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Abstract. Alzheimer’s disease (AD) is the most common form of dementia, with no disease-modifying treatment yet available.
Early detection of patients at risk of developing AD is of central importance. Blood-based genetic signatures can serve as early
detection and as population-based screening tools. In this study, we aimed to identify genetic markers and gene signatures associ-
ated with cerebrospinal fluid (CSF) biomarkers levels of t-tau, p-tau181, and with the two ratios t-tau/A�1-42 and p-tau181/A�1-42

in the context of progression from mild cognitive impairment (MCI) to AD, and to identify a panel of genetic markers that
can predict CSF biomarker p-tau181/A�1-42 ratio with consideration of APOE �4 stratification. We analyzed genome-wide the
Alzheimer’s Disease Neuroimaging Initiative dataset with up to 48 months follow-up. In the first part of the analysis, the main
effect of single nucleotide polymorphisms (SNPs) under an additive genetic model was assessed for each of the four CSF
biomarkers. In the second part of the analysis, we performed an integrated analysis of genome-wide association study results
with pathway enrichment analysis, predictive modeling and network analysis in the subgroup of ApoE4-negative subjects.
We identified a panel of five SNPs, rs6766238, rs1143960, rs1249963, rs11975968, and rs4836493, that are predictive for
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p-tau181/A�1-42 ratio (high/low) with a sensitivity of 66% and a specificity of 70% (AUC 0.74). These results suggest that a
panel of SNPs is a potential prognostic biomarker in ApoE4-negative MCI patients.

Keywords: Alzheimer’s disease, cerebrospinal fluid, genome-wide association study, mild cognitive impairment, multivariate
analysis, pathway analysis, predictive model

INTRODUCTION

Alzheimer’s disease (AD) is the most common form
of dementia, with no disease-modifying treatment yet
available. It has been estimated that 35.6 million peo-
ple lived with dementia worldwide in 2010 and that AD
accounts for about 60–80% of these cases [1]. Patients
with amnestic mild cognitive impairment (aMCI) have
mild but measurable changes in cognitive abilities,
especially executive memory, which is considered a
prodromal stage of AD [2] when supported by the
presence of abnormal biomarkers. The rate of progres-
sion from aMCI to AD is up to 10% per year [3]. In
an aging society, early detection as well as early ther-
apy is widely considered to be an important goal for
researchers. Therefore, aMCI is an important clinical
group in which to study longitudinal changes associ-
ated with the development of AD.

The emerging criteria for diagnosis of AD require
the presence of an appropriate clinical AD pheno-
type together with one or more pathophysiological
biomarker(s) consistent with the presence of AD
pathology [4–6]. Biomarkers that can be utilized as
surrogate markers of underlying pathological change
have become of central importance for detection of
early and preclinical AD. Efforts have been made
by researchers worldwide to identify and validate
different biomarkers for the early diagnosis and/or pre-
diction of progression from MCI to AD, including
positron emission tomography (PET) imaging lig-
ands, archetypically Pittsburgh compound B (PiB),
which bind to amyloid-� (A�), PET imaging with
18F-FDG to measure local glucose metabolism [7–10],
structural magnetic resonance imaging (MRI) and
cerebrospinal fluid (CSF) biochemical biomarkers,
especially A�1-42, total tau (t-tau), and tau phospho-
rylated at threonine 181 (p-tau181) either alone, or
in combination with imaging and CSF biomarkers
[11–14]. It has been reported that the combination
of increased CSF concentrations of t-tau or p-tau181
and decreased concentration of A�1-42 improves sen-
sitivity and specificity in the diagnosis of AD, and
that these markers are predictive of future conver-
sion from MCI to AD [15–18]. However, both PET

imaging and CSF biomarkers have only had limited use
in population-based screening, because they are inva-
sive and relatively expensive. Therefore, blood-based
biomarkers are needed to develop more affordable
and more widely accessible diagnostic and prognostic
tests.

Genetic markers may facilitate improved methods
for early detection and for patient segmentation, as well
as illuminating potential therapeutic avenues. Muta-
tions have been identified in genes that encode the
amyloid precursor protein (APP), presenilin-1 (PS1),
and presenilin-2 (PS2) in familial AD [19]. In sporadic
late-onset AD (LOAD), presence of alleles encoding
the apolipoprotein E4 isoform (ApoE4) is a strong
risk factor associated with AD [20, 21]. Recently,
genome-wide association studies (GWAS) have iden-
tified common variants in genes PLD3, CD2AP, CD33,
MS4A/MS4A6E, and EPHA1 as novel candidates asso-
ciated with LOAD diagnosis [22, 23] and other GWASs
have identified variants in PPP3R1 and MAPT as asso-
ciated with progression of AD [24]. However, genetic
variants discovered by single-locus based GWAS typi-
cally identified variants with small effects sizes in their
association with the phenotype, here AD or AD pro-
gression, and therefore the individual SNPs do not
by themselves constitute potent biomarkers for dis-
ease diagnosis and monitoring of AD progression.
Multivariate panels of genetic variants may, however,
provide more powerful means for diagnostic and prog-
nostic applications. To the best of our knowledge,
no studies to date have reported multivariate pan-
els of SNPs for prediction of progression from MCI
to AD. Moreover, there is relatively little knowledge
about diagnostic accuracy and marker selection in
ApoE4-negative patients specifically. A recent study
reported that use of CSF biomarkers as a predictor
of conversion from MCI to AD performed better in
ApoE4-negative subjects than ApoE4-positive sub-
jects [25]. To address these questions, we conducted
an integrated analytic approach to search for predic-
tive genetic markers as surrogate markers of CSF
biomarkers aimed at improving the possibility to pre-
dict progression from MCI to AD alongside APOE �4
status.
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In our present study, our strategy was to identify
significant pathway-related SNPs derived from GWAS
findings, and to construct a multivariate predictive
model with selected pathway-related SNPs. We ini-
tially applied a GWAS approach to identify common
genetic polymorphisms with the strongest associa-
tion with each one of four quantitative traits, t-tau,
p-tau181 levels, and the two ratios t-tau/A�1-42 and
p-tau181/A�1-42, representing progression/conversion
from MCI to AD. Due to limited statistical power as
well as limitation of a single-locus analysis approach
which may lead to false negatives in respect to SNPs
contributing to joint genetic effects, we performed
pathway enrichment analysis to select significant
pathway-related genes/SNPs. Finally, we applied Ran-
dom Forest (RF) [26], a machine learning method, to
determine a candidate panel of five SNPs with the abil-
ity to predict p-tau181/A�1-42 ratio level (high/low) in
ApoE4-negative subjects.

MATERIAL AND METHODS

ADNI

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu).
ADNI study was launched in 2004 by the National
Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private phar-
maceutical companies and non-profit organizations,
as a $60 million, 5-year public-private partnership.
The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined
to measure the progression of MCI and early AD.
Determination of sensitivity and specificity of mark-
ers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The initial goal of ADNI
(ADNI1) was to recruit 800 subjects from over 50 sites
across the U.S. and Canada.

Samples and genotyping

Genotype data of the subjects in ADNI cohort,
who meet entry criteria for the clinical diag-
nosis of normal cognition, amnestic MCI or
probable AD were downloaded from the LONI
website (http://adni.loni.usc.edu/data-samples/access-
data/). Population stratification was observed on

Fig. 1. Multidimensional scaling plot subjects in ADNI. Each dot
represents a subject and the distance between dots represents overall
genetic similarity calculated using whole genome SNP data. Major-
ity of subjects are self-declared Caucasian (red color), the second
large group is African American (green), and third large group is
Asian (blue).

multidimensional scaling plots of the genome-
wide identity-by-state (IBS) pairwise distance matrix
(Fig. 1), therefore, only Caucasian subjects were
included in further analysis. A total of 177 MCI sub-
jects with 48 months follow-up and available CSF
biomarkers data for A�1-42, p-tau181 and t-tau at base-
line were analyzed. Subjects were defined as MCI to
AD converter (MCI-con) if they converted from MCI
to AD at any time within 48 months and the remainder
defined as MCI stable (MCI-stable).

Since in this longitudinal study the baseline sam-
ples from the same subject were analyzed in different
visiting times with other samples from later visits, we
estimated and adjusted for any batch effect in the base-
line CSF values using a linear model in which batch
was included as an adjustment variable. Genotyping
data from the Human610-Quad BeadChip (Illumina,
Inc., San Diego, CA) included 620,901 SNP and copy
number variation (CNV) markers and was completed
on all ADNI subjects using the protocol as described
previously [27]. All samples also had an APOE geno-
type available in the ADNI database.

Quality control (QC)

The following QC procedures were implemented
prior to GWAS analysis. SNPs and individuals were

http://adni.loni.usc.edu
http://adni.loni.usc.edu/data-samples/access-data/
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Fig. 2. Nested cross-validation machine learning schema to evaluate model and estimate predication accuracy.

Fig. 3. Manhattan plots of GWAS of tau, tau/A�1-42, and
ptau181/A�1-42 as quantitative traits, respectively. The purple dots
represent the candidate SNPs which are reached the threshold
p < 5×10−5 and at least two SNPs are in high LD (R2 >0.8) as
well. In “t-tau” subplot and “t-tau/A�1-42” subplot, rs1445093 and
rs12327358 are represented by purple dots. In “ptau181/A�1-42” sub-
plot, rs11975968 and rs17161127 are represented by purple dots; the
SNP rs1249963 from GWAS is represented by green dot.

filtered out if 1) minor allele frequency <5%; 2)
genotype rate per SNP <95%; 3) genotype rate per
individual <90%; and 4) Hardy-Weinberg Equilibrium

p < 10−6. In total, 514,932 SNPs were included in
subsequent analysis. Genotype calls and QC was per-
formed using PLINK (version 1.07) [28].

A total of 514,932 SNPs and 177 subjects that passed
QC were included in GWAS analysis.

Genome-wide association analysis

We selected CSF biomarkers levels of t-tau, p-tau181,
and the two ratios t-tau/A�1-42 and p-tau181/A�1-42
as quantitative traits (endophenotypes) for GWAS.
CSF t-tau, p-tau181 concentrations, and the two ratios
t-tau/A�1-42 and p-tau181/A�1-42 were all observed to
be approximately normally distributed after log2 trans-
formation.

The main effect of SNPs was assessed on
log2-transformed t-tau, p-tau181, and two ratios of
log2-transformed t-tau/A�1-42 and p-tau181/A�1-42 as
quantitative traits, separately. Linear models were fit-
ted to identify associations dependent additively upon
the minor allele, with adjustment for age, gender,
and APOE �4 status. Minor allele homozygotes were
coded as 2, heterozygotes coded as 1, and major allele
homozygotes were coded as 0. The four models based
on four quantitative traits were designated as p-tau181
model, t-tau model, p-tau181/A�1-42 model, and t-tau/
A�1-42 model. For each trait, the linear regression
model used to test for main effect of SNP was:

Y = �+�1∗SNP + �2∗AGE + �3∗GENDER
+ �4∗APOE ε4+ ε
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Fig. 4A. Enriched Gene Ontology terms for p-tau181. x-axis represents –log10(p-value).

The false discovery rate (FDR) for reported can-
didate SNPs were calculated using Benjamini and
Hochberg’s method [29].

Pathway and network analysis

SNPs from the four GWAS analyses p-tau181,

p-tau181/A�1-42 ratio, t-tau, and t-tau/A�1-42 were
assigned to genes from the NCBI build 36, using
ProxyGeneLD which facilitates the conversion of
genome-wide genetic marker lists to representative
gene lists [30]. The two major features of this software
are assigning gene-based significance by accounting
for high linkage disequilibrium (LD) structure and cor-
recting the p-value according to marker density due
to the gene size. By consideration of high LD struc-
ture (user-specified r2) the software iteratively groups
SNPs into clusters. Cluster estimation uses LD infor-
mation to allow for associated markers beyond gene
windows and reduces false positive hits by accounting

for interdependence of SNPs. Thus, the most sig-
nificant marker assigned to a specific gene can in
turn reside outside of the specified gene boundaries.
Two user-specified parameters in software included
gene-boundary windows and the LD threshold, which
parameters we defined as 1 kb upstream of transcrip-
tion initiation sites to the end of the 3 UTR of the
longest known splice form and r2 > 0.8 for LD thresh-
old, respectively.

In order to characterize the functional role of top
genes in the list, and to identify significant pathway-
related SNPs for further predictive models, the top
three percent genes in each of the four gene lists con-
verted from the four GWAS SNPs lists were used in
pathway enrichment analysis with the public database
Gene Ontology (GO) and the Ingenuity® pathway anal-
ysis. The hypergeometric test and right-tailed Fisher’s
Exact test to find over-represented pathways were
applied to the output from GO and IPA, respectively.
Due to the acyclic GO structure, hypergeometric tests
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Fig. 4B. Significant canonical pathways from Ingenuity pathway analysis for p-tau181 (A), p-tau181/A�1-42 ratio (B), t-tau (C), and t-tau/A�1-42
(D), respectively. x-axis represents –log10(p-value).

were performed with consideration for the GO struc-
ture, such that tests were first performed for those terms
with no child terms. Before testing the terms whose
children had already been tested, all genes annotated
as significant children from the parent’s gene list were
removed. This was continued until all terms had been
tested. The analysis was restricted to gene sets contain-
ing 10–200 genes since small pathways can exhibit
spurious phenotype associations due to large single
locus effects, and large pathways are more likely to
exhibit association by chance alone. Significant path-
ways were selected with p value ≤0.01. We note that
ProxyGeneLD as used for conversion of SNPs to genes
treated the high LD block as a single signal and chooses
the p value of the best single marker (lowest p value in
LD block) in that LD block for pre-adjustment signifi-
cance level, which means that the same marker may be
assigned to a number of genes in a high LD block and
thus have the potential to inflate pathway enrichment

analysis. To avoid this, we manually checked the sig-
nificant pathway results from the enrichment analysis.
If a significant pathway included several genes in a LD
block, only one gene was selected at random and the
enrichment analysis run again to test if the pathway
was still significant. A protein–protein interaction net-
work was constructed based on Ingenuity Knowledge
Base using IPAs defined algorithm [31].

Receiver operating characteristic curve analysis

In order to define cut-off points for subse-
quent binary classification from identified pathways,
receiver-operator characteristics (ROC) curves of the
MCI-con versus the MCI-stable group were plotted
by varying a cutoff from the baseline of t-tau and
p-tau181 levels and the two ratios p-tau181/A�1-42
and t-tau/A�1-42. AUCs under the ROC curves, sen-
sitivities, specificities, and optimal thresholds were
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calculated using the pROC package (version 1.5.4) in
the R software environment (version 3.0.0). The opti-
mal threshold point was calculated using the Youden
index method [32].

Random Forest multivariate modeling

Random Forest (RF) modeling was applied to
develop a predictive model for discrimination between
low and high levels of p-tau181/A�1-42 ratio, and to
identify an associated biomarker panel consisting of
a small number of predictors (SNPs). The SNPs were
encoded as 0, 1, and 2, by minor allele count, when
used as predictors in the RF model. To jointly evaluate
the prediction performance and optimize RF param-
eters, a nested (double) cross-validation strategy was
applied (Fig. 2); the samples were randomly divided
into one training set (71 samples) used in the innermost
cycle for parameter optimization and one test set (10
samples) used in the outermost cycle for prediction per-
formance assessment. This process was repeated for 50
random partitions of the samples into training and test
sets. Within the inner cycle, a RF model was trained,
consisting of 1000 trees. A variable importance (VI)
score), Mean Decrease Accuracy, was calculated for
all variables, and variables were ranked in descending
order by VI score. Then, new models were constructed
sequentially by stepwise addition of variables, one-at-
a-time, and prediction error rates were evaluated. An
RF model was optimized, with minimum number of
variables (SNPs) and smallest prediction error rate,
using the cross-validation training set in each inner
cross-validation round. For each outer cross-validation
round the samples in the independent test set were clas-
sified into low and high level of p-tau181/A�1-42 ratio
to assess prediction performance. The final prediction
accuracy was calculated as the percentage of correctly
classified samples across the 50 outer cross-validation
rounds. The average of VI scores was calculated for
each variable across the 50 iterations using training
sets.

For selection of the most important variables, an
overall VI score was calculated using the full set of
samples. The correlation between overall VI score
and average VI score from 50 iterations was calcu-
lated using Spearman’s rank correlation test. Analysis
was performed with the Random Forest package (ver-
sion 4.6–7) in the R software environment. In order to
validate the statistical significance of predictive perfor-
mance of AUC from ROC analysis based on the small
set of selected predictors, RF models were fitted to the
same number of randomly selected SNPs/predictors

from GWAS as in the obtained model using a boot-
strap approach. This procedure was repeated 100 times
in order to obtain AUC values. The empirical p value
of the AUC was then estimated as the proportion of
sampled AUC values where AUC is greater or equal to
the observed AUC value.

High performance computing

GWAS, cross-validation, and bootstrap validation
for RF models used the High Performance Computing
(HPC) cluster resource at AstraZeneca, Mölndal, Swe-
den. The HPC consists of Dell M1000E blade centers,
176 nodes with two six-core Xeon processors, with
2–8GB of memory per core. The cluster contains 2,112
cores in total, all connected with Infiniband QDR for
node inter-communication and storage access.

RESULTS

Demographic characteristics and CSF biomarkers
of patients with MCI in ADNI

From the ADNI1-cohort, 177 MCI subjects with 48
months follow-up time and with a useable CSF sam-
ple at baseline were included in the analysis, 81 of
these converted to AD and 96 were stable after to 48
months follow-up (Table 1). APOE �4 allele status
was significantly associated with MCI to AD con-
version according to the one-sided Fisher’s exact test
(p = 0.02313).

Median and mean ± SD values (log2 transformed)
for p-tau181, t-tau, and the two ratios of t-tau/A�1-42
and p-tau181/A�1-42 at baseline from the selected
MCI-stable and MCI-con group in ADNI are sum-
marized in Table 2. The CSF levels at baseline of
p-tau181 and the p-tau181/A�1-42 ratio were signifi-
cantly increased in the MCI-con group as compared
with MCI-stable group, respectively (for p-tau181:
p = 0.01; for p-tau181/A�1-42: p = 0.006), but not for
t-tau or t-tau/A�1-42 (p = 0.21; p = 0.097).

Table 1
Demographic characteristics of MCI subjects who provided a cere-
brospinal fluid sample at baseline visit and with 48 months follow-up

time in ADNI cohort

male/female median AGE at APOE �4
‘ baseline (range) carrier

MCI-stable (n = 96) 66/30 75(55–89) 45 (47%)
MCI-converter (n = 81) 52/29 75(55–89) 51 (63%)
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Table 2
Cerebrospinal fluid biomarker concentration and ratios for selected

MCI subjects at baseline

ptau181 ptau181/A�1-42 tau tau/A�1-42

MCI-stable
median 23.5 0.15 74.60 0.50

(pg/ml)
mean ± SD 30.3 ± 18.3 0.21 ± 0.17 94.79 ± 63.03 0.65 ± 0.59
MCI-con
median 36.25 0.26 94.16 0.68

(pg/ml)
mean ± SD37.02 ± 15.82 0.27 ± 0.15 106.70 ± 46.870.79 ± 0.48

GWAS of CSF biomarkers t-tau, p-tau181 and the
two ratios of p-tau181/Aβ1-42 and t-tau/Aβ1-42

In order to perform pathway-based analysis and
select significant pathway-related SNPs for down-
stream analysis, GWAS analysis was performed as
described above. After quality control, 514,932 SNPs
were individually fitted in linear regression mod-
els with covariate adjustment for age, gender, and
APOE �4 allele status to evaluate the association
of SNPs with p-tau181 concentration, t-tau concen-
tration, p-tau181/A�1-42 ratio, and t-tau/A�1-42 ratio,

respectively. After calculation of genomic inflation fac-
tors [33] (p-tau181λ = 1.007, p-tau181/A�1-42λ= 1.012,
t-tauλ = 1.005, t-tau/A�1-42λ= 1.012), no inflation was
observed, which indicated that population stratification
alone was unlikely to account for the GWAS results.

Top-ranked (p value < 10−5) candidate SNPs associ-
ated with CSF biomarkers in the context of conversion
from MCI to AD for the models t-tau, t-tau/A�1-42,

p-tau181/A�1-42, and p-tau181 are listed in Table 3.
SNPs rs1445093 and rs12327358, which are in high
LD (r2 = 0.97), were associated with t-tau/A�1-42 ratio,
with p values of 2.80 × 10−7 and 5.76 × 10−7, respec-
tively (Fig. 3, purple dots in “t-tau/A�1-42” subplot).
These two SNPs were also associated with t-tau with p
value 3.73 × 10−7 and 6.34 × 10−7 (Fig. 3, purple dots
in “t-tau” subplot). SNPs rs1445093 and rs12327358
are located in an intergenic region on chromosome
18 and are located circa 95kb and 90kb upstream,
respectively, of the gene encoding the Netrin recep-
tor DCC (DCC). From the p-tau181/A�1-42 model,
we observed that rs1249963 was associated with p-
tau181/A�1-42 with p value 8.85 × 10−7 (Fig. 3, green
dot in the “ptau181/A�1-42” subplot). rs1249963 is
located in an intergenic region on chromosome 12 and
7kb upstream of PPP1R1A (protein phosphatase 1,
regulatory (inhibitor) subunit 1A). SNPs rs11975968
(p-value: 1.53 × 10−6) and rs17161127 (p-value:
7.71 × 10−6), are located in the first intron of phos-

phodiesterase 1C, calmodulin-dependent (PDE1C) on
chromosome 7, and are in high LD (r2 > 0.8) (Fig. 3,
purple dots in “ptau181/A�1-42” subplot).

Pathway analysis

In order to characterize the functional role of SNPs
and the corresponding genes and gene products asso-
ciated with the four traits (p-tau181, t-tau, and two
ratios p-tau181/A�1-42 and t-tau/A�1-42), respectively,
we performed a marker-to-gene conversion and ana-
lyzed the top 3% of genes for pathway enrichment
analysis for each trait. This procedure yielded four
lists of genes associated with each trait ranked by
significance. From GO analysis, we identified sev-
eral statistically significantly enriched (p value <0.01)
GO terms in the “biological processes” and “molec-
ular function” that were associated with the top 3%
of genes from the p-tau181, p-tau181/A�1-42, t-tau, and
t-tau/A�1-42 models, respectively (Fig. 4A). Shared
enriched GO terms between the p-tau181 and p-
tau181/A�1-42 traits were “cAMP catabolism process”
and “proteoglycan biosynthesis”. Shared enriched GO
terms between p-tau181/A�1-42 and t-tau/A�1-42 traits
were “cAMP-dependent protein kinase regulation” and
“chondroitin sulphate biosynthesis”. We also observed
that pathways for “positive regulation of actin filament
polymerization” (CDC42EP2, FMN1, RHOA, RAC1,
CCL21, and CCL24) and “peripheral nervous system
development” (FOXD2, PMP22, ISL2, TBCE, and
RUNX1) significantly associated with t-tau/A�1-42.

Significantly associated canonical pathways (p
value <0.01) were similarly identified using Ingenu-
ity Pathway Analysis (IPA) (Fig. 4B). The “Glycine
cleavage complex” pathway was associated to the p-
tau181/A�1-42, t-tau and t-tau/A�1-42 models. GCSH
(glycine cleavage system H protein) and AMT
(aminomethyltransferase) were associated with the
“Glycine cleavage complex” pathway (energy produc-
tion, lipid metabolism). The “cardiac beta-adrenergic
signalling” pathway was shared by p-tau181 and p-
tau181/A�1-42 traits. A number of genes, PDE1B,
PDE1C, PDE3B, PDE6D, and PDE8A, encoding
cyclic nucleotide phosphodiesterases (PDEs) were
found to be associated with this pathway.

Predictive models for pathway-derived
SNPs/genes associated with p-tau181 /Aβ1-42 in
ApoE4-negative patients

In order to identify genetic markers predictive of
CSF biomarkers that are known in turn to predict
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Table 3
SNPs (p value <1 × 10−5) selected from GWAS for each trait. In each model, ∗represents SNPs in high LD (LD >0.8)

SNPs from GWAS of t-tau
SNPs name pvalue FDR chromosome Gene

rs1445093∗ 3.73E-07 0.16 18 –
rs12327358∗ 6.34E-07 0.16 18 –
rs4239351 1.29E-06 0.22 18 –
rs11078506 4.95E-06 0.58 17 –
rs11124499 6.13E-06 0.58 2 –
rs3885648 7.47E-06 0.58 3 TMEM132C
rs1466134 8.01E-06 0.58 16 GPR56
SNPs from GWAS of t-tau/ A�1-42
rs1445093∗ 2.80E-07 0.14 18
rs12327358∗ 5.76E-07 0.15 18
rs7131051 3.08E-06 0.40 11 NAV2
rs2824765 3.29E-06 0.40 21 TMPRSS15
rs4869001 3.90E-06 0.40 5 –
rs12130076 6.91E-06 0.55 1 –
rs1249963 7.81E-06 0.55 12 –
rs4577811 9.16E-06 0.55 6 PLEKHG1
SNPs from GWAS of p-tau181/A�1-42
rs1249963 8,85E-07 0.37 12 –
rs11975968∗ 1,53E-06 0.37 7 PDE1C
rs10945919 2,13E-06 0.37 6 –
rs2157673 4,32E-06 0.51 9
rs4895598 7,31E-06 0.51 6 –
rs17161127∗ 7,71E-06 0.51 7 PDE1C
rs1716355 7,90E-06 0.51 12 GLYCAM1
rs1143960 8,47E-06 0.51 12 PPP1R1A
rs2107284 8,91E-06 0.51 7 –
SNPs from GWAS of p-tau181.

rs11975968 2,99E-06 0.55 7 PDE1C
rs12809589 4,45E-06 0.55 12 TMEM132C
rs11795346 4,75E-06 0.55 9 ZNF169
rs10945919 6,92E-06 0.55 6 –
rs11059821 7,87E-06 0.55 12 TMEM132C
rs11795331 8,13E-06 0.55 9 ZNF169

MCI to AD conversion [15, 16], we performed
ROC analysis for CSF biomarkers with stratification
by APOE �4 allele status. Results showed that all
four CSF biomarker classifiers performed best in the
ApoE4-negative subgroup (Supplementary Figure 1
and Supplementary Table 1). The optimized cut-offs
for p-tau181, ptau181/A�1-42, t-tau, and t-tau/A�1-42
to predict MCI to AD conversion for ApoE4-negative
subject were 20 pg/ml, 70 pg/ml, 0.13 and 0.25,
respectively. The p-tau181/A�1-42 ratio was selected
as response variable (binned response variable for two
categories of high/low) in further predictive models
considering that of both sensitivity and specificity were
greater than 60%, thus higher in comparison with other
CSF biomarkers (Supplementary Table 2).

From GO and IPA enrichment analysis, 51 non-
redundant genes were identified as related to 49 SNPs
(Supplementary Table 3) and associated with GO terms
or IPA canonical pathways in turn significantly associ-
ated to the ptau/A�1-42 ratio trait, as described above.
Having identified pathway-associated genes/SNPs in

the GWAS analysis, and having identified optimal
cutoff points for binary classifiers (low/high level of
ptau181/A�1-42 ratio), we performed predictive mod-
eling in the ApoE4-negative group patients using
these 49 SNPs as predictors and low/high level of
ptau181/A�1-42 ratio with respect to the optimized cut-
off as the response variable.

An RF model was constructed for prediction of high
or low ratio of p-tau181/A�1-42 in the ApoE4-negative
group. Cross-validation was applied to evaluate pre-
diction performance of the RF model, and the average
sensitivity was estimated to 66% and specificity to
70%. The AUC value was 0.74 from ROC anal-
ysis (p value = 0.01) (Fig. 5). The correlation of
variable rankings according to VI score using all
samples and average VI score from 50 iteration of
cross-validation was highly significant (Spearman’s
rank correlation test, p-value <2.2e−16). Five SNPs
rs6766238, rs1143960, rs1249963, rs11975968, and
rs4836493 were selected as important variables/SNPs,
these SNPs were ranked as top five in both in the
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Fig. 5. Receiver operating characteristic analysis for prediction the
baseline level of p-tau181/A�1-42 ratio (high/low) using SNP data
based on RF model in ApoE4-negative subjects. The straight diag-
onal line illustrates prediction by pure chance (AUC 0.5), and the
curved line describes the predictions using the RF models when
varying the cut-off values (AUC 0.74, p value = 0.01).

ranking list based on overall VI score using all samples
and in the list based on the average VI score from cross-
validation. The corresponding candidate genes of these
SNPs are listed in Table 4 together with the observed
protein expression in human brain from the Human
Protein Atlas (HPA) [34]. We note that SNPs assigned
to a specific gene can reside outside of specified gene
boundaries due to consideration of LD structure as
discussed above, and that LD blocks may contain
more than one gene. Distribution of p-tau181/A�1-42
ratio by genotype for the five SNPs is shown in
Fig. 6.

In order to characterize the functional role of the
identified genes, potential interconnections among the
seven candidate protein products was explored and
a functional network was built upon the Ingenuity
pathway knowledge base (Fig. 7). From the protein-
protein interaction network, we could observe that
several candidate gene products indirectly connected
with Ca2+, which might indicate that the progression
of AD pathology is correlated with changes of intracel-
lular Ca2+ concentration. Most of these genes encode
proteins that demonstrate moderate to strong protein
expression in cerebral cortex, lateral ventricle, hip-
pocampus, or cerebellum, suggesting that these genes
might indeed play an important role in CNS function
and in AD pathology.

Table 4
RNA/protein expression level in CNS from Human Protein Atlas

database (HPA) for identified candidate genes

Representative SNP Gene CNS(brain) from HPA
rs1143960 PDE1B Strong in cerebral cortex,

lateral ventricle, and
cerebellum

rs11975968 PDE1C Strong in cerebral cortex
rs1249963 PPP1R1A Strong in cerebral cortex,

hippocampus, lateral
ventricle, and cerebellum

rs6766238 AMT Strong in cerebral cortex,
cerebellum and moderate

in hippocampus
rs6766238 RHOA Moderate in cerebral cortex,

hippocampus and
cerebellum

rs6766238 DAG1 Moderate expression in
cerebral cortex

rs4836493 CHSY3 Moderate in cerebral cortex

DISCUSSION

In this study, we developed and applied an inte-
grated analysis approach that combined GWAS,
pathway enrichment analysis, and predictive model-
ing to identify genetic factors predictive of baseline
CSF biomarkers, which may thus ultimately be pre-
dictive of AD progression from MCI to AD. For
single SNP analysis, we applied a conventional GWAS
approach to identify top-ranked SNPs associated with
CSF biomarkers t-tau, p-tau181, t-tau/A�1-42, and
p-tau181/A�1-42. In addition, we also performed path-
way enrichment analysis in order to get biological
insight and take into account potential joint genetic
effects. Through these analyses, we could prioritize
a limited number of candidate SNPs for building
the predictive models. We have been able to iden-
tify a panel of five SNPs, rs6766238, rs11975968,
rs1143960, rs1249963, and rs4836493, that are pre-
dictively informative for baseline p-tau181/A�1-42 ratio
(high/low, cutoff 0.13) with 66% sensitivity and 70%
specificity in ApoE4-negative subjects. It is notable
that the optimal cutoff used for the predictive model
(0.13) is close to the median ratio for p-tau181/A�1-42
from the MCI ApoE4-negative carrier group (0.12),
suggesting that the genetic test could have a signifi-
cant clinical impact after further validation. rs6766238
is representative for an LD block containing protein
coding genes for RHOA, AMT, and DAG1. It has
been shown that RHOA protein abundance is decreased
in the AD brain hippocampus, and RHOA colocal-
ized with hyperphosphorylated tau in Pick’s disease,
a neurodegenerative disorder characterized by hyper-
phosphorylated tau accumulation [35]. It has been
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Fig. 6. Boxplots of ratio of ptau/A�1-42 (log2 transformed) grouped by genotype for five candidate SNPs in APOE4-negative subjects. Each
boxplot is in the order homozygous major allele, heterozygous, homozygous minor allele at each SNP.

shown that DAG1 encoding protein alpha-dystroglycan
exhibits higher levels in AD CSF as compared with
normal subjects [36]. rs1143960 is representative for
PDE1B (phosphodiesterase 1B, Calcium/calmodulin-
dependent). rs1249963 is located in intergenic region
of genome, but it is representative for PPP1R1A due
to LD structure. rs11975968 is located in the intronic
portion of PDE1C (phosphodiesterase 1C, calmodulin-
dependent). rs4836493 is located in the intron region of
gene CHSY3 (chondroitin sulfate synthase 3). PDE1B
and PDE1C are members of the PDE1 family. PDE1
family is activated by the binding of calmodulin in
the presence of Ca2+ and is capable of acting on
both cAMP and cGMP. PDE1 has several isoforms;
PDE1B is expressed in brain and mainly in dopamin-
ergic regions [37]. PDE1C is highly expressed in the
heart, but also found in the CNS [38, 39]. PPP1R1A is

involved in long-term potentiation of synapses (LTP).
It has been shown that deficiency of this gene in mouse
causes different degrees of impairment of LTP, indicat-
ing that these genes play a role in synaptic plasticity
[40]. Bossers et al. showed that using Braak staging for
neurofibrillary changes as an objective indicator of pro-
gression of AD, PPP1R1A expression was decreased
in early Braak stages, followed by an increase in
expression in later stages [41]. In summary, the genes
identified in the model have face validity as potential
modulators of calcium regulation and hence control
of phosphorylation in neuronal signal transduction,
and thus may contribute to the modulation of AD
progression by interaction with pathways downstream
from A�. This study also suggests that pharmaco-
logical intervention at these targets may have future
utility.
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Fig. 7. Protein–protein interaction network from the Ingenuity pathway knowledge base. Protein products of selected candidate genes are
highlighted in yellow. A solid line indicates the known experiment-confirmed direct interaction and a dashed line indicates indirect interaction.

In pathway enrichment analysis, proteoglycan
biosynthesis was significantly associated with the p-
tau181 and p-tau181/A�1-42 traits. It is known that
proteoglycans are associated with amyloid deposi-
tion and it has been reported that heparin sulphate
proteoglycans are involved in the pathogenesis of
AD [42]. Furthermore, it has been shown that chon-
droitin sulphate-containing proteoglycan is found in
senile plaques of human AD tissue [43]. NCAN
(neurocan), CHSY3 (chondroitin sulfate synthase 3),
and CHST7 (carbohydrate (N-acetylglucosamine 6-O)
sulfotransferase 7) were associated with the “proteo-
glycan biosynthetic process” pathway. Interestingly,
the pathway of telomere maintenance via semi-
conservative replication was significantly associated

with p-tau181/A�1-42. There is some evidence linking
shortened telomeres to AD [44, 45].

In this study, we investigated CSF biomarkers as
predictors of conversion from MCI to AD, strati-
fied by the presence of the APOE �4 allele. We
observed that CSF biomarkers in ApoE4–negative
subjects outperformed ApoE4-positive subjects in dis-
criminating MCI-con and MCI-stable. Our observation
is supported by data recently published by Apos-
tolova et al. who showed that using CSF biomarker
as a classifier to predict conversion from MCI to
AD performed better in ApoE4-negative subjects than
ApoE4-positive subjects [25]. One explanation based
on our analysis is that there are significant differences
in baseline levels of CSF biomarkers between MCI-
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con and MCI-stable in the ApoE4-negative group,
while there is no significant difference between MCI-
con and MCI-stable in ApoE4-positive group. We also
observed that baseline levels of CSF t-tau, p-tau181,
t-tau/A�1-42, and p-tau181/A�1-42 were greater in the
ApoE4-positive group as compared with the ApoE4-
negative group. High CSF t-tau or p-tau181 and low
CSF A�1-42 are linked to the tau and A� pathologies
of AD and APOE �4 is a strong risk factor for AD
development.

One of the main aims of this study was to identify
candidate genetic markers to predict CSF biomarkers
in the context of progression from MCI to AD using an
integrated analytics approach rather than single-locus
based GWAS approach. Our results provided AUC esti-
mated to 0.74 (p value = 0.01), suggesting that the RF
model based on the candidate biomarker panel pro-
vides a means to discriminate between high and low
ratio of p-tau181/A�1-42 in ApoE4-negative subjects.
genes implicated by the identified predictive markers
show moderate to strong protein expression in cerebral
cortex, lateral ventricle, hippocampus or cerebellum,
indicating that these genes might be correlated to CNS
function. It is clear that additional work is required
to replicate and validate the findings. Replication in
additional cohorts and additional analysis to determine
likely underlying functional variants to investigate the
clinical, histological, and functional cell biological
consequences of those changes are all warranted as
objectives of further studies.

A limitation of the current study is the small sam-
ple size of MCI subjects for GWAS analysis and
present lack of an independent cohort for valida-
tion. We were limited to 177 subjects in ADNI1 that
had CSF biomarkers data and so could be included
into this model approach at the time of our study.
Taking into account the known heterogeneity of the
aMCI clinical diagnosis and the small effect size
the comment genetic variants, we will have low
power to detect genome-wide significant associa-
tions (p < 5∗10−7) of individual variants in the GWAS
analysis using conventional Bonferroni multiple test
correction. However, Bonferroni’s method is overly
conservative because the independence assumption
does not hold due to the LD structure among SNPs.
Therefore, the top-ranked GWAS SNPs were primarily
used to identify significant pathways through pathway
analysis. The reported top-ranked SNPs in this study
should be considered as potential candidates for repli-
cation and validation in future studies. Future studies
with potential for replication include ADNI-GO and
ADNI-2, where early MCI subjects are being recruited

and all patients in ADNI-2 undergo lumbar punctures
for CSF data collection, which will increase sample
size and statistical power. Moreover, the World Wide
ADNI (WW-ADNI) consortium is actively developing
broader collaboration efforts to contribute in this com-
munity. Large datasets from WW-ADNI are likely to
be become available in the future and could provide
more replication samples.

Diagnostic criteria in the field of AD remain in
development, and even advanced clinical AD remains a
probable diagnosis that is not confirmable antemortem.
Emerging guidelines suggest that the addition of one
or two biomarkers to the clinical status would add
value [4], however, no genetic markers are yet validated
in this context. Moreover, current biomarker method-
ologies are invasive and expensive (primarily lumbar
puncture and PET imaging). Much attention is thus
focused on the identification of less invasive alterna-
tives. The identification of genetic signatures that can
complement or even ultimately replace biochemical
biomarkers in a diagnostic or prognostic scenario is
thus a potential future avenue. Despite the limitation
of sample size for this study as we discussed, the final
SNP model is designed to demonstrate that a genetic
signature panel can predict level of baseline biochem-
ical biomarkers, which in turn are predictive of future
conversion of MCI to AD. Hence, the marker panel
identified in this study may have utility in screening
and/or stratification for future treatments.
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