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Machine learning techniques have been widely used to detect morphological abnormalities from struc-
tural brain magnetic resonance imaging data and to support the diagnosis of neurological diseases such
as dementia. In this paper, we propose to use a multiple instance learning (MIL) method in an application
for the detection of Alzheimer’s disease (AD) and its prodromal stage mild cognitive impairment (MCI). In
our work, local intensity patches are extracted as features. However, not all the patches extracted from
patients with dementia are equally affected by the disease and some of them may not be characteristic
of morphology associated with the disease. Therefore, there is some ambiguity in assigning disease labels
to these patches. The problem of the ambiguous training labels can be addressed by weakly supervised
learning techniques such as MIL. A graph is built for each image to exploit the relationships among the
patches and then to solve the MIL problem. The constructed graphs contain information about the
appearances of patches and the relationships among them, which can reflect the inherent structures of
images and aids the classification. Using the baseline MR images of 834 subjects from the ADNI study,
the proposed method can achieve a classification accuracy of 89% between AD patients and healthy
controls, and 70% between patients defined as stable MCI and progressive MCI in a leave-one-out cross
validation. Compared with two state-of-the-art methods using the same dataset, the proposed method
can achieve similar or improved results, providing an alternative framework for the detection and predic-
tion of neurodegenerative diseases.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The aetiology of Alzheimer’s disease (AD) is the most commonly
responsible for clinical dementia worldwide. Its progression leads
to a gradual decline of memory and cognitive functions. The prev-
alence of AD is predicted to quadruple in the next four decades
(Brookmeyer et al., 2007). However, no drug or treatment has so
far been reported to be able to stop the progress of AD and it
remains difficult to predict whether individuals will develop AD.
There is a critical need to develop biomarkers for the early diagno-
sis of AD and measuring the outcomes of clinical drug trials (Clark
et al., 2007). Although there is currently no cure for AD, there are
some medications that can delay the onset of some symptoms such
as memory loss, confusion, and cognitive problems (Yiannopoulou
and Papageorgiou, 2013). Diagnosing AD early would allow doctors
to treat patients sooner, which can then limit the devastating phys-
ical, psychological impact on patients and their relatives and
reduce the economic burden on society. Mild cognitive impairment
(MCI) is an intermediate stage between normal cognition and clin-
ical dementia. Individuals with MCI have been reported to progress
to clinical dementia at a rate of 10–15% annually (Grundman et al.,
2004). Research on identifying MCI individuals who will progress
to clinical dementia has received increasing attention in recent
years (Wolz et al., 2011; Coupé et al., 2012; Wee et al., 2012b;
Liu et al., 2013; Gray et al., 2013).

Different imaging techniques, such as structural magnetic reso-
nance imaging (MRI) (Wolz et al., 2011; Coupé et al., 2012; Liu
et al., 2013), functional MRI (Pihlajamäki and Sperling, 2008;
Wee et al., 2011), fluorodeoxyglucose positron emission tomogra-
phy (FDG-PET) (Herholz et al., 2002; Gray et al., 2012) and diffu-
sion tensor imaging (DTI) (Wee et al., 2012b; Keihaninejad et al.,
2013), have been used to derive image-based biomarkers for AD.
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Studies have shown that the combination of biomarkers from dif-
ferent imaging modalities (MRI, FDG-PET, DTI, fMRI) can provide
complementary information of AD pathology and thus improve
the classification accuracy (Zhang et al., 2011; Hinrichs et al.,
2011; Wee et al., 2012b; Gray et al., 2013). In comparison to DTI,
fMRI or FDG-PET, structural MRI is the most standardized and
the most widely available imaging modality in clinical practice.
In addition, MRI examinations can provide an opportunity to track
different clinical phases of AD (Jack et al., 2013). Therefore, we
evaluated our method using structural MR images. However, mul-
tiple datasets could also be acquired from different imaging modal-
ities for developing different biomarkers of AD.

Several types of features can be derived from structural MRI for
classification, such as gray matter density maps (Cuingnet et al.,
2011; Liu et al., 2012a), cortical thickness (Cho et al., 2012; Wee
et al., 2012a; Eskildsen et al., 2013) as well as volume and shape
measures (Gerardin et al., 2009; Wolz et al., 2010). The number of
training images is typically small in comparison with the high
dimensionality of the voxel-wise features. Therefore, a feature selec-
tion step is necessary to tackle the problem of overfitting. Feature
selection has been shown to improve the classification accuracy,
but it depends on the adopted approaches (Chu et al., 2011). To
reduce the feature space and select the discriminative features, sta-
tistical approaches (Yoon et al., 2007; Chu et al., 2011; Wee et al.,
2012a) or sparse regression methods (Ghosh and Chinnaiyan,
2005; Liu et al., 2012b) are often used. Another popular method is
to segment the whole brain into multiple anatomical (Gray et al.,
2012) or discriminative (Fan et al., 2007) regions and then extract
regional features such as volume or shape measures for classifica-
tion. It should be noted that the features extracted from neuroimag-
ing data are not isolated and exhibit high correlations (Chu et al.,
2011). Considering the relationships among these features, tree-
guided sparse coding methods (Liu et al., 2012b) or re-sampling
schemes using Elastic Net (Janousova et al., 2012) has been recently
proposed. These approaches can select voxel-wise features in mean-
ingful brain regions, which may be related to pathology.

The features derived from MRI can be extracted from very local
regions or the whole brain. At the voxel level, intensities or gray
matter densities can be directly used in classification (Cuingnet
et al., 2011; Vounou et al., 2012). At the whole image level, similar-
ities between images can be used to derive features (Wolz et al.,
2012). However, the structural changes induced in the early stages
of AD have been observed to occur in small local regions rather
than isolated voxels or the whole brain (Hinrichs et al., 2009).
Patches represent features at an intermediate scale between the
voxel level and the image level, which can capture disease-induced
changes in local regions. Recent approaches (Coupé et al., 2012; Liu
et al., 2013) utilize local intensity patterns within patches to cap-
ture the local structural information for AD classification. In these
approaches, patches from patients with AD are used as positive
samples and patches from healthy subjects are regarded as nega-
tive samples for training. However, patches are relatively small
regions in brain images and not all patches in the brain are charac-
teristic of changes associated with pathology. For example, patches
in close vicinity of the hippocampus are more likely to be affected
by AD while patches in homogeneous regions may not be affected.
This is illustrated in Fig. 1. In addition, different types of dementias
have different aetiologies. This means that some patches may be
affected by other aetiologies such as cerebrovascular disease rather
than AD. Therefore, not all patches from patients necessarily repre-
sent positive training samples. This means that there is some ambi-
guity in assigning disease labels to the training patches extracted
from patients. One solution to this problem is to use a weakly
supervised method such as multiple instance learning (MIL)
(Maron and Lozano-Pérez, 1998), which can learn classifiers from
ambiguously labeled training data. Although MIL have been
successfully applied to different applications in computer vision
(Babenko et al., 2009) and recently in medical imaging (Bi and
Liang, 2007; Xu et al., 2012), to the best of our knowledge, it has
not been used in the context of classification of neurological dis-
eases. In this paper, we propose to use MIL for the classification
of AD and to address the problem of ambiguous patch labels. Spe-
cifically, each image is regarded as a bag; the patches extracted
from the images are thus treated as inter-correlated instances in
the bags. MIL is then used to learn a bag-level classifier to predict
the bag labels of unseen images and therefore classify the subjects.

Most existing approaches utilize the intensity values of patches
for classification. The relationships among patches are usually
ignored since the patches are treated as independently and identi-
cally distributed. However, patches from the same subject are
rarely independent and often exhibit shared information. This
information across patches can convey information about the
inherent structure of the images, which may be helpful for disease
classification. In recent works, correlated features are extracted to
exploit the relationships among patches (Liu et al., 2013) or ROIs
(Wee et al., 2012a) of the same subject, which has been shown
to improve the classification accuracy. In our work, a graph is con-
structed from each image in order to investigate the relationships
among patches and to exploit the inherent structural information
of each image. After that, a graph kernel, which utilizes both the
intensity values and the relationships of the extracted patches, is
used to distinguish the positive and negative bags. Finally, a bag-
level classifier is trained via a kernel machine.

A preliminary version of the presented framework has been
published as a conference paper (Tong et al., 2013). The major dif-
ference in this work is that we adopted a more robust feature
selection method as proposed in Janousova et al. (2012). In addi-
tion, an extended evaluation on the whole brain is presented and
more detailed comparisons with state-of-the-art methods are also
provided. The remainder of this paper is organized as follows: The
demographic information of the image dataset in preparation of
this article is introduced in Section 2.1. This is followed by a
description of the preprocessing pipeline of these images in Sec-
tion 2.3 and a description on how patches are extracted from the
images to form corresponding bags in Section 2.4. We will then
introduce the methodology of MIL and how we apply it to the clas-
sification of AD in Section 2.5. Performance of the proposed
method has been evaluated using 834 subjects from the ADNI
study. In Section 3, the influence of different parameters are stud-
ied and the performance of the proposed method is also compared
with state-of-the-art techniques. The strengths and weaknesses of
the proposed method are analyzed in the discussion section and
finally we conclude the paper in Section 5.

2. Materials and methods

2.1. Subjects

Data used in the preparation of this article were obtained from
the ADNI database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Insti-
tute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to test
whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of MCI and early AD. Determination of sensitive
and specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of
clinical trials.



Fig. 1. Example of different bags. (a) Positive bag (AD patient); (b) negative bag (control subject); The red boxes and blue boxes represent positive patches and negative
patches respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In our work, 834 baseline MR scans at 1.5 T were downloaded in
July 2011 from the ADNI database for evaluation, which consist of
231 cognitively normal (CN), 238 stable MCI (SMCI), 167 progres-
sive MCI (PMCI) and 198 AD. Subjects in the MCI group were clas-
sified as PMCI if the subjects converted to AD during a 3 years
follow-up. Those who did not convert after a 3 years follow-up per-
iod were classified as SMCI. These four groups are the same as the
subjects used in Wolz et al. (2011) and in Coupé et al. (2012). The
demographics of these 834 subjects are shown in Table 1.
2.2. Overview of methods

An overview of the proposed method mi-Graph (multiple
instance-Graph) is shown in Fig. 2. In the proposed mi-Graph,
patches are extracted from preprocessed images and regarded as
features. The labels of the training images are known while the
labels of the training patches extracted from patients are unknown.
Images are regarded as bags and patches are treated as instances in
the bags. As shown in Fig. 1, if the bag contains at least one positive
patch related to disease changes, the bag is labeled as positive;
otherwise, the bag is labeled as negative (in this case all the patches
in the bag are negative). Therefore, images from patients and con-
trols can be regarded as positive and negative bags respectively.
Then, this multiple instance learning problem can be solved using
a number of different approaches (Fu et al., 2011). The final goal
is to learn a bag-level classifier to label unseen bags (i.e. images).

In this paper, we propose to use a graph-based multiple
instance learning method (Zhou et al., 2009) for learning the bag-
level classifier. In this method, a graph is constructed for each
image. The patches in each bag are treated as nodes in the corre-
sponding graph and edges between different nodes are established
according to the relationships between patches. The graphs can
represent the appearances of patches and reflect the relationships
among the patches extracted from the same subject. Since some
Table 1
Demographic information describing dataset used in this study. Disease statuses of
MCI subjects are defined after a 3 years follow up.

Group Number Age Male (%) MMSEa CDRb

CN 231 76.0 ± 5.0 52 29.1 ± 1.0 0 ± 0
SMCI 238 74.9 ± 7.8 66 27.3 ± 1.8 0.49 ± 0.05
PMCI 167 74.6 ± 7.0 62 26.6 ± 1.7 0.50 ± 0
AD 198 75.7 ± 7.7 52 23.3 ± 2.0 0.75 ± 0.25

a MMSE: Mini-Mental State Examination (Score 0–30).
b CDR: Clinical Dementia Rating (0.5 – very mind; 1 – mild; 2 – moderate;

3 – severe).
patches extracted from patients may be affected by AD while the
patches extracted from controls are not affected by AD, the result-
ing graphs are expected to be different between different groups. A
graph kernel is defined for distinguishing the positive and negative
bags. Finally, a bag-level classifier can be learned using a kernel
machine such as support vector machine (SVM). Accordingly, there
are four major steps in the proposed framework: Image prepro-
cessing, extraction of patches, computation of graph kernels and
classifier training. In the following, we will present the details of
these steps.
2.3. Image processing

The T1-weighted MR brain images were preprocessed by the
standard ADNI pipeline as described in Jack and Bernstein (2008),
which includes post-acquisition correction of gradient warping,
B1 non-uniformity correction, intensity non-uniformity correction
and phantom-based scaling correction. All the images were skull-
stripped using the method proposed in Leung et al. (2011). After
that, non-rigid registration was performed to align all images to
the MNI152 template space using non-rigid registration based on
B-spline free-form deformation (Rueckert et al., 1999) with a final
control point spacing of 2.5 mm. The approach proposed in Nyúl
and Udupa (1999) was used to normalize the intensities between
the subjects and the template. After preprocessing, all the images
are spatially normalized and the intensities are homogeneous
across the images.
2.4. Extraction of patches

In the proposed method, each image is regarded as a bag and
patches are exacted from each image to form the bag. For each
image, the set of all possible patches is equal to its dimensionality.
This means that the total number of patches M is extremely high
and only K � M patches are extracted to form the corresponding
bag. A simple way to extract K patches is to randomly select
patches from the image. However, this cannot guarantee that there
are positive patches in positive bags and is not optimal for the
extraction of patches. Ideally, the extracted K patches should be
discriminative between groups. At the same time, the patches need
to be representative and should reflect information about the
inherent structure of the images. In order to extract discriminative
patches, we assign probabilities to different patches. The assigned
probabilities should represent the discriminative ability of the
corresponding patches. If patches at a specific location are highly
discriminative between different groups, high probabilities will



Fig. 2. Flow chart of the proposed mi-Graph method.

Fig. 3. Orthogonal view of the probability map for the selection of discriminative
patches. The figure on the bottom right corner shows the selected 80 patches over
the whole brain, which are among the most important patches for the classification
of AD vs CN. The size of the red nodes indicates the discriminative probabilities of
the selected patches.
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be assigned to these patches. The patches with high discriminative
probabilities are then extracted for classification.

However, this does not mean that the more discriminative
patches in the bags, the better performance the classifier achieves.
The classification accuracy is also affected by the relationships
among the selected patches (Zhou et al., 2009; Liu et al., 2013)
since these patches are used as features. If the selected patches
have large overlap, these patches will contain a large amount of
redundant feature information and provide limited information
about the inherent structure of the images. In our case, the dis-
criminative patches with high probabilities are more likely to lie
in contiguous regions. This will result in large overlap among
patches if the patches are selected just according to the discrimina-
tive probability map. To avoid this, we defined a spatial distance
threshold to control the overlap between patches. The spatial dis-
tance threshold is calculated between the center locations of the
patches. Finally, K patches are extracted from each image accord-
ing to the discriminative probability map and the defined distance
threshold.

Different methods such as t-tests (Chu et al., 2011) or elastic net
(Janousova et al., 2012) can be used to calculate the probabilities
for selecting patches. In our previous work (Tong et al., 2013),
t-tests were used to select K patches to form the training bags. In
this paper, the elastic net method proposed in Janousova et al.
(2012) was used instead of t-tests since this method can identify
highly discriminative regions. In order to generate a probability
map for selecting patches, a resampling scheme proposed in
Janousova et al. (2012) was used. The resampling scheme repeat-
edly fits a sparse regression model on randomly selected subsets
of the data set and keep track of voxels that are consistently
selected. Finally, the average selection frequencies of voxels are
treated as their selection probabilities. The probability of a voxel
is defined as:

PVj
¼ 1

B

XB

b¼1

SVj
ð1Þ

In the above equation, SVj
is an indicator variable, which is set to

1 if voxel Vj is selected after one regression process. Fig. 3 shows an
example of the probability map generated by using the approach
proposed in Janousova et al. (2012). The selection of K patches is
then performed on the probability map. The first patch is extracted
at the location with the highest probability. Then, the selection
probabilities of its neighboring patches within a predefined spatial
distance are set to zero. As a result, the neighboring locations of the
previously selected patches will not be extracted. The next patch is
extracted at the location with the second highest probability. This
selection step repeats until K patches are extracted. Fig. 3 also
shows an example of the selected patches for the classification of
CN vs AD.
2.5. Computation of graph kernels

MIL was proposed to handle the ambiguity of instance labels in
positive bags (Maron and Lozano-Pérez, 1998) and has been
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successfully applied to various tasks in computer vision (Andrews
et al., 2002; Babenko et al., 2009). In recent years, encouraging
results have also been reported in medical imaging using MIL (Bi
and Liang, 2007; Lu et al., 2011; Xu et al., 2012). A method based
on MIL was proposed to detect pulmonary embolisms (Bi and
Liang, 2007). MIL was also adopted to detect polyps in a CAD sys-
tem (Lu et al., 2011). An integrated framework was proposed to
perform classification and segmentation of colon histopathology
images using a context-constrained MIL (Xu et al., 2012). However,
these approaches typically treat patches in the bags as indepen-
dent instances and neglect their relationships. The relationships
among patches, however, can provide complementary information
and may be beneficial for learning strong classifiers. In our work, a
graph is constructed for every image to integrate the information
about the appearances of patches and the information about the
relationships among patches.

Let N indicate the number of training images. After the patches
are extracted from each training image, we have N training bags
with K patches. The intensity values within a patch are rearranged
into a feature vector and denoted as p in our work. Given a training
data set f B1; y1ð Þ; � � � ; Bi; yið Þ; � � � ; BN; yNð Þg, where Bi ¼ fpi1; � � � pij; � � �
piKg represents K patches extracted from the image i and
yi 2 Y ¼ f1;0g is the corresponding label of the bag Bi, the goal is
to train a bag-level classifier to predict the label of the test images.
The construction of the graph for each bag is quite straightforward:
Similar to approaches in manifold learning (Pless and Souvenir,
2009), distance matrices are derived to construct graphs, which
can capture the underlying manifold structure of the data. Each
patch in the bag Bi can be viewed as a node in the graph Gi. The dis-
tance between every pair of nodes is calculated and used to define
the distance matrix Wi. Various measures can be adopted to calcu-
late the distance between nodes. Here, we simply used the squared
Euclidean distance to establish the graph, but it should be noted
that our method is not limited to a specific distance measure. Dis-
tances between patches are calculated using the intensity values
within patches and the distance matrix Wi is defined as:

Wi
au ¼ pia � piuk k2

2 ð2Þ

where pia and piu are two patches in the bag Bi. The distance matrix
Wi can then represent a graph that models the relationships among
the patches in the bag Bi. In the resulting graph, the weight of each
edge corresponds to the dissimilarity between the corresponding
pair of patches within the bag.

After mapping the bags to graphs, different options can be cho-
sen to train a classifier. For example, a k-nearest neighbor classifier
can be trained by employing graph edit distance as described in
Neuhaus and Bunke (2007). In this paper, we chose to define a
graph kernel as proposed in Zhou et al. (2009) to capture the sim-
ilarity among graphs and then train a classifier using kernel
machines. Given two bags Bi and Bj which are represented as
graphs with matrices Wi and Wj respectively, the graph kernel
KG is defined as

KG Bi;Bj
� �

¼
PK

a¼1

PK
b¼1diadjbkðpia;pjbÞPK

a¼1dia
PK

b¼1djb

ð3Þ

where dia ¼ 1=
PK

u¼1Wi
au; djb ¼ 1=

PK
v¼1Wj

bv . In the above equation,
the kernel function k is defined as

k pia;pjb

� �
¼ exp �c pia � pjb

�� ��� �
ð4Þ

where pia and pjb are patches in bags Bi and Bj respectively. As
shown in Eqs. (3) and (4), the nodes p which represent the intensi-
ties of patches and the edges w which reflect the relationships
among patches are important for calculating the graph kernel KG.
Finally, the graph kernel KG is normalized
KG Bi;Bj
� �

¼
KG Bi;Bj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG Bi;Bið Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG Bj;Bj
� �q ð5Þ
2.6. Classification Using SVM

After the graph kernels are calculated, a classifier can be trained
via a kernel machine. Various kernel machines such as kernel
Fisher linear discriminant analysis (LDA) (Mika et al., 1999), kernel
principal components analysis (PCA) (Schölkopf et al., 1997), and
support vector machine (SVM) (Amari and Wu, 1999) can be used
to solve the classification problem. Among them, SVM is one of the
most widely used kernel machines because of its accurate classifi-
cation performance (Sanchez and David, 2003). In this paper, we
chose SVM to train a classifier using the computed graph kernels.
In the test stage, the labels of unseen images are estimated using
the learned classifier.
3. Experiments and results

The performance of the proposed mi-Graph was evaluated on
different classification tasks, including CN vs AD, CN vs PMCI and
SMCI vs PMCI. Experiments were performed using leave-one-out
cross validation since this validation is known to be an almost unbi-
ased estimator (Cawley and Talbot, 2004). For a fair comparison
with the study in Wolz et al. (2011), we also utilized a leave 5%
out cross validation as adopted in their work. There are five impor-
tant parameters in our proposed method: the size of the patch, the
number of the selected patches, the spatial distance threshold, the
gamma in Eq. (4) and the cost parameter C in kernel SVM. The effect
of parameters including the number of selected patches and the
spatial patch distance threshold is analyzed in the following sec-
tion. In all cases a patch size of 7� 7� 7 voxels was used to capture
local structural information as this is suggested to be a good choice
in related work (Coupé et al., 2012; Liu et al., 2012a). The parameter
c in Eq. (4) was determined over the ranges c ¼ 10;5;2;1; 0:5;0:1
and a suitable one (a value of 2 for CN vs AD and 1 for SMCI vs PMCI)
was chosen for all the other experiments. This was carried out
because it will be computational impossible to optimize the param-
eter gamma using a nested leave-one-out cross validation. For
training a bag-level classifier, the LIBSVM toolbox (Chang and Lin,
2011) was used and a grid-search of the cost parameter C in LIBSVM
was performed over the ranges C ¼ 10�5;10�4:5; . . . ;102:5;103 as
suggested in Cuingnet et al. (2011). Finally, the performance of
the proposed mi-Graph was compared with that of standard linear
SVM and those of two state-of-the-art methods (Wolz et al., 2011;
Coupé et al., 2012).

All the above parameters were tuned on the same groups except
for the locations of selected patches, which were determined on
separate groups. For classification of CN vs AD, the selection of
patches was determined on the dataset of MCI groups to avoid
the selection bias as described in (Kriegeskorte et al., 2009), which
may lead to overestimated classification accuracy (Eskildsen et al.,
2013). Also, for classification of SMCI vs PMCI, the location of
patches were determined on the CN and AD groups. This was done
also because of the highly computational cost when generating the
probability map for selecting patches. In order to generate the
probability map using the approach proposed in Janousova et al.
(2012), 1000 runs of this process was repeated and the average
selection frequencies are treated as probability map for selecting
patches. In addition, it was found in Chu et al. (2011) that the
use of a region of interest (ROI) can yield higher accuracies than
using the whole brain for the classification of AD. The most fre-
quently top ranked ROI is hippocampus. Therefore, a ROI around
the hippocampus is used to restrict the selection of useful patches
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in our work. This ROI (see Fig. 4) is defined around the hippocam-
pus of the MNI152-brain T1 atlas (Proverb, 1995) followed by a
dilation of 5 mm. We also evaluated the proposed mi-Graph over
the whole brain and compared the results with those using the
defined ROI.

3.1. Effect of parameters

Experiments were conducted to investigate the effect of the
number of selected patches and the spatial distance threshold on
the classification accuracy. Fig. 5 shows the classification accura-
cies for CN vs AD and SMCI vs PMCI when varying the number of
patches and the patch distance thresholds. As can be seen from
the figure, the spatial distance threshold has more effect on the
classification accuracy than the number of patches. When varying
the number of patches, the number of nodes in the graphs will
change accordingly but the classification accuracy only slightly
changes. When different spatial distance thresholds are used, the
selected patches are different and the edges between nodes in
the graphs change accordingly. The edges reflect the relationships
among these selected patches. When the spatial distance threshold
varies, the classification accuracy changes significantly, which indi-
cates that the relationships among patches are very important for
the classification task.

As shown in Fig. 5, when a patch distance threshold of 1 is used,
the classification accuracy is much lower than those using other
patch distance thresholds. When a patch distance threshold of 1
is adopted, the extracted patches are selected just according to
their discriminative probabilities. In this case, the selected K
patches have the highest discriminative probabilities of all M
patches. This means that these patches are more discriminative
than the K patches extracted using other patch distance thresholds.
However, these K patches have significant overlap and provide lim-
ited information about the inherent structure of the images, thus
leading to a low classification accuracy. When using a larger patch
distance threshold (e.g. 5 or 7 voxles), the proposed mi-Graph
achieves classification accuracies of 0:890 for CN vs AD and 0:704
for SMCI vs PMCI using a leave-one-out cross validation.

3.2. Whole brain vs hippocampus

We also evaluated the proposed mi-Graph using the whole
brain. Patches were extracted over the whole brain to establish
graphs. The results using the whole brain were compared with
the results using the defined ROI around hippocampus. The opti-
mal spatial distance thresholds were used in both classification
scenarios for a fair comparison. Fig. 6 shows the results when
Fig. 4. Orthogonal views of the ROI around hippocampus in
different number of patches are selected. As can be seen from the
figure, the classification accuracies using the whole brain are lower
than those obtained using the defined ROI. Although the selected
patches over the whole brain can provide strong information about
the structure of images, they are not as discriminative as patches
extracted in some key regions such as hippocampus. In addition,
many subjects in the ADNI dataset have vascular lesions
(Cuingnet et al., 2011), which may result in some noisy patches
when they are extracted over the whole brain. Therefore, extract-
ing patches in a set of key regions instead of the whole brain
may provide an improved classification accuracy, which is also
indicated in Cuingnet et al. (2011). In the end, the proposed mi-
Graph using the whole brain can achieve classification accuracies
of 0:877 for CN vs AD and 0:674 for SMCI vs PMCI using a leave-
one-out cross validation.

3.3. Comparison with linear SVM

The performance of the proposed mi-Graph was compared with
the performance of the widely used linear SVM. In order to use the
standard linear SVM, the K patches in a bag were arranged to form
a single feature vector. Then, the feature vectors and the corre-
sponding image labels were used as input for the linear SVM.
The cost parameter C was determined using a grid search for both
the proposed mi-Graph and the linear SVM. To ensure a fair com-
parison, the number of selected patches and the spatial distance
threshold were optimized for both methods. Table 2 shows a com-
parison of the classification performances between these two
methods. The classification accuracy (ACC), sensitivity (SEN), spec-
ificity (SPE), positive predictive value (PPV) and negative predictive
value (NPV) are presented in the table. The p-values of McNemar
tests are also shown in Table 2 to assess the performances of these
two methods. In addition, receiver operating characteristic (ROC)
curves of these two methods for different classification tasks are
given in Fig. 7. As we can see from Table 2 and Fig. 7, the proposed
method achieves a significantly more accurate performance than
the linear SVM ðp < 0:05Þ. The improvement is gained by replacing
linear kernels with graph kernels in SVM. Although the linear SVM
classification uses the same patch selection step, it just utilizes the
intensities within patches and neglects the relationships among
these patches, resulting in a lower classification accuracy than
the proposed mi-Graph.

3.4. Comparison with state-of-the-art methods

A comprehensive study (Cuingnet et al., 2011) compared ten
methods using 509 baseline MR images, which reported good
the MNI152 space used to select discriminative patches.



Fig. 5. Effect of the spatial patch distance threshold and the number of patches on the classification accuracy.

Fig. 6. Comparison between the results when selecting patches over the whole brain and in a predefined ROI around hippocampus. The spatial distance thresholds were set to
4 voxels for CN vs AD and 7 voxels for PMCI vs SMCI when patches were selected over the whole brain. They were set to 5 and 7 voxels for CN vs AD and PMCI vs SMCI
respectively when patches were selected within the defined ROI.

Table 2
Method comparison. The number of selected patches and the spatial distance threshold were determined through cross validation and the optimal parameter settings were
chosen for both methods. The p-value of the McNemar test is shown to assess the performance of the mi-Graph in comparison with the linear SVM.

Comparison Method ACC (%) SEN (%) SPE (%) PPV (%) NPV (%)

CN vs AD ðp ¼ 0:0096Þ Linear SVM 86.0 78.8 92.2 89.7 83.5
mi-Graph 89.0 84.9 92.6 90.8 87.7

CN vs PMCI (p ¼ 0:0081) Linear SVM 79.4 61.1 92.6 85.7 76.7
mi-Graph 82.9 68.9 93.1 87.8 80.5

PMCI vs SMCI (p ¼ 0:0382) Linear SVM 66.4 58.7 71.9 59.4 71.3
mi-Graph 70.4 66.5 73.1 63.4 75.6
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results in the classification of CN vs AD. However, it also shows
that only four methods can discriminate SMCI and PMCI slightly
more accurately than a random classifier (Cuingnet et al., 2011).
In a recent study (Wolz et al., 2011), a multi-method was proposed
to combine different imaging biomarkers and obtained more accu-
rate results than all the ten methods compared in Cuingnet et al.
(2011) on the same dataset. In this paper, we compared our pro-
posed mi-Graph with the multi-method proposed in Wolz et al.
(2011). All the 834 baseline scans in the ADNI database were used
for evaluation and a leave 5% out cross validation was adopted as in
Wolz et al. (2011). 5% of the dataset was randomly selected as the
testing set and the remaining 95% was treated as the training set.
This process was repeated 100 times and the average results are
reported. Studies shows that it is difficult to make a fair compari-
son of methods if not exactly the same data and cross validation
approaches are used (Wolz et al., 2011). Therefore, we performed



Fig. 7. ROC curves of different methods for the classification of CN vs AD, CN vs
PMCI and SMCI vs PMCI.

Table 4
Comparison of classification results between mi-Graph and SNIPE proposed in Coupé
et al. (2012). Results are obtained using leave-one-out cross validation. HC and EC
represent hippocampus and entorhinal cortex.

Methods Features CN vs AD
ACC–SEN–SPE

PMCI vs SMCI
ACC–SEN–SPE

SNIPE (Coupé
et al., 2012)

HC volume + Age 79–76–82% 62–61–63%
HC grade + Age 88–83–92% 71–70–71%
HC
grade + Volume + Age

87–83–91% 71–70–72%

HC-EC volume + Age 78–76–80% 63–63–64%
HC-EC grade + Age 89–84–93% 70-69–71%

mi-Graph Intensity patches 89–85–93% 70–67–73%
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our experiments on the same 834 images and utilized the same
cross validation for a fair comparison. Table 3 shows the results
using the proposed mi-Graph and the multi-method. The results
using the multi-method are different from the best results reported
in Wolz et al. (2011) because a different evaluation scheme was
used in Wolz et al. (2011). For CN vs AD, mi-Graph achieved more
accurate classification results than methods using hippocampal
(HC) volume (Lötjönen et al., 2011), cortical thickness (Lerch and
Evans, 2005), manifold-based learning (Wolz et al., 2012) and ten-
sor-based morphometry (Koikkalainen et al., 2011). When all the
four types of imaging biomarkers were combined, the multi-
method obtained a classification accuracy of 87%. In the proposed
method, an accuracy of 90% can be achieved for the classification
of CN vs AD. The classification between SMCI and PMCI is far more
challenging because the anatomical changes at the prodromal
stage of AD disease are subtle (Coupé et al., 2012). For PMCI vs
SMCI, the classification accuracies obtained by mi-Graph are
higher than all the accuracies presented in Wolz et al. (2011),
which demonstrates the effectiveness of the proposed method.
Table 3
Comparison of classification results between mi-Graph and the multi-method
proposed in Wolz et al. (2011). Results are obtained using leave 5% out cross
validation and this process was repeated 100 times.

Methods Features CN vs AD
ACC–SEN–SPE

PMCI vs SMCI
ACC–SEN–SPE

Multi-Method
(Wolz et al.,
2011)

Hippocampal
volume

80–81–79%⁄ 66–65–67%⁄

Cortical
thickness

83–71–92%⁄ 47–47–47%⁄

Manifold-based
learning

85–82–87%⁄ 68–71–66%

Tensor-based
morphometry

85–78–91%⁄ 65–61–68%⁄

All 87–78–95%⁄ 67–69–66%⁄

mi-Graph Intensity
patches

90–86–93% 72–69–74%

⁄ Statistically significant different from the proposed mi-Graph method with
p < 0:001.
A recent study (Coupé et al., 2012) also utilized the same 834
images for evaluation and represents the best published results
on the classification of AD when only the ADNI baseline scans
are used. They presented various results using different cross vali-
dation approaches. For 10-fold cross validation or half training and
half testing validation (Cuingnet et al., 2011), the classification
accuracies have a high variation when different samplings of the
dataset are used (Coupé et al., 2012). Since the leave-one-out cross
validation is known to be an almost unbiased estimator (Cawley
and Talbot, 2004), we used this validation to evaluate our method
and compared the performance with that of the SNIPE (Scoring by
Nonlocal Image Patch Estimator) method proposed in Coupé et al.
(2012). The advantage of SNIPE is that it utilizes a large amount of
non-local patches, which could provide a rich information for the
disease label propagation. By contrast, we only use a small subset
of relevant patches in our work and investigates the relationships
among these training patches for classification. Table 4 shows
the comparison between SNIPE and mi-Graph. As we can see, mi-
Graph obtained similar accuracies as those when grading values
and ages were used as features in SNIPE, which are the best results
presented in Coupé et al. (2012) when a leave-one-out cross vali-
dation was used.
4. Discussion

In this paper, we have developed a patch-based approach for
the classification of subjects with disease such as AD. Since patches
that are extracted from images of patients with AD may not be
affected by AD or affected by other types of diseases (i.e. cerebro-
vascular disease), there is some ambiguity in assigning disease
labels to these patches. We proposed to use MIL to address the
problem of ambiguous labels of the training patches. The intensi-
ties of the patches and the relationships among these patches were
integrated into graphs and then utilized for classification. We have
found that the normalized intensities can provide enough discrim-
inative information for classification and can yield promising
results if a good feature selection method is used. By using a simple
linear SVM, classification accuracies of 86% for CN vs AD and 66%
for SMCI vs PMCI can be achieved. The linear SVM classifier just
uses the appearance information of patches (nodes) in the graphs
and considers each patch as local isolated measure, ignoring the
relationship between patches. However, not only the nodes but
also the connections between nodes are affected by the atrophy
of AD. Therefore, it is a more effective way to capture the subtle
changes by using both the information of nodes and connections
in the graphs. When using both the intensities of patches and the
relationships among them, the proposed mi-Graph can achieve
classification accuracies of 89% for CN vs AD and 70% for SMCI vs
PMCI using leave-one-out cross validation, which shows significant
improvement over the linear SVM. These results demonstrate that
the relationships among patches can provide complementary and
useful information for classification.
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The effect of the parameters in the patch selection step was
also analyzed in our study. When varying the patch selection
parameters, including the number of patches and the spatial
patch distance threshold, the attributes of the constructed graphs
are affected. The aim of the patch extraction step is to find well-
connected patches and then establish meaningful graphs which
can capture the inherent structural information of the images
and discriminate between groups. The optimization of these
parameters is crucial for the construction of discriminative graphs
for classification. A better search of the K meaningful patches may
yield an improved classification accuracy. It should also be men-
tioned that some patches extracted from healthy subjects may be
affected by other types of pathologies such as cerebrovascular
disease. This will affect the attributes of the constructed graphs
corresponding to these healthy subjects and may degrade the
classification performance of the proposed method. However,
our proposed method can still achieve promising classification
performance even though noisy patches may be present, which
also demonstrates the robustness of the proposed mi-Graph
method.

Recent studies reported classification accuracies in the range of
76–94% in identifying AD over CN and 64–82% in classifying PMCI
over SMCI (Wolz et al., 2011). The high variation in these reported
results is partly due to different study populations being used but
also due to the fact that different studies using different validation
approaches, e.g. leave-one-out or 10-fold cross-validation. In addi-
tion, not all reported studies avoid the double dipping bias, e.g. by
using the combined training and test data in the feature selection
stage (Eskildsen et al., 2013). In this paper, the locations of selected
patches were determined without using the test data to avoid the
double-dipping bias. We also compared the performance of the
proposed method with those of two recent papers (Wolz et al.,
2011; Coupé et al., 2012) which are among the most competitive
approaches and represent state-of-the-art using ADNI MR baseline
images. We evaluated the proposed method on the same dataset
and used the same cross validation approaches as in these two
papers. This allows direct comparisons with these state-of-the-
art methods. The results demonstrate the effectiveness of the
proposed method and indicate that the proposed method could
provide another potential choice for the early detection of AD. Fur-
thermore, we also evaluated the proposed mi-Graph method on
the standardized set of baseline scans from ADNI-1 (Wyman
et al., 2013) to enable future comparisons with other methods.
The classification results using these 818 baseline MR scans at
1.5 T are shown in Table 5.

In another recent publication (Liu et al., 2013), a hierarchical
ensemble classification method also utilized patches as features
and derived correlative features among these patches to improve
the classification accuracy. Then, multiple local classifiers were
hierarchically fused to build a strong classifier. This method
demonstrates that an improved classification can be achieved by
combining the patches and the correlative features. This method
can achieve an accuracy of 92% on the classification of AD over
CN using a ten fold cross validation. However, the authors do not
report the classification accuracy for SMCI vs PMCI and hence we
cannot make a direct comparison in this scenario. The major
Table 5
Classification results of the proposed mi-Graph method using the standardized
ADNI-1 dataset, which consists of 818 baseline MR scans at 1.5 T.

Comparison ACC SEN SPE PPV NPV

CN vs AD 89.2% 85.1% 92.6% 90.4% 88.3%
PMCI vs SMCI 69.3% 66.7% 71.2% 62.6% 71.2%
difference between mi-Graph and this ensemble classification
method is that in their paper the authors used a hierarchical
approach to fuse different classifiers while only a global classifier
was trained in our proposed method. In addition, the authors used
gray matter densities for extracting discriminative patches,
whereas intensities were directly used in our work, therefore elim-
inating the requirement for any segmentation of the images.

Although the proposed method can yield competitive accura-
cies compared with state-of-the-art methods, it also has some
limitations. First, the intensities of patches were used as features,
which may be susceptible to distortion artefacts, intensity imho-
mogeneity, or other forms of noise. Therefore, the preprocessing
steps such as image denoising or intensity normalization will
affect the final classification results. More optimized preprocess-
ing steps could improve the performance of the proposed mi-
Graph method. Second, the same distance thresholds were used
for all patches in the patch selection process in our work. It
may be possible to improve the classification performance of the
proposed method if an autocorrelation metric could be used to
search the optimal distance thresholds for different patches. In
addition, it should be noted that the graph kernel used in this
paper may not be the best choice. A better graph kernel may be
able to capture more useful structural information of the images.
For example, a graph kernel which can combine the information
of nodes, edges, and topological structures for comparison may
improve the classification performance. Especially using topologi-
cal information, which is not considered in this paper, may pro-
vide complementary information for our classification work.
Graph kernels based on subgraphs (Huan et al., 2005) or graphlets
(Shervashidze et al., 2009) could be used to capture this informa-
tion. Finally, non-rigid registrations were used to align all the
images. This step removes inter-subject anatomical variations
but may also remove some of the pathological changes. We
believe that there is a trade-off between the level of non-rigid
alignment which can ensure that corresponding brain structures
are well aligned and the amount of pathological changes which
can still allow us to measure subject-specific differences for clas-
sification. We will investigate the effect of using different levels of
registrations on the classification performance of the proposed
method in future work.

Other interesting work could also be investigated in future. For
example, in our work, the trained classifier is a bag-level classifier,
which can only predict the label of unseen images and cannot
assign a probabilistic label for every voxel. It would be clinically
more useful if the method enables the visualization of differences
between groups (Coupé et al., 2012). Therefore, in future work we
will try to learn instance-level classifiers (Andrews et al., 2002) to
assign a disease score for every voxel. This may provide more clin-
ical insight of the pathological changes of AD. In addition, it is
reported that the correct diagnosis rate in the ADNI study is esti-
mated at 90% (Ranginwala et al., 2008). Due to the uncertainty of
diagnosis, individual subjects might be wrongly categorized. Our
proposed method can address the problem of ambiguous labels
at the patch level but not at the image level. It would be interest-
ing to examine the weakly supervised method to overcome the
problem of ambiguous training labels of ADNI images due to mis-
diagnosis. Moreover, the proposed method has been evaluated on
the baseline MR scans in the ADNI database. 3D spatial graphs
were built for each subject, which contain the information about
the structures of the images at single time point. Using the
longitudinal datasets, this approach could be extended to 4D
graphs and these constructed graphs may then capture more
complementary information about the morphological changes
over time. We believe that graphs based on space and time will
capture more discriminative information and yield an improved
classification.
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5. Conclusion

In this study, we have shown that the multiple instance learn-
ing technique can be successfully applied to the classification of
AD. The proposed method was evaluated on a large database using
the entire 834 baseline MR scans in the ADNI study. The direct
comparisons with two recent methods demonstrate the effective-
ness of the proposed method. In future work, we plan to extend
the proposed framework using longitudinal datasets and other
imaging modalities, such as FDG-PET images.
Acknowledgments

This project was partially funded by the China Scholarship
Council. The ADNI Data collection and sharing for this project
was funded by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI; Principal Investigator: Michael Weiner; NIH Grant U01
AG024904). ADNI is funded by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), and through generous contributions from the following:
Pfizer Inc., Wyeth Research, Bristol-Myers Squibb, Eli Lilly and
Company, GlaxoSmithKline, Merck & Co., Inc., AstraZeneca AB,
Novartis Pharmaceuticals Corporation, Alzheimer’s Association,
Eisai Global Clinical Development, Elan Corporation plc, Forest
Laboratories, and the Institute for the Study of Aging, with partic-
ipation from the U.S. Food and Drug Administration. Industry part-
nerships are coordinated through the Foundation for the National
Institutes of Health. The grantee organization is the Northern
California Institute for Research and Education, and the study is
coordinated by the Alzheimer’s Disease Cooperative Study at the
University of California, San Diego. ADNI data are disseminated
by the Laboratory of Neuroimaging at the University of California,
Los Angeles.
References

Amari, S.-i., Wu, S., 1999. Improving support vector machine classifiers by
modifying kernel functions. Neural Networks 12 (6), 783–789.

Andrews, S., Tsochantaridis, I., Hofmann, T., 2002. Support vector machines for
multiple-instance learning. Adv. Neural Inf. Process. Syst. 15, 561–568.

Babenko, B., Yang, M.-H., Belongie, S., 2009. Visual tracking with online multiple
instance learning. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 983–990.

Bi, J., Liang, J., 2007. Multiple instance learning of pulmonary embolism detection
with geodesic distance along vascular structure. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8.

Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M., 2007. Forecasting the
global burden of Alzheimers disease. Alzheimer’s Dementia 3 (3), 186–191.

Cawley, G.C., Talbot, N.L., 2004. Fast exact leave-one-out cross-validation of sparse
least-squares support vector machines. Neural Networks 17 (10), 1467–1476.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27, software available at http://
www.csie.ntu.edu.tw/ cjlin/libsvm.

Cho, Y., Seong, J.-K., Jeong, Y., Shin, S.Y., 2012. Individual subject classification for
Alzheimer’s disease based on incremental learning using a spatial frequency
representation of cortical thickness data. Neuroimage 59 (3), 2217–2230.

Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., Lin, C.-P., 2011. Does feature selection
improve classification accuracy? Impact of sample size and feature selection on
classification using anatomical magnetic resonance images. NeuroImage 60,
59–70.

Clark, C., Davatzikos, C., Borthakur, A., Newberg, A., Leight, S., Lee, V.-Y.,
Trojanowski, J., 2007. Biomarkers for early detection of Alzheimer pathology.
Neurosignals 16 (1), 11–18.

Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S., Pruessner, J.C., Allard, M., Collins,
D.L., 2012. Scoring by nonlocal image patch estimator for early detection of
Alzheimer’s disease. NeuroImage: Clinical 1 (1), 141–152.

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin,
M., Benali, H., Colliot, O., 2011. Automatic classification of patients with
Alzheimer’s disease from structural MRI: a comparison of ten methods using
the ADNI database. Neuroimage 56 (2), 766–781.

Eskildsen, S.F., Coupé, P., García-Lorenzo, D., Fonov, V., Pruessner, J.C., Collins, D.L.,
2013. Prediction of Alzheimer’s disease in subjects with mild cognitive
impairment from the ADNI cohort using patterns of cortical thinning.
NeuroImage 65, 511–521.
Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C., 2007. COMPARE: classification of
morphological patterns using adaptive regional elements. IEEE Trans. Med.
Imaging 26 (1), 93–105.

Fu, Z., Robles-Kelly, A., Zhou, J., 2011. MILIS: multiple instance learning with
instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 33 (5), 958–977.

Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.-S.,
Niethammer, M., Dubois, B., Lehéricy, S., Garnero, L., et al., 2009.
Multidimensional classification of hippocampal shape features discriminates
Alzheimer’s disease and mild cognitive impairment from normal aging.
Neuroimage 47 (4), 1476.

Ghosh, D., Chinnaiyan, A.M., 2005. Classification and selection of biomarkers in
genomic data using LASSO. BioMed Res. Int. 2005 (2), 147–154.

Gray, K.R., Wolz, R., Heckemann, R.A., Aljabar, P., Hammers, A., Rueckert, D., 2012.
Multi-region analysis of longitudinal FDG-PET for the classification of
Alzheimer’s disease. NeuroImage 60 (1), 221–229.

Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., 2013. Random
forest-based similarity measures for multi-modal classification of Alzheimer’s
disease. Neuroimage 65, 167–175.

Grundman, M., Petersen, R.C., Ferris, S.H., Thomas, R.G., Aisen, P.S., Bennett, D.A.,
Foster, N.L., Jack Jr., C.R., Galasko, D.R., Doody, R., et al., 2004. Mild cognitive
impairment can be distinguished from Alzheimer disease and normal aging for
clinical trials. Arch. Neurol. 61 (1), 59.

Herholz, K., Salmon, E., Perani, D., Baron, J., Holthoff, V., Frölich, L., Schönknecht, P.,
Ito, K., Mielke, R., Kalbe, E., et al., 2002. Discrimination between Alzheimer
dementia and controls by automated analysis of multicenter FDG-PET.
Neuroimage 17 (1), 302–316.

Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M.K., Johnson, S.C., 2009.
Spatially augmented lpboosting for AD classification with evaluations on the
ADNI dataset. Neuroimage 48 (1), 138–149.

Hinrichs, C., Singh, V., Xu, G., Johnson, S.C., 2011. Predictive markers for AD in a
multi-modality framework: an analysis of MCI progression in the ADNI
population. Neuroimage 55 (2), 574–589.

Huan, J., Bandyopadhyay, D., Wang, W., Snoeyink, J., Prins, J., Tropsha, A., 2005.
Comparing graph representations of protein structure for mining family-
specific residue-based packing motifs. J. Comput. Biol. 12 (6), 657–671.

Jack Jr, C., Bernstein, M., et al., 2008. The Alzheimer’s disease neuroimaging
initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27 (4), 685–691.

Jack Jr, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S.,
Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., et al., 2013. Tracking
pathophysiological processes in Alzheimer’s disease: an updated hypothetical
model of dynamic biomarkers. Lancet Neurol. 12 (2), 207–216.

Janousova, E., Vounou, M., Wolz, R., Gray, K., Rueckert, D., Montana, G., 2012.
Biomarker discovery for sparse classification of brain images in Alzheimer’s
disease. Ann. Brit. Mach. Vision Assoc.(BMVA) 2012 (2), 1–11.

Keihaninejad, S., Zhang, H., Ryan, N.S., Malone, I.B., Modat, M., Cardoso, M.J., Cash,
D., Fox, N.C., Ourselin, S., 2013. An unbiased longitudinal analysis framework for
tracking white matter changes using diffusion tensor imaging with application
to Alzheimer’s disease. NeuroImage 72, 153–163.

Koikkalainen, J., Lötjönen, J., Thurfjell, L., Rueckert, D., Waldemar, G., Soininen, H.,
2011. Multi-template tensor-based morphometry: application to analysis of
Alzheimer’s disease. NeuroImage 56 (3), 1134–1144.

Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., Baker, C.I., 2009. Circular analysis
in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12 (5),
535–540.

Lerch, J.P., Evans, A.C., 2005. Cortical thickness analysis examined through power
analysis and a population simulation. Neuroimage 24 (1), 163–173.

Leung, K.K., Barnes, J., Modat, M., Ridgway, G.R., Bartlett, J.W., Fox, N.C., Ourselin, S.,
2011. Brain MAPS: an automated, accurate and robust brain extraction
technique using a template library. Neuroimage 55 (3), 1091–1108.

Liu, M., Zhang, D., Shen, D., 2012a. Ensemble sparse classification of Alzheimer’s
disease. Neuroimage 60 (2), 1106–1116.

Liu, M., Zhang, D., Yap, P.-T., Shen, D., 2012b. Tree-Guided Sparse Coding for Brain
Disease Classification, MICCAI, pp. 239–247.

Liu, M., Zhang, D., Shen, D., 2013. Hierarchical fusion of features and classifier
decisions for Alzheimer’s disease diagnosis. Human Brain Mapping doi:
10.1002/hbm.22254.

Lötjönen, J., Wolz, R., Koikkalainen, J., Julkunen, V., Thurfjell, L., Lundqvist, R.,
Waldemar, G., Soininen, H., Rueckert, D., 2011. Fast and robust extraction of
hippocampus from MR images for diagnostics of Alzheimer’s disease.
Neuroimage 56 (1), 185–196.

Lu, L., Bi, J., Wolf, M., Salganicoff, M., 2011. Effective 3D object detection
and regression using probabilistic segmentation features in CT images.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
1049–1056.

Maron, O., Lozano-Pérez, T., 1998. A framework for multiple-instance learning. Adv.
Neural Inform. Process. Syst., 570–576.

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K., 1999. Fisher discriminant
analysis with kernels. In: IEEE Workshop on Neural Networks for Signal
Processing IX. IEEE, pp. 41–48.

Neuhaus, M., Bunke, H., 2007. A quadratic programming approach to the graph edit
distance problem. IAPR Workshop on Graph-Based Representations in Pattern
Recognition, 92–102.

Nyúl, L.G., Udupa, J.K., 1999. On standardizing the MR image intensity scale. Magn.
Reson. Med. 42 (6), 1072.

Pihlajamäki, M., Sperling, R.A., 2008. fMRI: use in early Alzheimers disease and in
clinical trials. Future Neurol. 3 (4), 409–421.

http://refhub.elsevier.com/S1361-8415(14)00060-7/h0050
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0050
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0055
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0055
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0060
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0060
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0065
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0065
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0070
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0070
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0070
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0075
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0075
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0075
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0080
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0080
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0080
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0080
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0085
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0085
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0085
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0090
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0090
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0090
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0095
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0095
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0095
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0095
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0100
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0100
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0100
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0100
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0105
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0105
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0105
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0110
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0110
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0115
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0115
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0115
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0115
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0115
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0120
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0120
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0125
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0125
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0125
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0130
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0130
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0130
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0135
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0135
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0135
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0135
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0140
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0140
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0140
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0140
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0145
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0145
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0145
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0150
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0150
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0150
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0155
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0155
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0155
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0160
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0160
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0165
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0165
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0165
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0165
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0170
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0170
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0170
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0175
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0175
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0175
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0175
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0180
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0180
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0180
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0185
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0185
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0185
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0190
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0190
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0195
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0195
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0195
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0200
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0200
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0205
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0205
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0205
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0205
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0210
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0210
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0215
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0215
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0215
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0220
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0220
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0220
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0225
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0225
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0230
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0230


818 T. Tong et al. / Medical Image Analysis 18 (2014) 808–818
Pless, R., Souvenir, R., 2009. A survey of manifold learning for images. IPSJ Trans.
Comput. Vision Applic. 1 (0), 83–94.

Proverb, C., 1995. A probabilistic atlas of the human brain: theory and rationale for
its development. Neuroimage 2, 89–101.

Ranginwala, N.A., Hynan, L.S., Weiner, M.F., White III, C.L., 2008. Clinical criteria for
the diagnosis of Alzheimer disease: still good after all these years. Am. J.
Geriatric Psych 16 (5), 384–388.

Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J., 1999.
Nonrigid registration using free-form deformations: application to breast MR
images. IEEE Trans. Med. Imaging 18 (8), 712–721.

Sanchez, A., David, V., 2003. Advanced support vector machines and kernel
methods. Neurocomputing 55 (1), 5–20.

Schölkopf, B., Smola, A., Müller, K.-R., 1997. Kernel principal component analysis.
In: International Conference on Artificial Neural Networks. Springer, pp.
583–588.

Shervashidze, N., Petri, T., Mehlhorn, K., Borgwardt, K.M., Viswanathan, S., 2009.
Efficient graphlet kernels for large graph comparison. In: International
Conference on Artificial Intelligence and Statistics, 2009, pp. 488–495.

Tong, T., Wolz, R., Gao, Q., Hajnal, J.V., Rueckert, D., 2013. Multiple Instance Learning
for Classification of Dementia in Brain MRI, MICCAI, pp. 599–606.

Vounou, M., Janousova, E., Wolz, R., Stein, J.L., Thompson, P.M., Rueckert, D.,
Montana, G., 2012. Sparse reduced-rank regression detects genetic associations
with voxel-wise longitudinal phenotypes in Alzheimer’s disease. Neuroimage
60 (1), 700–716.

Wee, C.-Y., Yap, P.-T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer,
K.A., Wang, L., Shen, D., 2011. Enriched white matter connectivity networks for
accurate identification of MCI patients. Neuroimage 54 (3), 1812–1822.

Wee, C.-Y., Yap, P.-T., Shen, D., 2012a. Prediction of Alzheimer’s disease and mild
cognitive impairment using cortical morphological patterns. Human Brain
Mapping doi: 10.1002/hbm.22156.
Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-
Bohmer, K.A., Wang, L., Shen, D., 2012b. Identification of MCI individuals using
structural and functional connectivity networks. Neuroimage 59 (3), 2045–
2056.

Wolz, R., Heckemann, R.A., Aljabar, P., Hajnal, J.V., Hammers, A., Lötjönen, J.,
Rueckert, D., et al., 2010. Measurement of hippocampal atrophy using 4D graph-
cut segmentation: application to ADNI. NeuroImage 52 (1), 109.

Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., Rueckert, D.,
Soininen, H., Lötjönen, J., 2011. Multi-method analysis of MRI images in early
diagnostics of Alzheimer’s disease. PloS one 6 (10), e25446.

Wolz, R., Aljabar, P., Hajnal, J.V., Lötjönen, J., Rueckert, D., 2012. Nonlinear
dimensionality reduction combining MR imaging with non-imaging
information. Medical Image Anal. 16 (4), 819–830.

Wyman, B.T., Harvey, D.J., Crawford, K., Bernstein, M.A., Carmichael, O., Cole, P.E.,
Crane, P.K., DeCarli, C., Fox, N.C., Gunter, J.L., et al., 2013. Standardization of
analysis sets for reporting results from ADNI MRI data. Alzheimer’s Dementia 9
(3), 332–337.

Xu, Y., Zhang, J., Chang, E., Lai, M., Tu, Z., 2012. Context-constrained multiple
instance learning for histopathology image segmentation, MICCAI, pp. 623–630.

Yiannopoulou, K.G., Papageorgiou, S.G., 2013. Current and future treatments for
Alzheimers disease. Therap. Adv. Neurol. Disorders 6 (1), 19–33.

Yoon, U., Lee, J.-M., Im, K., Shin, Y.-W., Cho, B.H., Kim, I.Y., Kwon, J.S., Kim, S.I., 2007.
Pattern classification using principal components of cortical thickness and its
discriminative pattern in schizophrenia. Neuroimage 34 (4), 1405–1415.

Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., 2011. Multimodal classification
of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55 (3),
856–867.

Zhou, Z.-H., Sun, Y.-Y., Li, Y.-F., 2009. Multi-instance learning by treating instances
as non-IID samples. Int. Conf. Mach. Learn., 1249–1256.

http://refhub.elsevier.com/S1361-8415(14)00060-7/h0235
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0235
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0240
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0240
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0245
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0245
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0245
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0250
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0250
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0250
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0255
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0255
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0260
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0260
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0260
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0265
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0265
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0265
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0265
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0270
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0270
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0270
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0275
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0275
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0275
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0275
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0280
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0280
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0280
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0285
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0285
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0285
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0290
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0290
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0290
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0295
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0295
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0295
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0295
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0300
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0300
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0305
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0305
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0305
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0310
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0310
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0310
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0315
http://refhub.elsevier.com/S1361-8415(14)00060-7/h0315

	Multiple instance learning for classification of dementia in brain MRI
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Overview of methods
	2.3 Image processing
	2.4 Extraction of patches
	2.5 Computation of graph kernels
	2.6 Classification Using SVM

	3 Experiments and results
	3.1 Effect of parameters
	3.2 Whole brain vs hippocampus
	3.3 Comparison with linear SVM
	3.4 Comparison with state-of-the-art methods

	4 Discussion
	5 Conclusion
	Acknowledgments
	References


