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Abstract

Importance: Although white matter hyperintensities (WMH) are associated with risk for

Alzheimer’s disease (AD), it is unknown whether they represent an independent source of

impairment or whether they interact with known markers of disease. Here, we examined the

important question of whether WMH predict aggressive cognitive decline, either independently or

interacting with markers of AD-related neurodegeneration, in individuals at risk for AD.

Objective: To examine the degree to which WMH predict aggressive cognitive decline among

individuals with mild cognitive impairment (MCI), either independently or by modifying the

effects of entorhinal cortex volume (ECV), a marker of AD-related neurodegeneration.

Design/Setting/Participants: The Alzheimer’s Disease Neuroimaging Initiative is a

longitudinal study with 6-month follow-up visits. Three hundred thirty-two subjects (mean±SD

age=74.6±7.4, 118 women) of a total of 374 participants diagnosed with MCI were included.

Participants were excluded if they did not have longitudinal data, APOE genotype data, or had

evidence of supratentorial infarct.

Main outcome measures: A decline in Mini Mental State Examination (MMSE) score of 3

points over 6 months or 6 points over one year between consecutive visits was defined as

“aggressive” decline. White matter hyperintensity volume and ECV were entered as predictors in

Cox Proportional Hazards models and Wilcoxon-Breslow tests to examine their impact on this

outcome, adjusting for sex, age, education, and apoE status.
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Results: Greater WMH volume at baseline, APOE ε4 status, and smaller ECV at baseline were

associated with increased risk of aggressive decline (HR=1.23, p-value=0.01, HR=1.4, p-

value=0.04; HR=0.66, p-value <0.001 respectively). White matter hyperintensity volume modified

the effect of ECV on aggressive decline risk: individuals with high ECV and low WMH were at

particularly low likelihood of decline (X2=15, p=0.001).

Conclusions: White matter hyperintensity burden and ECV predict rapid cognitive decline

among individuals with MCI both additively and multiplicatively.

Introduction

Despite contemporary models of Alzheimer’s disease (AD) pathogenesis, which emphasize

the precipitating role of β amyloid and subsequent neurodegenerative changes due to tau

pathology 1, small vessel cerebrovascular disease has emerged as an important driver of risk

and clinical expression of the disease. We previously showed that individuals with prevalent

AD and those at risk for AD have increased burden of small vessel cerebrovascular changes,

visualized as increased white matter hyperintensities (WMH) on T2-weighted magnetic

resonance imaging (MRI)2. Increased WMH burden also predicts incident AD 3 and

individuals with evidence of amyloidosis are more likely to exhibit symptoms of dementia if

they have substantial WMH burden 4. The degree to which WMH burden contributes to

clinically meaningful decline in individuals at risk for AD remains an important question.

The diagnostic category of Mild Cognitive Impairment (MCI) refers to the intermediate

stage of a three part journey that begins with normal cognitive aging and ends with dementia

due to AD5. Individuals with MCI have objective evidence of cognitive impairment but

without the functional impairment that interferes with their daily activities5. When clinically

defined, there is much heterogeneity in the rate of cognitive decline among individuals with

MCI, with some progressing quite precipitously while others remain cognitively stable and

functionally unimpaired 6. Work that has examined clinical outcomes in MCI tends to focus

on “conversion” to AD, where the threshold between the two is defined by a switch from a

functionally unimpaired state to a cognitive syndrome defined by functional impairment 7.

The Mini Mental State Examination (MMSE) 8 is one of the most common tools used by

clinicians to follow patients’ progression over time. Many efforts to classify progression

rates in MCI as well AD stages relied on the MMSE and have shown great heterogeneity,

possibly due to real individual difference in progression rates, biased sampling in terms of

baseline characteristics, and/or floor and ceiling effects of the scales administrated.

Operational definitions of MMSE drop thresholds to assess “rapidity” or “aggressiveness” of

progression have been long debated: declines of 3 9, 4 or 7 points/year 10 and 3 points/6

months 11 have been proposed as classification criteria. However, much confusion exists not

only in terms of cut-offs but also regarding baseline level of impairment and observational

periods; previous studies applied these thresholds to a wide range of baseline MMSE 11,12

including mild to moderate AD across a large range of follow-up periods (MMSE decline in

6 to 24 12 months, escalating cognitive impairment in three years13 or survival time of less

than 4 years14). A recent study, based on extensive review of previous studies 15, suggested
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that a decline of 6 points/year on the MMSE should be used as the optimal threshold to

define rapidly progressive AD.

Regardless of the threshold chosen, the value of this approach is that it clusters patients

within discrete classes of progression by defining a “rapid” event as a MMSE point drop that

deviates from what is the average points drop in AD (2.5/year) and obviously in MCI (1/

year). This approach may be ideal for clinical practice because it provides an operational

definition that can be applied to an individual patient.

The purpose of this study was to examine whether WMH predict the rapidity of cognitive

decline in MCI as measured by clinically-defined categorical changes in MMSE scores over

time. We hypothesized that WMH burden would predict clinical outcomes independent of a

measure of entorhinal cortex atrophy, a putative biological marker of neurodegeneration due

to AD 1,16, and APOE-ε4, a well-known genetic risk factor for AD. We also explored

whether WMH volume and entorhinal cortex atrophy interact to predict clinical outcome.

Materials and Methods

ADNI

Data used in the preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials. The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California – San Francisco. ADNI is the

result of efforts of many co-investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed

by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults,

ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow up

duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in

ADNI-2. For up-to-date information, see www.adni-info.org.

Subjects

Data from subjects diagnosed with MCI (n=374) were downloaded from the ADNI database

(www.loni.usc.edu/ADNI) and included demographic, genetic, and data from structural MRI
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scans. All participants included had amnestic MCI. The ADNI study was designed to

parallel procedures employed in a clinical trial and thus only included participants who were

in good medical health. Importantly, individuals were excluded from participation if they

had a significant vascular disease risk history, defined as a modified Hachinski score17

greater than 4. Diagnosis of MCI was based on standard research criteria and included age

between 55 and 90, a memory complaint (study subject or informant), objective evidence of

abnormal memory, Clinical Dementia Rating (CDR) score of 0.5, with a Memory Box score

of at least 0.5, MMSE score between 24 and 30 (inclusive), general cognition preserved such

that a diagnosis of AD could not be made, stable medication, and not depressed (Geriatric

Depression Scale18 score of less than 6). Recruitment and diagnostic procedures have been

reported in detail previously 19.

For the current analyses, participants were included if they had diagnosis of MCI at baseline,

demographic variables, APOE genotype, assessment of MRI predictors selected for this

study. Twenty-eight subjects were excluded because of radiological evidence of

supratentorial infarcts. An additional 14 subjects were excluded if that had outlying values

(i.e., greater than 3 standard deviations deviating from the mean) for any of the primary

variables or if they did not have longitudinal data. Thus, the final number of participants

included in the analysis was 332.

Clinical Outcome

Due to unequally spaced MMSE assessment in ADNI follow-up visits (the scale was

administrated at screening visits, 6, 12, 18, 24, 36, 48 months) and to missing visits, a

progression rate of 3 points drop/6 months or 6 points drops/year was considered as the

event outcome, indicating “rapid progression,” in the survival analyses as defined in

previous studies 15. None of the included subjects showed a final MMSE below 10 points

(i.e. what traditionally defines “severe stage”)

Neuroimaging acquisition

A standardized MRI protocol for image acquisition was implemented across ADNI sites,

which was validated across platforms 20. All data acquisition was performed on 1.5 Tesla

systems. T1-weighted volumetric magnetization prepared rapid gradient echo sequences

were acquired in the sagittal orientation. A proton density/T2-weighted fast spin echo

sequence was acquired in the axial orientation. Sites included in the ADNI protocol were

required to pass rigorous scanner validation tests and scan acquisitions for each subject

included a fluid-filled phantom. Details of the validation procedures are provided

elsewhere 20 (www.loni.usc.edu/ADNI).

White matter hyperintensity quantification

White matter hyperintensity volumetric quantification has been described in detail

elsewhere 21,22. Briefly, the T1-, T2-, and PD-weighted MRI scans were co-registered and

skull-stripped 23,24. After bias field correction 25, WMH were detected in minimum

deformation template space at each voxel based on corresponding PD, T1, and T2

intensities, the prior probability of WMH, and the conditional probability of WMH based on

the presence of WMH at neighboring voxels. Labeled voxels were summed and multiplied
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by voxel dimensions to yield total WMH volumes. White matter hyperintensity volumes

estimated with this method agreed strongly with WMH volumes estimated from fluid

attenuated inverse recovery MRI in a large, diverse elderly sample 22.

Entorhinal cortex volume

Structural MRI parcellation and segmentation data were downloaded from the ADNI

website. ADNI structural MRI data were analyzed with FreeSurfer version 4.3 (https://

surfer.nmr.mgh.harvard.edu) at University of California, San Francisco after the T1-

weighted MRI scans were converted to NiFTI format and pre-processed at Mayo Clinic26.

For the purposes of the current analyses, we focused on entorhinal cortex volumes.

Covariates and APOE genotyping

Gender, education and age at baseline were included as covariates in all the models

presented. ApoE genotyping was based on allelic combinations of SNPs rs7412 and

rs429358.

Statistical analysis

Cox proportional hazards models and Wilcoxon-Breslow test were constructed to examine

the impact of baseline WMH volume on clinical outcome. Visits that occurred outside the

tolerance range of ± 2 months per expected visit agenda were excluded. A total 48 months

follow-up period was defined for our analysis. As secondary analyses, both ECV and WMH

were dichotomized in order to define low and high WMH load and ECV volume subgroups.

Enter selection method was carried out to identify independent factors prognostic for

survival: total WMH together with age, sex and education as covariates were included in the

primary analysis. Secondary analyses were carried out including also well-established risk

factors for conversion and rapid progression: APOE ε4 status and entorhinal cortex volume.

In order to weigh more the early occurrence of the defined event, survival curves

constructed through Wilcoxon-Breslow test were computed contrasting four sub-populations

(high vs. low entorhinal cortex groups stratified by high and low WMH groups, both defined

by median split).

The importance of a prognostic variable was assessed via Wald-type test statistics, the

hazard ratio, and its 95% confidence interval for survival. Alpha levels were set a priori at

0.05. Additional sensitivity analysis was performed through 1000 bootstrap generated

simulation datasets to confirm the results obtained in the Cox regression model.

RESULTS

Descriptive data for participants’ characteristics are presented in Table 1. Subjects labeled as

rapid progressors did not differ from the rest of the sample in terms of sex distribution, age

at baseline, and number of years of education.

Higher WMH volume at baseline was associated with an increased risk of rapid decline over

the follow-up period (HR=1.23, CI: 1.05-1.43, p-value=0.01). None of the other covariates
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included reliably predicted rapid decline. Figure 1 displays the cumulative survival of

individuals with high and low amounts of WMH.

When APOE ε4 status and ECV were included in the model, total WMH remained a

predictor with similar magnitude (HR=1.2, CI: 1.02-1.4, p-value=0.03). In the full model,

both ApoE and ECV predicted outcomes (HR=1.4, p-value=0.03; HR=0.66, p-value <0.001

respectively).

The Wilcoxon-Breslow survival analysis was significant (p=0.001) for the four subgroups

identified by dichotomized ECV, stratified by WMH severity; individuals with high ECV

and low WMH appeared to be at particularly low likelihood of declining rapidly (Figure 2).

Subjects experiencing MMSE points drop of ≥ 3 on 6month or ≥ 6 on 12 months were more

likely to have converted to AD by the end of the follow-up period ( X2=82, p<0.001).

DISCUSSION

By focusing on clinically-meaningful definitions that utilize the MMSE, one of the most

widely used clinical instruments, we demonstrated that the severity of WMH predicts the

likelihood that individuals with MCI have an aggressive clinical course. We also confirmed

that diminished ECV, a marker of neurodegeneration associated with AD, predicts

aggressive course with similar magnitude. Importantly, the two biological markers interact

such that individuals with large ECV and small amounts of WMH burden appear to have

synergistically-diminished risk for decline. This latter finding suggests a mechanistic

interaction between the two pathologic markers on clinical course.

A diagnosis of MCI increases individuals’ risk for future development of AD, but it is not

synonymous with a diagnosis of early AD. Indeed, several individuals with MCI do not

ultimately “convert” to AD or have a precipitous clinical decline 27. However, the design of

the ADNI study included individuals with “late MCI,” thought to be at a high risk to develop

clinical AD. The question of what factors have prognostic utility in determining which

individuals diagnosed with MCI have a precipitous clinical event through their follow-up is

critical to both clinicians making the MCI diagnosis and to the individuals receiving the

diagnosis. Here, we showed that the burden of WMH is a reliable predictor of which

patients, diagnosed with MCI at baseline, will decline with an aggressive clinical course. We

purposefully focused on a psychometrically-defined criterion for aggressive course rather

than, say, “conversion” to AD, to parallel explicitly outcomes that are common in clinical

settings where research diagnostic procedures (e.g., amyloid imaging, cerebrospinal studies)

are less available. Nonetheless, we recognize that “aggressive course” in MCI overlaps to a

certain extent with “conversion” to AD and demonstrated that those who had a more

precipitous decline were indeed more likely to carry an AD diagnosis on follow-up

examination.

To capture important prognostic information, we applied an operational cut-off that defines

an “aggressive” drop in cognitive performance during a narrow observational window in

subjects at risk or in very early stages of the disease. Previous research has applied a similar

approach to a wide range of AD severity. For example, Doody and colleagues 28 showed
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that estimated progression rates prior to enrollment in the study, computed with the formula

((30 - baseline MMSE)/years since symptoms onset), predicted future changes in cognition

and activities of daily living, and mortality. The baseline measure identified a slow,

intermediate, and fast-progressing group and reliable differences among the three groups

persisted or increased even on a long-term follow-up observation. The MMSE has a well-

known “floor effect” among patients with prevalent AD 29; thus, its utility in detecting

dementia progression is somewhat limited among more impaired patients. By examining

MCI patients in the current study, we avoided the problem of floor effects.

Our observations add to a growing body of literature that implicates WMH in the clinical

course and, possibly, pathogenesis of AD. In community-based studies, we previously

showed that WMH volume is elevated in individuals with MCI2 and AD30, predicts future

incident AD among non-demented older adults3, progresses over time in individuals with in

incident AD, and predicts rate of cognitive decline among individuals with prevalent AD 31.

Our previous efforts in ADNI showed that among individuals with evidence of amyloidosis,

those with elevated WMH were more likely to meet clinical criteria for AD than those with

lower amounts of WMH 4. We also showed that WMH volume is correlated with degree of

atrophy in the entorhinal cortex among individuals with MCI 32. Here, we extend those

findings and suggest that medial temporal lobe atrophy, reflecting neurodegeneration, and

WMH may interact mechanistically or result from a common upstream driver. Whether the

relationship between WMH and neurodegenerative changes is fundamental or

epiphenomenological may still be up for debate, but what is clear is that WMH at least

contribute additively to clinical course in the context of other AD biological markers.

In conclusion, our findings demonstrate that both WMH and entorhinal cortex volume

predict rapid progression in early stages of the disease and interact synergistically. The

findings may be useful for prognosis of outcomes especially in clinical settings but also

contribute to a growing body of work that implicates small vessel cerebrovascular disease in

AD pathogenesis and clinical expression. Further, because many of the risk factors for

WMH have been established and are modifiable through lifestyle or pharmacological

intervention, our findings suggest avenues for prevention or treatment of rapid progressing

course among patients with MCI.
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FIGURE 1.
Cumulative survival of individuals with the highest quartile of WMH (dotted lines) versus

the individuals in the lowest three quartiles of WMH (solid line)
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FIGURE 2.
Cumulative survival of individuals in the with high ECV and low WMH (solid line), high

ECV and high WMH (dashed line), low ECV and low WMH (dotted line), and low ECV

and high WMH (dash-dotted line). Groups were defined by median split.
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Table 1

Patients demographic.

ADNI MCIs (n= 332)

Male/female 219/118

Age at baseline (sd) 74.6 (7.4)

Education (sd) 15.6 (3)

Any apoε4 (%) 52,5%

White Matter Hyperintensity (log10 transformed)

Entorhinal cortex volume (sd) 1650.46 (385)

Subjects matching “rapid progression” definition
(%)

49
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Table 2

Cox regression model results.

ADNI MCIs (n= 332)

MODEL 1 MODEL 2 MODEL 3 MODEL 4

HR (CI) p HR (CI) p HR (CI) p HR (CI) p

SEX 1.2 (.9-1.64) ns 0.92 (0.66-1.28) ns 1.19 (.87-1.64) ns .94 (.68-1.32) ns

AGE .99 (.97-1.01) ns 0.98 (0.96-1) ns 1 (.98-1.02) ns .98 (.96-1.01) ns

EDUCATION .98 (.92-1.02) ns 0.97 (0.92-1.02) ns .98 (.93-1.03) ns .97 (.92-1.02) ns

ApoE4 1.49 (1.09-2.05) .013 1.41 (1.03-1.93) .03

ECV 0.64 (0.54-0.76) <.001 .66 (.55-, 79) <.001

WMH 1.23 (1.05-1.43) .01 1.2 (1.02-1.4) .03

“HR”: hazard ratio. “C.I.”: confidence interval, “p”: p-value
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