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Abstract—Clustering is a widely used machine learning tech-
nique for unlabelled data. One of the recently proposed tech-
niques is the twin support vector clustering (TWSVC) algorithm.
The idea of TWSVC is to generate hyperplanes for each cluster.
TWSVC utilizes the hinge loss function to penalize the misclas-
sification. However, the hinge loss relies on shortest distance
between different clusters, and is unstable for noise-corrupted
datasets, and for re-sampling. In this paper, we propose a novel
Sparse Pinball loss Twin Support Vector Clustering (SPTSVC).
The proposed SPTSVC involves the ε-insensitive pinball loss
function to formulate a sparse solution. Pinball loss function
provides noise-insensitivity and re-sampling stability. The ε-
insensitive zone provides sparsity to the model and improves
testing time. Numerical experiments on synthetic as well as real
world benchmark datasets are performed to show the efficacy
of the proposed model. An analysis on the sparsity of various
clustering algorithms is presented in this work. In order to show
the feasibility and applicability of the proposed SPTSVC on
biomedical data, experiments have been performed on epilepsy
and breast cancer datasets.

Index Terms—TWSVC, SVM, pinball loss, quantile distance,
sparsity, noise insensitivity, noisy data.

I. INTRODUCTION

SUPPORT vector machines (SVMs) have proven to be
one of the most accurate classification techniques in

the past few decades [1]. The solution of SVM involves a
quadratic programming problem (QPP) to generate a classi-
fying hyperplane. SVM and its variants have been applied
in various applications such as Alzheimer’s disease [2], [3],
image classification [4], investor sentiment classification [5],
EEG classification [6], and breast cancer [7]. The solution of
SVM requires the solution of a QPP of large size. This incurs
high computation time for the SVM algorithm. In order to
reduce the computational complexity of SVM, Jayadeva et al.
[8] proposed a novel technique termed as twin support vector
machine (TWSVM). In TWSVM, instead of one large QPP,
two small QPPs are solved to generate twin hyperplanes. Shao
et al. [9] proposed a twin bounded support vector machine
(TBSVM) to embody the structural risk minimization principle
(SRM) of statistical theory in TWSVM. The SRM principle is
introduced in TBSVM by including a regularization term in the
objective function of TWSVM. Some twin SVM based models
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are proposed for multiclass classification [10] as well. Tanveer
[11] used a smoothing technique to propose a smooth linear
programming TWSVM (SLPTSVM). It leads to unconstrained
optimization problems, which in turn reduces the computation
cost. The smoothing function is used to approximate the loss,
and makes it differentiable. Moreover, Newton method is used
to propose an iterative implicit Lagrangian TWSVM algorithm
[12]. Another improvement over SVM is proposed as least
squares twin support vector machine (LSTSVM) [13], which
only involves linear equations in the solution. An energy-based
LSTSVM (RELS-TSVM) [14] performed well on benchmark
datasets in a recent survey [15].

To reduce the effect of noise in SVM, various techniques
have been proposed, such as fuzzy based techniques [16],
[17]. To improve the noise insensitivity, Huang et al. [18] pro-
posed a pinball loss function for SVM. More efficient models
based on pinball loss are also proposed in the past. A twin
parametric-margin SVM using pinball loss (Pin-TPMSVM)
is also proposed [19], based on the twin parametric-margin
approach. This leads to decrease in computational time of pin-
SVM algorithm. Recently, a general pinball twin SVM (Pin-
GTSVM) was proposed for pattern classification. The Pin-
GTSVM model is in the spirit of the original TWSVM model
of classification, rather than the parametric version as in [19].
In order to include sparsity in the Pin-GTSVM, Tanveer et al.
[20] proposed a sparse pinball twin support vector machine
(SPTWSVM). The solution of SPTWSVM is sparser than Pin-
GTSVM. This leads to better generalization performance in
SPTWSVM with lesser testing time. By including the SRM
principle in Pin-GTSVM, an improved sparse pinball twin
support vector machine (ISPTSVM) [21] is proposed to im-
prove the generalization performance. However, most of these
pinball loss based models have been used for classification
problems.

Clustering algorithms are very useful in real world ap-
plications, since a large amount of data is unlabelled in
nature. Many algorithms are proposed for clustering in the
past [22]. Support vector clustering (SVC) is proposed [23]
for unlabelled data. An efficient formulation termed as twin
support vector clustering (TWSVC) [24] is proposed using
the concave-convex programming (CCCP). To improve the
computation time, a fuzzy based least squares TWSVC (FLST-
WSVC) is formulated [25]. However, the additional fuzzy
function in FLSTWSVC incurs additional computational cost.
To include the SRM principle in clustering algorithms, a twin
bounded support vector clustering (TBSVC) [26] was pro-
posed, using additional regularization term in the formulation
of TWSVC. Further, a ramp loss based twin support vector
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clustering (RampTWSVC) [27] is proposed to bring robustness
to classifier, in presence of points lying far away from their
clusters. RampTWSVC utilises the within class and between
class scatter information to improve the noise insensitivity.
However, the ramp loss function is non-convex in nature. Re-
cently, a least squares projection twin SVC (LSPTSVC) [28]
is proposed, where the intra-class scatter is minimized, and
inter-class scatter is maximized in the formulation. To include
the pinball loss in the optimization problem of twin SVM
based clustering algorithms, a pinball loss based twin support
vector clustering (pinTSVC) [29] algorithm is proposed. This
lead to improvement in the noise insensitivity of the clustering
algorithm.

However, the generalization performance of SVM based
models is determined by the sparsity of the solution ob-
tained. Classifiers with higher sparsity level often give better
generalization performance [20]. In order to include sparsity
with noise insensitivity, motivated by the works on pinball
twin SVM and TWSVC, we propose a novel sparse twin
support vector clustering using pinball loss (SPTSVC). The
formulation of proposed SPTSVC involves a ε-insensitive
pinball loss function to construct the clustering hyperplanes.
The proposed SPTSVC solves the optimization problem with
sparser solution compared to existing algorithms, while still
enjoying properties of noise-insensitivity and re-sampling sta-
bility. The main contributions of our paper are as follows:

• A novel sparse pinball loss twin support vector clustering
algorithm is proposed for noisy data.

• The proposed SPTSVC is insensitive to noisy data. Fur-
ther, it is stable for re-sampling which is required for
large scale datasets. Thus its applicable to various real
world problems.

• The proposed SPTSVC leads to sparse solution to the
optimization problem, thereby reducing testing time.

• An analysis on the sparsity of proposed and existing
algorithms is presented in this work.

• Biomedical applications are presented for clustering by
using image and time-series data.

We have organized the paper as follows: Section II gives
brief description of recent works on clustering. In Section
III, formulation of the proposed algorithm has been provided.
Section IV discusses the advantages of the proposed SPTSVC
model, while the experimental results are given in Section V.
Section VI shows the applicability of the proposed model on
biomedical data. The conclusions with future work are given
in Section VII.

II. BACKGROUND

In this paper, m denotes the number of samples. Each
sample has n number of features. Hence, every data sample
of a dataset can be represented as xi = (x1i , x

2
i , ..., x

n
i ) for

i = 1, 2, ...,m.
Suppose there are k clusters. Then for i = 1, 2, ..., k, matrix

Xi of dimensions mi×n contains all points in the ith cluster.
Rest of the points are collected in matrix X̂i of dimensions
(m − mi) × n. All vectors are column vectors, L2 norm is
denoted as ‖.‖, and e represents vector of ones of appropriate
dimension.

A. TWSVC

Based on the principles of TWSVM, TWSVC is proposed by
Shao et al. [24]. TWSVC [24] obtains k cluster center planes
ωTi x + bi = 0, i = 1, ..., k. These cluster center planes are
obtained by solving the following optimization problem:

min
ωi,bi,ξi

1

2
‖Xiωi + bie‖2 + ceT ξi

s.t. |X̂iωi + bie| ≥ e− ξi, ξi ≥ 0,

(1)

here c > 0 is the penalty parameter, and ξi is the slack variable
for bounding the error term.

From this formulation one can observe that the ith clus-
ter center plane is close to the points Xi and far away
from the points X̂i. Shao et al. [24] showed that the above
optimization problem can be decomposed into smaller con-
vex quadratic sub-problems using concave-convex procedure
(CCCP) [30] technique, which can then be optimized using
Karush–Kuhn–Tucker (KKT) conditions [31].

min
ωj+1
i

,bj+1
i

,ξj+1
i

1

2

∥∥∥Xiω
j+1
i + bj+1

i e
∥∥∥2 + ceT ξj+1

i

s.t. T (|X̂iω
j+1
i + bj+1

i e|) ≥ e− ξj+1
i , ξj+1

i ≥ 0,

(2)

where j = 0, 1, 2, ... is the index of successive sub-problems
and c is the same penalty parameter. T (·) denotes the first
order Taylor expansion. The sub-gradient of |X̂iω

j+1
i +bj+1

i e|
can be calculated as diag(sign(X̂iω

j
i + b

j
ie)), resulting in the

following:

T (|X̂iω
j+1
i + bj+1

i e|) = Zi(X̂iω
j+1
i + bj+1

i e), (3)

Zi = diag(sign(X̂iω
j
i + bjie)). (4)

The solution to (2) can be obtained by solving its dual form.
Using Karush–Kuhn–Tucker (KKT) conditions [31], we get
the dual problem as:

min
α

1

2
αTG(HTH)−1GTα− eTα

s.t. 0 ≤ α ≤ ce,
(5)

where G = Zi[X̂i e], H = [Xi e], and α ∈ Rm−mi is the
the Lagrangian multiplier vector. After the solution of (5) is
obtained, we obtain cluster plane parameters [ωj+1

i ; bj+1
i ] =

(HTH)−1GTα.

B. Loss function

Pinball loss function [18] is defined as:

Lτ (u) =

u u ≥ 0,

−τu u < 0,

here τ ∈ [0, 1]. When u < 0, we still obtain a small
penalty as opposed to zero penalty in hinge loss. Therefore,
there is a smaller penalty for correctly classified points as
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(a) σ = 0 (b) σ = 0.05 (c) σ = 0.1

Fig. 1: Plot showing different formation of clusters by linear
SPTSVC for a two-dimensional dataset corrupted with

Gaussian noise having zero-mean and σ standard deviation.

well. This places an upper bound on the number of errors
at decision boundaries, thus providing insensitivity to feature
noise. However, since sub-gradient of pinball loss function is
non-zero everywhere except origin, it leads to losing sparsity
of the solution. To counter this limitation, ε-insensitive pinball
loss function [18] can be used:

Lετ (u) =


u− ε u > ε,

0 − ε
τ ≤ u ≤ ε

−τ(u+ ε
τ ) u < − ε

τ ,

In range [− ε
τ , ε], the sub-gradient of the ε-insensitive pinball

loss function is 0, thereby leading to sparsity. In this ε-
insensitive zone of width ε(1+ 1

τ ), no penalty is given to any
data point. This allows us to achieve both noise-insensitivity
and sparsity at the same time.

III. PROPOSED SPARSE PINBALL LOSS TWIN SUPPORT
VECTOR CLUSTERING (SPTSVC)

We utilize the sparse pinball loss function to incorporate
the property of noise-insensitivity and sparsity in the TWSVC
formulation. In this section, we propose a Sparse Pinball
loss Twin Support Vector Clustering (SPTSVC) algorithm for
linear and non-linear cases.

A. Linear SPTSVC

The proposed linear SPTSVC seeks k cluster-center planes
[ωi, bi], i = 1, ..., k by obtaining solution of the following
optimization problem:

min
ωi,bi,ξi

1

2
‖Xiωi + bie‖2 + ceT ξi

s.t. |X̂iωi + bie| ≥ e− ξi − eε,

|X̂iωi + bie| ≤ e+
ξi
τ

+ e
ε

τ
ξi ≥ 0,

(6)

here ξi is the slack variable, τ ∈ [0, 1] and ε ∈ [0, 1] are
the parameters of sparse pinball loss function. The first term
of objective function seeks to minimize the sum of squared
distance of points in Xi from hyperplane [ωi; bi]. The second
term ξi is the slack variable. The first and second constraints
seeks to minimize the penalty arising from points in X̂i within
1−ε unit distance from hyperplane [ωi; bi], and also the points
which are at-least 1+ ε

τ distance away from hyperplane [ωi; bi].

The third constraint makes sure that the slack variable remains
positive. Therefore, a tube of width ε(1 + 1

τ ) exists where we
do not penalise the points at all. For illustrating the robustness
of SPTSVC to noise, we have shown the clusters formed for a
two-dimensional sample dataset consisting of two classes ‘+’
and ‘×’ in Fig. 1.
We now utilize the CCCP [30] technique to break the ith

problem into smaller convex quadratic programming sub-
problems.

min
ωj+1
i

,bj+1
i

,ξj+1
i

1

2

∥∥∥Xiω
j+1
i + bj+1

i e
∥∥∥2 + ceT ξj+1

i

s.t. T (|X̂iω
j+1
i + bj+1

i e|) ≥ e− ξj+1
i − eε,

T (|X̂iω
j+1
i + bj+1

i e|) ≤ e+ ξj+1
i

τ
+ e

ε

τ
ξj+1
i ≥ 0.

(7)

Using first order Taylor series expansion we get:

T (|X̂iω
j+1
i + bj+1

i e|) = Zi(X̂iω
j+1
i + bj+1

i e), (8)

where:

Zi = diag(sign(X̂iω
j
i + bjie)). (9)

The above optimization problem is the primal formulation of
SPTSVC. It can be observed that (7) is similar to TWSVC
primal, with the difference in the constraints. This is due to
the change in the loss function of the problem. We then convert
the primal to its corresponding dual form. Now, consider the
primal problem in the form of Lagrangian:

L =
1

2

∥∥∥Xiω
j+1
i + bj+1

i e
∥∥∥2 + ceT ξj+1

i +

αT
(
e− ξj+1

i − eε− Zi(X̂iω
j+1
i + bj+1

i e)
)
+

βT

(
Zi(X̂iω

j+1
i + bj+1

i e)− e− ξj+1
i

τ
− e ε

τ

)
− γT

(
ξj+1
i

)
,

(10)
here α, β, γ ≥ 0 are the Lagrangian multiplier vectors. Now
applying the KKT conditions [31], we obtain:

u = −(HTH)−1GT (β − α), (11)

where G = Zi[X̂i e], H = [Xi e], and u =

[
ωj+1
i

bj+1
i

]
.

We add a small regularization term δI, δ > 0 to HTH , to
prevent the ill-conditioning of HTH . Here I is the identity
matrix of appropriate dimensions. We obtain the modified
equation as:

u = −(HTH + δI)−1GT (β − α), (12)

We continue to use (11) from here on wards with the un-
derstanding that if need arises (12) can be used in place of
(11). Now, applying the KKT conditions, our Lagrangian is
modified to give the following dual problem:
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min
α−β

1

2
(β − α)TG(HTH)−1GT (β − α)− (β − α)T e+

eε

(
αT +

βT

τ

)
s.t. α, β, γ ≥ 0, ce = α+

β

τ
+ γ

(13)
Making the substitution λ = α−β. in (13) to get a simplified
expression:

min
λ

1

2
λTG(HTH)−1GTλ− λT e

( ε
τ
+ 1
)
+ αT e

(
ε+

ε

τ

)
s.t. α ≥ 0, λ ≥ 0, α

(
1 +

1

τ

)
− λ

τ
≤ ce.

(14)

After the solution of (14) is obtained, we get [ωji ; b
j
i ] =

−(HTH)−1GT (β − α). For the ith cluster center plane, we
stop after

∥∥∥[ωj+1
i ; bj+1

i ]− [ωji ; b
j
i ]
∥∥∥ < ν, where ν is the error

tolerance. One can also set maximum number of iterations in-
case the error stays above ν. For a point xk, we can predict
the label ŷ(xk) = argmini=1,2,...,N | ωTi xk + bi |. Here N
denotes the number of clusters.

B. Non-linear SPTSVC

SPTSVC can be easily extended to non-linear case by using
the kernel trick. Lets consider k kernel generated cluster center
planes K(x,X)zi + bi = 0, i = 1, ..., k, where K(·, ·) is
an arbitrary kernel function [32], selected on the basis of the
problem. Similar to the linear case, the objective function for
non-linear case can be formulated as:

min
ωi,bi,ξi,Xi

1

2
‖K(Xi, X)zi + bie‖2 + ceT ξi

s.t. |K(X̂i, X)zi + bie| ≥ e− ξi − eε,

|K(X̂i, X)zi + bie| ≤ e+
ξi
τ

+ e
ε

τ
ξi ≥ 0,

(15)

Again, using CCCP, (15) can be reduced to smaller convex
quadratic optimization problems. We obtain the following
relations, which are almost identical to the linear case:

u = −(PTP + δI)−1QT (β − α), (16)

where δ > 0, Zi = diag(sign(K(X̂i, X)zji + bjie)),

P = [K(Xi, X) e], Q = Zi[K(X̂i, X) e], and u =

[
zj+1
i

bj+1
i

]
.

In a similar manner to the linear case, the dual formulation
for (15) is obtained as:

min
α−β

1

2
(β − α)TQ(PTP )−1QT (β − α)− (β − α)T e

+eε(αT +
βT

τ
)

s.t. α, β, γ ≥ 0, ce = α+
β

τ
+ γ.

(17)

Making the substitution λ = α−β. in (17), to get a simplified
expression:

min
λ

1

2
λTQ(PTP )−1QTλ− λT e

( ε
τ
+ 1
)
+ αT e

(
ε+

ε

τ

)
s.t. α ≥ 0, λ ≥ 0, α

(
1 +

1

τ

)
− λ

τ
≤ ce.

(18)

IV. DISCUSSION

In this section, we first provide rigorous analysis of noise-
insensitive and sparsity properties of the proposed SPTSVC.
Then, we discuss the time complexity of SPTSVC.

A. Noise insensitivity and Sparsity

The main advantage of the proposed SPTSVC model is
incorporating the property of noise-insensitivity, while at the
same time maintaining the sparsity of the model. The ε-
insensitive pinball loss function Lετ is non-differentiable at
points u = ε and u = − ε

τ . Hence, for solving the QPP at
each CCCP [30] iteration j, the sub-gradient of Lετ is needed
[33]. Sub-gradient of Lετ (u), denoted by gετ (u) is given as:

gετ (u) =



1 u > ε,

[0, 1] u = ε,

0 − ε
τ < u < ε

[0, 1] u = − ε
τ ,

−τ u < − ε
τ ,

Further, we also partition the data-point indices j belonging
to clusteri having parameters [ωi; bi], into 5 sets as follows:

S1 = {j : 1− |ωTi xj + bi| > ε},
S2 = {j : 1− |ωTi xj + bi| = ε},

S3 = {j : − ε
τ
< 1− |ωTi xj + bi| < ε},

S4 = {j : 1− |ωTi xj + bi| = −
ε

τ
},

S5 = {j : 1− |ωTi xj + bi| < −
ε

τ
}.

Set S5 denotes the points which are greater than 1 + ε
τ

distance away from the hyper-plane [ωi; bi]. As τ increases,
the number of points in set S5 increases. These points then
contribute to the final solution, as the sub-gradient gετ (u) for
the same interval is non-zero. For larger values of τ , there are
many points in all sets, which makes the model less sensitive
to noise around the decision boundary.

Further, it can be observed that gετ (u) is 0 in the interval
(− ε

τ , ε). As a result, the points belonging to the set S2 which
correspond to the same interval (− ε

τ , ε), do not contribute to
the final solution. This ε-insensitive zone leads to sparsity
in the solution. This sparsity is due to the novel approach
proposed in this work, which improves the drawbacks in the
previous twin SVM based clustering methods.
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B. Time Complexity

The solution of TWSVC requires the solutions of QPPs. For
p clusters, p number of QPPs are solved for the clustering of
data. Moreover, the time complexity of solving a QPP with k
number of constraints is O(k3) [24]. Therefore, the total time
complexity of the TWSVC algorithm is O(pk3).

On the other hand, proposed SPTSVC involves the solu-
tion of QPPs with twice the number of constraints as that
in TWSVC. This is due to the ε-insensitive loss function
in SPTSVC. Therefore, the time complexity of SPTSVC
is O(p(8k3)). Clearly, the computational time of proposed
SPTSVC is eight times that of TWSVC. However, this can
be seen as a tradeoff for the noise insensitivity of proposed
SPTSVC, in comparison to existing algorithms. The compu-
tation time of calculating the inverses in SPTSVC is same as
in TWSVC.

V. NUMERICAL EXPERIMENTS

This section presents the results of experiments on various
clustering datasets. The proposed SPTSVC is compared with
FCM [34], TWSVC [24], and TBSVC [26]. In order to test
the noise-insensitivity of the proposed SPTSVC, we added
zero-mean Gaussian noise to datasets with different standard
deviation σ. For all the algorithms, Gaussian kernel function
K(x, y) = exp (−‖x− y‖2/(2µ2)) is used. All the experi-
ments are performed using MATLAB R2017a, installed on a
Windows 10 PC with 128 GB RAM, Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz CPU. The codes of the proposed
algorithm will be available on the author’s Github page:
https://github.com/mtanveer1.

A. Parameter selection

For the parameter selection, we used 5-fold cross-validation
using the grid search method. For TWSVC, TBSVC and
SPTSVC, the value of penalty parameter c is selected from
the set {2i|i = −5,−3, . . . , 3, 5}. For ε-insensitive pin-
ball loss, the value of the parameter τ is selected from
the set {0.25, 0.50, 1} and ε from the set {0.1, 0.3, 0.5}.
The parameter δ is taken as 10−4. The value of the
Gaussian kernel parameter µ is selected from the range
{2i|i = −5,−4,−3, . . . , 3, 4, 5} for all the methods. In
case of FCM, the parameter m is selected from the set
{1, 1.25, 1.5, 1.75, 2, 2.25, 2.5} [35].

B. Benchmark datasets

Experiments are performed on various benchmark datasets.
The datasets include synthetic as well as real world
datasets. The synthetic datasets are taken from the website:
https://github.com/deric/clustering-benchmark/tree/master/src/
main/resources/datasets/artificial. The real-world datasets are
taken from the UCI Machine Learning Repository [36]. The
datasets are further included with different feature noise by
adding zero mean Gaussian noise with standard deviation σ
set as 0 (noise-free), 0.05 and 0.1.

TABLE I: Comparison of clustering accuracy obtained on
UCI and synthetic datasets with different noise levels.

Datasets Noise FCM [34] TWSVC [24] TBSVC [26] SPTSVC
(Samples× Features σ Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)
×Clusters) Time (s) Time (s) Time (s) Time (s)
ds4c2sc8 0 26.4562 95.1804 94.7466 94.6478
(485 × 2 × 8) 0.0716 0.7969 0.5560 9.5016

0.05 69.0206 76.7526 76.8127 77.2466
0.1342 0.6770 0.5992 9.0470

0.1 71.2027 76.2801 77.0103 77.1735
0.1410 0.6357 0.5588 8.8263

hayes-roth 0 60.3943 77.0462 79.1499 79.8746
(132 × 4 × 3) 0.0119 0.0390 0.0309 0.1827

0.05 60.9778 68.939 66.0057 68.4034
0.0122 0.0414 0.0325 0.1710

0.1 59.8336 63.7607 63.7835 62.6279
0.0025 0.0374 0.0351 0.1695

jain 0 52.3068 100 100 100
(373 × 2 × 2) 0.0069 0.1281 0.1177 0.6755

0.05 51.8732 96.8152 98.9189 97.8739
0.0036 0.1479 0.1198 0.6580

0.1 51.5449 97.9027 96.2811 97.3265
0.0065 0.1256 0.1242 0.6551

lense 0 50 68 82 78
(24 × 4 × 3) 0.0037 0.0210 0.0166 0.0127

0.05 46.6667 65.3333 67.3333 74
0.0091 0.0166 0.0142 0.0375

0.1 60 68 66 72
0.0012 0.0119 0.0130 0.0135

libras 0 67.9734 91.4554 80.1565 91.4867
(360 × 90 × 15) 0.6308 0.5774 0.5810 9.4616

0.05 56.4319 88.3177 88.0047 87.9186
0.9540 0.5194 0.5049 10.4479

0.1 41.1189 87.9186 87.3944 87.5352
0.0317 0.5592 0.5212 10.7237

lsun 0 70.3987 100 100 99.2595
(400 × 2 × 3) 0.0062 0.1806 0.1553 1.3830

0.05 70.1519 97.4241 97.5696 98.2911
0.0225 0.1920 0.1526 1.4916

0.1 68.7215 91.7152 91.6962 89.5759
0.0218 0.1816 0.1466 1.4028

new-thyroid 0 53.4219 86.4673 79.6013 89.0587
(215 × 5 × 3) 0.0038 0.0608 0.0593 0.5206

0.05 53.4219 89.3245 80.7752 87.309
0.0031 0.0566 0.0554 0.5024

0.1 53.4219 87.4419 81.9491 85.4707
0.0037 0.0674 0.0549 0.4823

seeds 0 33.3566 85.5517 81.417 85.8537
(210 × 7 × 3) 0.0336 0.0643 0.0493 0.3950

0.05 33.3566 81.8351 85.0871 82.9501
0.0248 0.0511 0.0516 0.3951

0.1 33.3566 73.6353 81.9512 76.3995
0.0172 0.0539 0.0479 0.3911

spherical 4 3 0 95.0633 99.7658 100 99.4747
(400 × 3 × 4) 0.0098 0.2157 0.1911 2.1070

0.05 94.3165 100 100 98.6962
0.0033 0.2136 0.2038 2.2116

0.1 94.5759 98.8671 98.9241 100
0.0120 0.2585 0.1945 2.1557

spherical 5 2 0 78.498 96.4735 93.6816 94.9224
(250 ×2 × 5) 0.0223 0.1289 0.1049 1.2002

0.05 75.8041 90.6449 89.5673 90.9224
0.0088 0.1006 0.1023 1.1128

0.1 74.7918 85.9265 85.7796 88.2286
0.0152 0.1221 0.0973 1.1067

tae 0 32.092 62.7586 61.6092 61.5632
(150 ×5 × 3) 0.0298 0.0301 0.0335 0.1960

0.05 32.092 57.1034 56 57.0115
0.0178 0.0337 0.0329 0.1963

0.1 32.092 55.8621 56.5517 56.6437
0.0284 0.0300 0.0310 0.1944

teachingeval 0 33.8969 60.4212 61.9726 62.9692
(151 ×5 × 3) 0.0028 0.0323 0.0321 0.2278

0.05 33.8969 58.1001 58.3908 57.2621
0.0189 0.0335 0.0348 0.2086

0.1 33.8969 57.3615 56.0623 55.4127
0.0012 0.0311 0.0334 0.1900

tetra 0 73.0506 100 94.8038 100
(400 ×3 × 4) 0.0220 0.1932 0.1823 2.1000

0.05 72.2152 98.9367 99.2025 99.2025
0.0194 0.1922 0.1761 2.3028

0.1 71.4241 98.3038 98.5506 98.5506
0.0203 0.1855 0.1713 2.1862

zelnik1 0 58 99.6949 100 98.9815
(299 ×2 × 3) 0.0420 0.1006 0.0937 0.8230

0.05 56.247 56.0374 54.9764 57.6295
0.0175 0.1077 0.0915 0.5694

0.1 55.4358 52.7878 55.7565 54.9784
0.0266 0.0942 0.0920 0.7501

Average Accuracy 56.9714 82.0034 81.5589 82.6841
Average Rank 3.9048 2.0833 2.1191 1.8929
Average Training Time 0.0590 0.1749 0.1547 2.0806
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TABLE II: Number of non-zero dual variables for different
algorithms.

Dataset ε TWSVC TBSVC SPTSVC
τ = 0.25 τ = 0.5 τ = 1

ds4c2sc8 0 17.4 54.375 339.45 339.425 339.5
0.1 138.625 149.45 144.875
0.3 73.9 90.1 88.525
0.5 48.825 60.575 70.05

hayes-roth 0 28.8 40.467 70.4 70.4 70.4
0.1 56.933 56.2 58.133
0.3 30.4 42.2 45.6
0.5 29.333 28.733 33.733

jain 0 14.9 25 149.2 149.2 149.2
0.1 70.2 76 79.2
0.3 39.4 47.7 52.3
0.5 24.6 32.8 39.4

lense 0 5.8 5.733 12.8 12.8 12.8
0.1 9.467 9.867 9.933
0.3 8.533 8.533 8.6
0.5 8.067 7.867 7.933

libras 0 139.32 158.347 256.48 256.547 256.84
0.1 177.067 193.573 207.027
0.3 142.707 150.947 160.187
0.5 128.227 131.267 136.053

lsun 0 8.933 18.733 213.333 213.333 213.333
0.1 87.867 100.133 109.733
0.3 50.667 62.267 74.4
0.5 29.533 39.267 49.467

new-thyroid 0 22.333 25.533 114.667 114.667 114.6
0.1 58.133 53.4 61.867
0.3 27.933 30.667 36.467
0.5 30.533 24.933 27.067

seeds 0 17.067 22.933 112 112 112
0.1 57 68.667 79.667
0.3 31.667 36.467 43.667
0.5 26.4 28.667 30.867

spherical 4 3 0 22.45 20.7 240 239.9 239.85
0.1 48.75 55.55 59.15
0.3 24.7 29.75 33.15
0.5 15.5 19.8 24.45

spherical 5 2 0 11.04 49.88 159.96 160 159.96
0.1 68.84 73.4 78.2
0.3 36.08 47.28 54.48
0.5 25.4 30.8 37.08

tae 0 27.4 70.533 74.333 74.4 74.4
0.1 62.7333 64.4 66.2
0.3 55.4 59 60.333
0.5 51.6 51.933 52.067

teachingeval 0 56.467 68.6 79.733 79.533 79.4
0.1 64.333 70.267 72.267
0.3 48.133 54.4 59.333
0.5 38.067 43.133 48.2

tetra 0 72.25 177.9 240 240 240
0.1 129.7 164.65 187.05
0.3 58.5 63.1 93.9
0.5 47.55 47.55 47.55

zelnik1 0 20.4 72.4 158.733 158.733 158.667
0.1 52.4 59.7333 67.533
0.3 31.333 34.733 40.067
0.5 26.667 28.467 30.733

C. Discussion on experimental results

The experimental results of the different algorithms are
shown in Table I. It is observable from Table I that the pro-
posed SPTSVC is performing better than existing algorithms
in terms of clustering of the different datasets. The proposed
SPTSVC achieves an average accuracy 82.68% and average
rank 1.89. However, in terms of training time, the proposed
SPTSVC is taking more time than the other algorithms. This
is due to the ε-insensitive constraint in the formulation of the
proposed SPTSVC, as discussed in time complexity analysis.

D. Statistical analysis

To verify the significant difference between the methods,
we apply the Friedman test [37] and Nemenyi post-hoc test
[37]. The Friedman test is calculated on the basis of χ2, using
the rank of each algorithm given in Table I. Here, first we
assume that all methods are having similar performance as
null hypothesis. The χ2 value is calculated to be 67.0639.

(a) Lense (b) Lsun

(c) Spherical 4 3 (d) Zelnik1

Fig. 2: 3D surface showing accuracy sensitivity of the
proposed SPTSVC with respect to model parameters ε and τ .

FF =
(42− 1)× 67.0639

42× 3− 67.0639
≈ 46.6539. (19)

Now, degrees of freedom for F-distribution is calculated
as (l − 1, (l − 1)(N − 1)). For l = 4 and N = 42, the
F-distribution has (3,123) degrees of freedom. For (3,123)
degrees of freedom and α = 0.05 level of significance, the
critical value is 2.6783. As FF = 46.6539 > 2.6783, null
hypothesis does not hold true.
Further, to determine pair-wise statistical difference between
algorithms, we utilize the Nemenyi post-hoc test [37].

CD = 2.569×
√

4× 5

6× 42
≈ 0.7237. (20)

Here, CD = 0.7237 denotes critical difference at alpha =
0.05. Therefore, there is significant difference between the
methods if difference between average ranks of the algorithms
is atleast CD by the Nemenyi test [37]. So, there is sig-
nificant difference between the proposed SPTSVC and FCM
algorithm, but no statistical difference with TWSVC [24], and
TBSVC [26].

E. Parameter Sensitivity

The 3D surface plots in Fig. 2 show the variation in
accuracy with changes in parameters ε and τ . It can be inferred
from these plots that the accuracy obtained is quite sensitive
to parameters chosen. Therefore, the choice of parameters
depends on the distribution of points in a particular dataset. In
absence of a proper-mechanism to select optimal parameters,
we have grid-searched over wide range of values for all the
parameters.

F. Sparsity analysis

The sparsity is illustrated in terms of total number of
non-zero dual variables in Table II. The sparseness of the
proposed algorithm is shown for different values of ε and τ .
The number of non-zero dual variables are averaged for the
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different classes. The proposed SPTSVC is able to generate
the clustering hyperplanes with sparsity similar to TWSVC
and TBSVC. Further, It can be observed from Table II that
with increase in the value of ε, the sparsity increases and
with increase in value of τ , sparsity decreases. This is due to
widening and narrowing of the ε-insensitive zone respectively.
One more observation is more number of non-zero dual
variables of TBSVC in comparison to TWSVC in Table II.
This is due to the use of regularization in TBSVC algorithm.

VI. BIOMEDICAL APPLICATIONS

In this section, we illustrate the applicability of the proposed
SPTSVC clustering method on biomedical time-series and
image data.

A. EEG signal clustering

(a) Z

(b) N

(c) S

Fig. 3: Samples from EEG dataset [38].

TABLE III: EEG clustering results.

Dataset FCM TWSVC TBSVC SPTSVC
EEG 47.7253 68.4283 69.5232 71.1192

We show the clustering performance of the different al-
gorithms on the single channel voltage recordings of EEG
signals. The EEG dataset [38] utilized for this application con-
tains five classes - Z, O, N, F and S. The classes includes one
class of seizure data, and 2 classes each of healthy and seizure
free signals. Some of the sample signals of the dataset are
shown in Fig. 3. We applied independent component analysis
(ICA) [6] to extract the prominent features for clustering of
the time-series data. The results of the clustering performance
of the different algorithms are shown in Table III.

B. Breast cancer clustering

TABLE IV: Breast cancer clustering results.

Dataset FCM [34] TWSVC [24] TBSVC [26] SPTSVC
BreaKHis 26.4367 77.9114 78.2278 78.6772

For application on breast cancer data, we have taken the
images from the BreaKHis dataset [39], [7]. The dataset

Fig. 4: Sample images from BreaKHis dataset [39].

consists of 4 benign and 4 malignant types of samples. The
different types of benign breast tumors are as: phyllodes tumor,
fibroadenoma, adenosis, and tubular adenona. The malignant
tumors are lobular, papillary, mucinous, and ductal carcinoma.
The different images from each class in the dataset are shown
in Fig. 4.

We selected 50 images from each of the different classes.
The features from the histopathological images are extracted
using principal component analysis (PCA) method. This re-
sulted into a dataset size of 400 × 100. The comparative
performance of the different algorithms on clustering of the
breast cancer dataset is shown in Table IV.

C. Discussion of results on biomedical data

For EEG dataset, from the Table III, one can clearly observe
the superior performance of the proposed SPTSVC model.
This suggests that the proposed SPTSVC can be potentially
used for the detection of EEG signals. Further, the results
obtained also hint at the potential use of the proposed SPTSVC
model for automated diagnosis of diseases involving EEG sig-
nals such as epilepsy. Moreover, the effectiveness of proposed
model for EEG implies its usage for several applications, such
as brain computer interface (BCI), detecting brain dysfunction
etc.

The results obtained for breast-cancer clustering dataset has
been shown in Table IV. We can infer that the proposed
SPTSVC performed slightly better than the existing plane-
based clustering algorithms for clustering of breast tumour
images. This shows the possible applicability of proposed
SPTSVC on clustering of various image datasets for biomed-
ical applications involving MRI images, X-ray, and other
multimodal imaging data.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a novel clustering algorithm
termed as sparse pinball loss twin support vector clustering
(SPTSVC). The proposed SPTSVC includes an ε-insensitive
pinball loss function, in comparison to the traditional hinge
loss. The novelty and main advantage of the proposed model is
accommodating noise-insensitivity property while at the same
time providing good sparsity, which leads to lesser running
time. Pinball loss function also provides re-sampling stability,
which is useful for large scale datasets. Thus, the proposed
algorithm can be useful for various noise corrupted datasets.
Further, the proposed SPTSVC gave better performance on
biomedical time-series and image data.

In future, the proposed algorithm can be used in various
applications involving noisy data. The proposed algorithm can
be useful for applications involving less time for prediction
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of labels, as testing time of proposed algorithm is lesser due
to sparsity. In future, models can be developed to decrease
the training time of the proposed model. In order to avoid
grid-searching over wide range of parameters, there is a need
to develop an efficient parameter selection methodology. For
further experiments, the concept of ε-insensitive zone can
be used with other loss functions in order to increase the
sparsity while still maintaining the desired properties of the
loss function in hand.
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