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Cortical thickness estimation in magnetic resonance imaging (MRI) is an important technique for
research on brain development and neurodegenerative diseases. This paper presents a heat kernel based
cortical thickness estimation algorithm, which is driven by the graph spectrum and the heat kernel the-
ory, to capture the gray matter geometry information from the in vivo brain magnetic resonance (MR)
images. First, we construct a tetrahedral mesh that matches the MR images and reflects the inherent geo-
metric characteristics. Second, the harmonic field is computed by the volumetric Laplace–Beltrami oper-
ator and the direction of the steamline is obtained by tracing the maximum heat transfer probability
based on the heat kernel diffusion. Thereby we can calculate the cortical thickness information between
the point on the pial and white matter surfaces. The new method relies on intrinsic brain geometry struc-
ture and the computation is robust and accurate. To validate our algorithm, we apply it to study the thick-
ness differences associated with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our preliminary experimental results on
151 subjects (51 AD, 45 MCI, 55 controls) show that the new algorithm may successfully detect statisti-
cally significant difference among patients of AD, MCI and healthy control subjects. Our computational
framework is efficient and very general. It has the potential to be used for thickness estimation on any
biological structures with clearly defined inner and outer surfaces.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is the most common form of cognitive
disability in older people. With the population living longer than
ever before, AD is now a major public health concern with the num-
ber of affected patients expected to triple, reaching 13.5 million by
the year 2050 in the U.S. alone (Alzheimer’s Association, 2012). It
is commonly agreed that an effective presymptomatic diagnosis
and treatment of AD could have enormous public health benefits
(Sperling et al., 2011). Brain imaging has the potential to provide
valid diagnostic biomarkers of AD risk factors and preclinical
stage AD (Caselli and Reiman, 2013; Langbaum et al., 2013).
Despite major advances in brain imaging used to track symptom-
atic patients (as reviewed in Chung, 2012), there is still a lack of
sensitive, reliable, and accessible brain imaging algorithms capa-
ble of characterizing abnormal degrees of age-related cerebral
atrophy, as well as accelerated rates of atrophy progression in
preclinical individuals at high risk for AD for whom early inter-
vention is most needed.

In AD research, structural magnetic resonance imaging (MRI)
based measures of atrophy in several structural measures, includ-
ing whole-brain (Fox et al., 1999; Chen et al., 2007; Stonnington
et al., 2010; Thompson et al., 2003), entorhinal cortex (Cardenas
et al., 2011), hippocampus (den Heijer et al., 2010, 2003, 1998,
2004, 2010, 2011, 2013a), and temporal lobe volumes (Hua et al.,
2010), as well as ventricular enlargement (Jack et al., 2003;
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Wang et al., 2011) correlate closely with changes in cognitive per-
formance, supporting their validity as markers of disease progres-
sion (as reviewed in Braskie and Thompson, 2013). As one of major
AD symptoms on clinical anatomy, the partial atrophy in the cere-
bral cortex of the patients is a biomarker of AD progress (Braak and
Braak, 1991). To check and monitor the cortical atrophy, a number
of research has been focused on an accurate estimation of cortical
thickness (e.g. MacDonald et al., 2000; Fischl and Dale, 2000; Jones
et al., 2000; Miller et al., 2000; Kabani et al., 2001; Chung et al.,
2005; Kochunov et al., 2012). However, the MRI imaging measure-
ment of cortical thickness, e.g. medial temporal atrophy, is still not
sufficiently accurate on its own to serve as an absolute diagnostic
criterion for the clinical diagnosis of AD at the mild cognitive
impairment (MCI) stage (Frisoni et al., 2010).

According to geometric properties of the measurement tools,
the cortical thickness estimation methods can be broadly divided
into two categories: based on either surface or voxel characteristics
(as reviewed in Clarkson et al., 2011). The measurement methods
based on the surface features are aimed to establish triangular
mesh models in accordance with the topological properties of the
inner and outer surfaces, and then use the deformable evolution
model to couple the two opposing surfaces. The thickness is
defined as the value of the level set propagation distance between
the two surfaces. This measurement accuracy can reach the sub-
pixel level but requires constantly correcting the weights of vari-
ous evolutionary parameters to ensure the mesh regularity. Some-
times the model cannot work in the highly folding regions such as
the sulci. Various approaches were proposed to address this
problem and increase the thickness estimation accuracy in the high
curvature areas. For example, Mak-Fan and colleagues modeled the
sulci regional by adding the cortex thickness constraints (Mak-Fan
et al., 2012). Fischl and Dale (2000) proposed to model the middle
part of the sulci by imposing the self-intersection constraints.
Overall, although better measurement results are achieved, the
computation cost is generally high (Dahnke et al., 2013). In con-
trast, the voxel-based method is the measurement on a three-
dimensional cubic voxel grid. The voxel-based measurement
acquires the cortical thickness information by solving partial dif-
ferential equations in the potential field, for example, Jones et al.
(2000) first used the Laplace equation to characterize the layered
structure of the volume between the inner and outer surfaces
and obtained the stream line. This method is known as the
Lagrangian method. Hyde et al. (2012) proposed the Euler method
by solving the one-order linear partial differential equations for
thickness calculation which can improve the computation effi-
ciency. The advantages of such an approach include: (1). there is
no correction of the mesh topology regularity, so the calculation
is simple (Cardoso et al., 2011; Das et al., 2009); (2). the computa-
tional model is rigorous and stable. The main disadvantage of the
voxel-based estimation method is the computational inaccuracy
on the discrete grid. The limited grid resolution affects the accu-
racy of the thickness measurement (Das et al., 2009). This problem
is alleviated only recently. For example, Jones and Chapman (2012)
used the boundary topology to initialize a sub-voxel resolution
surface and correct the direction of the stream line. This method
can increase the measurement accuracy.

From the above discussion, in order to improve the computa-
tional efficiency and the degree of automation, one may expect the
choice of voxel-based measurement algorithm is more feasible.
However, we should overcome the defect of the limited grid resolu-
tion which cannot precisely characterize the curved cortical surfaces
from MR images. This point will be discussed in Discussion Section. A
desired 3D model should achieve a good fitting for the cerebral cor-
tex morphology and facilitate an effective computation on the sub-
voxel resolution. In this paper, we propose to use tetrahedral mesh
(Cassidy et al., 2013) to model the volume between inner and outer
cortical surface. For thickness estimation, we adopt the tetrahedral
mesh based Laplace–Beltrami operator proposed in our prior work
(Wang et al., 2004a), which has been frequently adopted by volu-
metric shape analysis research (Wang et al., 2004b; Li et al., 2007;
Tan et al., 2010; Pai et al., 2011; Li et al., 2010; Paillé and Poulin,
2012; Wang et al., 2012a; Xu et al., 2013a; Li et al., 2013). Generally
speaking, the tetrahedral mesh access is time consuming. We extend
the half-edge data structure (Mäntylä, 1988) to a half-face data
structure for an efficient geometric processing.

Based on spectral analysis theory, we further propose to com-
pute a heat kernel (Hsu, 2002) based method to trace the stream-
lines between inner and outer cortical surfaces and estimate the
cortical thickness by computing the streamline lengths. Mathemat-
ically speaking, diffusion kernels (Coifman et al., 2005b) express
the transition probability by random walk of t steps, t P 0. It
allows for defining a scale space of kernels with the scale parame-
ter t. Such heat kernel-based spectral analysis induces a robust and
multi-scale metric to compare different shapes and has strong the-
oretical guarantees. In recent years, surface based heat kernel
methods have been widely used in computer vision and medical
image analysis (Chung et al., 2005; Sun et al., 2009; Chung, 2012;
Joshi et al., 2012; Lombaert et al., 2012; Litman and Bronstein,
2014), such as functional and structural map smoothing(Qiu
et al., 2006a; Qiu et al., 2006b; Shi et al., 2010; Shi et al., 2013b),
classification (Bronstein and Bronstein, 2011), and registration
(Sharma et al., 2012). However, 3D heat kernel methods are still
rare in medical image analysis field. Some pioneering work
(Raviv et al., 2010; Rustamov, 2011) used regular grids to compute
the heat kernel and their work usually suffered numerical inaccu-
racies along the surface boundaries. Based on the volumetric
Laplace–Beltrami operator, our heat kernel computation is more
accurate and the estimated cortical thickness is well-defined, and
should reflect the intrinsic 3D geometrical structure better than
thickness derived from a simple harmonic field (Jones et al.,
2000), and hence facilitate consistent cross-subject comparisons.

In our experiments, our pipeline is applied on MR images from
Alzheimer’s Disease Neuroimaging Initiative (Mueller et al., 2005;
Jack et al., 2008, ADNI). Our data set consists of: 51 patients of Alz-
heimer’s disease (AD), 45 patients of mild cognitive impairment
(MCI) and 55 healthy controls. We use FreeSurfer software
(Fischl et al., 1999a) for preprocessing. We use Student’s t test
and False Discovery Rate (FDR) (Benjamini and Hochberg, 1995)
for performance evaluation. We set out to test whether our pro-
posed method provides a computationally efficient and statisti-
cally powerful cortical thickness solution.

Fig. 1 summarizes our overall sequence of steps used to com-
pute cortical thickness. First, from MR images, we used FreeSurfer
to segment and build white matter and pial cortical surfaces (the
first and second row). We model the inner volume with a tetrahe-
dral mesh with a triangle surface as it boundary (the third row).
Then we apply volumetric Laplace–Beltrami operator to compute
the harmonic field and build isothermal surfaces on the obtained
harmonic field. Between neighboring isothermal surfaces, we
compute heat kernel and estimate the streamline by tracing the
maximal heat transition probability. The thickness is then mea-
sured by the lengths of the streamlines between white matter
and pial surfaces (the fourth row). Last, Student’s t test is applied
to identify regions with significant differences between any two
of three groups and false discovery rate (FDR) (Nichols and
Hayasaka, 2003) is used to assign global q-values (the fifth
row), i.e., all group difference p-maps were corrected for multiple
comparisons using the widely-used FDR method. For example, the
FDR method decides whether a threshold can be assigned to the
statistical map that keeps the expected false discovery rate
below 5% (i.e., no more than 5% of the voxels are false positive
findings).



Fig. 1. Algorithm pipeline illustrated by the intermediate results.
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2. Methods and materials

2.1. Tetrahedral mesh generation module

It is worth noticing that the tetrahedral mesh quality will affect
the accuracy of solving the partial differential equations. For exam-
ple, too small dihedral angles will lead to ill-posed stiffness matrix
in the finite element method and too large dihedral angles will lead
to the interpolation and discretization errors. The common tetra-
hedron generation method is to revise the tetrahedrons through
the iterative processing. One class of methods are to divide the
voxels of the MRI to tetrahedrons according to the generation qual-
ity (Liu and Xing, 2013). But it usually results in the loss of the ori-
ginal image information because of the lack of the boundary
restriction conditions. Another class of methods intends to comply
with the precise topology structure of the original image by adap-
tively adjusting the size of the tetrahedrons (Lederman et al.,
2010), which constantly use the external force to pull the tetrahe-
dral vertices to the boundary of the MRI. However, it neglects the
quality of each tetrahedron.

Although there is a rich literature on the tetrahedral mesh gen-
eration for medical imaging research (e.g. Zhang et al., 2005;
Lederman et al., 2011; CGAL Editorial Board, 2013; Min, 2013;
Fang and Boas, 2009; Si, 2010; Kremer, 2011), it is still challenging
to model the highly convoluted cortical structure. In our prior work
(Wang et al., 2004a), we proposed a sphere carving method to use
tetrahedral mesh to model cortical structure while enforcing a cor-
rect topology on the obtained boundary surfaces. In our current
approach, we build a robust tetrahedral mesh generation module
by incorporating a few existing free mesh processing utilities
(Min, 2013; Nooruddin and Turk, 2003; CGAL Editorial Board,
2013; Lederman et al., 2011). Our work keeps a balance between
surface fitness and tetrahedral mesh quality by carefully tuning
their parameters to model cortical structure. The pipeline of our
tetrahedral mesh generation algorithm for the MR images is shown
in Fig. 2.

First we fill the MRI space with the cubic background voxels
with binvox software (Min, 2013; Nooruddin and Turk, 2003).
The space attribute of each voxel vertex is determined by the
point-to-boundary distance function /ðxÞ. /ðxÞ is calculated using
the fast marching method (Sethian, 1996). Based on /ðxÞ values,
we can adaptively adjust the filled cubic length by calculating
the vertex coordinates(x or y) difference of the adjacent boundary
surface with the same z coordinate. Secondly, the cubic voxel con-
taining the boundary surface and the internal voxel are split into
the tetrahedrons using smoothing modules in software package
CGAL (CGAL Editorial Board, 2013).

The obtained tetrahedral mesh needs to be corrected to
improve the quality and the smoothness owing to the cutting
and organization operations. We call the process as the regulariza-
tion for the boundary smoothness and tetrahedron quality
improvement (CGAL Editorial Board, 2013; Lederman et al.,
2011). We adopted CGAL (CGAL Editorial Board, 2013) for this pur-
pose. This process is based on harmonic function minimization
(CGAL Editorial Board, 2013; Lederman et al., 2011) which regular-
izes the mesh generation by minimizing an energy term which
consists of elastic term, smoothness term, fidelity term on the
shape regularity (Lederman et al., 2011). Fig. 3 shows the two
examples of generated tetrahedral meshes with the different reso-
lutions and their tetrahedral element qualities. In the upper row,
the figures from the left to the right are the generated tetrahedral
mesh (154;908 tetrahedrons) based on our method, the cross-sec-
tion cut through the mesh according to y-axis, the dihedral angle
histograms and the tetrahedral element quality coefficients respec-
tively. The tetrahedral element quality coefficients will be dis-
cussed in the Discussion Section. The bottom row indicates the
same contents as the upper row except the number of the tetrahe-
dron elements is 382;071. The numbers within the square brackets
in the two right columns represent the value ranges of the dihedral
angle and the quality coefficients. From the result, we find that our
approach can produce the better tetrahedron element quality
under the premise of maintaining the original shape of the object.

2.2. Half-face data structure for representing tetrahedral meshes

To efficiently access the generated tetrahedral mesh for cortical
thickness estimation, we extended half-edge data structure
(Mäntylä, 1988) to half-face data structure (e.g. Kremer, 2011). A
half-edge data structure is an edge-centered data structure capable
of maintaining incidence information of vertices, edges and faces
for any orientable two-dimensional surfaces embedded in arbi-
trary dimension. Each edge is decomposed into two half-edges
with opposite directions. Centered in half-edges, pointers are
added to point to other connected instances, such as vertices, faces
and edges. An overview and comparison of these different data
structures together with a thorough description of the implemen-
tation details can be found in Kettner (1999).

Fig. 4(a) illustrates some key concepts in half-edge data struc-
ture. It is widely used in computer graphics and geometric model-
ing research. We extended it to model tetrahedral mesh structure.
In our approach, we added a half-face layer over the half-edge layer
(Fig. 4(b)). Similar to half-edge structure, each face is decomposed



Fig. 2. Tetrahedral mesh generation work flow.

Fig. 3. Two examples of generated tetrahedral meshes with the different resolutions and their tetrahedral element qualities.
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into two half-faces with opposite directions and appropriate point-
ers are added to connect tetrahedrons, faces, edges and vertices.
Such a data structure, with a cost of additional storage space for
added pointers, helps us improve the computational efficiency dra-
matically. For example, if we want to access an adjacent tetrahe-
dron, the time complexity for a brute force is about OðNÞ, where
N is the number of tetrahedrons, while the time complexity is just
Oð1Þ with our proposed half-face data structure (Xu, 2013).

2.3. Thickness measurement algorithm based on the heat kernel
diffusion

2.3.1. Theoretical background
The heat kernel diffusion on differentiable manifold M with Rie-

mannian metric is governed by the heat equation:

DMf ðx; tÞ ¼ @f ðx; tÞ
@t

ð1Þ

where f ðx; tÞ is the heat distribution of the volume at the given time.
We know that the heat diffusion process can be represented by its
time dependent and its spatially dependent parts.
f ðx; tÞ ¼ FðxÞTðtÞ ð2Þ

Eq. (2) is substituted to Eq. (1), we can get the Helmholtz equa-
tion to describe the heat vibration modes in the spatial domain.

DFðxÞ ¼ �kFðxÞ ð3Þ

Eq. (3) can be treated as the Laplacian eigenvalue problem with
infinite number of eigenvalue ki and eigenfunction Fi pairs. The
solution of equation above can be interpreted to the superposition
of the harmonic functions in the given spatial position and time.
Given an initial heat distribution F : M !R, let HtðFÞ denotes the
heat distribution at time t, and limt!0HtðFÞ ¼ F. HðtÞ is called the
heat operator. Both DK and Ht share the same eigenfunctions, and
if ki is an eigenvalue of DM , then e�ki t is an eigenvalue of Ht corre-
sponding to the same eigenfunction.

For any compact Riemannian manifold, there exists a function
ltðx; yÞ : Rþ �M �M ! R, satisfy the formula

HtFðxÞ ¼
Z

M
ltðx; yÞFðyÞdy ð4Þ

where dy is the volume form at y 2 M. The minimum function
ltðx; yÞ that satisfies Eq. (4) is called the heat kernel (Coifman et al.,



Fig. 4. Illustration of half-edge structure for surface representation (a) and the proposed half-face structure for tetrahedron representation (b). (a) was obtained from
MakeHuman Project Team (2013).
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2005b), and can be considered as the amount of heat that is trans-
ferred from x to y in time t given a unit heat source at x. In other
words, ltðx; �Þ ¼ HtðdxÞ where dx is the Direc delta function at
x : dxðzÞ ¼ 0 for any z – x and

R
M dxðzÞ ¼ 1.

According to the theory of the spectral analysis, for compact M,
the heat kernel has the following eigen-decomposition expression:

ltðx; yÞ ¼
X1
i¼0

e�ki t/iðxÞ/iðyÞ ð5Þ

where ki and /i are the ith eigenvalue and eigenfunction of the
Laplace–Beltrami operator, respectively. The heat kernel ltðx; yÞ
can be interpreted as the transition density function of the Brown-
ian motion on the manifold (Sun et al., 2009). It has significant
applications in computer vision and machine learning fields
(Chung et al., 2005; Coifman et al., 2005a; Bronstein and
Bronstein, 2011; Lombaert et al., 2012).

2.3.2. Discrete harmonic energy
Suppose M is a simplicial complex, and g : jMj ! R3 a function

that embeds jMj in R3, then ðM; gÞ is called a mesh. For a 3-simplex,
it is a tetrahedral mesh, Te, and for a 2-simplex, it is a triangular
mesh, Tr. Clearly, the boundary of a tetrahedral mesh is a triangular
mesh, Tr ¼ @Te. All piecewise linear functions defined on M form a
linear space, denoted by CPLðMÞ. Suppose a set of string constants
kðu;vÞ are assigned, then the inner product on CPLðMÞ is defined
as the quadratic form:

< f ; g >¼ 1
2

X
fu;vg2M

kðu;vÞðf ðuÞ � f ðvÞÞðgðuÞ � gðvÞÞ ð6Þ

The energy is defined as the norm on CPLðMÞ,

Definition 1 (String Energy). Suppose f 2 CPLðMÞ, the string energy
is defined as:

Eðf Þ ¼< f ; f >¼
X
fu;vg2K

kðu; vÞjjf ðuÞ � f ðvÞjj2 ð7Þ

By changing the string constants kðu;vÞ in the energy formula,
we can define different string energies.
v3

Fig. 5. Illustration of a tetrahedron. By convention, we say that the edge ½v1; v4� is
against ½v2;v3� and the dihedral angle, h23, in this tetrahedron. l23 is the length of
edge ½v2; v3�. This relationship is used to define volumetric Laplace–Beltrami
operator.
Definition 2 (Discrete Harmonic Energy (Wang et al.,
2004a)). Suppose that edge fu;vg is shared by n tetrahedrons. In
each tetrahedron, there is an edge which does not intersect with
fu;vg, e.g. edge ½v1;v4� and ½v2;v3� pair in Fig. 5. By convention, we
say that this edge is against fu;vg in this tetrahedron. Thus edge
fu;vg is against a total of n edges in these n tetrahedrons. We
denote their edge lengths as li; i ¼ 1; . . . ;n. Similarly, there is a
dihedral angle which is associated with each edge, e.g. h23 is
associated with edge ½v2;v3� in Fig. 5. They can be denoted as
hi; i ¼ 1; . . . ;n. The dihedral angle h is also said to be against edge
½u;v �. So edge fu;vg is against a total of n dihedral angles,
hi; i ¼ 1; . . . ;n, in these n tetrahedrons. Define the parameters

ku;v ¼
1

12

Xn

i¼1

li cotðhiÞ ð8Þ

where li; i ¼ 1; . . . ; n, are the lengths of the edges to which edge
fu;vg is against in the domain manifold M. Eqn. 7 with the ku;v is
defined as the discrete harmonic energy.

Furthermore, our prior work (Xu, 2013) also proved that the
discrete harmonic energy is consistent with the traditional har-
monic energy.

2.3.3. Volumetric Laplace–Beltrami operator
In this step, we use the discrete harmonic energy to compute

the temperature distribution under the condition of the thermal
equilibrium. The problem is to solve the Laplace equation Dt ¼ 0
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in the cortex region X subject to Dirichlet boundary conditions on
@X, i.e., the temperature of the outer cortical surface equals to 1
and the temperature of the inner cortical surface equal to 0.

First we define the tetrahedral mesh of the cortex as the finite
solution space and the interior nodes and boundary nodes. Owing
to the shape regularity of the generated tetrahedral mesh, we can
ensure the correctness in the finite element computation. Then we
compute the local stiffness matrix S according to the specific tetra-
hedron mesh:

Si;j ¼
ki;j ½i; j� 2 edge

0 ½i; j� R edge

�
ð9Þ

where ki;j is defined in Definition 2. Clearly, S is a sparse matrix.
Secondly, add the contribution of the local stiffness matrix to global
stiffness matrix and construct the discrete Laplace–Beltrami opera-
tor under the Dirichlet boundary condition. The volumetric Laplace–
Beltrami operator Lp is defined with the form:

Lp ¼ D� S ð10Þ

where D, the degree matrix, is a diagnal matrix defined as Dii ¼ RjSij.
Therefore, one may use the following equation to compute the

temperature of the interior vertices.

Lpti ¼ tb ð11Þ

where ti is a n� 1 vector (n is the number of the interior vertices in
the tetrahedral mesh), and tb is a m� 1 vector (m is the number of
the boundary vertices in the tetrahedral mesh). As a result, we can
translate solving the Laplace equation problem into solving a sparse
linear system problem. The solution, also called as harmonic field, is
also the internal temperature distribution inside the cortex.

Compared with other rasterization-based Laplace–Beltrami
operator computation methods (e.g. Raviv et al., 2010; Rustamov,
2011), owing to the multi-resolution nature of the tetrahedral
mesh, our method may capture and quantify local volumetric geo-
metric structure more accurately. Similarly to some prior work
(e.g. Tsukerman, 1998), we can rigorously prove that the proposed
discrete harmonic energy will converge to the continuous har-
monic energy with the increased tetrahedral mesh resolution.

2.3.4. Cortical thickness estimation with heat kernel
After we compute the harmonic field, we can construct the iso-

thermal surfaces. With the defined volumetric Laplace–Beltrami
operator, it is straightforward to compute the heat kernel (Eqn.
5) and apply it to estimate the cortical thickness. Specifically, the
ltðx; yÞ of the specific point x on an isothermal surface m to a differ-
ent point y on the next isothermal surface m0 represents the differ-
ent heat transition probability. The connection direction of the x
and y according to the maximum transition probability is the
direction of the temperature gradient. And then y as a starting
point, we will continue to search for the next point y0 in the next
isothermal surface n whose ltðy; y0Þ is the maximum among the
all ltðy; �Þ by repeating this process. So a streamline of the cortex
will be obtained by finding out the maximum heat transition prob-
ability between the isothermal surfaces. Similar to prior work
(Jones et al., 2000), the cortical thickness is estimated as the total
length of the streamline.

However, our work is different from prior work (Jones et al.,
2000) when tracing the streamline, where the normals of isother-
mal surfaces are always used to travel to neighboring isothermal
surface. Our motivation is illustrated in Fig. 6. The heat diffusion
is illustrated with spectrum (Fig. 6(a)) and the diffusion distance
is illustrated in Fig. 6(b). Because it models heat diffusion more
precisely, the heat kernel approach considers more intrinsic geom-
etry structures and hence may produce more robust and accurate
cortical thickness estimations.
2.4. Experiments and validation

2.4.1. Subjects
Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organiza-
tions, as a $60 million, 5-year public–private partnership. The pri-
mary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).
Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California - San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic institu-
tions and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 subjects but ADNI has been followed by
ADNI-GO and ADNI-2. To date these three protocols have recruited
over 1500 adults, ages 55 to 90, to participate in the research, con-
sisting of cognitively normal older individuals, people with early or
late MCI, and people with early AD. The follow up duration of each
group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-
GO. Subjects originally recruited for ADNI-1 and ADNI-GO had
the option to be followed in ADNI-2. For up-to-date information,
see www.adni-info.org.

At the time of downloading ð09=2010Þ, there were 843 subjects
in the ADNI baseline dataset. All subjects underwent thorough clin-
ical and cognitive assessment at the time of acquisition, including
the Mini-Mental State Examination (MMSE) score (Folstein et al.,
1975), Clinical Dementia Rating (CDR) (Berg, 1988), and Delayed
Logical Memory Test (Wechsler, 1987).

In this study, the T1-weighted images from 151 subjects were
used. The structural MRI images were from the ADNI baseline data-
set (Mueller et al., 2005; Jack et al., 2008). We used FreeSurfer’s
automated processing pipeline (Dale et al., 1999; Fischl et al.,
1999a) for automatic skull stripping, tissue classification, surface
extraction, and cortical and subcortical parcellations. It also calcu-
lates volumes of individual gray matter parcellations in mm3 and
surface area in mm2, provides surface and volume statistics for
about 34 different cortical structures, and computes geometric
characteristics such as curvature, curvedness, local foldedness for
each of the parcellations (Desikan et al., 2006). In our experiments,
our data set consists of 51 patients of Alzhermer’s disease (AD), 45
patients of mild cognitive impairment (MCI) and 55 healthy con-
trols. And the demographic information of studied subjects in ADNI
baseline dataset is in Table 1 Here MMSE is short for mini-mental
state examination. It is a measurement of one’s IQ. Full score is 30,
lower means more demented. So AD patients generally have low
score.
2.4.2. Experiments
In our experiments, we first applied the new method on some

synthetic volumetric data (Section 3.1) to evaluate the correctness
of our algorithms. We built tetrahedral meshes on the MRI data of
151 ADNI subjects. As a proof-of-the-concept work, the thickness
measurement based on heat kernel is applied on the left hemi-
spheres. We applied the Student’s t test on sets of thickness values

http://www.adni-info.org


Fig. 6. Illustration of heat diffusion on cortical structure. Two boundaries are examples of pial and white matter surfaces. (a) Heat diffusion illustration with spectrum; (b)
diffusion distance illustrated as random walk. Our heat kernel method may be able to capture the subtle difference determined by the intrinsic geometry structures because it
estimates the heat transition probability on every intermediate point such that it may capture more regional information than other harmonic function methods (e.g. Jones
et al., 2000).

Table 1
Demographic information of studied subjects in ADNI baseline dataset.

Gender (M/F) Education Age MMSE at baseline

AD 23=28 14:42� 2:23 76:67� 6:01 23:44� 2:21
MCI 23=22 16:05� 2:61 76:50� 6:51 27:25� 1:51
CTL 21=34 16:07� 2:39 76:31� 4:27 29:23� 0:85
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measured on corresponding surface points to study the statistical
group difference. Given each matching surface point, we measure
the difference between the mean thickness of three different
groups (AD vs. control, MCI vs. control and AD vs. MCI) by

t ¼ U � Vffiffi
2
n

q
SUV

ð12Þ

where U and V are the thickness means of the two groups and SUV is
the standard deviation. The denominator of t is the standard error of
the difference between two means. Then multiple comparisons are
done to obtain statistical p-map and global statistical significance
(Wang et al., 2011).
3. Results

3.1. Results on synthetic data

Figs. 7(a) and 8(a) show the two constructed tetrahedral
meshes with a spherical hole inside a sphere and a cube, respec-
tively. The outer surface of the mesh in Fig. 7(a) is sphere with
the center at ð0;0;0Þ with radius 2, and inner surface is a sphere
centered at ð0;0; 0:5Þ with radius 1. The outer surfaces of the mesh
in Fig. 8(a) is a cube with the center at ð0; 0;0Þ with edge length 6,
and the inner surface is a sphere centered at ð0;0;0Þ with radius 2.
Then we set the temperature value of all the outer surfaces as 1�

and inner surfaces as 0�. With the volumetric Laplace–Beltrami
operator, the temperature distribution under the condition of ther-
mal equilibrium and the isothermal surfaces in the mesh can be
acquired. Here we compute 100 isothermal surfaces from 0� to 1�

according the step 0:005�. Among them the isothermal surfaces
of temperature 0:4�;0:5�;0:6�;0:7� 0:8� and 0:9� are shown in
Figs. 7(b) and 8(b). We can see that the isothermal surfaces change
gradually from the inner surface shape to the outer surface shape
as the temperature increases.
Next the ltðx; yÞ in Eq. (5), i.e., heat transition probabilities, are
computed from a sampling point x on the outer surface m to the
different points y on the next isothermal surface m0. We choose
the maximum heat transition probability as part of the streamline
from the outer surface to the inner surface. This process is repeated
until the streamline arrives on the inner surface. Connecting the
heat propagation pathes between the neighboring isothermals,
we will get the whole streamline from the outer surface to the
inner surface and the thickness can be estimated as the total length
of the streamline.

Figs. 7(c) and 8(c) illustrate some streamlines from the outer
surfaces to the inner surfaces. In order to show the heat transition
process in the local region, we choose the tetrahedral mesh in Fig. 8
as an example. Fig. 9(a) shows that the specific x on the outer cubic
surface m whose temperature is 1�, and the inner isothermal sur-
face m0 is the surface of temperature of 0:91�. The different heat
transition paths with the different transition probability from x
to the isothermal surface m0 are represented by the different color
lines. The red line represents the path which has the maximum
heat transition probability, and the blue, green and black lines indi-
cate the transition pathes with the corresponding second, third and
fourth largest transition probability values. In order to clearly show
the heat transition paths, the interval distance between the two
isothermal surfaces is enlarged to display in Fig. 9(b). We can see
the different routes obtained with different heat transition proba-
bilities. This means that high and low values of ltðx; �Þ correspond to
the heat transition amount from the x to the inner isothermal sur-
face. Essentially, the heat transition probabilities are determined
by the intrinsic geometry structure as illustrated in Fig. 6. From
these two simple examples, we visualize the fact that eigenvalues
and eigenfunctions of the volumetric Laplace–Beltrami Operator
can represent the intrinsic volume geometry characteristics.

Some thickness measurement results in Figs. 7(a) and 8(a) are
shown in Figs. 7(d) and 8(d) respectively. Here the step size is cho-
sen as 0.01 which means that the isothermal interval is 0:01�. We
add the length of all the segment lines between the isothermal sur-
faces which represent the maximum heat transition and obtain the
thicknesses of the vertices on the outer surface. Figs. 7(d) and 8(d)
also show that the different half outer surfaces in Figs. 7(a) and
8(a). The color-maps indicate the estimated thickness.

3.2. Cortical thickness estimation results

Fig. 10 illustrates estimated cortical thickness on four left
cortical hemispheres from four normal control subjects. In our



Fig. 7. The isothermal surfaces, streamline and thickness computation between the outer spherical surface to the inner spherical surface. (a) is the volumetric mesh. (b)
shows the different isothermal surfaces. (c) shows some computed streamlines between two surfaces. (d) shows the color map of the computed thickness values. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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experiments, the acquired data was interpolated to form cubic
voxels with an edge length of 0.02. The maximum edge ratio is
set as 5.0. Then we set the temperature of outer surface as 1�

and 0� of inner surface. And the isothermal interval is 0:1�. The val-
ues of thickness (mm) increase as the color goes from blue to yel-
low and to red.
3.3. Statistical maps and multiple comparisons

Comparing the thickness defined at mesh vertices across differ-
ent cortical surfaces is not a trivial task due to the fact no two
cortical surfaces are identically shaped. Hence, 2D surface-
based registration is needed in order to compare the thickness



Fig. 8. The isothermal surfaces, streamline and thickness computation between the outer cubic surface to the inner spherical surface. (a) is the volumetric mesh. (b) shows
the different isothermal surfaces. (c) shows some computed streamlines between two surfaces. (d) shows the color map of the computed thickness values. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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measurements across different cortical surfaces. Various surface
registration methods have been proposed in (Davatzikos, 1997;
Fischl et al., 1999b). These methods solve a complicated optimiza-
tion problem of minimizing the measure of discrepancy between
two surface. Unlike the previous computationally intensive meth-
ods, the weighted spherical harmonic representation in this paper
provides a simple way of establishing surface correspondence
between two surfaces without time consuming numerical optimi-
zation (Chung et al., 2007). Subsequently, the thickness measure-
ments in the different cortical surfaces can be interpolated into
an unified template by using the weighted spherical harmonic rep-
resentation. This interpolation method can be considered as
weighting the coordinate or thickness data of the neighboring ver-
tices according to the geodesic distance along the cortical surface,



Fig. 9. The heat transition paths from the specific point on the outer isothermal surface (temperature 1�) to the different points on the inner isothermal surface (temperature
0:91�). (a) shows the heat transition paths of the different transition probabilities and (b) shows the enlarged interval paths between the two isothermal surfaces.
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which can improve the accuracy of the thickness interpolation and
the group-difference statistics test power. Moreover, the weakness
of the traditional spherical harmonic representation is that it pro-
duces the Gibbs phenomenon (Gelb, 1997) for discontinuous and
rapidly changing continuous measurements. Due to very complex
folding patterns, sulcal regions of the brain exhibit the abrupt
directional change so there is a need for reducing the Gibbs phe-
nomenon in the traditional harmonic representation. First, accord-
ing to the reference (Chung et al., 2007), we defined the weighted
spherical surface heat kernel (WHK) to make the representation
converge faster by weighting the spherical harmonic coefficients
exponentially smaller. The WHK is written as

KrðX;X0Þ ¼
X1
l¼0

Xl

m¼�l

exp�lðlþ1ÞrYlmðXÞYlmðX0Þ ð13Þ
Fig. 10. Four cortical thickness measurement results. The values of thickness (mm) inc
references to colour in this figure legend, the reader is referred to the web version of th
where X ¼ ðh;uÞ;X0 ¼ ðh0;u0Þ;Ylm is the spherical harmonic basis of
the degree l and the order m, and the parameter r controls the dis-
persion of the kernel WHK. This procedure requires a cortical sur-
face to be mapped onto a sphere (sph-mesh) based the conformal
mapping technique (Gu et al., 2004). Then the Ylm can be obtained
from the sphere mesh. Chung has proved the following equation
(Chung et al., 2007)

Kr � f ðXÞ ¼
Xk

l¼0

Xl

m¼�l

exp�lðlþ1Þr < Fi;Ylm > YlmðXÞ

¼ argminh2Hk

Z
S2

Z
S2

KrðX;X0ÞjFiðX0Þ

� hðXÞj2dlðX0ÞdlðXÞ ð14Þ
rease as the color goes from blue to yellow and to red. (For interpretation of the
is article.)
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where the subspace Hk is spanned by up to k� th degree spherical
harmonics, Fi indicates the i� th coordinate or the i� th thickness

value. hðXÞ ¼
Pk

l¼0

Pl
m¼�lexp�lðlþ1ÞrblmYlmðXÞ, we may estimate blm

in least squares fashion as b̂ ¼ ðY 0YÞ�1Y 0F. This procedure can also
be used for compressing the global shape features of the cortical
surface into a small number (k degree) of spherical harmonics coef-
ficients b̂. The spherical mesh (sph-mesh) is then refined by resam-
pling to a uniform grid along the sphere to generate the fixed unit
sphere surface as a template. And the spherical harmonic basis
Y 0lm according to this template and b̂ can be used to interpolate
the cortical surface coordinates and the thickness using the spheri-
cal template. Then we will establish surface correspondence
between the different subjects. In fact, the weighted spherical har-
monic representation used the geodesic distance along the cortical
surface to obtain the vertices and the thickness of the new locations
in the fixed template.

The thicknesses estimated by FreeSurfer (Fischl et al., 1999a)
were also linearly interpreted to the resampled surfaces based on
the above method. The result is a retriangulation of each surface
such that all the surfaces have exactly the same number and loca-
tions of vertices and triangles. This allows us to measure point
averages across every surface vertex.

In order not to assume normally distributed data, we run a per-
mutation test where we randomly assign subjects to groups (5000
random assignments). We compare the results (t values) from true
labels to the distribution generated from the randomly assigned
ones. In each case, the covariate (group membership) was per-
muted 5000 times and a null distribution was developed for the
area of the average surface with group-difference statistics above
the pre-defined threshold in the significance p-maps. The probabil-
ity was later color coded on each surface template point as the sta-
Fig. 11. Statistical p-map results with the thickness measures of heat kernel diffusion a
groups of AD subjects (N = 51), MCI subjects (N = 45) and control subjects (N = 55). (d–f)
group difference results of AD vs. control. (b) and (e) are group difference results of MCI vs
vertices with statistical differences, uncorrected. The q-values for these maps are shown
map while keeping the false discovery rate below 5%. (For interpretation of the referen
article.)
tistical p-map of group difference. Fig. 11 shows the p-maps of
group difference detected between AD and control ((a) and (d)),
control and MCI ((b) and (e)), AD and MCI groups ((c) and (f))
and the significant level at each surface template point as 0.05.
The non-blue color areas denote the statistically significant differ-
ence areas between two groups.

All group difference p-maps were corrected for multiple com-
parisons using the widely-used false discovery rate method
(FDR). Fig. 12(a)–(c) are the cumulative distribution function
(CDF) plots showing the uncorrected p-values (as in a conventional
FDR analysis). The x value at which the CDF plot intersects the
y ¼ 20x line represents the FDR-corrected p-value or the so-called
q-value. It is the highest statistical threshold that can be applied to
the data, for which at most 5% false positives are expected in the
map. In general, a larger q-value indicates a more significant differ-
ence in the sense that there is a broader range of statistic threshold
that can be used to limit the rate of false positives to at most 5%
(Wang et al., 2012b). The use of the y ¼ 20x line is related to the
fact that significance is declared when the volume of suprathresh-
old statistics is more than 20 times that expected under the null
hypothesis.

With the proposed multivariate statistics, we studied differ-
ences between three diagnostic groups: AD, MCI and controls.
Fig. 11 show the p-maps of our results: AD vs. healthy control
(d), MCI vs. healthy control (e) and AD vs. MCI (f) while (a), (b)
and (c) illustrate the p-map results from FreeSurfer suite. As
expected, we found very strong thickness differences between
AD and control groups q-value: 0.0385 with heat kernel method
(Fig. 11(d)) and 0.0281 with FreeSurfer software (Fig. 11(a)), strong
thickness differences between MCI and control groups q-value:
0.0289 with heat kernel method (Fig. 11(e)) and 0.0133 with Free-
Surfer software (Fig. 11(b)) and relatively less thickness differences
nd FreeSurfer on surface templates show group differences among three different
are the results of our method, (a–c) are results of FreeSurfer method. (a) and (d) are
. control. (c) and (f) are group difference results of AD vs. MCI. Non-blue colors show
in Table 2. The q-value is the highest threshold that can be applied to the statistical
ces to colour in this figure legend, the reader is referred to the web version of this
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between AD and MCI groups q-value: 0.0247 with heat kernel
method (Fig. 11(f)) and 0.0101 with FreeSurfer software
(Fig. 11(c)). The details of the q-values and CDF are summarized
in Table 2 and Fig. 12, respectively. We observed the continuously
increasing spreading atrophy area from AD vs MCI (Fig. 11(f)), con-
trol vs MCI (Fig. 11(e)), to control with AD (Fig. 11(d)). The overall
deficit pattern spreads through the brain in temporal-forntal-sen-
sorimotor sequence and our results are consistent with prior AD
research (e.g. Thompson et al., 2003).

We also note the p-maps are consistent between our results and
the ones from FreeSurfer software. Regarding the statistical power
(determined by FDR corrected overall significant values, larger val-
ues usually indicate stronger statistical powers) between the two
thickness methods, our method demonstrated the stronger or com-
parable statistical power for the three groups comparisons (details
in Table 2 and Fig. 12).
4. Discussion

There are three main findings in our paper. First, this paper
intends to generate a high-quality tetrahedral mesh suitable for
representing the cortical structure with rich details on surface rep-
resentation by integrating a few available software packages (Min,
2013; CGAL Editorial Board, 2013). The tetrahedral mesh can facil-
itate analyzing the potential field, which has been elaborated in
many literatures (e.g. Liu et al., 2012). Compared with prior work
(Jones et al., 2000; Das et al., 2009), our PDE solving computation
can achieve sub-voxel accuracy because we adopted a volumetric
Laplace–Beltrami operator (Wang et al., 2004a). Second, we pro-
pose a heat kernel method to accurately estimate the streamline
with the intrinsic and global cortical geometry information. In a
prior work (Jones et al., 2000), the computations of the streamline
by solving the partial differential equations are rooted in computa-
tional geometry to determine the streamline directions. It neglects
the inherent geometric characteristics between the points in the
mesh. Geometrically speaking, heat kernel determines the intrinsic
Riemannian metric (Zeng et al., 2012) and it can be reliably com-
puted through the Laplace–Beltrami matrix. Thus our work has a
strong theoretical guarantee and takes numerous other advantages
of the spectral analysis such as the measurement invariance of
inelastic deformation and the robustness of the topological noise.
Additionally, compared with some existing work on volumetric
heat kernel (Raviv et al., 2010; Rustamov, 2011), our work may
achieved better numerical accuracy because of the tetrahedral
mesh and the volumetric Laplace–Beltrami operator (Wang et al.,
2004a). Lastly, with a novel data structure, half-face structure,
we developed a computationally efficient software system to esti-
mate cortical thickness and our experimental results on ADNI data-
set (Mueller et al., 2005; Jack et al., 2008) verified the observations
in prior AD research (e.g. Thompson et al., 2003; Jack et al., 2003)
that the cortical atrophy is associated with AD related clinical char-
acteristics. Furthermore, with FDR, we empirically demonstrated
that our algorithm may have comparable or superior statistical
power for cortical thickness analysis than FreeSurfer software.

From the discussion above, generating high-quality tetrahedron
elements is the key procedure to ensure the accuracy of analyzing
the potential field and computing the streamlines based on the
finite element method. In the following, we will discuss the details
about how to maintain the tetrahedral mesh quality.
4.1. High-quality tetrahedral mesh generation method

The success of the finite element method depends on the shapes
of the tetrahedra. For example, the large dihedral angles cause
large interpolation errors and discretization errors, robbing the
numerical simulation of its accuracy (Krizek, 1992; Shewchuk,
2002), and small dihedral angles render the stiffness matrices asso-
ciated with the finite element method fatally ill-conditioned. (e.g.,
the slightest translation of one of its vertices can cause the sign of
its volume to flip, leading to errors when determining the exterior
triangular skin of the model, and resulting in incorrect renderings
and missed collisions.)

The pipeline of our tetrahedral mesh generation algorithm for
the MR images is shown in Fig. 2. After we partition the cubes into
tetrahedrons and cut the tetrahedrons by the isosurfaces. We need
to correct the obtained tetrahedron mesh to improve the quality
and the smoothness. Suppose the initial vertex position is given
by X, while the deformed state is denoted by x, and the displace-
ment vector field, v, is given by:

v ¼ x� X ð15Þ

The elastic energy EðvÞ is defined which can prevent dihedral
angles from becoming too small and tetrahedral elements from col-
lapsing. The displacement vector field is related to measures of
deformation F and C. Here, I refers to the identity matrix. F is often
called the deformation gradient and C is referred to as the right Cau-
chy-Green Deformation Tensor (Gonzalez and Stuart, 2008).

rxv ¼ I � F�1

F ¼ dxdX�1

C ¼ FT F

ð16Þ

As done with many existing elasticity models such as the
(Pedegral, 2000), an elasticity penalty is computed using the three
invariants of C. If k1; k2; k3 are the eigenvalues of F:

JC
1 ¼ k2

1 þ k2
2 þ k2

3

JC
2 ¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3

JC
3 ¼ detðCÞ ¼ k2

1k
2
2k

2
3

ð17Þ

The first invariant is most affected by large amounts of stretch-
ing, the second by large amounts of shearing, and the third by sig-
nificant changes in volume. Then a tetrahedron quality supervision
function (Lederman et al., 2011) is introduced:

W ¼ k1W1ðJC
1 ; J

C
3Þ þ k2W2ðJC

2 ; J
C
3Þ þ k3W3ðJC

3Þ

W1 ¼
JC

1 � k1ðJC
3Þ
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JC
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3Þ
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ð18Þ

where k1; k2; k3; k1; k2; k3 are the threshold parameters of the elastic
penalty term which are similar as the threshold in the (Wang and
Yu, 2012). The functions W1 and W2 will apply a penalty if too
much stretching or shearing, i.e., too small or too large dihedral
angles. And the penalty is applied relative to the volume change
respectively. The values of k1; k2 when greater than some criterion
allow modest stretching and shearing to occur. and the elastic pen-
alty term is given by:

EðvÞ ¼
Z

WðrvÞ ð19Þ

The elasticity will provide no resistance to small deformations,
but will resist all possible types of changes in the shape of a tetra-
hedron. According to Eq. (18) and Eq. (19), we try to maximize the



0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corresponding Null p−value

C
um

ul
at

iv
e 

O
bs

er
ve

d 
p−

va
lu

e
Cumulative Distribution of p−value for AD−CTL

Heat Diffusion
Freesurfer
y=20x

(a)

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corresponding Null p−value

C
um

ul
at

iv
e 

O
bs

er
ve

d 
p−

va
lu

e

Cumulative Distribution of p−value for MCI−CTL

Heat Diffusion
Freesurfer
y=20x

(b)

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corresponding Null p−value

C
um

ul
at

iv
e 

O
bs

er
ve

d 
p−

va
lu

e

Cumulative Distribution of p−value for AD−MCI

Heat Diffusion
Freesurfer
y=20x

(c)

Fig. 12. The cumulative distributions of p-values comparison for difference
detected between three groups (AD, MCI, CTL). The color-coded p-maps are shown
in Fig. 11. and their q-values are shown in Table 2. In the CDF, the q-values are the
intersection point of the curve and the y ¼ 20x line. In a total of 3 comparisons, the
heat diffusion method achieved the highest q-values. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 2
The FDR corrected p-values (q-values) comparison. Our proposed heat diffusion
thickness measures generated stronger statistical power than the FreeSurfer
measures.

Heat kernel diffusion FreeSurfer

AD-CTL 0.0385 0.0281
CTL-MCI 0.0289 0.0133
AD-MCI 0.0247 0.0101
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minimum angle to generate the better quality tetrahedron ele-
ment. However, this unilateral adjust will result in the bad fidelity
of the interpolated surface over the mesh. So the elastic penalty
term and fidelity term (Lederman et al., 2011) are introduced to
control the quality of the tetrahedron mesh and fitness for the
boundary of the mesh. Based on the experiments, we set the value
of k1 as 4.5, k1 as 5:5; k3 as 0:65; k1 as 4; k2 as 4 and k3 as 325. Then
we will find that the tetrahedron elements are shown to be of good
quality based on the above method (for example in Fig. 3), i.e. the
dihedral angles have been constrained to range between 11� and
161� degrees approximately. At the same time, we can compute
the qualities of all tetrahedron elements using the following
equation.

Q ¼ 1� jG�Cj
R

G ¼ ðv1 þ v2 þ v3 þ v4Þ=4
ð20Þ

where Q is the quality coefficient, G is the geometric central coordi-
nate, v1;v2;v3;v4 are the four vertex coordinates of the tetrahe-
dron, R is the radius of the circumsphere of a tetrahedron passes
through all four of its vertices. The Q value close to 1 represents
higher mesh quality (1 means equilateral tetrahedron) and the
value Q close to 0 means nearly degenerated element.

In addition, compared with the finite difference method on 3D
volumetric grid (Jones et al., 2000), our work may achieved better
numerical accuracy because of the tetrahedral mesh and the volu-
metric Laplace–Beltrami operator (Wang et al., 2004a). In the fol-
lowing, we will do a direct comparison against the finite
difference method in 3D volumetric grid.

4.2. Comparison with finite difference method

4.2.1. Error analysis about the curve surface fitting
In order to show the defect of 3D volumetric grid which cannot

precisely characterize the curved surfaces at the limited resolution,
a direct numerical error comparison was conducted on the differ-
ence about fitting smooth curved surface between the cubic mesh
and the tetrahedral mesh.

In our experiments, we use an ideal spherical shell whose radius
is 1 and center coordinate is (0;0;0). We define the mean absolute
errors as the mean relative errors of the digitalized sphere and the
ideal sphere based on the following equation,

Error ¼
Pn

i¼0jð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i þ z2

i

q
� 1Þj

n
ð21Þ

where n indicates the point number on the boundary of the digital-
ized sphere. Because the ideal sphere radius equals to 1, the mean
relative error is also the mean absolute error in this special case.

First, Using the cubes of the different sizes to construct an ideal
solid sphere (R ¼ 1), we can get the cubic meshes of the different
resolutions. Then the mean absolute errors can be computed
between the boundary extracted from the cubic mesh and the ideal
spherical surface. The results can be found in Fig. 13, from left to
right, the numbers of the cubes which are used to generate the
solid sphere are 141;896;1;095;944 and 8;766;208 respectively.
And the resolutions of the three cubic meshes are 0:0309;0:0156
and 0.0078 from the left to the right. The mean absolute errors



Fig. 13. The boundaries extracted from the cubic meshes with the different cube sizes.
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between the spherical surface extracted from the three cubic
meshes and the ideal spherical surface are 0:0146;0:0060 and
0.0030 respectively. Although the degree for fitting the spherical
surface is improved approximately by factor 2, the number of the
cubes is increasing approximately by factor 10 and the discontinu-
ity phenomenon still exists. At the same time, this will lead to the
increasing cost for the thickness computation. In contrast, the tet-
rahedral meshes generated by the different resolutions are shown
in Fig. 14, the maximum tetrahedron volumes are 0:1;0:01 and
0.001 from the left to the right. The numbers of the tetrahedron
in the three meshes are 12;885;12;933 and 15;846 and the mean
absolute errors between the spherical surface extracted from the
three tetrahedral meshes and the ideal spherical surface are
2:4061� 10�7;2:4053� 10�7 and 2:4050� 10�7 respectively.
4.2.2. Comparison of the thickness measurement
As we know, the streamline from the methods (Jones et al.,

2000; Chung et al., 2007) is obtained by solving laplace equation

under the condition of the equilibrium state, (i.e. DMf ðx; tÞ ¼ @f ðx;tÞ
@t ,

the right of the equation equal to zero). When we move from a ver-
tex point on the outer surface to the next point according to the
computed gradient direction and the step length, the next point
usually is not a vertex of the digitalized mesh. Then the tempera-
ture value of this point needs to be interpolated. Whatever interpo-
lation method, such as the nearest neighbor interpolation, linear
interpolation or the cubic spline interpolation, there usually intro-
duce digital errors and result in some accumulated errors for the
gradient direction estimation. As a result, the final computed
streamlines will be generally different from the ground truth gra-
dient lines. Moreover, the region between the object boundary
and the spherical surface is constructed by the cubic voxel. Then
the accuracy of tracing the gradient of the equilibrium state is
decreased to some extent. In addition, the method needs the binary
object whose shape is close to either star-shape or convex. For
shapes with a more complex structure, the gradient lines that cor-
responding to neighboring nodes on the surface will fall within one
voxel in the volume, creating numerical singularities in mapping to
the sphere. In contrast, our streamline is tracing the maximum
Fig. 14. The boundaries extracted from the tetrah
transition probability from the specific point x on an isothermal
surface to a different point y on the next isothermal surface. The
mean absolute Eq. (5) is considering both the transition probability
and more intrinsic geometry structures in the tetrahedron mesh.
Because the Eq. (5) contains the eigenvalues and eigenfunctions
of the Laplace–Beltrami operator. The following is the details of
the comparisons. First, We reconstructed a 3D voxel-based mesh
from the boundaries of Fig. 8(a) based on the 3D voxel grid. The
boundaries contain an outer boundary which is a cubic surface
and an inner boundary which is a sphere surface. At first, we gen-
erated the 3D voxel-based volumetric mesh through the binvox
software. The mesh contains 31757 uniform cubic voxels compar-
ison to the tetrahedral mesh in Fig. 8 which contains 12,360 tetra-
hedrons. Fig. 15(a) shows the inner boundary (spherical surface) in
Fig. 8(a) and Fig. 15(b) shows the generated 3D voxel grid mesh of
(a). Though the number of the cubic voxels is bigger than the num-
ber of the tetrahedrons, we can see that the boundary mesh in (b)
is not as smooth as the one in (a). The slice of the total boundaries
of the 3D volumetric grid mesh is shown in Fig. 15(c). The inner
boundary of spherical surface is not smooth which can lead to
the inaccurate thickness measurement. Also so many cubic voxels
will lead to increase the complexity of the finite difference
computation.

Then we set the temperature value of all the outer surfaces as 1�

and inner surfaces as 0�. With the volumetric finite difference
method, the temperature distribution under the condition of ther-
mal equilibrium and the isothermal surfaces in the mesh can be
acquired. The isothermal surfaces are shown in Fig. 16 from left
to right, the temperatures are 0:8�;0:7�; 0:5� and 0:4� respectively.
Compared with Fig. 8, the isothermal surfaces from the 3D voxel
grid mesh are coarser than the tetrahedral mesh. We found that
there are some circular discontinuity regions in every surface.
These phenomena are caused by the discontinuity of the internal
spherical surface as shown in Fig. 15(b). Next we compute the
streamline from the specific sampling point on the outer surface
m to the point on the inner surface by the finite difference method.
Fig. 15(a) shows the color map of the computed thickness values.
The phenomenon of discontinuity still exists. When the resolution
is increased, this phenomenon will be somewhat reduced.
edral meshes with the different resolutions.



Fig. 15. The constructed 3D volumetric grid mesh from the inner boundary of Fig. 8(a). Fig. 15(a) shows the spherical boundary and (b) shows the generated 3D voxel grid
mesh of Fig. 15(a). (c) shows a slice of the total boundaries of the 3D volumetric grid mesh. (d) shows the color map of the computed thickness values based on the finite
difference method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. The isothermal surfaces of 0:8�;0:7�;0:5� and 0:4� are shown from left to right.
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However, this will bring the high computational complexity. The
key reason is that the generated volumetric mesh based on the
3D voxel grid is difficult to fit the original smooth curved surface.
While in Fig. 8(d), the color is changing gradually and the phenom-
enon of discontinuity in Fig. 15(d) is disappear.

In addition, we use the same outer and inner surface as shown
in Fig. 8(a) to reconstruct the new tetrahedral mesh. The difference
between the two tetrahedral meshes is that the tetrahedral maxvol
in Fig. 17(a) is 0.3 and 0.6 in Fig. 8(a). So the tetrahedral number in
Fig. 17(a) is 21379 and the node number is 6581, the tetrahedral
number in Fig. 8(a) is 12360 and the node number is 4252. We
choose the same step size as 0.01 and the thickness measurement
results is shown in Fig. 17(b). Because the number and position of
the outer surface points in Fig. 17(b) is different from Fig. 8(d). The
thickness colormap is somewhat difference. In order to compare
the absolute thickness difference at the same point position
between the two measurement results, we get the thickness
results according to the points on the outer surface in Fig. 8(d)
by interpolating algorithm to Fig. 17(b). Then the thickness
differences between the two surface points are shown in
Fig. 17(c). There are 633 points in total on the outer surface, about
240 points have the difference, and the maximum of the thickness
difference is 0.018. As the interpolation error is excluded, the thick-
ness measurement algorithm is robust under the condition of the
different resolution.

In additon, the resolution of the tetrahedral mesh and the time
interval of the heat transition will affect the measurement accu-
racy. In the following, we will discuss the influence of the two fac-
tors on these cortical thickness estimation results.

4.3. Influence of the tetrahedral mesh resolution

In our experiments, we formed the tetrahedrons from the cubic
voxels with an edge length of 0.2 mm. Similar to classical numeri-
cal analysis of finite element methods (e.g. Tsukerman, 1998), the
resolution of the tetrahedral mesh will affect the numerical accu-
racy. Here we adjusted the cubic edge length from 0.15 mm to
0.35 mm. Statistical p-map results with the heat diffusion



Fig. 17. The thickness measurement comparison between the different tetrahedral resolution. (a) is the reconstructed tetrahedral mesh with higher resolution, (b) is the
thickness measurement result, and (c) is the thickness differences between the two surface of the different resolution.

Fig. 18. Statistical p-map results with the heat diffusion thickness measures of different cubic edge length on surface templates representing group differences among two
different groups (AD-CTL), of AD subjects (N = 51) and control subjects (N = 55). Non-blue colors show vertices with statistical differences, uncorrected. (a)–(e) are the results
of cubic edge length of 0:15;0:20;0:25;0:30 and 0.35 mm on group difference between AD and control, respectively. The cumulative distributions of p-values comparison for
difference detected between AD and CTL are shown in (f). The q-values for these maps are shown in Table 3. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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thickness measures of different cubic edge length on surface tem-
plates representing group differences among two different groups
(AD-CTL) are shown in Fig. 18. Non-blue colors show vertices with
statistical differences, uncorrected. Fig. 18(a)–(e) are the results of
cubic edge length of 0:15; 0:20;0:25;0:30 and 0.35 mm on group
difference between AD and control, respectively. The cumulative
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distributions of p-values comparison for difference detected
between AD and CTL are shown in Fig. 18(f). Their q-values are
shown in Table 3. In a total of 5 comparisons, the heat diffusion
method of cubic edge length with 0.15 and 0.20 mm achieved
the highest two q-values. Undoubtedly, the higher the mesh reso-
lution can increase the thickness estimation accuracy, then
improve the statistical power. However, the computational com-
plexity will also increase. Considering from the perspectives of
computational accuracy and efficiency, we choose the cubic edge
length as 0.20 mm.

From the Fig. 18, we also find that the significance differences of
the different cubic edge length are mainly concentrated in the
highly folding area. It is reasonable because these thin areas are
modeled better only with refined tetrahedral meshes which consist
of shorter cubic lengths.

4.4. Influence of the heat transition time interval

The ltðx; yÞ of the specific point x on an isothermal surface m to
the different point y on the next isothermal surface m0 at the same
time interval has been computed in Section 3.1 (Fig. 7). At that
time we choose the time interval as 0.02. As we know, the ltðx; yÞ
can also be considered as the amount of heat that is transferred
from x to y in time t given a unit heat source at x. Based on the ther-
modynamic conduction law, the heat of a specific point on the
higher temperature isosurface will spread to the point on the lower
temperature isosurface along the gradient direction with the larg-
est probability. The time factor t decides the scope of the heat
Table 3
The FDR corrected p-values (q-values) comparison with different cubic edge length
selections. With the refined cubic edge length, the group difference between AD and
healthy control groups demonstrates increased statistical power. The p-maps and CDF
are shown in Fig. 18.

Cubic edge length (mm) q-value

0.15 0.03857
0.20 0.03850
0.25 0.03756
0.30 0.03652
0.35 0.03509

Fig. 19. Influence effect of heat transfer time interval. (a) shows the relationships bet
temperature isosurface (0:95�) to the points on the lower temperature (0:90�) and the an
the different heat transfer time intervals. (b) shows the heat acceptance results on the low
the time interval of 0.02 and 0.03, the bottom left and right are the time interval of 0.04 a
is referred to the web version of this article.)
acceptance on the lower temperature isosurface, i.e. the smaller
the time, the smaller the range of heat propagation. So the choice
of heat transition time interval can influence the heat gradient
direction and then the thickness estimation accuracy.

The heat transfer probabilities from the specific point on the
higher temperature 0:95� to the lower temperature isosurface
0:90� within the different time interval are shown in Fig. 19(a).
With the increased time scale, the heat acceptance difference
between the point along the gradient direction and other points
around gradually decreases. When the time factor is taken as 0.2,
the heat acceptance difference between the point along the gradi-
ent direction and other points around is equal to zero. Then it is
difficult to find the largest probability direction which represents
the gradient direction. Fig. 19(b) shows the heat acceptance results
on the lower temperature isosurface with the different time inter-
val. The top left and right are the time interval of 0.02 and 0.03, the
bottom left and right are the time interval of 0.04 and 0.2. Accord-
ing to Sun et al. (2009), we choose the minimum time interval as

tmin ¼ absð4 logð10Þ=kmaxÞ ð22Þ

where the kmax are the chosen maximum eigenvalues of the
Laplace–Beltrami operator. In this paper, in order to obtain the
accurate temperature field gradient line, we choose the minimum
time interval as 0.02.

In medical imaging field, there are various research involving
the thickness estimation, e.g. 3D cell shape analysis
(Nandakumar et al., 2011; Nandakumar et al., 2012), 3D corpus
collosum thickness estimation (Adamson et al., 2011; Xu et al.,
2013b), etc. The proposed algorithm is very general and may be
applied to compute any biological structure thickness as long as
there are two well-defined boundary surfaces. Starting from our
prior work on these techniques (Wang et al., 2004a), here we show
that the proposed heat kernel method can be adopted to compute
the cortical thickness accurately. Besides the computational effi-
cacy and efficiency, our method also enjoys numerous other
advantages of the spectral analysis, e.g., it is physically natural
and its computation is numerically stable. We hope our work can
provide some practical experience and inspire more interest in
3D heat kernel related research in medical imaging analysis
society.
ween normalized heat transfer probabilities from the specific point on the higher
gle deviates from the gradient direction. The curves with different colors represent
er temperature isosurface with the different time interval. The top left and right are

nd 0.2. (For interpretation of the references to colour in this figure legend, the reader
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5. Conclusion

In this paper, we present a heat kernel based thickness estima-
tion algorithm which can improve the computational efficiency
and accuracy for in vivo MR image cortical thickness estimation.
Through establishing the tetrahedral mesh matching with the
MRI by the harmonic energy function, we can reduce the limited
grid resolution effects. At the same time, we introduce the heat
kernel to the streamline analysis to determine the heat transferring
gradient direction. With the proposed univariate statistics, we
studied differences between three diagnostic groups: AD, MCI
and control. We compared our method with the FreeSurfer soft-
ware, the empirical results demonstrated the potential that the
heat diffusion method may achieve greater statistical power than
the FreeSurfer software in a total of three comparisons. In the
future, we plan to apply our heat kernel diffusion algorithm to
depict the geometrical characteristics of the local and global corti-
cal regions and apply them in our ongoing preclinical AD research
(Caselli and Reiman, 2013; Langbaum et al., 2013).
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