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Abstract

Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to

understand disease progression and has implications in decisions concerning treatment strategy.

To this end we combine a predictive multi-task machine learning method1 with novel MR-based

multivariate morphometric surface map of the hippocampus2 to predict future cognitive scores of

patients. Previous work by Zhou et al.1 has shown that a multi-task learning framework that

performs prediction of all future time points (or tasks) simultaneously can be used to encode both

sparsity as well as temporal smoothness. They showed that this can be used in predicting cognitive

outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-

based baseline MRI features, MMSE score demographic information and ApoE status. Whilst

volumetric information may hold generalized information on brain status, we hypothesized that

hippocampus specific information may be more useful in predictive modeling of AD. To this end,

we applied Shi et al.2s recently developed multivariate tensor-based (mTBM) parametric surface

analysis method to extract features from the hippocampal surface. We show that by combining the

power of the multi-task framework with the sensitivity of mTBM features of the hippocampus

surface, we are able to improve significantly improve predictive performance of ADAS cognitive

scores 6, 12, 24, 36 and 48 months from baseline.
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1. INTRODUCTION

Recent work in psychological testing,3 genetic studies,4 magnetic resonance (MR) imaging,5

positron emission tomography (PET) imaging,6 cerebral spinal fluid (CSF) measurements,7
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cardiovascular status8 and others have yielded tremendous amounts of diagnostic data for

diagnosing and staging dementias, especially Alzheimers disease (AD). Moreover, many of

these studies now also include longitudinal information.3, 9 This has lead to a problem often

referred to as the curse of dimensionality, where the size (number of dimensions) of the

dataset makes it difficult to do various numerical analysis on the data. This in turn makes it

increasingly difficult to draw consistent conclusions from the dataset. Statistical analysis

together with clinical disease models have helped with determine how the different sets of

diagnostic information interacts with one another but they require a large number of ad hoc

assumptions and therefore does not lend itself well to large scale Medical Imaging-based

features. These problems become even more important when trying to use machine learning

techniques because at some point the predictive power of the model ceases to increase even

though we’re adding more information or dimensions. The question is then about how to

select the ”correct” features to maximize predictive power. This paper leverages existing

sparsifying machine learning techniques with temporal priors,1 built specifically for

progressive disease models, such as AD, together with multivariate tensor-based

morphometric (mTBM) features10 of the Hippocampus to try and predict AD progression up

to 48 months from the baseline MRI measurement. The goal is to evaluate the predictive

power of mTBM against those of cortical thickness and other FreeSurfer-based features,

demographic information (sex and age) as well as genetic information (ApoE-ε4 Copies).

2. METHODS

2.1 ADNI Data

Data used in the preparation of this article were obtained from the Alzheimers Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimers disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to

participate in the research, consisting of cognitively normal older individuals, people with

early or late MCI, and people with early AD. The follow up duration of each group is

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited
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for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date

information, see www.adni-info.org.

For our experiment we used 616 subjects for M06, 606 for M12, 533 for M24, 364 for M36

and 97 for M48. 90% of the data was used for training and 10% used for testing. The

reported results are for 20 different selection splits of training and testing. More information

about the demographics and patient selection is available in Zhou et al 2013.1

2.2 convex Fused Sparse Group Lasso (cFSGL)

Zhou et al 20131 has proposed a powerful multi-tasked learning technique that incorporates

sparsity as well as temporal smoothing for modeling a progressive disease model. In their

formulation, each tasked can be though of a single forward predictor from baseline

measurement to a measurement at a certain future time point. In their case, they used the

ADNI dataset and predicted ADAS cognitive scores 6 months after baseline (M06), 12

months after baseline (M12), 24 months after baseline (M24), 36 months after baseline

(M36) and 48 months after baseline (M48). In our study we aim to use the same ADNI

dataset but also incorporate mTBM hippocampus features and compare it to features used in

their study. We also attempt to combine the different feature sets to try to evaluate the

predictive power of each set of features.

The proposed cFSGL can be considered a multi-task regression problem with t time points

and from n subjects each with d features, where {x1, x2, …, xn} represents each of the d

input features for each subject at baseline (i.e. xi ∈ ℝd). Similarly, {y1, y2, …, yN} represents

the target cognitive scores for each subject at N time points (i.e. yi ∈ ℝN). For a single

subject (n) each task can be seen as a projection of MR / demographic / genetic baseline

measurements at t = 0 represented at xn to a future cognitive score measurement at time t =

t1 (e.g. at 48 months) given by yn(t1). We can extend this formulation to a multi-task one by

performing projections of all time points simultaneously. In other words, each set of baseline

measurements at t = 0 given by xn is projected to a vector (ℝN with N time points) given by

y1. The entire mapping can be summarized as a linear operation using matrices X and Y. X

and Y is formed by arranging the patient feature space row-wise, each row being xn or yN,

and yields a ℝn×d X matrix and a ℝn×N Y matrix. Since this is a linear model, a set of

weights W (ℝd×N) is trained to map xn to yn or X to Y. To achieve a set of weights that

encodes both sparsity and temporal smoothness. The following cost function is minimized

during training.

(1)

where ‖W‖1 is the L1-norm or lasso penalty that encodes for sparsity,

 is the group Lasso penalty that encodes for temporal grouping

of features, ‖RWT‖1 is the fused lasso penalty, R = HT and H ∈ ℝt×(t−1) where Hij = 1 if i = j,

Hij = −1 if i = j+1, and Hij = 0 otherwise that encodes for temporal smoothness.
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2.3 Multivariate Tensor-based Morphometry (mTBM) features

After automatically segmenting hippocampus with FSL11 from brain MR images, we build

parametric meshes to model hippocampal shapes. High-order correspondences between

hippocampal surfaces were enforced across subjects with a novel inverse consistent surface

fluid registration method. Multivariate statistics consisting of multivariate tensor-based

morphometry (mTBM) and radial distance were computed for surface deformation

analysis.2

3. RESULTS

Predictions using mTBM significantly outperform prediction without using mTBM as

shown in Figures 1 and 2. Quantitative measures such as nMSE, wR and rMSE show across

the board improvements as shown in Table 1 and Figure 4. Average weights for one of the

mTBM features across the 20 trials is shown in Figure 3.

4. DISCUSSION AND CONCLUSIONS

By merging fused multi-task learning that encodes temporal smoothing1 together with AD

sensitive mTBM maps of the parametric hippocampus surface2, we were able to get

significant gains in future ADAS cognitive score prediction. We believe that these results

are some of the highest performing predictions based on baseline data only and is consistent

with our survey of other comparable studies.1 Other factors not addressed in this work is the

effect of percentage of data used for training and testing. Previous work1 has shown that

although there would be a decrease in performance measured with a smaller training set, the

trends and relative performance remains comparable. We have also treated the parametric

surface data, patient demographics and MRI volumetric information as one continuous

information vector. It would be interesting to see if adding neighborhood information based

on the location on the parametric surface would give us smoother and more realistic weights

on the parametric surface and perhaps even better or more consistent results.

The current study also serves as a illustration of how machine learning methods can be used

with whole parametric surfaces or even volumetric volumes such as in fMRI studies.

However, as the number of voxels and vertex points increase, we again run into problems

with the curse of dimensionality. To counter such problems, sparsifying penalties such as in

cFSGL can be employed. However, without a reasonable starting weight, finding a

reasonable solution that has the required sparsity can get computational intensive. One

solution that we intend to explore is the use of stability selection in seeding the initial

weights for the algorithm in a hierarchical approach to learning. We believe that this a

reasonable way of leveraging prior information whilst allowing the algorithm to impose

explore ensure temporal smoothness and sparsity.

As this is a model of a epidemiological system, we cannot ignore the investigator’s selection

of reasonable features. Moreover, the performance of the system is as interesting as the

weights that yield the predictions. Our future work includes work in understanding the

behavior of the weights across the parametric surface space as well as in time. Previous
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work has shown that stability selection may be a good fit for analyzing the feature weights

on the model.

5. FUTURE WORK

Future work including stability analysis of the weights may yield more information about

the relationship between the deformation of hippocampal subfields and other clinical

indicators during AD progression.
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Figure 1.
Prediction of ADAS Cog Score vs Actual ADAS Cog Score without using mTBM features

and only with MRI volumetric information, Age, Sex, Gender, ApoE and baseline MMSE

score at M06 (6 months), M12 (12 Months), M24 (24 Months), M36 (36 Months), M48 (48

Months).
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Figure 2.
Prediction of ADAS Cog Score vs Actual ADAS Cog Score using mTBM features together

with MRI volumetric information, Age, Sex, Gender, ApoE and baseline MMSE score at

M06 (6 months), M12 (12 Months), M24 (24 Months), M36 (36 Months), M48 (48 Months).
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Figure 3.
Average Weights for mTBM Feature 1 used for Prediction of Disease Progression

Tsao et al. Page 9

Proc Soc Photo Opt Instrum Eng. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Bar Chart of the rMSE of predictions with and without mTBM features by time point
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Table 1

Comparison of the model performance in predicting ADAS Cognitive Score with and without mTBM

features. The base set of features used were MRI volumetric information, Sex, Gender, Age, ApoE and

baseline MMSE score.

w/o mTBM with mTBM

nMSE 0.345 ± 0.075 0.249 ± 0.039

wR 0.828 ± 0.036 0.873 ± 0.022

M06 rMSE 5.259 ± 0.872 4.534 ± 0.883

M12 rMSE 5.653 ± 1.143 4.989 ± 1.134

M24 rMSE 5.532 ± 1.029 4.885 ± 1.094

M36 rMSE 4.777 ± 0.833 4.055 ± 1.024

M48 rMSE 4.367 ± 1.179 3.164 ± 1.091
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