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Abstract
We propose a simple strategy to improve automatic medical image segmentation. The key idea is
that without deep understanding of a segmentation method, we can still improve its performance
by directly calibrating its results with respect to manual segmentation. We formulate the
calibration process as a bias correction problem, which is addressed by machine learning using
training data. We apply this methodology on three segmentation problems/methods and show
significant improvements for all of them.

1 Introduction
Automatic image segmentation plays an important role in medical applications. Due to the
limitations of the imaging process and the difficulty of transferring manual segmentation
protocols into algorithms, automatic segmentation is challenging. We show that without
deeply understanding the limitations of an existing segmentation method, one easy/
straightforward way to make improvements is through a calibration process to directly
transfer its results closer to manual segmentations. To this end, we propose to use machine
learning techniques to correct segmentation errors.

From a theoretical perspective, the segmentation errors produced by a segmentation
algorithm can be categorized into two classes: 1) random errors and 2) consistent bias. The
random errors are caused by random effects, e.g. imaging noises or random anatomical
variations. They can be reduced by averaging techniques such as multi-atlas based
segmentation. In this paper, we focus on addressing the other type of errors, consistent bias3.
Bias are systematic errors mostly caused by mistranslating manual segmentation protocols
into the criteria followed by the automatic segmentation method. By definition, bias occurs
consistently across different segmentation trials when certain conditions are met. For
example, a manual segmentation protocol may assign a specific label to a voxel if and only
if a certain criterion, e.g. the voxels next to it all have low intensities, is met. However,
because of the translation error an automatic method may follow a slightly different
criterion, e.g. the average intensity of its neighbors is low. In this example, the automatic
segmentation method makes errors whenever a voxel’s neighbors have a low average
intensity but have at least one bright voxel.

★This work was supported by the Penn-Pfizer Alliance grant 10295 (PY) and NIH awards K25 AG027785, R21 NS061111, R01
AG010897, and P01 AG12435.
3The meaning of bias in this paper is different from its common use to describe MRI field inhomogeneity. By bias, we mean those
errors in the initial segmentation that are systematic, i.e., follow a pattern from training subject to training subject.
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Since bias occurs consistently, it is feasible to detect and correct them. Although it may be
difficult to figure out the exact cause behind each bias, it is relatively easy to capture the
patterns that are strongly correlated to the bias. Hence, one can detect bias via capturing the
correlated patterns. For example, the example above demonstrates a simple bias whose
correlated appearance pattern, i.e. a voxel’s neighbors have a low average intensity but have
at least one bright voxel, can be learned using training images. In reality, the bias may
appear in more complex and less intuitive patterns. Although it may be difficult for the
human to identify such bias, most machine learning techniques are capable of providing
satisfactory solutions.

In related work, Morra et al [3] use machine learning to directly learn how to perform
segmentation. During training, they use intermediate classification results to improve the
classifier’s performance. The main difference with our method is that they do not use any
other segmentation methods and train the classifier from scratch. By contrast, our
contribution lies in proposing the idea of improving the performance of existing
segmentation algorithms relative to a specific manual segmentation protocol via learning-
based bias correction. Our approach takes full advantage of other segmentation algorithms to
simplify learning. To validate our method, we apply it to three segmentation problems/
methods and show significant improvements for all of them.

2 Learning-based explicit bias correction (EBC)
To improve segmentation results produced by a segmentation method, we propose a two-
step procedure for bias correction (see Fig. 1): 1) bias detection that finds the mislabeled
voxels produced by the host segmentation method and 2) bias correction that corrects the
mislabeled voxels found by bias detection.

2.1 Bias detection as a binary classification problem
Given a segmentation produced by a host segmentation method, our goal is to identify
mislabeled voxels. With manual segmentations, it is straightforward to formulate the bias
detection problem as a binary classification problem. For each label we train one classifier
using all voxels assigned to this label to separate correctly labeled voxels from mislabeled.

To train classifiers, we use AdaBoost [2]. For effective learning, abundant informative
features are crucial. The simplest feature is the raw image appearance, i.e. pixel-wise
intensities. For more discriminative representations, textures are often used as well. One
common approach to construct texture features is to use an over-complete description for
each voxel and its neighborhood by convolving the image with a filter bank. In our
experiment, for more efficiency we use the following features. We denote AΔX(i) = I(Xi +
ΔX) − Ī to be the appearance feature for voxel i with coordinate Xi at the relative location
ΔX. I is intensity. To compensate for different intensity ranges, we normalize the intensities
by the average intensity of the region of interest (ROI), Ī. To train a bias detection classifier
for a label, the ROI contains all voxels assigned to the label by the host method (see
experiments). More robust features with scale and rotation invariance can be used as well.
Since the brain image data used in our experiments all have similar scales and orientations,
we use these simple features.

Low level texture features can capture image related bias, e.g. the host segmentation method
always makes errors when a certain appearance pattern occurs. To capture non-image related
bias, e.g. the host method always shifts the segmentation a few voxels, we include the
segmentation produced by the host segmentation method for learning. We denote these
features by LΔX(i) = s(Xi + ΔX), where s is the segmentation produced by the host method.
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To include spatial information, we use the coordinate feature SX(i) = Xi − X̄, where X̄ are the
average coordinates of the ROI. To enhance the spatial correlation, we include the joint
feature obtained by multiplying spatial features with appearance and label features, i.e.
AΔX(i)SX(i) and LΔX(i)SX(i). Overall, we use ~ 1000 features in all experiments.

For each feature, a weak classifier is constructed using a simple threshold. AdaBoost
combines these weak classifiers into a single strong classifier.

2.2 Learning-based bias correction
Bias detection outputs candidate mislabeled voxels. We need to reassign labels to them.
Again, we use a learning-based method. Given mislabeled voxels in the initial
segmentations, applying the same learning algorithm with the same features used for bias
detection we train a binary classifier for each label to separate it from others. To assign a
new label to a candidate mislabeled voxel detected by bias detection, we re-evaluate the
voxel by each bias correction classifier and assign the label whose corresponding classifier
gives the strongest response to the voxel. Since bias correction is only for detected candidate
mislabeled voxels, the computational cost is much lower than re-evaluating the whole image
when the host segmentation method can produce accurate results.

2.3 Variants of the learning algorithm
In our method, we explicitly perform bias detection and bias correction. This strategy is
efficient because for bias correction only the potentially mislabeled voxels need to be
relabeled. One variant of our bias correction method is that we skip the bias detection step
and directly perform bias correction on the initial segmentation. Instead of only using
mislabeled voxels, we use all voxels in ROI for training. We call this method implicit bias
correction (IBC). Note that IBC has higher computational complexity for both training and
testing. IBC is closely related to [3], where instead of segmentation results produced by
other segmentation methods the segmentation labels produced by the learning algorithm
itself are included in the learning process.

One way to view the segmentation feature produced by other host segmentation methods is
that like the low level texture filters any host segmentation method can be considered as a
high level, task specific filter. If the host segmentation method works reasonably well, i.e.
better than random guesses, the produced segmentation provides useful information for the
segmentation task. To demonstrate the usefulness of host segmentation methods for
learning, we compare with a variant of IBC that each classifier is learned without using
segmentation results produced by any other segmentation methods. We call this variant the
direct learning (DL) approach. So given training images and their manual segmentations, we
train one classifier for each label to separate voxels belonging to this label from other
voxels. The features used for DL, is only image and spatial features. For IBC and DL, the
ROI is the whole segmentation produced by the host method plus some dilation. Dilation is
necessary only when the background label needs to be corrected (see experiments for
examples).

3 Experiments
We apply our methods to three segmentation problems. The problems are image registration
based hippocampal segmentation, whole brain extraction using BET [7] and brain tissue
segmentation using FAST [8].
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3.1 Hippocampal segmentation
The hippocampus plays an important role in memory function [6]. Macroscopic changes in
brain anatomy, detected and quantified by magnetic resonance imaging (MRI), consistently
have been shown to be highly predictive of AD pathology and highly sensitive to AD
progression [5]. Compared to clinical measures and neuropsychological testing, MRI-
derived biomarkers require an order of magnitude smaller cohort size to detect disease-
related changes over time. Accordingly, automatic hippocampus segmentation from MR
images has been widely studied e.g. [1, 3, 4]. In this section, we test our methods with one
semi-automatic hippocampal segmentation method [4].

We use the data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
www.loni.ucla.edu/ADNI). Our study is conducted using only 3 T MRI and only includes
data from mild cognitive impairment (MCI) patients and controls. Overall, the data set
contains 139 images. The image has 1.22 × 1.03 mm in plane resolution and 0.99 mm slice
thickness. For cross validation evaluation, 70 subjects are randomly selected for training,
and the remaining 69 for testing. The reported results are the average of 10 cross-validation
experiments.

A landmark-guided atlas-based segmentation method [4] is applied to segment the
hippocampi for each image. This method is designed to minimize user efforts while
maximizing the benefit of human input to the algorithm. It requires a user to approximately
label six key landmarks of the hippocampus through a user-interface. The partial labeling is
combined with image similarity terms to guide volumetric diffeomorphic normalization
between an individual brain and an unbiased template, with fully labeled hippocampi. It is
shown that such simple human interactions help increase minimum performance levels
relative to fully-automatic segmentation algorithms and provides high inter-rater reliability.

Whole hippocampal segmentation is a binary segmentation problem (we do experiemnts on
left side and right side separately). Once the mislabeled voxels are identified we can fix
them by simply switching their labels and vice versa. Hence, for the binary segmentation
problem EBC is equivalent to IBC.

Since the results produced by [4] are accurate, we define the ROI for bias correction to be
the initially segmented hippocampi plus one voxel dilation. On average, this ROI includes
99.5% hippocampal voxels. By contrast, the ROI obtained from the initial segmentation plus
two voxel dilation covers 99.9% hippocampal voxels but also includes significantly more
irrelevant voxels, which increases the chances for our bias correction to make mistakes.
Since DL does not use the results produced by [4], DL should take the whole image as ROI.
However, for direct comparison with our methods, we apply the same ROI for DL. Since the
ROI excludes significant non-hippocampus distracters, using ROI simplifies the learning
problem. Hence, in this experiment DL partially benefits from the results produced by [4].

On average, each hippocampus contains 1603 voxels. [4] produces 465 mislabeled voxels.
Note that the errors include hippocampal voxels mislabeled as background and background
voxels mislabeled as hippocampi. Our bias correction method achieved 35.7% fewer errors
(299 mislabeled voxels). Using the larger ROI, i.e. initial segmented hippocampi plus two
voxel dilation, results in slightly worse results of 305 mislabeled voxels. By contrast, DL
produces worse segmentations with 523 mislabeled voxels. Fig. 2 shows example
segmentation results. In terms of average Dice overlaps, [4], DL and IBC/EBC resulted in
0.862, 0.832 and 0.903 respectively.
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3.2 Brain extraction/segmentation in MR images
In this section, we test brain segmentation. The data set contains 18 T1-weighted MR brain
images and their manual segmentations, which are available at the Internet Brain
Segmentation Repository (IBSR). The manual segmentation contains labels for gray and
white matter and ventricles. These images have been positionally normalized into the
Talairach space (rotation only) and have been preprocessed by intensity inhomogeneity
correction routines. These images have the same slice thickness of 1.5 mm with three in
plane resolutions: eight have 0.94 × 0.94 mm; six have 1.0 × 1.0 mm; four have 0.84 × 0.84
mm.

Using this data, we test two methods: the Brain Extraction Tool (BET) [7], and the FMRIB’s
Automated Segmentation Tool (FAST) [8]. For cross validation evaluation, 9 subjects are
randomly selected for training, and the remaining 9 for testing. The results are the average of
10 cross-validation experiments.

Brain extraction—The BET algorithm is applied with the default parameter setting to
segment the images into brain and non-brain regions. Again, for this binary segmentation
problem EBC is equivalent to IBC. Since the BET algorithm is relatively accurate and most
segmentation errors are mislabeling background voxels as brain tissues, we define a ROI for
bias correction by performing a one-voxel dilation of the BET result, similar to how the ROI
was defined in the binary hippocampus segmentation experiment. On average, this ROI
covers 99.3% manually labeled brain. DL still partially benefits from BET’s results by using
the same ROI.

On average, each brain contains 9.7 × 105 voxels. BET produces 1.1 × 105 mislabeled
voxels. Our bias correction method achieved 29% fewer errors (8.0 × 104 mislabeled
voxels). By contrast, DL produces worse segmentations with 9.1 × 104 mislabeled voxels. In
terms of average Dice overlaps, BET, DL and IBC/EBC resulted in 0.948, 0.956 and 0.961
respectively.

Brain tissue segmentation—In this experiment, the FAST [8] algorithm is applied for
segmenting gray matter, white matter and cerebrospinal fluid (CSF) for all 18 subjects used
in the previous experiment. To apply FAST, the binary brain segmentation is assumed to be
provided.

Since the manual segmentation in IBSR merges CSF outside ventricles into gray matter (see
Fig. 4), the CSF produced by FAST that overlaps gray matter in manual segmentation is also
considered correct. For quantitative evaluations, we merge the CSF into gray matter for both
manual and automatic segmentation and compare the consistency of white matter and
merged gray matter. See Fig. 4 for segmentation examples.

Out of the average brain volume, 9.7 × 105 voxels, the FAST algorithm produces 8.9 × 104

mislabeled voxels. For EBC, the bias detection step achieved the

precision( ) of 92% with the recall( ) of 84%. The
bias correction step correctly classified 91% of the detected mislabeled voxels. Overall,
EBC achieved 21% fewer errors (7.0 × 104 mislabeled voxels). IBC achieved 17% fewer
errors (7.4 × 104 mislabeled voxels). Note that EBC outperforms IBC with even fewer
computational costs. By contrast, DL produces worse segmentations with 8.1 × 104

mislabeled voxels. Table 1 reports the average Dice overlaps. Like in the previous
experiments, our bias correction methods outperformed DL and the host segmentation
method.
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4 Discussion
Combining segmentations/methods has been proven to be a good strategy to improve
performance. One can view our bias correction as a combining method that integrates a pure
machine learning based segmentation method with the host segmentation method. One main
difference from previous combining methods is that the machine learning method can
automatically adapt itself through training to optimally combine with the host segmentation
method. As demonstrated in our experiments, as long as the machine learning algorithm uses
complementary information to the host segmentation methods the combined results
consistently outperform the host segmentation methods and the machine learning method
when applied separately. The information integration interpretation also suggests that using
the same machine learning algorithm used in bias correction to improve the results produced
by our bias correction may not give as much improvement because of the significant
information overlap. However, a learning method using different features or learning models
may still help.
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Fig. 1.
Flow chart of our explicit bias correction approach.
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Fig. 2.
Hippocampal segmentation. Left to right: original image, manual segmentation,
segmentation produced by [4], after bias correction.
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Fig. 3.
Brain extraction. Left to right: original image, manual brain extraction, initial brain
extraction by BET, after bias correction.
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Fig. 4.
Brain tissue segmentation. left to right: original image, manual, initial segmentation
produced by FAST, after bias correction by IBC, and EBC.
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Table 1

Brain tissue segmentation results in Dice overlap.

method FAST(Dice) DL(Dice) IBC(Dice) EBC(Dice)

gray 0.936 0.944 0.948 0.951

white 0.862 0.891 0.899 0.905
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