent the normalized
intensity of the voxels within the patches PT(yi) and P x( )A s j,s , respec-
tively.
For the to-be-segmented voxel yi, its label is estimated based on a

weighted fusion of all labeled voxels inside its neighborhood via
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where ls,j is the label of the voxel xs,j (i.e., the j-th voxel in the s-th atlas
As), and the voxel xs,j in the atlas image is within the neighborhood of

yi. The term w y x( , )i s j, is a weight between the voxel yi and xs,j, de-
pending on the similarity between the patch PT(yi) in the target image
and it neighboring patches (i.e., P y( )A is with j ∈NA(yi)) in atlas images.
In the next section, we describe the process of label reliability and
spatial reliability estimation.

2.2. Proposed label-spatial reliability

For each voxel in the target image, we define two kinds of relia-
bility, including (1) label reliability, and (2) spatial reliability. After
initial segmentation by conventional multi-atlas segmentation methods
(e.g., LWV and PBM, etc.), we get a normalized voting result (within
[0,1]) called soft label for each voxel in the target image. For each to-be-
segmented voxel yi and the c-th ROI, we assume the soft label l(yi= c) is
the probability of yi belonging to the region c. Based on the soft label of
the voxel yi, we define its label reliability lr(yi) using the Shannon en-
tropy, shown as follows,

=y H yle( ) ( )i i (5)

with
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=
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where H(yi) is the Shannon entropy of yi and C is the total number of
ROIs in the label map. From Eq. (5), we can observe that the voxel yi has
a high label reliability if its Shannon entropy is low. For example, for a
binary segmentation problem, we set the label of yi to be 1 if the voxel
belongs to the foreground; and 0, otherwise. If l(yi=1) is close to 1,
most of the voters have the same decision, and thus, the voxel will be
assigned a high label reliability. On the contrary, when l(yi=1) is close
to 0.5, half of the voters believe that the voxel belongs to the fore-
ground, and the remaining voters believe the voxel belongs to the
background. In this case, it is difficult to determine the real label for
this voxel, and hence, the label reliability of yi defined in Eq. (5) is low.
We normalize le(yi) to the range of [0,1], and get the normalized label
reliability lr(yi).
On the other hand, as reported in previous studies [13,17], voxels

along the boundary of ROIs are often easy to be misclassified. There-
fore, we also consider the spatial structure information obtained from
the initial segmentation. In this study, we assume a voxel has high re-
liability to be correctly segmented, if its neighborhood voxels have
more consistent labels. As an illustration, in Fig. 2, we use the yellow
square to represent the voxel that needs to be calculated for spatial

Fig. 1. Overview of patch based multi-atlas segmen-
tation method. The blue rectangles on the atlases re-
present the search region. The blue patches in the at-
lases represent the candidate patches and the yellow
patch in the target represents the target patch. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)
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reliability, the red squares to represent the voxels with different labels
from the yellow square, and the blue squares represent the voxels that
have the same label as the yellow square. In Fig. 2(a), the center voxel
(i.e., yellow square) and its four neighboring voxels (i.e., red squares)
share the same label (i.e., 1). In Fig. 2(b), the center voxel and its eight
neighboring voxels have the same label (i.e., 1). Here, we believe that
the center voxel in Fig. 2(b) has higher spatial reliability than that in
Fig. 2(a). In practice, we calculate the spatial reliability in 3-dimen-
sional image space. With this assumption, we define the spatial relia-
bility of each voxel in the target image in the following. We first
compute the hard label L(yi) for each voxel in the target image using
conventional label fusion methods as follows

= =
= …

L y l y c( ) arg max ( )i
c C

i
1, , (6)

Based on the hard labels of voxels in the target image, we define the
spatial reliability of each voxel as follows

=
=

y
L y L y

y
sr( )

#{ ( ) ( )}
| |i

i t

t (7)

with

= …Ny y t n( )( 1, 2, , )Tt i

where #{Ω} represents the number of true elements in Ω, and |yt| re-
presents the number of yi ∈NT(yi). Accordingly, the spatial reliability of
the center voxel in Fig. 2(a) is 4/8= 0.5, while the spatial reliability of
the center voxel in Fig. 2(b) is 8/8= 1.0.
By combining the proposed label reliability in Eq. (5) and spatial

reliability in Eq. (7) together, we compute the final label-spatial relia-
bility for each voxel in the target image as follows

= ×r y y y( ) lr( ) sr( )i i i (8)

For clarity, in Fig. 3, we show how to compute the proposed label-
spatial reliability for each voxel in the target image. First, we perform
the conventional multi-atlas method to calculate the soft label of each
voxel in the target image. After initial segmentation, we estimate the
label reliability-based on soft labels in Fig. 3(a), and then obtain the
hard label via Eq. (6) to assign each voxel to a specific ROI or back-
ground in Fig. 3(b). Afterward, in Fig. 3(c), we compute the spatial
reliability of each voxel based on the estimated spatial structure. Fi-
nally, in Fig. 3(d), we combine the label reliability and spatial relia-
bility to get the final label-spatial reliability for each voxel in the target
image.

2.3. Label-spatial reliability-based robust label fusion

Based on the proposed label-spatial reliability for each voxel in the
target image, we propose to use voxels with low reliability to guide the
remaining voxels in the label fusion process. Here, we denote P and Q
as the set of voxels with low reliability and the set of voxels with high
reliability, respectively. In Fig. 4, we illustrate the proposed label-spa-
tial reliability-based label fusion process, where the red and blue

rectangles are the search regions in the target and atlas images, re-
spectively. The blue patches in the atlases represent the candidate
patches. The center voxel of the red/green patch in the target image
will be assigned label-spatial reliability. Here, we assume that the
center of the red patch is the voxel with high label-spatial reliability,
while the center of the green patch denotes the voxel with a low value
of label-spatial reliability. Then, we use the red patch (with high label-
spatial reliability) to guide the labeling procedure of the green patch in
the target image.
To be specific, we use the propagated soft label from atlases and

voxels in Q (with high reliability) in the target image to guide the label
fusion process for each voxel (e.g., yi) in P. That is, for the voxel yi ∈ P
with low reliability, the patch-wise similarity between yi and the voxel
yj with high reliability can be calculated as follows
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where yj ∈NT(yi) ∩Q denotes the neighborhood of voxel yi in P.
For the voxel yi in P, its estimated label is defined based on all la-

beled voxels within its neighborhood (i.e., NT(yi) ∩Q) via the following
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where r(yj) is defined in Eq. (8) and L(yj) is defined in Eq. (6). In this
way, we can employ voxels with high reliability to help refine the label
fusion process of those voxels with low reliability in target image.
Similar to conventional label fusion methods, we also propagate the

labels from atlases to the target image via Eq. (2) or Eq. (4). Then, for
the voxel yi in the target image, we can calculate its soft label
lnew(yi= c) as follows

= = = + =l y c l y c l y c( ) ( ) (1 ) ( )i i r inew (11)

where λ ∈ [0, 1] is a tuning-parameter to balance the contributions
from the label l(yi= c) estimated by conventional label propagation
strategy and the label lr(yi= c) generated by the proposed label-spatial
reliability-based label fusion strategy. Accordingly, for each voxel yi in
the target image, its final label LT(yi) can be obtained via

= =
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c C

i
1, ,

new
(12)

From Eqs. (11) and (12), we can observe that one can easily embed
conventional label fusion methods into our label-spatial reliability-
based label fusion framework, since most of existing conventional
multi-atlas methods can be used for initial segmentation. Accordingly,
under the proposed framework, we now develop four new label fusion
methods, i.e., label-spatial reliability-based LWV (ls-LWV), label-spatial
reliability-based PBM (ls-PBM), label-spatial reliability-based JLF (ls-

Fig. 2. Two examples in computing spatial reliability. We want to
compute the spatial reliability of the yellow squares. The red
squares represent voxels belonging to the background, and the
blue squares represent voxels belonging to the ROI. The spatial
reliability of example (a) is 4/8= 0.5 and example (b) is 8/
8= 1.0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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JLF) and label-spatial reliability-based SPBM (ls-SPBM).
In Algorithm 1, we show an overview of the proposed label-spatial

reliability-based robust label fusion framework. Specifically, the input
of the proposed method includes a set of MR images as atlases and the
target image to be segmented, and these images have been aligned to a
common space. We first compute the soft label for each voxel in the
target image via a conventional label fusion method (e.g., LWV or PBM).
Then, we estimate the label reliability-based on the soft label and the
spatial reliability-based on the spatial structure, followed by combing
the label reliability and spatial reliability to get the final label-spatial
reliability. Finally, voxels with high reliability to be correctly seg-
mented are employed to guide the label fusion process of voxels with
low reliability, and then we can obtain the final label map for the target

image.

Algorithm 1. Reliability-based robust label fusion for multi-atlas
segmentation

Input: Atlas A={As|s=1, …, N}, the label maps L={Ls|s=1, …, N} for
atlas images, and the target image T.
Output: Label map LT for the target image T.

1 Compute the soft label by a conventional label fusion method.
2 Estimate the label reliability of each voxel in T using Eq. (5).
3 Estimate the spatial reliability of each voxel in T via Eq. (7).
4 Combine the proposed label reliability and spatial reliability of each voxel in

T via Eq. (8).
5 Propagate the labels of voxels with high reliability to voxels with low

reliability using Eq. (10).
6 Reliability-based robust label fusion via Eq. (11).

Fig. 3. An illustration of computations of the proposed label-spatial reliability for each voxel in the target image. We first perform a conventional multi-atlas method
(e.g., LWV or PBM) to calculate the soft label of each pixel in the target image. After initial segmentation, we estimate the label reliability-based on soft labels in step
(a), and then obtain the hard label via Eq. (6) to assign each voxel to a specific ROIs or background in step (b). Afterward, in step (c), we compute the spatial
reliability of each voxel based on the estimated spatial structure. Finally, in step (d), we combine the label reliability and spatial reliability together (via Eq. (8)) to get
the final label-spatial reliability for each voxel in the target image.

Fig. 4. Overview of proposed label-
spatial reliability-based robust label
fusion. The red and blue rectangles are
the search regions in the target and
atlas images, respectively. The blue
patches in the atlases represent the
candidate patches. The center voxel of
the red/green patch in the target image
will be assigned a label-spatial relia-
bility, based on both the label relia-
bility of patches in the atlas images and
the spatial reliability by their spatial
structure in the target image. Here, we
assume that the center of the red patch
is the voxel with high label-spatial re-
liability, while the center of the green
patch denote the voxel with a low value
of label-spatial reliability. Then, we use
the red patch (with high label-spatial
reliability) to guide the labeling pro-
cedure of the green patch. (For inter-
pretation of the references to color in
this figure legend, the reader is referred
to the web version of this article.)
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7 Assign voxels in T to a specific ROI or background based on their estimated
labels using Eq. (12).

3. Experiments

3.1. Data and image pre-processing

In the experiments, we validate our proposed methods and those
competing methods on the segmentation of regions-of-interest (ROIs) in
brain MR images.

(1) NIREP dataset [34]: This dataset consists of 16 subjects with T1-
weighted MR images, including 8 normal male adults and 8 female
adults. The MR images were obtained in a General Electric Signa
scanner operating at 1.5 T, using the following protocol: SPGR/50, TR
24, TE 7, NEX 1 matrix 256×192, FOV 24 cm. 124 contiguous coronal
slices were obtained, with 1.5 or 1.6mm thick, and with an interpixel
distance of 0.94mm. The images are resized from voxel dimensions
0.7mm×0.7mm×1.5mm to 0.7mm×0.7mm×0.7mm, and the
image size changed from 256×256×124 to 256×300×256. These
MR images have been manually segmented into 32 ROIs. For each of
the ROIs, a Leave-One-Out (LOO) cross-validation is performed to test
the segmentation performance on each LOO fold. That is, each of 16
subjects are alternatively used as the target subject, and MR images of
the remaining 15 subjects are treated as the atlases (with images aligned
onto the target image).

(2) LONI-LPBA40 dataset [35]: This dataset is provided by the La-
boratory of Neuro Imaging (LONI) at UCLA, containing 40 brain MR
images and corresponding label maps that were created manually to
annotate the brain structures. High-resolution 3D Spoiled Gradient
Echo (SPGR) MRI volumes were acquired on a GE 1.5 Tesla system
as 124 contiguous 1.5 mm coronal brain slices (TR range
10.00–12.50ms; TE range 4.22–4.50ms; FOV=220mm or
200mm) with in-plane voxel resolution of 0.86mm or 0.7mm.
Besides, these MRI volumes are rigidly aligned to the MNI305
template. Specifically, each MR image has 54 manually labeled
ROIs. We randomly select 20 subjects as the atlas and remained 20
subjects as testing.

(3) Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset2 :
Similar to [17,24], we randomly select 60 subjects from the ADNI
dataset for hippocampus segmentation, which include 20 Alzhei-
mer's disease (AD) subjects, 20 mild cognitive impairment (MCI)
subjects and 20 normal control (NC) subjects. These images were
acquired sagittally, with the in-plane resolution of 1mm×1mm
and the slice thickness of 1.2 mm. We perform skull removal [36],
N4-based bias field correction [37] and intensity standardization to
normalize the intensity range [38] for pre-processing. A LOO cross-
validation is performed to test the segmentation performance on
each LOO fold.

For each MR image, we first perform affine registration by FLIRT in
the FSL toolbox [27], which using the normalized mutual information
similarity metric, 12 degrees of freedom and the search range±20 in
all directions. Then after the affine registration, a deformable regis-
tration is performed using the Diffeomorphic Demons method [39] with
smooth sigma 2.0 and iterations in low middle and high resolutions as
20×10×5.

3.2. Competing methods

As mentioned in the Section 2.3, our proposed four label-spatial
reliability-based robust label fusion methods (called ls-LWV, ls-PBM, ls-
JLF and ls-SPBM) are built on LWV [12], PBM [13], JLF [40] and SPBM

[16], respectively. To evaluate the effectiveness of the proposed label-
spatial reliability-based robust label fusion framework, we compare the
ls-LWV, ls-PBM, ls-JLF and ls-SPBM methods with their conventional
counterparts, i.e., LWV, PBM, JLF and SPBM, on the NIREP, LONI-
LPBA40 and ADNI datasets.

3.3. Experimental settings

For segmentation results achieved by a specific algorithm, we use
the Dice ratio to measure the overlap between the region A and the
region B. Dice ratio is defined as follows

=
+

A B A B
A B

Dice( , ) 2| |
| | | | (13)

where A and B denote the estimated ROI achieved by a particular al-
gorithm and the manual segmented ROI (i.e., ground truth), respec-
tively. The term ∩ denotes the overlap between automatic segmentation
and ground truth, and |·| denotes the number of voxels in the ROI.
When calculating the Dice ratio for each of multiple ROIs, we perform
an independent binary assessment for each ROI. That is, we set the label
of a voxel as 1 if it belongs to the specific ROI; and 0, otherwise.
For the fair comparison, in all methods, we use the size of 7× 7×7

neighborhood search region in the atlas images, and 7× 7×7 neigh-
borhood search region in the target image. We also use the spatial size
of 7×7×7 for estimating the spatial reliability of each voxel in the
target image. In addition, in our experiments, we empirically fix the
patch size as 7×7×7 for all competing methods. We perform patch
pre-selection [41] to reduce the computational time according to the
similarity between any pair of patches. In the step of label-spatial re-
liability-based label fusion, we divided the voxels into 20 subsets ac-
cording to their reliability with 0.05 as the interval (i.e., [0.95, 0.90, …,
0.05, 0]). We gradually use the subsets with high reliability to help
refine the subset with low reliability.

3.4. Results on NIREP

We first compare the segmentation results of different methods on
NIREP dataset. Table 1 reports the segmentation results in terms of
average Dice ratio of 32 ROIs in brain MR images. From Table 1, one
can observe that the proposed ls-LWV, ls-PBM, ls-JLF and ls-SPBM
achieve the improvement of 2.57%, 1.14%, 1.40% and 1.42% over their
conventional counterparts (i.e., LWV, PBM, JLF and SPBM) in the terms
of Dice ratio, respectively. These results demonstrate that using our
proposed label-spatial reliability as guidance information provide a
practical solution in promoting the segmentation performance of con-
ventional label fusion algorithms.
We also report the Dice ratio achieved by eight different methods

for each of 32 ROIs in Fig. 5. It can be seen from Fig. 5 that the proposed
ls-LWV, ls-PBM, ls-JLF and ls-SPBM methods consistently outperform
their conventional counterparts (i.e., LWV, PBM, JLF and SPBM) in
segmenting all ROIs on the NIREP dataset.
In Fig. 6, we visually plot the segmentation results for the region of

L insula gyrus, achieved by eight methods. For comparison, we also
show the original image in Fig. 6(a) and the ground truth in Fig. 6(b).
We can see from Fig. 6 that our proposed ls-LWV, ls-PBM, ls-JLF and ls-
SPBM achieve the better visual quality of segmentation results, com-
pared with LWV, PBM, JLF, SPBM, respectively. This further validates
the effectiveness of the proposed label-spatial reliability-based label
fusion framework in ROI segmentation of brain MRI.

3.5. Results on LONI-LPBA40

In this section, we compare the segmentation results of different
methods on the LONI-LPBA40 dataset. Table 2 shows the results of Dice
ratio for 54 ROIs. Our proposed ls-LWV, ls-PBM, ls-JLF and ls-SPBM
methods yield the improvement of 2.21%, 1.04%, 1.44% and 1.26%2 http://adni.loni.usc.edu/.
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Table 1
Segmentation results of Dice ratio achieved by eight different methods (i.e.,
LWV, PBM, JLF, SPBM and our proposed ls-LWV, ls-PBM, ls-JLF, ls-SPBM
methods) on NIREP dataset. The second and third rows are mean and standard
deviation (std) of Dice ratio for different ROIs, respectively.

Method LWV ls-LWV PBM ls-PBM JLF ls-JLF SPBM ls-SPBM

Mean (%) 75.02 77.59 76.74 77.88 78.25 79.65 78.48 79.90
Std (%) 4.86 4.60 4.57 4.50 4.05 4.23 4.14 4.27

Fig. 5. Segmentation results of 32 ROIs achieved by LWV, ls-LWV, PBM, ls-PBM, JLF, ls-JLF, SPBM and ls-SPBM on the NIREP dataset.

Fig. 6. Visual views on original image (a), ground truth (b) and segmentation results of LWV (c), ls-LWV (d), PBM (e), ls-PBM (f), JLF (g), ls-JLF (h), SPBM (i) and ls-
SPBM (j) for the region of L insula gyrus on the NIREP dataset.

Table 2
Segmentation results of Dice ratio achieved by eight different methods (i.e.,
LWV, PBM, JLF, SPBM and our proposed ls-LWV, ls-PBM, ls-JLF, ls-SPBM
methods) on LONI-LPBA40 dataset. The second and third rows are mean and
standard deviation (std) of Dice ratio for different ROIs, respectively.

Method LWV ls-LWV PBM ls-PBM JLF ls-JLF SPBM ls-SPBM

Mean (%) 78.22 80.43 78.81 79.85 79.26 80.70 79.65 80.91
Std (%) 4.73 4.38 5.50 4.85 4.46 4.39 4.59 4.69
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over LWV, PBM, JLF and SPBM, respectively, by introducing the pro-
posed label-spatial reliability. Fig. 7 shows the Dice ratio achieved by 8
methods on each of 54 ROI segmentation on the LONI-LPBA40 dataset.
It can be observed from Fig. 7 that the proposed methods obtain overall
better performance, compared with their conventional counterparts.

3.6. Results on ADNI

We perform experiments on the ADNI dataset for hippocampus seg-
mentation. We report the segmentation results achieved by our pro-
posed methods (i.e., ls-LWV, ls-PBM, ls-JLF and ls-SPBM) and the con-
ventional state-of-the-art counterparts (i.e., LWV, PBM, JLF, and SPBM)
in Table 3. As can be seen from Table 3, the average Dice ratio achieved
by ls-LWV, ls-PBM, ls-JLF and ls-SPBM methods are 87.21 ± 1.71%,
87.65 ± 2.61%, 88.32 ± 2.76% and 88.43 ± 2.93%, respectively,
which are superior to LWV, PBM, JLF and SPBM, respectively. These
results suggest that our proposed methods outperform these state-of-
the-art methods, thus further demonstrating the effectiveness of our
label-spatial reliability-based label fusion strategy.

4. Discussion

In this section, we first compare our proposed framework with a
corrective learning method [40]. We then analyze the statistical sig-
nificance of the difference between our methods and each of competing
methods, and analyze the robustness of the proposed method. We also
investigate the influence of the proposed label reliability and spatial
reliability, as well as the effect of the search region in the target image
and the parameter λ in Eq. (11).

4.1. Comparison with corrective learning method

To evaluate the effectiveness of our proposed label-spatial relia-
bility-based label fusion framework, we also compare our proposed ls-
JLF with the joint label fusion with corrective learning (JLF-CL) [40].
The JLF-CL method first segments the images using JLF. Then, JLF-CL
segment each atlas image using the remaining atlases, and using these
segmented atlas images to train the corrective classifiers. As can be seen
in Table 4, our proposed ls-JLF method achieves the competitive results
with JLF-CL on NIREP, LONI-LPBA40 and ADNI datasets for ROI seg-
mentation. It is worth noting that, our proposed label refine method is a

Fig. 7. Segmentation results of 54 ROIs achieved by LWV, ls-LWV, PBM, ls-PBM, JLF, ls-JLF, SPBM and ls-SPBM on the LONI-LPBA40 dataset.

Table 3
The Dice ratio achieved by eight different methods (i.e., LWV, PBM, JLF, SPBM and our proposed ls-LWV, ls-PBM, ls-JLF, ls-SPBM methods) on the ADNI dataset for
hippocampus segmentation. The second and third rows are mean and standard deviation (std) of Dice ratio for different subjects, respectively.

Method LWV *ls-LWV PBM *ls-PBM JLF *ls-JLF SPBM *ls-SPBM

Mean (%) 85.48 87.21 86.31 87.65 87.08 88.32 87.19 88.43
Std (%) 1.95 1.71 3.87 2.61 3.05 2.76 3.10 2.93
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lazy learning method that does not need to learn models to refine labels.
In contrast, after segmentation, JLF-CL further performs the segmen-
tation on the atlas images and learning a model to refine segmentation
results. Hence, our proposed framework is much faster than JLF-CL. For

example, the time consumption of the refining process in our proposed
ls-JLF is about 12 s for each hippocampus, compared with JLF-CL need
45min to refine the segmentation result.

Table 4
Segmentation results of JLF-CL and our proposed ls-JFL on NRIEP, LONI-LPBA40 and ADNI dataset. The terms a and b in “a ± b” denote the mean and standard
deviation, respectively.

NIREP LONI-LPBA40 ADNI

JLF-CL ls-JLF JLF-CL ls-JLF JLF-CL ls-JLF

Dice ratio(%) 79.26 ± 4.26 79.65 ± 4.23 80.48 ± 4.24 80.70 ± 4.39 88.47 ± 2.42 88.32 ± 2.76

Table 5
The p-values based on paired t-test in terms of Dice ratio on NIREP dataset for the proposed ls-LWV, ls-PBM, ls-JLF, ls-SPBM with their conventional counterparts (i.e.,
LWV, PBM, JLF, SPBM), respectively.

ls-LWV ls-PBM ls-JLF ls-SPBM

L R L R L R L R

Occipital lobe 2.03e−08 8.06e−10 2.36e−06 7.28e−08 7.12e−04 3.12e−05 0.0018 5.81e−06
Cingulate gyrus 1.44e−08 1.53e−12 3.61e−07 1.88e−09 1.72e−04 1.12e−06 4.18e−05 2.27e−04
Insula gyrus 7.16e−11 8.42e−11 1.43e−08 9.41e−06 2.07e−07 1.26e−05 4.63e−07 3.94e−05
Temporal pole 5.06e−08 2.64e−07 6.50e−05 5.32e−07 2.18e−04 1.76e−04 0.0052 0.0028
Superior temporal gyrus 6.30e−10 1.01e−08 6.01e−08 2.19e−05 1.54e−05 9.18e−04 0.0062 0.0140
Infero temporal region 1.27e−11 2.68e−10 1.52e−09 4.79e−07 2.14e−06 5.86e−06 2.20e−06 7.34e−04
Parahippocampal gyrus 2.08e−12 2.44e−13 1.26e−10 5.33e−09 4.87e−06 2.41e−05 0.0038 8.07e−05
Frontal pole 4.03e−06 1.47e−05 5.69e−04 9.77e−04 0.3070 0.1601 0.1346 0.2287
Superior frontal gyrus 1.49e−11 1.42e−09 2.96e−09 6.06e−07 6.38e−04 0.0018 2.68e−05 1.22e−04
Middle frontal gyrus 5.96e−09 9.38e−09 5.36e−06 3.59e−06 0.0242 0.0122 0.0031 9.11e−04
Inferior gyrus 8.16e−08 3.67e−10 1.78e−05 3.14e−08 0.0816 0.0181 0.6981 0.0092
Orbital frontal gyrus 1.54e−09 2.27e−08 1.40e−06 1.81e−06 4.84e−05 0.0016 2.92e−06 1.84e−05
Precentral gyrus 9.79e−10 4.29e−10 2.55e−06 4.33e−07 0.0088 3.76e−04 0.0014 0.0012
Superior parietal lobule 4.83e−10 4.08e−09 1.20e−07 2.97e−07 0.0369 0.1211 0.0153 0.0442
Inferior parietal lobule 3.45e−10 1.77e−08 1.56e−08 1.71e−06 0.0015 0.1966 6.26e−04 0.1701
Postcentral gyrus 5.60e−05 1.63e−05 0.0103 0.0057 0.6083 0.1917 0.1425 0.0881

Table 6
The p-values based on paired t-test in terms of Dice ratio on LONI-LPBA40 dataset for the proposed ls-LWV, ls-PBM, ls-JLF, ls-SPBM with their conventional
counterparts (i.e., LWV, PBM, JLF, SPBM), respectively.

ls-LWV ls-PBM ls-JLF ls-SPBM

L R L R L R L R

Superior frontal gyrus 3.73e−16 5.29e−17 3.18e−14 5.99e−12 7.02e−06 6.82e−04 2.61e−10 1.48e−11
Middle frontal gyru 8.31e−13 5.38e−14 4.06e−12 9.42e−14 7.80e−04 5.07e−04 1.09e−08 1.73e−09
Inferior frontal gyrus 3.32e−13 1.65e−11 4.29e−11 6.82e−12 3.70e−04 5.70e−04 0.0026 4.82e−06
Precentral gyrus 2.32e−16 6.13e−15 3.91e−15 1.44e−12 5.92e−08 6.68e−09 4.04e−07 2.30e−09
Middle orbitofrontal gyrus 8.54e−09 4.12e−09 3.52e−06 4.67e−08 0.0073 0.1916 5.57e−06 0.0020
Lateral orbitofrontal gyrus 1.47e−04 9.86e−05 0.0485 0.0151 0.5634 0.8714 0.5043 0.1570
Gyrus rectus 2.60e−06 2.25e−05 0.4867 0.5357 0.0010 2.21e−04 1.38e−05 1.25e−04
Postcentral gyrus 1.11e−17 4.96e−17 1.49e−13 2.20e−12 1.97e−09 2.40e−07 2.45e−06 2.21e−07
Superior parietal gyrus 2.90e−13 1.73e−13 2.04e−11 9.31e−12 1.62e−04 1.03e−05 3.49e−05 7.64e−06
Supramarginal gyrus 4.90e−12 5.06e−10 8.98e−10 8.37e−07 0.0132 1.64e−04 0.0018 3.58e−04
Angular gyrus 1.17e−12 1.08e−11 5.22e−12 5.70e−09 1.81e−04 0.0026 0.0356 0.0597
Precuneus 5.09e−12 1.47e−12 3.56e−10 3.33e−10 7.15e−06 0.0059 0.2715 0.8848
Superior occipital gyrus 6.75e−08 8.12e−10 1.19e−06 1.61e−07 0.0184 0.0079 0.3672 0.2427
Middle occipital gyrus 2.21e−08 8.19e−12 3.62e−09 3.46e−11 0.0028 2.91e−05 0.0453 9.89e−05
Inferior occipital gyrus 3.13e−08 5.77e−13 1.70e−07 2.23e−08 0.0018 0.0213 2.05e−05 1.08e−05
Cuneus 2.82e−09 3.84e−06 3.56e−06 0.0011 0.2723 0.0656 0.3920 0.3801
Superior temporal gyrus 5.45e−15 4.07e−12 1.31e−11 4.37e−09 3.38e−06 0.0067 2.62e−08 6.22e−06
Middle temporal gyrus 3.00e−12 2.79e−12 7.57e−12 5.46e−14 4.35e−06 2.10e−07 4.40e−06 3.03e−04
Inferior temporal gyrus 4.10e−15 2.39e−13 2.93e−11 1.71e−11 3.29e−06 3.24e−04 3.16e−05 1.05e−05
Parahippocampal gyrus 7.46−08 2.45e−07 0.0183 0.0103 9.06e−04 0.0108 0.5623 0.0766
Lingual gyrus 3.36e−16 4.40e−12 1.33e−06 1.62e−07 2.85e−04 0.2567 0.1639 0.0555
Fusiform gyrus 9.16e−12 4.29e−12 2.96e−10 7.08e−07 6.97e−04 0.0245 8.017e−06 6.06e−08
Insular cortex 3.41e−09 5.34e−13 1.95e−06 1.66e−08 8.95e−06 1.00e−04 2.26e−06 6.99e−05
Cingulate gyrus 1.88e−10 9.73e−10 1.72e−09 3.33e−08 2.43e−04 4.85e−07 0.8125 0.2688
Caudate 0.0014 0.0049 0.0676 0.3311 2.36e−05 7.97e−06 9.54e−08 4.57e−07
Putamen 2.99e−11 6.78e−12 2.36e−04 2.56e−04 3.18e−05 6.87e−05 2.51e−04 0.0022
Hippocampus 9.94e−07 2.42e−07 0.2005 0.0064 2.59e−04 0.0018 0.0014 0.0012
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4.2. Significance analysis

To validate whether our proposed methods are statistically sig-
nificantly better than their conventional counterparts, we perform
paired t-test in terms of Dice ratio on each ROI for our proposed
methods and their conventional counterparts. Here, we report the p-
values in each ROI for the NIREP, LONI-LPBA40 and ADNI datasets,
with results are reported in Table 5, Table 6, and Table 7, respectively.
It can be seen from the Tables 5 and 6, our proposed ls-LWV, ls-PBM, ls-
JLF and ls-SPBM show significant improvement in the most of ROIs
over LWV, PBM, JLF and SPBM on NIREP and LONI-LPBA40 datasets,
respectively. Also, one can observe from Table 7 that all of our pro-
posed methods achieved significant improvement over the conventional
methods in terms of Dice ratio on ADNI for hippocampus segmentation.

4.3. Robustness analysis

To validate the robustness of our proposed methods, we calculate
the 10% trimmed mean of the experimental results, and report these
results in Table 8. As can be seen from Table 8, compared with the
average Dice ratio of 32 ROIs on NIREP (i.e., 77.59% by ls-LWV and

77.88% by ls-PBM), the trimmed Dice ratio mean are 77.90% by ls-LWV
and 78.14% by ls-PBM, respectively. Besides, on the LONI-LPBA da-
taset, the trimmed Dice ratio mean of 54 ROIs are 80.67% by ls-LWV
and 80.15% by ls-PBM, while the average Dice ratio for these ROIs is
80.43% of ls-LWV and 79.85% of ls-PBM. These results imply that the
segmentation results achieved by our ls-LWV and ls-PBM methods are
less prone to be affected by outliers, thus suggesting the robustness of
our proposed methods.

4.4. Effect of label reliability and spatial reliability

We now investigate the effect of the proposed label reliability in Eq.
(5), spatial reliability in Eq. (7), and label-spatial reliability in Eq. (8).
Using PBM for initial segmentation, we denote l-PBM, s-PBM, and ls-
PBM as reliability-based label fusion methods using only label relia-
bility, only spatial reliability and label-spatial reliability, respectively.
Here, we employ the error rate (ER) to measure the ratio of mis-
classified voxels with certain reliability. Specifically, the error rate is
defined as: =ER( ) m

M , where m is the number of misclassified voxels
with reliability larger than θ, M is the total number of voxels with re-
liability larger than θ.
In the first group of experiments, we vary the value of reliability in

the range of [0.0, 0.1, …, 1.0], and record the ER achieved by three
different methods for segmenting the region of L insula gyrus on the
NIREP dataset in Fig. 8. Note that, in Fig. 8, the term “reliability” for
three methods has different meanings: (1) the label reliability for l-
PBM, (2) the spatial reliability for s-PBM, and (3) the label-spatial re-
liability for ls-PBM. It can be seen from Fig. 8 that our ls-PBM method
with label-spatial reliability consistently outperforms l-PBM (using only
the label reliability) and s-PBM (with only the spatial reliability). Par-
ticularly, when the reliability is equal to 1, we can obtain the best

Table 7
The p-values based on paired t-test in terms of Dice ratio on ADNI dataset for the
proposed ls-LWV, ls-PBM, ls-JLF, ls-SPBM with their conventional counterparts
(i.e., LWV, PBM, JLF, SPBM), respectively.

Method ls-LWV ls-PBM ls-JLF ls-SPBM

p-value 6.17e−29 0.0091 2.68e−04 7.30e−04

Table 8
The mean and trimmed mean segmentation results of Dice ratio achieved by our
proposed ls-LWV and ls-PBMmethods on the NIREP and LONI-LPBA40 datasets.

NIREP LONI-LPBA40

ls-LWV ls-PBM ls-LWV ls-PBM

Mean (%) 77.59 77.88 80.43 79.85
Trimmed mean (%) 77.90 78.14 80.67 80.15

Fig. 8. The trends of error rate along with reliability. The hor-
izontal axis represents reliability. The vertical axis represents
segmentation error rate achieved by different methods with dif-
ferent values of reliability. Note that the term “reliability” for
three methods has different meanings: (1) the label reliability for
l-PBM, (2) the spatial reliability for s-PBM, and (3) the label-
spatial reliability for ls-PBM.

Table 9
Segmentation results of Dice ratio achieved by PBM, l-PBM, s-PBM and ls-PBM
on the NIREP dataset. The terms a and b in “a ± b” denote the mean Dice ratio
and standard deviation for different ROIs, respectively.

Method PBM l-PBM s-PBM ls-PBM

Dice ratio (%) 76.74 ± 4.57 77.46 ± 4.50 77.21 ± 4.70 77.88 ± 4.5
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Fig. 9. Segmentation results of 32 ROIs achieved by PBM, l-PBM, s-PBM and ls-PBM on the NIREP dataset.

Fig. 10. Performance of the proposed ls-PBM method in segmenting the 32 ROIs on the NIREP dataset, using different search regions in the target image.
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results, i.e., the segmentation error rates of 7.48%, 1.11% and 1.00% by
l-PBM, s-PBM and ls-PBM, respectively. This implies that using our
proposed high reliability would generate low segmentation error rate.
In the second group of experiments, we compare PBM and our

proposed l-PBM, s-PBM, and ls-PBM methods in segmenting 32 ROIs on
the NIREP dataset. Table 9 gives the results of the average Dice ratio
(mean± standard deviation). One can see that, compared with PBM, l-
PBM and s-PBM only utilizing label reliability and spatial reliability
achieve the improvement of 0.72% and 0.47% improvement, respec-
tively, while ls-PBM (with label-spatial reliability) yields an improve-
ment of 1.14%. These results further suggest that the method using the
proposed label-spatial reliability could further boost the segmentation
results, compared with those using only the label reliability or only the
spatial reliability. Fig. 9 shows the Dice ratio for these 32 ROIs by PBM,
l-PBM, s-PBM and ls-PBM. It can be seen that ls-PBM consistently out-
performs PBM, l-PBM and s-PBM in segmenting all 32 ROIs. In addition,
the proposed l-PBM and s-PBM methods do not show significant im-
provement when comparing to PBM. These results further suggest that
methods using the proposed label-spatial reliability could further boost
the segmentation results, compared with those using only the label
reliability or just the spatial reliability.

4.5. Effect of search region

We also study the effect of the search region in the target image. In
this group of experiments, PBM is used for initial segmentation, and we
report the performance of our ls-PBM method in segmenting 32 ROIs on
the NIREP dataset. Specifically, for computing the spatial reliability in
ls-PBM, we vary the size of search region within the range of
[5×5×5, 7× 7×7, …, 15× 15×15], and record the segmentation
results in Fig. 10. From Fig. 10, we can see that the overall performance
of our ls-PBM method is stable by using different size of search regions,
while the best performance (i.e., 77.88%) is achieved by using the
search region of 7×7×7. These results demonstrate the size of the
search region has little effect on the performance of our proposed ls-
PBM method.

4.6. Effect of parameter λ

The parameter λ in Eq. (11) is used as a trade-off for the contribu-
tions of results estimated by conventional label propagation strategy
and the proposed label-spatial reliability-based strategy. Here, we in-
vestigate the effect of the parameter λ, by varying its value in the range
of [0.0, 0.1, …, 1.0]. In Fig. 11, we show the segmentation results
achieved by our ls-LWV and ls-PBM methods with different values of λ
on NIREP and LONI-LPBA40 dataset.
We can see from Fig. 11 that, on the NIREP and LONI-LPBA40 da-

tasets, our proposed ls-LWV and ls-PBM methods achieve stable, pro-
mising results with λ ∈ [0, 0.5]. On the NIREP dataset, the best result of
ls-LWV is achieved by using λ=0.2, while the best result of ls-PBM is
obtained with λ=0.5. On the LONI-LPBA40 dataset, the best result of
ls-LWV is achieved by using λ=0.4, while the best result of ls-PBM is
obtained with λ=0.1. On the other hand, when λ > 0.5 (i.e., with less
contribution of the proposed label-spatial reliability-based label fusion),
the performance of these two methods slightly drop with the increase of
λ. These results imply that the proposed label-spatial reliability-based
label fusion strategy plays an essential role in the final performance of
both ls-LWV and ls-PBM.

5. Conclusion

In this paper, we proposed a novel label-spatial reliability-based
robust label fusion framework for multi-atlas MRI segmentation.
Specifically, we first perform initial segmentation using conventional
label fusion methods for the target image. Then, for each voxel in the
target image, we define the label reliability and spatial reliability-based
on the soft label and the spatial structure from the initial segmentation,
respectively. We then estimate the label-spatial reliability for each
voxel in the target image. Finally, we employ voxels with high relia-
bility to help refine the label fusion process of those voxels with low
reliability. We validate the proposed framework in segmenting ROIs
from brain MR images on the NIREP, LONI-LPBA40 and ADNI datasets,
with results demonstrating that our label-spatial reliability-based label

Fig. 11. Dice ratio achieved by the proposed ls-LWV and ls-PBM methods, using different values of λ on the NIREP and LONI-LPBA40 datasets.
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fusion methods outperform several state-of-the-art methods in multi-
atlas based brain MRI segmentation.
Although the proposed label-spatial reliability-based label fusion

framework works well in segmenting ROIs for brain MRI in the NIREP,
LONI-LPBA40 and ADNI datasets, there are still several limitations in
the current work. First, compared with conventional multi-atlas seg-
mentation methods (such as LWV and PBM, etc.), the proposed methods
require two additional steps, including (1) estimating label-spatial re-
liability of each voxel in the target image, and (2) label-spatial relia-
bility-based label fusion. These two additional procedures will increase
the computational burden for label fusion. For instance, in the task of
segmenting the region of L insula gyrus on the NIREP dataset, the pro-
posed ls-PBM method requires about 247 s, while the conventional PBM
method requires only 229 s. It is interesting to implement the proposed
framework in a parallel manner, which will be our future work. Besides,
we simply combine the label reliability and spatial reliability via Eq.
(8), without considering the different contributions of these two types
of reliability. As another future work, we will explicitly consider the
contributions of the label and spatial reliability for further performance
improvement.

References

[1] Liu M, Zhang D. Feature selection with effective distance. Neurocomputing
2016;215:100–9.

[2] Liu M, Zhang D. Pairwise constraint-guided sparse learning for feature selection.
IEEE Trans Cybern 2016;46:298–310.

[3] Liu M, Zhang D, Chen S, Xue H. Joint binary classifier learning for ECOC-based
multi-class classification. IEEE Trans Pattern Anal Mach Intell 2016;38:2335–41.

[4] Zu C, Jie B, Liu M, Chen S, Shen D, Zhang D. Label-aligned multi-task feature
learning for multimodal classification of Alzheimer's disease and mild cognitive
impairment. Brain Imaging Behav 2016;10:1148–59.

[5] Jie B, Liu M, Zhang D, Shen D. Sub-network kernels for measuring similarity of
brain connectivity networks in disease diagnosis. IEEE Trans Image Process
2018;27:2340–53.

[6] Jie B, Zhang D, Wee C, Shen D. Topological graph kernel on multiple thresholded
functional connectivity networks for mild cognitive impairment classification. Hum
Brain Mapp 2014;35:2876–97.

[7] Zhang D, Huang J, Jie B, Du J, Tu L, Liu M. Ordinal pattern: a new descriptor for
brain connectivity networks. IEEE Trans Med Imaging 2018;37:1711–22.

[8] Lian C, Ruan S, Denœux T, Li H, Vera P. Spatial evidential clustering with adaptive
distance metric for tumor segmentation in FDG-PET images. IEEE Trans Biomed Eng
2018;65:21–30.

[9] Lian C, Ruan S, Denœux T, Li H, Vera P. Joint tumor segmentation in PET-CT images
using co-clustering and fusion based on belief functions. IEEE Trans Image Process
2019;28:755–66.

[10] Liu M, Zhang D. Sparsity score: a novel graph-preserving feature selection method.
Int J Pattern Recognit Artif Intell 2014;28:1450009.

[11] Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A. Automatic anato-
mical brain MRI segmentation combining label propagation and decision fusion.
NeuroImage 2006;33:115–26.

[12] Artaechevarria X, Munozbarrutia A, Ortizdesolorzano C. Combination strategies in
multi-atlas image segmentation: application to brain MR data. IEEE Trans Med
Imaging 2009;28:1266.

[13] Coupe P, Manjon JV, Fonov V, Pruessner JC, Robles M, Collins DL. Patch-based
segmentation using expert priors: application to hippocampus and ventricle seg-
mentation. NeuroImage 2011;54:940–54.

[14] Rousseau F, Habas PA, Studholme C. A supervised patch-based approach for human
brain labeling. IEEE Trans Med Imaging 2011;30:1852–62.

[15] Tong T, Wolz R, Coupe P, Hajnal JV, Rueckert D. Segmentation of MR images via
discriminative dictionary learning and sparse coding: application to hippocampus
labeling. NeuroImage 2013;76.

[16] Zhang D, Guo Q, Wu G, Shen D. Sparse patch-based label fusion for multi-atlas
segmentation. International workshop on multimodal brain image analysis.
Springer; 2012. p. 94–102.

[17] Wu G, Kim M, Sanroma G, Wang Q, Munsell BC, Shen D. Hierarchical multi-atlas
label fusion with multi-scale feature representation and label-specific patch parti-
tion. NeuroImage 2015;106:34.

[18] Wang H, Suh JW, Das SR, Pluta J, Craige C, Yushkevich PA. Multi-atlas segmen-
tation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 2013;35:611–23.

[19] Wu G, Wang Q, Zhang D, Nie F, Huang H, Shen D. A generative probability model of
joint label fusion for multi-atlas based brain segmentation. Med Image Anal
2014;18:881.

[20] Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D. Multi-atlas based
segmentation of brain images: atlas selection and its effect on accuracy.
NeuroImage 2009;46:726–38.

[21] Bai W, Shi W, Oregan D, Tong T, Wang H, Jamilcopley S, et al. A probabilistic
patch-based label fusion model for multi-atlas segmentation with registration re-
finement: application to cardiac MR images. IEEE Trans Med Imaging
2013;32:1302–15.

[22] Langerak TR, Der Heide UAV, Kotte ANTJ, Viergever MA, Van Vulpen M, Pluim
JPW. Label fusion in atlas-based segmentation using a selective and iterative
method for performance level estimation (SIMPLE). IEEE Trans Med Imaging
2010;29:2000–8.

[23] Lotjonen J, Wolz R, Koikkalainen J, Thurfjell L, Waldemar G, Soininen H, et al. Fast
and robust multi-atlas segmentation of brain magnetic resonance images.
NeuroImage 2010;49:2352–65.

[24] Song Y, Wu G, Bahrami K, Sun Q, Shen D. Progressive multi-atlas label fusion by
dictionary evolution. Med Image Anal 2017;36:162–71.

[25] Zu C, Wang Z, Zhang D, Liang P, Shi Y, Shen D, et al. Robust multi-atlas label
propagation by deep sparse representation. Pattern Recognit 2017;63:511–7.

[26] Sanroma G, Benkarim OM, Piella G, Camara O, Wu G, Shen D, et al. Learning non-
linear patch embeddings with neural networks for label fusion. Med Image Anal
2018;44:143–55.

[27] Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansenberg H,
et al. Advances in functional and structural MR image analysis and implementation
as FSL. NeuroImage 2004;23:208–19.

[28] Kim M, Wu G, Wang Q, Lee S, Shen D. Improved image registration by sparse patch-
based deformation estimation. NeuroImage 2015;105:257–68.

[29] Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a
survey. IEEE Trans Med Imaging 2013;32:1153–90.

[30] Li Z, Mahapatra D, Tielbeek JAW, Stoker J, Van Vliet LJ, Vos FM. Image registration
based on autocorrelation of local structure. IEEE Trans Med Imaging
2016;35:63–75.

[31] Schlachter M, Fechter T, Jurisic M, Schimek-Jasch T, Oehlke O, Adebahr S, et al.
Visualization of deformable image registration quality using local image dissim-
ilarity. IEEE Trans Med Imaging 2016;35:2319–28.

[32] Yousefi S, Kehtarnavaz N, Gholipour A. Improved labeling of subcortical brain
structures in atlas-based segmentation of magnetic resonance images. IEEE Trans
Biomed Eng 2012;59:1808–17.

[33] Lian C, Ruan S, Denœux T. An evidential classifier based on feature selection and
two-step classification strategy. Pattern Recognit 2015;48:2318–27.

[34] Christensen GE, Geng X, Kuhl JG, Bruss J, Grabowski TJ, Pirwani IA, et al.
Introduction to the non-rigid image registration evaluation project (NIREP). IEEE
Trans Magn 2006;30:2972–5.

[35] Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, et al.
Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage
2008;39:1064.

[36] Shi F, Wang L, Dai Y, Gilmore JH, Lin W, Shen D. LABEL: pediatric brain extraction
using learning-based meta-algorithm. NeuroImage 2012;62:1975–86.

[37] Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK:
improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20.

[38] Madabhushi A, Udupa JK. New methods of MR image intensity standardization via
generalized scale. Med Phys 2006;33:3426–34.

[39] Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic demons: efficient
non-parametric image registration. NeuroImage 2009;45:61–72.

[40] Wang H, Yushkevich P. Multi-atlas segmentation with joint label fusion and cor-
rective learning – an open source implementation. Front Neuroinform 2013;7:27.

[41] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error
visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12.

L. Sun, et al. Artificial Intelligence In Medicine 96 (2019) 12–24

24

http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0005
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0005
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0010
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0010
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0015
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0015
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0020
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0020
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0020
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0025
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0025
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0025
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0030
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0030
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0030
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0035
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0035
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0040
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0040
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0040
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0045
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0045
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0045
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0050
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0050
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0055
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0055
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0055
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0060
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0060
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0060
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0070
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0070
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0075
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0075
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0075
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0080
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0080
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0080
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0085
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0085
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0085
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0090
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0090
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0095
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0095
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0095
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0100
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0100
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0100
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0110
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0110
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0110
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0110
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0115
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0115
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0115
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0120
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0120
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0125
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0125
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0130
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0130
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0130
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0135
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0135
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0135
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0140
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0140
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0145
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0145
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0150
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0150
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0150
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0155
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0155
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0155
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0160
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0160
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0160
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0165
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0165
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0170
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0170
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0170
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0175
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0175
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0175
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0180
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0180
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0185
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0185
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0190
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0190
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0195
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0195
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0200
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0200
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0205
http://refhub.elsevier.com/S0933-3657(17)30657-7/sbref0205

	Reliability-based robust multi-atlas label fusion for brain MRI segmentation
	Introduction
	Method
	Notations
	Proposed label-spatial reliability
	Label-spatial reliability-based robust label fusion

	Experiments
	Data and image pre-processing
	Competing methods
	Experimental settings
	Results on NIREP
	Results on LONI-LPBA40
	Results on ADNI

	Discussion
	Comparison with corrective learning method
	Significance analysis
	Robustness analysis
	Effect of label reliability and spatial reliability
	Effect of search region
	Effect of parameter λ

	Conclusion
	References




