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Objective:Our primary objectivewas to compare the performance of unaccelerated vs. accelerated structuralMRI
for measuring disease progression using serial scans in Alzheimer's disease (AD).
Methods:We identified cognitively normal (CN), earlymild cognitive impairment (EMCI), latemild cognitive im-
pairment (LMCI) and AD subjects from all available Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects
with usable pairs of accelerated and unaccelerated scans. There were a total of 696 subjects with baseline and

3 month scans, 628 subjects with baseline and 6 month scans and 464 subjects with baseline and 12 month
scans available. We employed the Symmetric Diffeomorphic Image Normalization method (SyN) for normaliza-
tion of the serial scans to obtain tensor based morphometry (TBM) maps which indicate the structural changes
between pairs of scans. We computed a TBM-SyN summary score of annualized structural changes over 31 re-
gions of interest (ROIs) that are characteristically affected in AD. TBM-SyN scores were computed using acceler-
ated and unaccelerated scan pairs and compared in terms of agreement, group-wise discrimination, and sample
size estimates for a hypothetical therapeutic trial.
Results: We observed a number of systematic differences between TBM-SyN scores computed from accelerated
andunaccelerated pairs of scans. TBM-SyN scores computed from accelerated scans tended to have overall higher
estimated values than those from unaccelerated scans. However, the performance of accelerated scans was com-
parable to unaccelerated scans in terms of discrimination between clinical groups and sample sizes required in
each clinical group for a therapeutic trial. We also found that the quality of both accelerated vs. unaccelerated
scans were similar.
Conclusions: Accelerated scanning protocols reduce scan time considerably. Their group-wise discrimination and
sample size estimates were comparable to those obtained with unaccelerated scans. The two protocols did not
produce interchangeable TBM-SyN estimates, so it is arguably important to use either accelerated pairs of
scans or unaccelerated pairs of scans throughout the study duration.
© 2015 Published by Elsevier Inc.
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Introduction
Of all currently available disease biomarkers, atrophy of brain
structures has been found to track best with change in cognitive im-
pairment in Alzheimer's disease (AD) (Fox et al., 1999; Frisoni et al.,
2010, 2013; Jack et al., 2013; Mormino et al., 2009; Savva et al., 2009).
Structural changes measured on MRI therefore may be a useful out-
come measures in therapeutic clinical trials (Leow et al., 2009; Leung
et al., 2010a; Risacher et al., 2010; Schott et al., 2010; Vemuri et al.,
2010). MRI image acquisition and data processing are the two main
components when considering MRI as an outcome measure in clinical
trials.

StructuralMRI (sMRI) scanning has greatly advanced in the last cou-
ple of decades. Current sMRI protocols yield high-resolution brain im-
ages with approximately 1 mm3 resolution with excellent gray–white
matter contrast. The stability and reproducibility of sMRI acquisitions
in large multi-center trials such as Alzheimer's Disease Neuroimaging
Initiative (ADNI) (Jack et al., 2008), implemented across multiple
different vendors and scanners, provide evidence that large scale thera-
peutic trials are feasible using sMRI as outcome measures (Cover et al.,
2011; Fleisher et al., 2009; Kruggel et al., 2010). A recent improve-
ment to MRI acquisition protocols has been the implementation of
parallel imaging typically reducing MRI acquisition times by half or
more (Blaimer et al., 2004; Griswold et al., 2000, 2002; Pruessmann
et al., 1999; Sodickson and Manning, 1997). The acceleration of scans
due to parallel imaging leads to more time- and cost-efficient acqui-
sitions and therefore greater patient acceptance and fewer motion
artifacts which is of particular importance with more cognitively
impaired patients. However, these benefits come at the cost of de-
creased signal to noise ratio, and potentially increased image artifacts
due to the reconstruction of images using data acquired in less time.
The primary objective of this paper is to compare the performance of
unaccelerated versus accelerated sMRI for measuring disease pro-
gression using serial scans. The images used for the comparison
were the pairs of accelerated and unaccelerated 3 Tesla sMRI images
acquired in ADNI-GO and ADNI-2 which included cognitively normal
(CN), early mild cognitive impairment (EMCI), late MCI (LMCI) and
AD subjects.

AD-relatedMRI processing of images has traditionally focused on re-
gions of interest (ROIs) that are preferentially affected by the disease
process, e.g. hippocampus. Cross-sectional methods can generate a
summary measure or region of interest measure from sMRI at every
time point. These measures have unnecessary variability due to dif-
ferences in the ROI definition on each image. Specific longitudinal
techniques can extract tissue loss information from serial sMRI scans
(e.g. Boundary shift integral (BSI) (Freeborough and Fox, 1997) and
tensor based morphometry (TBM) (Hua et al., 2008, 2013)).

In these techniques all pairs of sMRI scans are registered or warped
to each other and brain loss between scans is quantified which reduces
measurement variability. High accuracy is the metric that is often
considered in the selection of the warping algorithms between serial
scans; however recently it has been shown that symmetric registra-
tion between serial scans is crucial for obtaining bias-free longitudinal
measurements (Fox et al., 2011; Holland et al., 2012). Specifically,
it was shown that asymmetric warping can cause biologically im-
plausible deceleration of atrophy and introduces bias into longi-
tudinal measurements (Thompson and Holland, 2011). Symmetric
Normalization algorithm (SyN) developed by Avants et al. (Avants
et al., 2008) provides symmetric diffeomorphic normalization between
serial scans and also has a high degree of accuracy when compared
to manual measurements, and in comparison to other nonlinear
deformation algorithms (Klein et al., 2009). This warping methodol-
ogy is an ideal solution for bias-free warping and tracking disease
progression in AD and other neurodegenerative diseases, so we used a
TBM-SyN based methodology to evaluate the primary objective of this
study.
Methods

Selection of participants and image acquisition

Two groups of subjectswere analyzed in this study. Thefirst group of
subjects, selected from the Mayo Clinic Study of Aging (MCSA) and
Mayo Alzheimer's Disease Research Center (ADRC), were used as a
training dataset to determine which ROIs to include in the TBM-SyN
summary score. The second group of subjects was the ADNI data set,
identified fromADNI-GO and ADNI-2 (details below), to compare accel-
erated and unaccelerated sMRI scans in terms of TBM-SyN. All ADNI
imageswere acquired on 3 T scanners using both accelerated (2× accel-
eration resulting in roughly half the scan time) and unaccelerated sMRI
T1-weighted images as described elsewhere (Jack et al., 2010); detailed
protocol parameters are available at http://adni.loni.usc.edu/methods/
documents/mri-protocols/. The protocols on GE scannerswere acquired
using IR-FSPGR and other vendors using MPRAGE. In particular, the ac-
celerated images used a slightly larger field of view (270 mm vs.
260mm) to compensate for the SNR loss due to parallel imaging. Acqui-
sition time varied slightly among vendors and across software releases,
but typical values were 9:14 min for the unaccelerated acquisition, and
5:12minwith acceleration.Mayo imageswere acquired on 3 T scanners
using an unaccelerated MPRAGE protocol similar to that used in ADNI.

The ADNI data used in the preparation of this article were obtained
from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials. The principal
investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California — San Francisco. ADNI is the result
of efforts ofmany co-investigators from a broad range of academic insti-
tutions and private corporations, and subjects have been recruited from
over 50 sites across the U.S. and Canada. The initial goal of ADNI was to
recruit 800 subjects but ADNI has been followed byADNI-GO and ADNI-
2. To date these three protocols have recruited over 1500 adults, ages 55
to 90, to participate in the research, consisting of cognitively normal
older individuals, people with early or late MCI, and people with early
AD. The follow-up duration of each group is specified in the protocols
for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for
ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For
up-to-date information, see www.adni-info.org.

Mayo training dataset
In the development of longitudinal measurements, statistically sig-

nificant ROIs are often determined by analyzing a training set consisting
of both patients and matched controls. For detecting AD specific chang-
es,we identified an independent training set of AD and CN subjectswith
longitudinal MRI scans, drawn from theMayo ADRC andMCSA. In total,
there were 51 AD subjects, and 51 CN subjects (50 who were amyloid
negative as measured by Pittsburgh compound B, PiB-PET imaging
and one matched CN was APOE4 negative because PIB scan was not
available). The PiB-negative status of the CN subjects was defined as
global PiB SUVR b 1.4. The AD and CN subjects were matched on age,
sex and education. The criterion for selection for AD dementia was
based on the 1984 clinical criteria for probable AD which is virtually
identical to the new criteria (McKhann et al., 1984, 2011). Each subject
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Table 2
ADNI dataset subject demographics. All subjects had a pair of accelerated and unac-
celerated scans.

CN EMCI LMCI AD

Baseline to 3 months
Subjects, n 173 278 147 98
Men, n (%) 89 (51%) 157 (56%) 79 (54%) 60 (61%)
Age at scan, years 72 (56, 88) 70 (55, 88) 72 (55, 91) 75 (55, 90)
Education, years 16 (12, 20) 16 (11, 20) 16 (11, 20) 16 (9, 20)
CDR sum of boxes 0 (0, 1) 1.0 (0.5, 4.0) 1.5 (0.5, 5.5) 4.5 (1, 10)
MMSE 29 (24, 30) 29 (23, 30) 28 (24, 30) 23 (19, 26)
APOE ε4 carrier, n (%) 48 (29%) 119 (43%) 80 (55%) 64 (74%)

Baseline to 6 months
Subjects, n 164 250 138 76
Men, n (%) 80 (49%) 139 (56%) 74 (54%) 45 (59%)
Age at scan, years 72 (56, 88) 70 (55, 88) 72 (55, 91) 75 (55, 90)
Education, years 16 (12, 20) 16 (10, 20) 16 (11, 20) 16 (9, 20)
CDR sum of boxes 0 (0, 1) 1.0 (0.5, 4.0) 1.5 (0.5, 5.5) 4.5 (2, 10)
MMSE 29 (25, 30) 29 (23, 30) 28 (24, 30) 23 (19, 26)
APOE ε4 carrier, n (%) 50 (31%) 109 (44%) 76 (56%) 53 (74%)

Baseline to 12 months
Subjects, n 132 211 89 32
Men, n (%) 67 (51%) 113 (54%) 49 (55%) 22 (69%)
Age at scan, years 72 (62, 88) 70 (55, 88) 72 (55, 91) 78 (55, 90)
Education, years 16 (12, 20) 16 (10, 20) 17 (12, 20) 16 (12, 20)
CDR sum of boxes 0 (0, 1) 1.0 (0.5, 4.0) 1.5 (0.5, 5.5) 4.5 (2, 10)
MMSE 29 (24, 30) 29 (23, 30) 28 (24, 30) 22 (19, 26)
APOE ε4 carrier, n (%) 36 (28%) 86 (41%) 50 (57%) 22 (71%)

Note. Unless otherwise indicated, values shown are median (minimum, maximum).
Abbreviations: CDR, Clinical Dementia Rating; MMSE, mini-mental state exam.
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had two serial usable (passed quality control) unaccelerated sMRI scans
that were used to develop the TBM-SyN summary score. To maintain a
clean training dataset, we took the following additional steps: all sub-
jects were required to maintain the same clinical primary diagnosis at
both the serial scans; and the baseline age of all subjects was restricted
to ≥63 years. The subject characteristics are described in Table 1.

ADNI dataset
We identified all CN, EMCI, LMCI and AD subjects from ADNI-GO/2

with usable pairs of accelerated and unaccelerated scans. We identified
all subjects with preprocessed accelerated and unaccelerated MRI data
available on LONI that had passed quality control. This included 703
subjects with baseline and 3 month scans, 643 subjects with baseline
and 6 month scans, and 478 subjects with baseline and 12 month
scans. We excluded 36 pairs of scans because of within-subject differ-
ences inmodel and/ormanufacturer of theMRI scanner used for the se-
rial acquisitions. The final ADNI dataset used for this paper therefore
included 696 subjects with baseline and 3 month scans, 628 subjects
with baseline and 6 month scans, and 464 subjects with baseline and
12 month scans. Subject demographics are described in Table 2. We
have provided the entire list of patients that were used in this study in
the Supplemental material.

Image preprocessing for each individual image
The software packages used to develop the TBM-SyN scores were

MATLAB R2013a (Mathworks, Natwick, MA), ANTs 1.9.x (Penn Image
Computing and Science Lab, University of Pennsylvania, PA), and
SPM5 (Wellcome Trust Center for Neuroimaging, UCL, UK). For each
subject in this study, we began with the “N3m” preprocessed datasets
that are “N3” intensity homogeneity corrected (Boyes et al., 2008) and
corrected for gradient field non-linearity images (Gunter et al., 2009)
that were additionally run through SPM5 bias correction (indicated by
the suffix “m”).

For each original T1 image both in the Mayo and ADNI dataset, we
ran it through our standard pre-processing pipeline. Briefly, this pipe-
line first applies gradient unwarping to correct for gradient distortions,
followed by spm5 unified segmentation using custom tissue priors in a
custom template space (as defined in STAND400 (Vemuri et al., 2008)).
The initial gray matter (GM) and white matter (WM) masks from the
spm5 unified segmentation are then combined and binarized to form
an initial brain mask. This brain mask is then dilated and hole filled,
and used for the next step, N3 correction. TheN3 correction is computed
over those voxels in the dilated mask. Next, the N3 corrected image is
segmented once again using spm5 unified segmentation. The native-
space segmentations from this step are combined and binarized, to
form a more accurate brain mask. Additionally, a mask of the third
and lateral ventricles are propagated from custom template space to
subject native space, using the spatial normalization parameters from
SPM5 unified segmentation, followed by a sequence of morphological
operations to clean up the masks. The final pass of spm5 unified seg-
mentation also produces a bias corrected version of the input image,
Table 1
Mayo training dataset demographics.

CN
(n = 51)

AD
(n = 51)

P-value⁎

Men, n (%) 23 (45.1) 23 (45.1) 0.84
Age at baseline, years 81 (66, 88) 81 (64, 92) 1.00
Education, years 15 (8, 20) 14 (7, 20) 1.00
CDR sum of boxes 0.0 (0.0, 0.5) 4.5 (0.5, 9.0) 0.001
MMSE 28 (24, 30) 21 (13, 28) 0.001
APOE ε4 carrier, n (%) 6 (11.8) 35 (68.6) b0.001
Scan interval, years 1.3 (1.1, 2.0) 1.1 (0.9, 2.0) 1.00

Note. Unless otherwise indicated, values shown are median (minimum, maximum).
Abbreviations: CDR, Clinical Dementia Rating; MMSE, mini-mental state exam.
⁎ From two-sided Wilcoxon rank-sum tests or chi-squared tests.
which we call the “N3m” image. This sequence of pre-processing is ap-
plied to all ADNI and Mayo scans in our lab.

Within subject initial co-registration
After the initial pre-processing was completed, we formed an initial

mean image of each subject's pre-processed “N3m” images. Using
SPM5-based mutual information co-registration without reslicing, we
iteratively registered each individual time-point N3m image to the
mean, applying the transformations to the corresponding brain and
ventricle masks, forming a new mean after each iteration, allowing it
to continue until the mean image did not change from one iteration
to the next, or until a preset maximum of 10 iterations was reached.
After the final iteration, the set of all images were co-registered one
last time to the first time-point image, to ensure no registration failures.

Within subject intensity balancing
After the initial registration completed, we dilated and hole-filled

the brain mask from the first time point adding dominantly CSF voxels
to the mask, and fit a Gaussian distribution to the histogram of these
voxels. In a separate procedure we eroded the brain mask to obtain a
collection of voxels dominated by white matter, and fit a separate
Gaussian distribution to their intensity. In both cases the fitting was
done iteratively, excluding intensities more than two sigma from the
mean. We then scaled image intensities, mapping the WM and CSF
spectrum peaks (that were estimated as described in (Gunter et al.,
2003)) to constant arbitrary values of 20,000 and 5000, respectively.

Within subject secondary co-registration
Next, although the images had been previously co-registered, in

order to ensure robust performance under fully automated conditions,
we implemented another rigid registration routine into the algorithm.
Using Aladin (http://sourceforge.net/projects/niftyreg/), we rigid-body
(6DOF) co-registered each image to the subject's baseline image,
restricting the cost function with an intracranial mask to eliminate var-
iability in neck positioning. We computed the mean within-subject
transformation by averaging the quaternion representations of the
transformations and resampled the gray scale image and masks into

http://sourceforge.net/projects/niftyreg/


Fig. 1. The region of interest selected based on t-test differences between the 51ADand 51
PiB negative CN subjects to compute the TBM-SyN score.
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this mean space with 1 mm isotropic resolution using cubic spline,
and linear interpolation, respectively. We next formed a new registra-
tion target by re-computing the mean gray scale image from the
resampled images, and forming a new intracranial mask by applying
dilation and hole filling to the union of the resampled brain and ventri-
cle masks. We then performed affine (9DOF) registration of each time
point image to the mean image, and finally resampled all images and
masks into the target space at 1 mm isotropic resolution.

Within subject intensity re-balancing and differential bias correction (DBC)
Wenext balanced intensities and performed differential bias correc-

tion (DBC). As before we determined the WM and CSF spectrum peak
intensities. Next we formed the collection of voxels that were spatially
located between those selected for the CSF and WM samples, forming
a collection of mostly GM with a “contamination” of WM voxels. We
then fit the histogram of these voxels with the sum of two Gaussians;
one Gaussian having center and width fixed at the values determined
by the WM fit with arbitrary amplitude, and the parameters for the
other Gaussian distribution being fitted. In contrast to the linear inten-
sity remapping previously employed, we used a spline-based intensity
re-mapping to bring each image's GM, WM and CSF peak intensities
into agreement with those of the mean image.

The DBCwas carried out using the collection of voxels that was con-
sistently near CSF peak intensity or consistently near the WM peak
intensity, and inside a hole-filled brain mask. Using only points inside
the collection, we created a log transformed ratio image of each time
point image to the mean image. Since the point collection is sparse in
space, we used a tri-linear 3D interpolation to create a dense field,
requiring it go to zero at the edges of the image. We then smoothed
the dense field with a 20 mm isotropic Gaussian kernel, exponentiated
the resulting field and finally applied the result to arrive at the final
preprocessed image series for each subject.

TBM-SyN image processing
Starting with the preprocessed scans for each subject as described

above, we computed the SyNdeformations between each pair of images
(Avants et al., 2008), in both directions explicitly, saving an image of the
log transformed Jacobiandeterminants for each.We formed an “annual-
ized” log Jacobian map by dividing each log Jacobian voxel by the
intrascan time interval, measured in years.We then applied each defor-
mation to the correspondingmoving image, and create a “soft-mean” of
the “fixed” and the “moved” image. We then applied SPM5 unified seg-
mentation to each soft-mean image, and propagated ROI masks from
the template space to the soft-mean space, to obtain mean annualized
log Jacobianmeasurements in the various ROIs in the in-housemodified
AAL custom template.

TBM-SyN summary score
For selection of ROIs to be included in the TBM-SyN summary score,

we used a two-sample t-test to select the top ROIs (with right and left
ROIs combined) that were significantly different between the CN and
AD from the Mayo Dataset as described later in this paragraph. We
used an in-house modified atlas of 119 GM regions and one ventricular
region. Cross-sectional GMvolumes of eachGMROI in the atlas comput-
ed from the baseline image, aswell as the longitudinalmean annualized
log Jacobian from each ROI in the atlas between the two serial scans,
were compared between the AD and CN subjects in the Mayo Training
set. We used both cross-sectional GM volumes as well as longitudinal
log Jacobians for selection of the ROIs because some ROIs such as the
parahippocampal gyrus atrophy early in the disease process and do
not show highly significant annual change between AD and CN but are
important to retain because MCI and preclinical CN subjects will show
early serial changes in those regions. For selection of the ROIs — we
first ranked all the ROIs by the strength of the t-tests of all cross-
sectional GM density and longitudinal mean annualized Jacobians.
Next, we determined the number of ROIs that, when averaged together,
would give the highest degree of AD-CN separation accuracy in the
training data set. The ROIs that were selected based on this criterion
are shown in Fig. 1. The union of ROIs selected from both the longitudi-
nal and cross-sectional data included 15 bilateral GM ROIs [or 30 left
and right ROIs] and one ventricular ROI. Since 15 of the ROIs were GM
ROIs from the atlas, which show volume shrinkage, and one of the
ROIs is the ventricle, which shows expansion, we inverted the sign of
the ventricle log Jacobian determinant before combining it with the
values from the cortical GM ROIs. The 15 bilateral GM ROIs included
were: medial temporal lobes (consisting of amygdala, hippocampal,
parahippocampal and entorhinal cortices), angular, precuneus, tempo-
ral lobes (fusiform, superior, mid and inferior temporal gyri and superi-
or and mid temporal poles), and occipital lobes (superior, mid and
inferior ROIs). For each image, a TBM-SyN score was created as a sum
of the median annualized log Jacobian determinant in these 15 bilateral
GMROIs, and the negativemedian annualized log Jacobian determinant
of the ventricles.

Comparison of accelerated and unaccelerated scans
We performed two main analyses to compare the accelerated and

unaccelerated scans. The purpose of the first set of analyses was to
test the interchangeability of TBM-SyN scores from accelerated and
unaccelerated scans. We tested for differences between accelerated
and unaccelerated TBM-SyN values within each diagnostic group
using paired t-tests. Linear regressionwas used to evaluate the relation-
ship between accelerated (y) versus unaccelerated (x) TBM-SyN values
separately for each scan interval. To evaluate agreement between the
two techniques we included Bland–Altman plots. The purpose of the
second set of analyses was to compare the performance of accelerated
and unaccelerated scans in terms of group-wise discrimination.We cal-
culated the area under the receiver operating characteristic curve
(AUROC) as a nonparametric measure of effect size (Acion et al.,
2006) and calculated 95% confidence intervals for each AUROC estimate
(Newcombe, 2006). We tested group-wise differences in TBM-SyN
using the Wilcoxon rank sum test, equivalent to evaluating whether
the AUROC was different from 0.5. We also directly tested group-wise
discrimination as summarized by the AUROC for accelerated versus
unaccelerated scans (DeLong et al., 1988). Finally, we estimated sample
sizes for a hypothetical trial in which the intervention resulted in a 25%
improvement over the placebo TBM-SyN rate via the standard t-test
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based sample size formula: n = 2σ2(z1-α/2 + zβ)2/Δ2. These sam-
ple sizes refer to a 25% reduction in absolute atrophy rate and assume as
is normally the case that the hypothetical treatment does not alter the
variance in the rate. Here σ2 is estimated by the sample variance, z1 −

α/2 = z1 − 0.05/2≈ 1.960, zβ=z0.80≈ 0.842, and Δ represents themin-
imumdetectible difference inmeans (Rosner, 2011).Weused bootstrap
resampling with 3000 replicates to get 95% CIs for the sample size esti-
mates. We also used the bootstrap with 3000 replicates to obtain inter-
val estimates of the difference in sample sizes required for the two
methods.

We performed additional analyses 1) to compare the quality control
of all the subjects scanned in ADNI2 and ADNI GO (before the selection
of usable scans for the comparison analyses); and 2) to compare the
overall tissue segmentations behavior differences using SPM based
paired t-test between baseline accelerated and baseline unaccelerated
scans of cognitively normal individuals.

Results

Fig. 2 shows box plots comparing the distribution of TBM-SyN
summary scores, computed from accelerated versus unaccelerated
scan pairs within each clinical group. In the baseline to 3-month
Fig. 2. Box plots of accelerated and unaccelerated TBM-SyN values by disease group and scan
comparisons, none of the clinical groups had significantly different
TBM-SyN scores generated from accelerated versus unaccelerated scan
pairs (p N 0.05), possibly because there are minimal sMRI based dif-
ferences detectable in a 3 month interval. In the baseline to 6-month
comparisons, the TBM-SyN scores from accelerated scans were sig-
nificantly greater than unaccelerated scans in both the CN and AD
groups (p = 0.03), with a trend in the LMCI and EMCI groups
(p b 0.1). In the baseline to 12-month comparisons, the TBM-SyN scores
from accelerated scans were significantly greater from unaccelerated
scans in both the EMCI and AD groups (p b 0.01).

For further clarity on the subject of equivalency of the two scan
types, we show scatter plots by scan interval in Fig. 3 and Bland–Altman
plots in Fig. 4. Our first observations from the scatter plots were that for
each interval the regression line does not pass through the origin
(p b 0.01) and its slope is less than unity (p b 0.01) indicating that the
two protocols do not produce equivalent results. However, the coeffi-
cient of determination, R2, increased with the interscan duration indi-
cating that the scans with larger intervals (possibly 2 years) are likely
to be equivalent because the sMRI changes over longer periods of time
are much greater compared to the variability due to theMRI acquisition
differences. This decreasing variability and decreasing difference be-
tween the accelerated versus unaccelerated TBM-SyN scores can also
interval. P-values are from a paired t-test comparing accelerated to unaccelerated values.



Fig. 3. Scatter plots of accelerated vs unaccelerated TBM-SyNwith regression lines in red. The equations and the coefficient of determination, R2, are at the top of each panel. The dotted line
represents the identity line and the dashed line represents the fit.
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be confirmed from the Bland–Altman plots. Again, with increasing scan
interval the TBM-SyN scores from accelerated and unaccelerated scans
show increasing agreement. However, with the intervals used in this
study the values are not interchangeable.

The estimated AUROC and confidence intervals for distinguishing
different clinical groups for each scan type are shown in Fig. 5. The
p-values indicate if the performance of accelerated or unaccelerated
scans was significantly different in terms of ability to distinguish
the two clinical groups. The AUROC point estimates and corresponding
p-values comparing accelerated versus unaccelerated are shown in
Table 3. Though the AUROC point estimates for the unaccelerated
scans appeared to be a little better overall than those for accelerated
scans, the performance was not statistically different, except for the
CN vs. EMCI discrimination for the change in 0–12 months.

Sample size estimates with bootstrap 95% CIs to detect a 25% reduc-
tion in atrophy with 80% power and two-sided α = 0.05 are shown
in Table 4. Sample sizes vary in the expected way with smaller samples
needed for longer interscan durations and with more impaired clinical
groups. The columns labeled “Accelerated” and “Unaccelerated” indi-
cate the sample size and 95% CI for each of the scan types, and the
column labeled “Difference” indicates the estimated sample size differ-
ence and 95% CI. Positive numbers in this column indicate that the sam-
ple sizeswith unaccelerated scans are lower. In order for the differences
to be statistically significant at p b 0.05 level, the confidence intervals
cannot include zero. Using this criterion, the differences were only sig-
nificant in the case of EMCI measurements between baseline and 12-
month intervals, where the sample sizes necessary to detect 25% reduc-
tion in the TBM-SyN using accelerated scans were 361 compared to a
much lower 272 required using unaccelerated scans. Therewere similar
indications favoring unaccelerated scans in this group with six-month
interval, although sample sizes were very large for both methods.

Here we present the quality control comparison results. For both ac-
celerated and unaccelerated scans, there were only a very small propor-
tion of scans that were considered unusable (i.e., failed quality control).
Fig. 4. Bland–Altman agreement plots to assess interchangeability. The x-axis indicates the me
difference.
Comparing accelerated to unaccelerated scans, the failure rates were
0.6% (n = 5) versus 0.7% (n = 6) at baseline, 0% (n = 0) versus 0%
(n = 0) at three months, 0.5 (n = 3) vs. 0% (n = 0) at six months,
and 0.2% (n = 1) vs. 0.4% (n = 2) at 12 months. Based on McNemar's
test of correlated proportions, we found no significant differences in
failure rates (p N 0.99 for baseline; p = 0.24 for 6 months; p N 0.99 for
12 months). Since the failure rates were zero for both accelerated and
unaccelerated scans at 3 months, McNemar's test could not be per-
formed. Scans were also graded on a numeric scale and based on paired
signed rank tests, we found no evidence that accelerated scans received
lower quality scores than unaccelerated (p = 0.5 for baseline; p = 0.4
for 3 months; p = 0.7 for 6 months; p = 0.7 for 12 months). Addition-
ally, we compared the failure rate for accelerated and unaccelerated
scans bydiagnosis and found that bothAD andnon-AD cases had similar
failure rates between unaccelerated and accelerated scans for all the
scans (p N 0.1 for Wilcoxon signed rank test for baseline, 3 month,
6 month and 12 month scans).

When we compared the overall tissue segmentations behavior by
computing the paired t-test between baseline accelerated and baseline
unaccelerated scans of cognitively normal individuals (Supplemental
Fig. 1). We found that there were no fundamental differences between
tissue segmentation properties of both types of scans in the areas of
the regions that were used for computing the TBM-SyN scores.

Discussion

In this study we applied a SyN based TBM methodology to measure
structural changes between pairs of MRI scans for the comparison of
accelerated scans with unaccelerated scans. TBM-SyN scores from
both sets of scans are not equivalent but the overall performance of
both types of scans for clinical discrimination and clinical trials was sim-
ilar. Additionally, one scan type does not significantly outperform
another scan type. We therefore conclude that, for longitudinal studies
involving sMRI as an outcome measure, it is important to maintain
an of the accelerated and unaccelerated TBM-SyN values while the y-axis indicates their



Fig. 5. Estimated AUROC and confidence intervals summarizing group-wise discrimination. P-values are from a Chi-squared test of whether accelerated or unaccelerated TBM-SyN esti-
mates provide better group-wise discrimination.

Table 3
AUROC point estimates and p-value for a test of whether accelerated or unaccelerated
TBM-SyN estimates provide better group-wise discrimination.

Groups compared AUROC

Scan interval,
months

Accelerated Unaccelerated P-value

CN vs EMCI 0–3 0.51 0.50 0.63
0–6 0.52 0.51 0.65
0–12 0.54 0.57 0.03

CN vs LMCI 0–3 0.58 0.57 0.54
0–6 0.65 0.66 0.53
0–12 0.72 0.72 0.76

CN vs AD 0–3 0.63 0.65 0.52
0–6 0.82 0.82 0.96
0–12 0.89 0.93 0.06

EMCI vs LMCI 0–3 0.57 0.56 0.74
0–6 0.62 0.64 0.33
0–12 0.67 0.66 0.66

EMCI vs AD 0–3 0.62 0.63 0.56
0–6 0.78 0.8 0.49
0–12 0.84 0.89 0.07

LMCI vs AD 0–3 0.56 0.58 0.53
0–6 0.66 0.68 0.47
0–12 0.67 0.73 0.12

Table 4
Estimated sample sizeswith bootstrap 95% CIs to detect a 25% reduction in TBM-SyNwith
80% power and two-sided α = 0.05.

Accelerated
n (95% CI)

Unaccelerated
n (95% CI)

Difference⁎

n (95% CI)

Baseline to 3 months
CN 2238 (1089, 8984) 1729 (897, 4596) 509 (−751, 5349)
EMCI 2850 (1507, 7799) 2673 (1409, 7865) 177 (−3641, 2687)
LMCI 1015 (584, 2303) 841 (499, 1754) 174 (−373, 1068)
AD 593 (328, 1332) 438 (254, 1009) 155 (−103, 761)

Baseline to 6 months
CN 749 (446, 1524) 667 (421, 1332) 82 (−152, 446)
EMCI 1213 (728, 2532) 898 (580, 1605) 315 (−7, 1297)
LMCI 297 (213, 451) 286 (202, 428) 11 (−95, 132)
AD 133 (74, 271) 107 (70, 192) 26 (−50, 138)

Baseline to 12 months
CN 259 (181, 412) 276 (200, 404) −17 (−84, 46)
EMCI 361 (265, 523) 272 (205, 375) 89 (35, 182)
LMCI 157 (113, 219) 154 (108, 230) 3 (−39, 36)
AD 56 (33, 97) 51 (30, 93) 5 (−25, 32)

⁎ Difference defined as the accelerated sample size minus the unaccelerated sample
size. Confidence intervals that exclude zero may be considered significant at α = 0.05.

67P. Vemuri et al. / NeuroImage 113 (2015) 61–69



68 P. Vemuri et al. / NeuroImage 113 (2015) 61–69
either accelerated or unaccelerated MRI scanning protocols for all sub-
jects throughout the study. Potentially important scan-time reductions
may be obtained with accelerated protocols without unduly sacrificing
group-wise discrimination or clinical trial efficiency.

The results from this paper are encouraging because the perfor-
mance from accelerated scans which were acquired in roughly half
the scan time was comparable to the performance from unaccelerated
scans for both clinical discrimination and sample size estimates. The
slight reduction in the signal to noise ratio and contrast to noise did
not significantly reduce the performance of the accelerated scans. We
also presented the data on scan quality ratings on visual inspection
given by trained analysts, which were not significantly different
between the two scan types supporting the use of accelerated scans
for more cost and time efficient AD therapeutic trials. It is important
to note that the comparison of accelerated to unaccelerated scans
based on performance is specific to the results from TBM-SyN and
other studies have investigated the differences between the scan types
using different methodologies for computing change between serial
scans and have found similar results (Ching et al., in press; Krueger
et al., 2012).

The most surprising result from this study was the non-equivalent
nature (i.e. significant differences) of the TBM-SyN scores computed
from accelerated and unaccelerated scans. We hypothesize that two
noise components may significantly contribute to the non-equivalence
of the TBM-SyN scores from the two scan types: 1) the noise of the
measurement itself, i.e. higher noise in measurements from shorter
inter-scan intervals versus longer intervals; and 2) differences due to
systematically different acquisition and reconstruction schemes used
in accelerated scans compared to sMRI unaccelerated scans. The differ-
ences due to the second component are attributable to the subtle differ-
ences in the contrast between gray and WM (though not visible to the
naked eye) as well as reconstruction approximation assumptions
made in parallel imaging acquisitionswhere reconstruction of the entire
image is donewith half the amount of data needed for reconstruction of
an unaccelerated image. Though these two noise components may not
be completely independent, Figs. 3 and 4 illustrate that the effect of
the first component gets comparably lower with increasing time and
the regression line approaches the identity line. Additionally, we can as-
certain that the noise from the second component is probably smaller
than the first component because if it were not, then the regression
would not approach the identity linewith increasing inter-scan time in-
tervals. These results suggest that with larger time intervals between
scans (perhaps 2 years ormore), it may be possible tomix data from ac-
celerated and unaccelerated scans; however with the typical scan dura-
tions of one year or less, as used in this study, our data suggests that any
given study should be performed either with all scans accelerated or all
scans unaccelerated.

In the methods, we noted that the accelerated protocols used a
slightly increased field of view (270 mm vs. 260 mm) to compensate
for the SNR loss due to parallel imaging. That increase was needed
because many of the sites did not have access to a 32-channel head
coil, but instead were using 8- or 12-channel models. As 32-channel
head coils become more prevalent, we expect the slight increase in
FoV will become unnecessary for protocols accelerated by a factor of
two (Krueger et al., 2012).

A primary motivation behind the development of TBM-SyN based
methodology was to avoid bias seen in longitudinal measurements
due to asymmetricwarping (Thompson andHolland, 2011). Additional-
ly we used a strategy to select ROIs that are specific to AD pathology by
comparing AD subjects to a group of CN who were amyloid negative or
at least not APOE4 carriers. The ROIs selected correspond well with the
well-known Braak staging of neurofibrillary tangles in AD (Braak and
Braak, 1997). We believe that employing both these strategies enabled
us to establish a method that performs very well in comparison to the
existing methodologies for longitudinal measurements using sMRI
(Holland et al., 2012; Hua et al., 2013; Leung et al., 2010b; Vemuri
et al., 2010), and the sample size estimates show that TBM-SyN scores
would be a reasonable metric to use in therapeutic trials.

There are two limitations of this study. First, we did not conduct the
experiment where two different scan types were used in the pair of se-
rial scans while computing the TBM-SyN scores (i.e. accelerated first
scan and unaccelerated second scan and vice versa). Second, we did
not take into account the type of parallel imaging acquisition and recon-
struction strategy used by the differentMRI vendors. These analyseswill
be the subject of future work.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.03.026.
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