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Abstract

Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-
scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups,
accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce
population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and
diseased adult human populations, both developing and aging human populations, as well as non-human primates.
Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-
based approach that is guided by local intensity information and population-specific prior information learned from a set of
real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse
large-scale populations of ADNI dataset with over 800 subjects (55,90 years of age, multi-site, various diagnosis groups),
OASIS dataset with over 400 subjects (18,96 years of age, wide age range, various diagnosis groups), and NIH pediatrics
dataset with 150 subjects (5,18 years of age, multi-site, wide age range as a complementary age group to the adult
dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire
human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the
proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with
popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that
the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and
effectiveness.
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Introduction

Brain extraction (also known as skull stripping), is an important

preprocessing procedure in brain magnetic resonance (MR) image

analysis. It aims to remove non-brain tissues, such as skull, dura

and eyes, and retain the brain tissues, typically in a T1-weighted

brain MRI scan. Extraction of the brain in an MRI scan is a

difficult problem due to the complex nature of the brain image.

Especially, when applied to diverse large-scale datasets with

varying scanning parameters, different age and diagnostic groups,

many existing methods may only work well on certain datasets

with certain parameter settings and thus a tremendous amount of

human intervention is needed for parameter tuning across

datasets. Moreover, these ‘optimized’ parameters do not guarantee

satisfactory results. As the first component in most neuroimaging

processing pipelines, the accuracy of brain extraction is crucial to

many subsequent processing steps such as brain tissue segmenta-

tion, brain image registration, cortical surface reconstruction,

brain morphometry, and disease diagnosis [1,2,3,4,5]. For

example, incorrectly removing brain tissues could result in

under-estimation of the cortical thickness, whereas, incorrectly

retaining non-brain tissues might lead to over-estimation of the

cortical thickness [1,2,3]. It should be noted that over skull

stripping cannot be rectified in subsequent processing steps. Thus

an accurate and robust approach for the extraction of the brain

automatically and consistently is highly desirable especially for

diverse large-scale multi-site studies, such as the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset [6], Open Access

Series of Imaging Studies (OASIS) dataset [7], and NIH Pediatric

Database (NIHPD) [8], which could greatly reduce the need for
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intensive human intervention that is quite time-consuming and

may cause bias or inconsistency.

Numerous methods

[9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,-

30,31,32,33] have been proposed for brain extraction in last

several decades. Bomans et al. (1990) [10] presented a 3D

segmentation and reconstruction method for the anatomical

surface of MRI data, in which a 3D extension of the Marr-

Hildreth operator is used to detect the brain surface, and

morphological filters are also applied to improve the surface

definition. Other morphology-based method are also proposed

[9,11,12,13,14,15,16] following this direction. Kapur et al. (1996)

[13] presented a method that combines three existing techniques

from the computer vision literature: expectation maximization

segmentation, binary mathematical morphology, and active

contour models. Atkins and Mackiewich (1998) [11] integrate

the thresholding, morphological operations and ‘‘snakes’’ tech-

niques in a multistage process involving: the removal of the

background noise leaving a head mask; finding a rough outline of

the brain; and the refinement of the brain outline to obtain a final

mask. Lemieux et al. (1999) [14] adopt a more sophisticated

version, with each step carefully tuned to overcome a specific

problem. For example, they deal with thin strands by thresholding

at the gray matter level, followed by morphological opening and

connected component analysis. A surface-based method is also

introduced [22], which involves deforming a tessellated ellipsoidal

template into the shape of the inner surface of the skull, followed

by iterative deformation driven by intensity-based force and

curvature-based force. Hahn and Peitgen (2000) [19] proposed a

3D watershed transform algorithm, which combines with pre-

flooding to avoid over-segmentation. A popular method called

Brain Surface Extractor (BSE) is proposed by Shattuck et al. (2001)

[18], introducing anisotropic diffusion filtering as a denoising step

prior to edge detection, and mathematical morphological opera-

tions, for increased robustness. Another popular method, called

the Brain Extraction Tool (BET) [23], uses a deformable model

that evolves a surface to fit the brain boundary by application of a

set of locally adaptive forces, accounting for surface smoothness

and voxel intensity changes in the surface vicinity. Although

morphology-based methods can be effective, they generally

require some degree of user interaction and are sensitive to

scanning parameters as well as intensity inhomogeneities. For

surface-based methods, they are generally more robust and less

sensitive to image artifacts, and require less human interaction

[22,23].

More recently, Rehm et al. (2004) [20] proposed a method,

which incorporates atlas-based extraction via nonlinear warping,

intensity-threshold masking with connectivity constraints, and

edge-based masking with morphological operations. A hybrid

approach, called Hybrid Watershed Algorithm (HWA) [25] is

proposed, combining the watershed algorithm [19] with a

deformable-surface model using statistics of the surface curvature

and the distance of the surface to the center of gravity (COG) to

detect and correct inaccuracies in brain extraction. Meta methods

have been introduced to combine skull-stripping results from

different approaches to reduce susceptibility to bias or errors. For

instance, Rex et al. (2004) [28] combine results from brain

extraction algorithms such as BSE, BET, AFNI’s 3dIntracranial,

and HWA for better skull-stripping outcome. Chiverton et al.

(2007) [29] describe a novel automatic statistical morphology skull

stripping method, utilizing statistical techniques including fitting of

probabilistic functions and thresholding. Sadananthan et al. (2010)

[21] introduced a graph cuts based method, which utilizes

intensity thresholding followed by removal of narrow connection

using a graph theoretic image segmentation technique. Leung et

al. [27] utilize a multi-atlas based label propagation and label

fusion method to extract the brain. A brain extraction algorithm is

proposed in [26], combining elastic registration, tissue segmenta-

tion, and morphological techniques by a watershed-based

framework. Iglesias et al. (2011) [33] introduced a learning-based

brain extraction system called ROBEX, which combines a

discriminative random forest classifier and a generative point

distribution model. However, most of existing techniques do not

give consistently satisfactory results over a wide range of scan types

and neuroanatomies without some forms of manual intervention,

due to the presence of imaging artifacts, anatomical variability,

and contrast variation. Especially for methods relying on the

image intensity, their performance may be influenced by

numerous factors including signal inhomogeneities, stability of

system electronics, and the extent of neurodegeneration [2].

Suboptimal outcomes in these circumstances often require further

manual parameter adjustment for refining brain extraction results

across different datasets.

In this paper, we propose a population-specific prior-knowledge

guided deformable-surface-based framework for accurate and

robust brain extraction with applications to diverse populations.

Due to the complexity of the brain, methods that rely on intensity

information alone are relatively susceptible to local minima. For

more robust surface-deformation, population-specific probability

maps are employed to guide the skull-stripping process using

topological constraints and realistic shapes. This is complementary

to the local intensity information, which helps accurately localize

the brain boundary in different individuals, compensating for

inter-subject variations. The combination of all these pieces of

information compensates for the weaknesses of the individual

components and hence can help achieve better results. To achieve

this, we first build a population-specific brain probability map,

which encapsulates prior information gathered from a population

of real brain MR images by warping the manual extracted brains

of individual images to the atlas space. For good spatial

initialization, affine (FLIRT [34]) and nonlinear registration

(Demons [35]) are utilized to warp the atlas to the subject image.

The brain mask obtained from the binarized brain probability

map accompanying the atlas is warped to the subject image for

initial skull stripping. The brain probability map is further

employed to guide surface evolution, in combination with surface

geometry and intensity information, for refinement of the skull-

stripping result. In summary, our method involves an initial brain

extraction by co-registration of an atlas, followed by population-

specific prior-information guided surface deformation for localized

skull-stripping refinement.

A preliminary version of this work was presented as a

conference article in [36]. The current work is an extension of

the previous work. All results are new and were generated using

this new extended method. First, the proposed method is improved

and optimized by introducing population-specific probability maps

so that the method is applicable to diverse groups such as healthy

and diseased, developing and aging human populations, as well as

non-human primates. Specifically, for constructing the probability

map, a rescaling step based on the distance transform map is

further introduced to account for the inter-subject variation and

potential estimation inaccuracy due to the insufficient number of

training images. Second, the proposed method was extensively

evaluated on four diverse datasets, including ADNI, OASIS, NIH

pediatric dataset, and a rhesus macaque dataset. These datasets

cover almost the whole human life span and also nonhuman

primates. The consistently good performance of the proposed

method among the diverse groups of images demonstrates its

Brain Extraction on Humans and Non-Human Primates
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robustness and wide applicability. Third, besides Dice coefficient,

additional different metrics were employed for multi-faceted

performance evaluation of the proposed method, including false

positive and false negative spatial probability maps, mean

symmetric and maximal surface-to-surface distances. Extensive

evaluation of the parameter sensitivity is also included. Fourth,

comparisons were performed with other 7 popularly used state-of-

the-art methods, including BET, Two-pass BET, BET-B, BSE,

HWA, ROBEX, and AFNI. Experimental results indicate that the

proposed method significantly outperforms all compared methods,

with one fixed set of parameters for each dataset. On the contrary,

for all other methods, optimized parameters determined by grid

search were employed for each image. Details are provided in the

following sections.

Subjects and Data Acquisition

To extensively evaluate the proposed method, four diverse and

large-scale datasets: ADNI, OASIS, NIH pediatrics, and rhesus

macaque, were used for evaluation. Table 1 shows the

demographics and acquisition protocols for all four datasets. Here

we mainly focus on T1-weighted MR images, since T1-weighted

imaging is the most frequently used structural MRI modality and

is often used as the reference for other modalities in neuroimaging

studies [33].

ADNI
The Alzheimer’s Disease Neuroimaging Initiative (ADNI, www.

adni-info.org) includes more than 800 participants with an age

range of 55–90, recruited from over 50 sites across the U.S. and

Canada. The primary goal of ADNI is to determine whether

neuroimaging assessments can accurately measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s Disease

(AD). T1-weighted MRI scans of 835 participants were down-

loaded from the ADNI public website (http://www.loni.ucla.edu/

ADNI/). The downloaded data initially included 230 healthy

controls (HC), 406 patients with MCI, 199 patients with AD. The

baseline T1-weighted volumetric scans were used for this study.

Data was acquired from 1.5T GE, Philips, and Siemens MRI

scanners using a sagittal 3D magnetization prepared rapid

acquisition gradient echo (MP-RAGE) sequence [37]. Represen-

tative imaging parameters were TR = 2300 ms, TI = 1000 ms,

TE = 3.5 ms, flip angle = 8u, field of view (FoV) = 2406240 mm,

and 160 sagittal slices with a 1926192 matrix yielding a voxel

resolution of 1.2561.2561.2 mm3, or 160–180 sagittal slices with

a 2566256 matrix yielding a voxel resolution of

0.9460.9461.2 mm3 (scan parameters vary between sites, scanner

platforms, and software versions). Further details regarding the

ADNI MR imaging protocol can be found in Jack et al. (2008)

[37]. For consistency, all images were resampled to dimensions

25662566256 and resolution 16161 mm3. Nonparametric

nonuniform intensity normalization (N3) [38] was performed for

correction of intensity inhomogeneity. Manual skull stripping of all

the images was performed semi-automatically by an expert.

Specifically, for each image, an initial coarse brain mask was

generated using publicly available software packages: BET [23]

and BSE [18]. The mask was then manually edited with ITK-

SNAP [39] to ensure accurate skull removal. The expert checked

the whole brain slice-by-slice to rectify incorrectly segmented

regions, recovering over-segmented brain tissues and removing

non-brain tissues (e.g., dura). It took the expert around 6 months

to completely process all images. Since the initial masks were very

coarse and were significantly refined during manual editing, the

bias introduced by the software packages is minimal.

OASIS
The Open Access Series of Imaging Studies (OASIS, http://

www.oasis-brains.org/) is a project aimed at making MRI data sets

of the brain freely available to the scientific community and

facilitating future discoveries in basic and clinical neuroscience.

The cross-sectional MRI dataset of the OASIS project, including

young, middle-aged, non-demented and demented older adults, is

used here. This set consists of a cross-sectional collection of 416

subjects aged 18 to 96 years. 100 of the subjects over the age of 60

were clinically diagnosed to show very mild to moderate symptoms

of Alzheimer’s disease (AD). The T1-weighted scans were acquired

on a 1.5T Siemens Vision scanner with a MP-RAGE sequence,

TR/TE/TI/TD = 9.7 ms/4.0 ms/20 ms/200 ms, flip an-

gle = 10u, 128 sagittal 1.25 mm-thick-slices and a 2566256 matrix

yielding a voxel resolution of 1.061.061.25 mm3 [7]. All images

were resampled into 1 mm isotropic images with dimensions

17662086176. Intensity inhomogeneity correction was per-

formed for all images [7] using a parametric bias field correction

method described in [40]. The brain masks from OASIS were

constructed with an atlas-registration-based method and were

reviewed by human experts to ensure accuracy [7,33]. We further

divided the non-demented group into three age groups: young

adults (154 subjects; age range: 18,39 years), middle-aged adults

(66 subjects; age range: 40,60 years), elderly adults (96 subjects;

age range: 61–94 years). 100 subjects in the demented group (age

range: 62,96 years) were also investigated. This dataset consists of

scans from a highly diverse population with a wide age range as

Table 1. Demographics and acquisition protocols of all four datasets used in this study. Note that ND-Y, ND-M, and ND-E denote
young adults, middle-aged adults, and elderly adults in the non-demented group of the OASIS dataset, respectively.

Dataset ADNI OASIS NIHPD
Rhesus
Macaque

HC MCI AD All ND-Y ND-M ND-E Demented All

No. of Subjects 230 406 199 835 154 66 96 100 416 150 20

Age range (years) 55,90 18,39 40,60 61,94 62,96 18,96 5,18 24,30 (months)

Scanner GE/Philips/Siemens Siemens GE/Siemens Siemens

MR strength (T) 1.5 1.5 1.5 3.0

Modality T1 T1 T1 T1

Sequence MP-RAGE MP-RAGE SPGR MP-RAGE

doi:10.1371/journal.pone.0077810.t001
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well as different diagnosis groups, thus it is valuable to evaluate our

algorithm [33].

NIH Pediatric Database
NIH Pediatric Database (NIHPD) for the study of normal brain

development [8] is a multi-center imaging data collected at six

Pediatric Study Centers, using 1.5T GE or Siemens scanner. T1-

weighted Spoiled Gradient Recalled (SPGR) echo sequence was

performed on each participant, with 1 mm isotropic data acquired

sagittally from the entire head. Slice thickness was set to ,1.5 mm

for GE scanners due to their limit of 124 slices. The dataset is

publicly available at www.pediatricmri.nih.gov. 150 subjects were

randomly selected from this study with ages ranging from 5 to 18

years old. All the images were processed using an in-house

automated image processing pipeline by Montreal Neurological

Institute of McGill University [8]. Correction for image intensity

non-uniformity was performed firstly. The brain masks were

identified in native space, followed by manually checking and

editing for quality control. For consistency, all images were

resampled to the dimension of 25662566256 and resolution of

16161 mm3.

Rhesus Macaque
Twenty rhesus macaques aged 24–30 months were included in

this study. All monkeys were healthy with no known pathological

conditions. These monkeys were born and housed at the National

Institutes of Health Animal Center in Poolesville, Maryland. They

were raised together in a large social group including adult,

juvenile, and infant monkeys, which allowed visual, auditory,

somatosensory, and social interactions with familiar animals.

Animals lived in indoor-outdoor pens composed of welded

galvanized steel mesh connected by guillotine doors [41]. The

indoor-outdoor cages were equipped with a variety of climbing

and perch substrates and toys. Monkeys were fed PurinaTM High

Protein Monkey Chow and received water ad libitum. Supple-

mental fresh fruits, vegetables, sunflower seeds and PrimatreatsTM

were provided twice daily. The health of each animal was

monitored daily by the researchers and the animal care staff, and

was checked twice daily by the veterinarians. Protocols were

approved by the Institutional Animal Care and Use Committee

(IACUC) of the National Institute on Alcohol Abuse and

Alcoholism, the National Institute on Drug Abuse, the National

Institute of Child Health and Human Development, and National

Institutes of Health and Human Services.

T1-weighted MR brain images were acquired using a 3.0 T

scanner (Allegra; Siemens Medical Solutions, Inc, Malvern,

Pennsylvania), with the following parameters: repetition time/

echo time/inversion time, 2500/3.49/1000 ms; 1 slab of 224

sections, 0.6 mm section thickness, 0.3 mm spacing, 8u flip angle,

2566256 pixel acquisition matrix, with the resolution

0.3960.3960.6 mm3. The images were resampled to the resolu-

tion of 0.3960.3960.39 mm3, and all images were oriented in a

standardized oblique plane to eliminate any bias in section angle.

In the standardized orientation, the trans-axial plane was parallel

to the anteroposterior commissures line and perpendicular to the

inter-hemispheric fissure. A threshold-based region-growing algo-

rithm was used to outline the brain in each axial section, following

with manual editing for accurately excluding the skull and dura.

The above processing was performed with Analyze 7.5 (Biomed-

ical Imaging Resource, Mayo Foundation, Rochester, Minnesota).

Methods

Fig. 1 illustrates the different stages of the proposed brain

extraction method. First, a brain probability map (Fig. 1b and

Fig. 4), which is constructed by warping a set of real brain MR

images along with their manually delineated brain masks to the

template space, is used to mask the original with-skull image

(Fig. 1a) for approximate skull-stripping (Fig. 1c) and surface

initialization. This is followed by a refinement with a deformable

surface, guided by the brain probability map. The initial surface

(Fig. 1d) is first constructed according to the radius and center of

gravity (COG) estimated based on the approximately skull-

stripped image. Then the surface evolves toward the brain

boundary gradually driven by the intensity-based force, under

the guidance of the probability map (Fig. 1e). Finally the brain

boundary is located and the brain extraction result is obtained

(Fig. 1f). It should be noted that the terms ‘‘atlas’’ and ‘‘template’’

are used interchangeably in this paper.

Figure 1. Illustration of the proposed method. From left to right: (a) the original with-skull image; (b) the original with-skull image, with the
probability map overlaid; (c) the initial brain extraction result; (d) the initial surface shown in red; (e) the intermediate surface generated as
deformation progresses; (f) the final surface.
doi:10.1371/journal.pone.0077810.g001
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3.1 Initialization and Parameter Estimation
Given a subject image, a template image is first registered (affine

registration by FLIRT followed by nonlinear registration by

Demons) to the subject image and then the brain probability map

accompanying the template (binarized with the probability greater

than 0) is used to mask the target image for approximate brain

extraction, to facilitate more accurate parameter estimation and

better positioning of the initial deformable surface. Specifically, for

the human datasets, the ICBM (International Consortium for

Brain Mapping) high-resolution single subject template (with skull)

[42] is used. For the non-human primate dataset, a representative

subject is selected as the template. The details of constructing the

brain probability map are described in the Section 3.2.2. After

obtaining the approximately skull-stripping result, it is further

refined in the following deformable-surface-based step.

The approximately skull-stripped brain images, where most of

the skull and the scalp are removed, are used to estimate a set of

parameters which will be used in the following deformable-

surface-based step, such as image center, intensity minimum Gmin,

the intensity threshold Gs that separates brain and non-brain

tissues, and the median intensity Gmed. Note that BET [23]

estimates these parameters from the raw brain image and is hence

more susceptible to distraction caused by non-brain tissues such as

the neck. In contrast, these parameters are estimated more

accurately in our method with the approximately skull-stripped

image, which will benefit the initialization of the deformable

surface to avoid local minima and suboptimal solutions.

Inspired by the work of Smith [23], the image intensity

minimum Gmin and maximum Gmax are first estimated from the

2nd and 98th percentiles of the image intensity distribution. Gs, a

threshold for roughly separating the brain matter and background,

is then defined as Gs~0:9Gminz0:1Gmax. All voxels with

intensities between Gs and Gmax are regarded as brain/head

voxels and are hence used as the mass to weight the positions of

the voxels for the calculation of the center of gravity (COG). By

regarding these voxels as forming a spherical volume, we can

estimate the radius of the brain, which is used to initialize the brain

surface model. The median intensity Gmed of the brain is

calculated from all voxels within the sphere.

With above estimated parameters, the brain surface is modeled

by a mesh tessellated using connected triangles [23]. Specifically, a

tessellated sphere for the initial model is generated by starting with

an icosahedron and further iteratively subdividing each triangle

into four smaller triangles. The distance from the center of the

sphere to each vertex is adjusted to make the surface as spherical

as possible. The initial surface is located at the half of the radius

from the COG estimated, with a total of 2562 vertices and 5120

triangles.

3.2 Brain Extraction based on Deformable Surface
From the initial position, the surface grows gradually to the

target position for one vertex at a time, driven by the following

forces. Firstly the intensity-based force obtained from the image

intensity information in the surface vicinity is the main force

driving surface evolution; secondly the population-specific prob-

ability-map-guided force obtained from the warped brain prob-

ability map is used to guide the surface evolution; thirdly the

smoothness-constrained force is also appended for uniform within-

surface vertex spacing and surface smoothness. Each force will be

detailed in the following sections one by one.

3.2.1 Intensity-based Force
The intensity-based force acts along the local surface normal. It

accounts for voxel intensity changes in the surface vicinity to force

the surface model to move towards the real brain surface.

Following Dale and Smith’s work [22,23], the local minimum

intensity bmin is defined as bmin~max(Gmin,min(Gmed,b(0),b(1),
b(2),:::,b(l),:::,b(S1))), and the local maximum intensity bmax is

computed as bmax~min(Gmed,max(Gs,b(0),b(1),b(2),:::,b(l),
:::,b(S2))). This is achieved by searching along a line that starts

from the current vertex and points inwards to the brain along the

normal direction as illustrated in Fig. 2. Here S1 and S2 represent

for the spatial search ranges pertaining to the minimum and

maximum intensities respectively. And b(l) is the intensity of the

voxel on the line with l millimeters (mm) away from the current

vertex. The distance searched for bmax should be long enough to

reach the deep sulci and the white matter; on the other hand, the

distance searched for bmin should also be long enough so that the

sampling line reaches the CSF when the evolving contour passes

the brain surface [24]. Typically, S1 is set to 20 mm and S2~S1=2
(this ratio is empirically optimized in BET [23]). As described in

Section 3.1, Gmin, Gmed, and Gs are estimated according to the

intensity distribution of the initial skull-stripped brain image. Note

that bmin is limited between Gmin and Gmed; and bmax is limited

between Gmed and Gs. This is to help avoid outlier voxels with

intensities that are too dark or too bright.

Gf , the locally estimated upper threshold of CSF, is a fraction

that lies on the way between Gmin and the local maximum

intensity bmax. It is defined as:

Gf ~f � bmaxz(1{f ) � Gmin ð1Þ

where the parameter f is called the fractional intensity threshold and

falls between the range of 0 and 1. This threshold is used to

distinguish between brain and non-brain tissues.

Thus the intensity-based force derived from the image intensity

information in the surface vicinity is defined as:

F1~m � (bmin{Gf )n ð2Þ

Here n is the outward-oriented surface normal at the current

vertex, and m~2=(bmax{Gmin) is the normalization term that

restricts F1k k in a certain range. The direction of surface evolution

is dependent on (bmin{Gf ). When bmin is larger than Gf,

indicating that the current vertex is still within the brain, F1 will

attempt to drive the current vertex to move outwards the true

brain boundary. When bmin is smaller than Gf, indicating that the

current vertex has passed the CSF, F1 will act in the opposite

direction, forcing the current vertex to move inwards.

3.2.2 Probability Map Guided Force
First, we introduce the construction of the population-

specific brain probability map. To better account for the

Figure 2. Searching for locally minimal and maximal intensities.
doi:10.1371/journal.pone.0077810.g002
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intrinsic characteristics of different diagnostic or age groups, we

construct the probability map for each specific group separately.

For each specific group, the template image is aligned onto a set of

training images (with skulls) first linearly (FLIRT, DOF = 12) [34]

and then non-linearly (Demons) [35], respectively. Then the

manually delineated brain masks of the training images are

warped to the template space using the corresponding inverse

transformations. The brain probability map, which indicates the

likelihood of each voxel of belonging to a part of the brain, is

constructed from the warped manually skull-stripped images

(training images). It is worth noting that Demons registration

method works especially well in the image regions with clear

intensity changes. In a T1-weighted MR image, the brain

boundary appears as a surface with low cerebrospinal fluid

(CSF) level intensity, compared with the gray matter and the skull,

thus providing a good contrast for alignment.

From the aligned brain masks, we evaluate the probability of

each voxel belonging to the brain by computing the fraction of

brain masks that consider this voxel as a part of the brain. For each

voxel (x,y,z), its probability is calculated as:

p(x,y,z)~

PN
n~1

Maskn(x,y,z)

N
ð3Þ

where N is the total number of warped brain masks and Maskn is

the n-th brain mask (1 for brain tissues and 0 for non-brain tissues).

The probability map has a value of 1 for the majority parts of the

brain, except the boundaries where the voxel memberships are

ambiguous. This probability map is warped onto the target image

for initial brain extraction (using the binarized probability map)

Figure 3. 3D views of the rescaling process of the brain probability map.
doi:10.1371/journal.pone.0077810.g003

Figure 4. Axial, sagittal and coronal views of the brain probability map, overlaid on a brain MR image.
doi:10.1371/journal.pone.0077810.g004
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and is further used to guide the surface deformation for skull-

stripping refinement.

To account for inter-subject variation and potential estimation

inaccuracy of the probability map due to the insufficient number

of training images, the computed brain probability map is further

rescaled based on a distance transform map to expand the

ambiguous region (the region with the probability between 0 and

1). The value at each voxel in the distance transform map, which is

calculated based on Danielsson’s algorithm [43], indicates its

distance to the nearest boundary voxel of the ambiguous region.

Let pold be the original probability calculated by Eq. (3), pnew be

the probability after rescaling, and Dst be the distance value. For

each voxel (x,y,z), the new probability is calculated as:

pnew(x,y,z)~

{0:125Dst(x,y,z)z0:375, pold (x,y,z)~0 and 1ƒDst(x,y,z)ƒ3;
pold (x,y,z)

2
z0:25, pold (x,y,z)[(0,1);

0:125Dst(x,y,z)z0:625, pold (x,y,z)~1 and 1ƒDst(x,y,z)ƒ3:

8><
>:

ð4Þ

Rescaling of the boundary is restricted to those voxels with

distances to the boundary of the ambiguous region being no more

than 3 voxels (determined experimentally). Specifically, the

probability range of the original ambiguous ring region is rescaled

to (0.25, 0.75) using the second term of Eq. (4). For regions with

the original probability 0 (exterior to the ambiguous region), the

probability is rescaled according to the first term of Eq. (4), with

the rescaled probability of the region being [0, 0.25]. And for

regions with the original probability 1 (interior to the ambiguous

region), the probability of this region is rescaled to [0.75, 1]

according to the third term of Eq. (4). Taking a small region of the

probability map as an example (Fig. 3), Fig. 3(a) shows the

original probability map; Fig. 3(b) shows the voxels within the

distance of 3 voxels from the boundary of the ambiguous region in

Fig. 3(a) (values greater than 3 voxels are truncated to 3 voxels);

and Fig. 3(c) represents the new probability map after rescaling.

An example of the final brain probability map is shown in Fig. 4.

The probability map will be used to impose realistic shape and

topological constraints for guiding the deformation of the surface

as described in the following section, thus minimizing the chances

of falling into less desirable sub-optimal regions.

Second, we introduce the force guided by probability
map. Intensity information in images is commonly used to

determine the boundary of the brain; however, intensity values are

often influenced by artifacts introduced by noise or intensity

inhomogeneity. Therefore, methods that rely on image intensity

information alone are relatively susceptible to local minima. Our

constructed population-specific probability map, which is adaptive

to specific group, encapsulates prior information gathered from a

population of real brain MR images. It is used to impose realistic

shape and topological constraints for guiding the deformation of

the surface, thus minimizing the chances of falling into less

desirable sub-optimal regions. Therefore, the probability map

guided force F2, derived from the warped brain probability5 map,

is introduced as:

F2~(pi{0:5)n: ð5Þ

Here pi[½0,1� is the rescaled probability value of the current vertex

vi. Similar to F1, F2 also acts in the direction of n. The force F2

accounts for the probability information learned from the training

samples. When pi is larger than 0.5, indicating that the current

point likely falls within the brain, an outward force is imposed;

when pi is less than 0.5, indicating that the current point likely

Figure 5. Local surface normal n and difference vector w of
vertex vi with respect to its one-ring neighboring vertices.
doi:10.1371/journal.pone.0077810.g005

Figure 6. Smoothness update function with respect to the local brain surface curvature.
doi:10.1371/journal.pone.0077810.g006

(4)
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locates outside the brain, an inward force is imposed. The more

the surface approaches the estimated boundary (pi<0.5), the less

the influential the force is.

3.2.3 Smoothness-constrained Force
The smoothness-constrained force is used to control the within-

surface vertices equally spacing and smoothness during the surface

evolvement, which tends to move the current vertex to line up with

its neighbors and therefore increases the surface smoothness. First,

the difference vector w(Fig. 5) is calculated between the position

of the current vertex and the mean position of its one-ring

neighboring vertices:

w~
1

J

XJ

j~1

vj{vi, ð6Þ

with its normal and tangential components represented as

wn~(w:n)n and wt~w{wn, respectively. The difference vector

w is used to take the current vertex to the mean position of the

neighboring vertices in order to keep it aligned within the plane

spanned by the neighboring points. Here J is the number of one-

ring neighboring vertices for current vertex vi, and vj is the j-th

neighboring vertex of vi.

Thus the smoothness-constrained force is calculated as:

F3~a3wtza4wn, ð7Þ

Here the tangential and normal components of w are responsible

for different roles. wt is tangential to the local surface, shifting the

vertices along the surface to be equally spaced. wn acts parallel to

the local surface normal n, moving the current vertex into the

plane of its neighbors to increase the smoothness of the surface. In

Eq. (7), a3 is set as 0.5 in this work; a4 is called the fractional

update term and is adjusted adaptively. To ensure that the surface

is sufficiently smooth and meanwhile avoid underestimation of the

surface curvature, a4 is defined as a nonlinear function adaptive to

the local surface geometry. This results in a curvature-reducing

force that ensures smoothness of the surface during the evolution

process. To achieve this, the local (absolute) curvature of the brain

is determined first as C~1=r~2 wnj j
�

L2. Here r is the local radius

of the brain, and L is the mean inter-vertex distance calculated

from each vertex to its one-ring neighboring vertices over the

whole surface. a4 is defined as a4~0:5(1ztanh(k2 � (C{k1))),
where k1~0:5(CmaxzCmin) and k2~6=(Cmax{Cmin) control

the offset and scale of the sigmoid function, respectively (Fig. 6).

The minimum and maximum curvature values Cmin and Cmax are

empirically optimized based on typical geometries in the human

brain and are respectively set to 0.1 mm21 and 0.3 mm21,

corresponding to the local maximum and minimum radii of the

brain 10 mm and 3.33 mm, respectively. The sigmoid function is

used to penalize the high local mean surface curvature to achieve

surface smoothness. Regions with low local mean surface

curvature are not significantly affected by the curvature-reducing

force. By updating of all the vertices on the surface, the ultimate

surface is expected to be smooth with all vertices on the surface

equally spaced.

In summary, at iteration t, for each vertex i, its update position

is:

vtz1
i ~vt

iz½a1F1za2F2zF3�

~vt
iz½a1F1za2F2za3wtza4wn�,

ð8Þ

where a1~a2~0:05 � L, and L is the mean inter-vertex distance.

Table 2. Grid search range and the optimal parameter range.

Method Options Default Grid search range/status Increment Optimal parameter range

Humans
Non-human
primates

BET -f (fractional intensity threshold) 0.5 0.1,0.8 0.05 0.25,0.8 0.6,0.8

-g (vertical gradient) 0 20.3,0.2 0.1 20.3,0.1 20.3,0

BET-B -f (fractional intensity threshold) 0.5 0.1,0.8 0.05 0.15,0.6 0.35,0.8

-g (vertical gradient) 0 20.3,0.2 0.1 0 0

-B (bias field & neck cleanup) OFF ON ON ON

BSE -d (diffusion constant) 25 5,60 5 5,40 5,20

-s (edge detection constant) 0.62 0.3,0.8 (0.62 also investigated) 0.05 0.6,0.75 0.65,0.7

-n (diffusion iterations) 3 3,5 1 3,5 3,5

-p (dilate final mask) OFF ON ON ON

HWA default

-less (shrink the surface)

-more (expand the surface)

-atlas (use basic atlas information to correct the result)

-less -atlas

-more -atlas

AFNI -shrink_fac 0.6 0.3,0.8 (suggested v
alue 0.72 included)

0.05 0.3,0.8 0.4,0.7

-shrink_fac_bot_lim 0.65 0.3,0.8 0.05 0.3,0.8 0.35,0.75

doi:10.1371/journal.pone.0077810.t002
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During the surface evolution, the position of each vertex in the

tessellated surface is updated with an estimated suitable position,

which helps the surface gradually approach the target surface. The

vertices reside in the real continuous space, instead of being

constrained to the voxel grid locations. For searching an optimal

solution, each individual movement is deliberately small, and

surface updating is completed in many iterations (typically 1,000).

Experimental Results

4.1 Compared Methods and Parameter Selection
Seven popularly used methods were evaluated in comparison

with the proposed method: 1) BET [23], 2) Two-pass BET

(2pBET), 3) BET-B: BET with bias field correction and neck

cleanup (with option ‘‘-B’’), 4) BSE [18], 5) HWA [25], 6) ROBEX

[33], 7) AFNI [44]. For each of these methods (except ROBEX

with no parameter tuning required and the proposed method), we

determined for each image the best parameter setting by a

parameter grid search. The grid search ranges for the parameters

are shown in Table 2, which were determined according to those

commonly used in the literature [3,27,33]. The actual ranges of

the selected optimal values determined by grid search for each

parameter of each method across all datasets are shown in the last

two columns for ‘‘Humans’’ and ‘‘Non-human primates’’ respec-

tively in Table 2.

BET, Two-pass BET (2pBET) and BET-B. BET in FSL

(Version 4.1.6; http://www.fmrib.ox.ac.uk/fsl/) was used in this

evaluation. For BET, parameters of the fractional intensity

threshold ‘‘-f ’’ and the vertical gradient ‘‘-g’’ were investigated.

For two-pass BET, parameters of the fractional intensity threshold

‘‘-f ’’ and the vertical gradient ‘‘-g’’ of the 1st pass (values of which

are denoted as f1 and g1) and the ‘‘-f ’’ and ‘‘-g’’ of the 2nd pass (f2

and g2) were all investigated. Ideally, these four parameters should

be optimized simultaneously; however, to achieve this, one needs

to search a parameters space with a few thousands of parameter

combinations for each image, which is computationally intracta-

ble. Two-pass BET is executed in the following manner to reduce

the computing cost: first, we obtain the best result by a parameter

grid search of ‘‘-f ’’ and ‘‘-g’’ (see Table 2); then a further grid

search of ‘‘-f ’’ and ‘‘-g’’ is executed based on the best result from

the first step. For the following mutually exclusive options in BET:

‘‘-B’’ (bias field and neck cleanup), ‘‘-S’’ (eye and optic nerve

cleanup) and ‘‘-R’’ (robust brain center estimation), based on our

test with 20 randomly chosen HC subjects of the ADNI dataset,

we found that ‘‘-B’’ consistently gives the better result, which is in

agreement with the conclusion in Leung et al. and Shattuck et al.

[3,27]. We denote BET with the option ‘‘-B’’ turned on as ‘‘BET-

B’’. The ranges of the values for option ‘‘-f ’’ and option ‘‘-g’’ are

set to be the same as BET.

BSE. BSE in BrainSuite (Version 2009; http://www.loni.ucla.

edu/Software/BrainSuite/) was used in this evaluation. The

options ‘‘-d’’ (diffusion constant), ‘‘-s’’ (edge detection constant)

and ‘‘-n’’ (diffusion iterations) were investigated. Our previous

experience with BSE indicates that it has a tendency to

erroneously exclude some brain tissues. As pointed out by

Shattuck (the developer of BSE) et al. [3], the option ‘‘-p’’, which

dilates the final mask, is a new feature included in the latest version

of BSE. Both Shattuck et al. [3] and Leung et al. [27] have found

that this option gives improved results. Twenty subjects, similar to

[27], were randomly selected from the HC group of ADNI dataset

to be used to validate the choice of option ‘‘-p’’ (no figure shown).

Our evaluation demonstrates consistently better skull-stripping

results on these 20 subjects when the option ‘‘-p’’ was turned on,

an observation that is similar to [3,27].

HWA. HWA in FreeSurfer (Version 4.5.0; http://surfer.nmr.

mgh.harvard.edu/) was used in this evaluation. In accordance

with [3,27], we investigated: ‘‘default’’, ‘‘-less’’ (shrink the surface),

‘‘-more’’ (expand the surface), ‘‘-atlas’’ (use basic atlas information

to correct the result), ‘‘-less -atlas’’ and ‘‘-more -atlas’’.

ROBEX. ROBEX (Version 1.0; http://nmr.mgh.harvard.

edu/,iglesias/ROBEX/flash.html#!) was used as it is in this

evaluation. No parameter tuning is required.

AFNI. AFNI (Version 2011-12-04; http://afni.nimh.nih.gov/

afni/) was used in this evaluation. The parameters ‘‘-shrink_fac’’

(SF) and ‘‘-shrink_fac_bot_lim’’ (SFBL) were investigated. ‘‘-

shrink_fac’’ is the parameter used to control the brain and non-

brain intensity threshold, which is similar to the fractional intensity

threshold in BET. Option ‘‘-shrink_fac_bot_lim’’ helps to reduce

potential leakage below the cerebellum. Note that for the rhesus

macaque dataset, one extra option ‘‘-monkey’’ was added.

4.2 Training Sample Size Selection
To find a suitable training sample size for the proposed method,

we performed a series of experiments using the images of 230

subjects from the HC group in the ADNI dataset. The training

sample sizes of 1, 3, 5, 10, 25, and 50 were evaluated. The 230

subjects were first randomly partitioned into two groups for

training and testing. From the pool of training images, N (N = 1, 3,

5, 10, 25, and 50) images were randomly selected as the training

data, and the trained results were then applied to all of the testing

images for evaluation. For each training sample size N, random

sub-sampling and the corresponding experiment was repeated 10

times. The Dice coefficient was used as the metric for evaluating

our method with respect to expert-executed skull-stripping results.

Let A and B represent the automatically extracted brain mask and

the manually delineated brain mask, respectively. The Dice

coefficient is defined as: Dice(A,B)~2 A\Bj j=( Aj jz Bj j). A

fractional intensity threshold value (option ‘‘-f’’) of 0.6 is used for

all experiments. From Fig. 7, we can observe that the skull-

stripping performance is significantly improved with the help of

information gathered from the training data. For each box plot in

the figure, the central mark is the median, the edges of the box are

the 25th and 75th percentiles, and the whiskers extend to the most

extreme data points without considering the outliers. Since the

performance seems to flatten out from a sample size of 25

Figure 7. Dice coefficients given by different training sample sizes.
doi:10.1371/journal.pone.0077810.g007
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onwards, we chose 25 as the training sample size in subsequent

experiments. The result from BET (not employing any training

data, i.e., the number of training subjects = 0) is provided for

comparison.

4.3 Evaluation of Parameter Sensitivity
To compare the parameter sensitivity of all methods in

comparison, we evaluated the performance variation with respect

to parameter changes. Dice coefficient was used as the perfor-

mance evaluation metric. The HC group of the ADNI dataset was

used for this evaluation. The best performance curve for each

parameter with respect to all possible combinations of the other

parameter(s) is determined (see Fig. 8). Taking BET for instance

(options of interest: ‘‘-f ’’ and ‘‘-g’’), we changed the value of option

‘‘-g’’ from 20.3 to 0.2. The best performance curve of ‘‘-f’’ is found

when parameter value of option ‘‘-g’’ is:

g�~arg max
g[Rg

X
f [Rf

XM
m~1

Dicef ,g(m), ð9Þ

where Rg and Rf are the sets of parameters for options ‘‘-g’’ and

‘‘-f ’’; M is the total number of testing subjects. We found that

the best performance curve of ‘‘-f ’’ occurred when the

parameter for option ‘‘-g’’ was 20.3. With the same approach,

the best performance curve for ‘‘-g’’ was obtained when ‘‘-f ’’

was 0.65. It can be seen from Fig. 8 that for most of the

methods in comparison the default parameters are not

necessarily the most effective parameters and that the ranges

of optimal parameters are relatively narrow. We note that, as

shown in Fig. 8(g) and Fig. 8(h), the vertical gradient ‘‘-g’’ does

not affect the performance of BET-B significantly and the best

Figure 8. Comparison of parameter sensitivity for different methods: (a), (b) BET; (c), (d), (e), (f) 2pBET; (g), (h) BET-B; (i), (j), (k) BSE;
(l) HWA; (m), (n) AFNI; (o) Proposed. The default parameter value of each option in the respective method is labeled using a red box. The vertical
axes indicate the Dice coefficients. Note that for HWA, AFNI, and the proposed method, we used a different value range for the Dice coefficients for
easier comparison.
doi:10.1371/journal.pone.0077810.g008
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performance for parameter ‘‘-f ’’ is achieved with the default

value of ‘‘-g’’. Therefore, ‘‘-g’’ is set to the default value (0) for

the rest experiments of the BET-B method. There are two

implementations for the BET-based methods: with or without

option ‘‘-B’’. Option ‘‘-B’’ is turned off in BET by default. As

shown in Fig. 8(a), BET in its default setting achieves optimal

performance at higher values of parameter ‘‘-f ’’, in line with the

results in Popescu et al. [45]. For the case where option ‘‘-B’’ is

turned on (denoted as ‘‘BET-B’’ in this paper), BET-B achieves

optimal performance at lower values of parameter ‘‘-f ’’ as

shown in Fig. 8(g), in agreement with the results in Leung et al.

[27] and Popescu et al. [45]. BSE is sensitive to the changes of

parameter values [33], especially parameter ‘‘-s’’. Small changes

on the parameter value can result in large changes to the

extracted brain result [33]. As shown in Fig. 8(j), BSE performs

the best at s = 0.7, agreeing with the results in Shattuck et al. [3]

and Leung et al. [27]. In contrast, our method is relatively

parameter-insensitive (see Fig. 8(o)). When the fractional

intensity threshold is within the range of 0.3,0.8, the median

Dice coefficients yielded by our method are consistently higher

than 0.96.

4.4 Quantitative Evaluation on ADNI Dataset
Overlap Consistency. Notably, we construct the probability

map for each diagnostic group separately. As shown in Fig. 9, the

proposed method yields consistently the best results for each group

of the ADNI dataset when compared with all other methods,

despite that only one single set of parameters was used for all

images in our method. For each method compared (except

ROBEX and the proposed method), the optimized set of

parameters is obtained for each image, with the result providing

the best Dice coefficient (based on its ground-truth brain mask) by

grid search over a range of parameter values (see Table 2). Here a

fractional intensity threshold value f = 0.6 was used throughout

the experiment for the proposed method. As can be seen, the

proposed method does not show significant performance differ-

ence across different diagnosis groups, indicating that the proposed

method is insensitive to different fractional intensity threshold

values, which has also been confirmed in Fig. 8(o). A paired t-test

(two-tailed test) is performed between each compared method and

the proposed method based on the overall result, with the null

hypothesis that the mean difference between the compared

method and the proposed method is zero. We found that the

differences between the proposed method and the compared

methods are significant (pv0:05). We can therefore conclude that

the proposed method is significantly better than all other

compared methods (BET, 2pBET, BET-B, BSE, HWA, ROBEX

and AFNI). Representative results, compared with other methods,

are provided in the first column of Fig. 10 for the adult dataset.

Some problematic regions are highlighted by red arrows. BET

based methods typically over-skull-strip the posterior occipital

cortex, anterior frontal cortex, while leave some non-brain tissue

anterior to the brainstem and some dura in the superior parietal

cortex unremoved. BSE leaves some part of the non-brain tissue

unremoved. HWA keeps extra dura and non-brain tissue

unremoved. ROBEX typically over-skull-strips the frontal cortex,

the parietal cortex, and leaves some part of non-brain tissue

unremoved (e.g., eyeballs and dura). AFNI typically over-skull-

strips the posterior occipital cortex and part of the frontal cortex,

while keeps some non-brain tissues anterior to the brainstem and

some in the superior parietal cortex, which is similar with BET-

based methods. The proposed method gives the best result by

contrast.

False Positive (FP) and False Negative (FN). For closer

inspection, Fig. 11 and Fig. 12 show the spatial distributions of

false positives and false negatives given by the different methods

for all diagnosis groups (HC, MCI and AD). If A and B represent

the automatically extracted brain mask and the manually

Figure 9. Distributions of Dice coefficients for the different methods and the different subject groups in the ADNI dataset.
doi:10.1371/journal.pone.0077810.g009
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delineated brain mask, respectively, false positive is defined as:

FP~A\B and false negative is defined as: FN~A\B. For each

method, the average FP and FN images were obtained in the

template space by concurrently considering all diagnosis groups.

For visualization, we computed the 2D projection maps for axial,

sagittal and coronal views by summing the values along the

respective axis and dividing the outcome by the slice number along

the axis. It can be observed from Fig. 11 that BET tends to leave

unremoved ventral tissue anterior to the brainstem. Two-pass

BET (2pBET) works relatively well on excluding non-brain tissues,

but leaves a significant amount of unremoved ventral tissue

anterior to the brainstem, and some in the parietal lobes. BET-B

works relatively well on excluding non-brain tissues, but leaves a

significant amount of non-brain tissues in the ventral region, and

Figure 10. Typical brain extraction results for different methods. Left: adult; Middle: child; Right: rhesus macaque. Sagittal and coronal views
are shown. Brain extraction results from different methods are highlighted in purple, and red arrows indicate some problematic regions.
doi:10.1371/journal.pone.0077810.g010
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some in the parietal and occipital lobes, similar to 2pBET. BSE

fails to remove non-brain tissue from various regions of certain

brains. HWA is relatively robust with little parameter tuning.

However, it often under-segments the brain. As shown in Fig. 11,

it leaves unremoved tissues along the ventral, frontal, occipital

cortices and cerebellum regions. Note also that HWA usually fails

to remove the dura matter, which is a documented shortcoming of

the algorithm [33]. ROBEX tends to leave non-brain tissues in the

ventral region. AFNI tends to leave unremoved ventral tissue

anterior to the brainstem, and some in the parietal and occipital

cortices. The proposed method performs the best in excluding

non-brain tissues overall, despite the fact that there is a (negligibly)

higher FPs in the frontal cortices compared with 2pBET and BET-

B.

From Fig. 12, it can be observed that BET based methods

typically over-skull-strip the anterior frontal cortices, anterior

temporal cortices, superior parietal cortices, posterior occipital

cortices, and the cerebellar areas. BSE over-skull-strips the border

of the brain. HWA over-skull-strips the parietal and cerebellar

regions. ROBEX typically tends to over-skull-strip the ventral

tissue, frontal cortices, parietal cortices, and occipital cortices. As

pointed out in [33], it tends to oversmooth the contour of the

brain, and therefore tends to leave out some gray matter, which

will present problems for cortical thickness estimation and gray

matter volume measurement. AFNI typically tends to over-skull-

strip the ventral tissue, frontal cortices, temporal cortices, parietal

cortices, and occipital cortices, similar to ROBEX. The proposed

method performs well on retaining brain tissues with just a little

over-skull-stripping along the border of the parietal region. It has

been observed that GM volume, GM density, and cortical

thickness changes in the prefrontal and medial temporal areas

are age-related [46,47,48]. Between children and adolescents,

dramatic changes were observed in cortical thickness measure-

ments in parietal cortices [49]. Accurate skull stripping of these

regions is therefore especially important for developmental and

aging research of the cerebral cortex. Overall, we can see that the

proposed method works best in these regions.

Cumulative Histogram. For better quantitative assessment,

we computed the cumulative histograms of the average FP and FN

images reported above. From Fig. 13 (a), we can see that BET

shows a higher fraction of FPs. HWA and BSE, while better than

BET, also show a relative higher fraction of FPs. AFNI and

ROBEX, while better than HWA, show a relative higher fraction

of FPs than BET-B. BET-B, 2pBET and the proposed method

show similar performance on FP, with the proposed method

slightly superior. However, we can observe from Fig. 13 (b), that

BET-B shows a much higher fraction of FNs. BET, 2pBET,

ROBEX, and AFNI, while better than BET-B, also show a relative

higher fraction of FNs than BSE. HWA and the proposed method

perform much better than the other methods on retaining brain

tissues, with the proposed method being more superior.

Surface-to-Surface Distance. We also computed the mean

symmetric surface-to-surface distance and the maximal surface-to-

surface distance as metrics for evaluating the skull-stripping

accuracy, providing information on shape differences. The mean

symmetric surface-to-surface distance, which measures from each

voxel in the boundary of its estimated brain mask to the nearest

boundary voxel in the ground truth and vice versa, provides a

straightforward interpretation of the skull-stripping accuracy.

Fig. 14(a) shows the statistics of the distributions of the mean

boundary distances of all the testing data in the ADNI dataset,

which is divided into three groups: HC, MCI and AD. The overall

result is also provided. We found that the proposed method

consistently gives the best result, with the mean symmetric surface-

to-surface distances in overall only a little over 1 mm; while for the

other methods, the mean symmetric surface-to-surface distances

are at or above 2 mm.

Maximal surface-to-surface distance is also used to measure the

degree of mismatch between the contours of a pair of brain masks.

In contrast to the Dice coefficient, it penalizes cases in which two

greatly overlapping objects have very different boundaries.

Consistent with Fig. 14(a), Fig. 14(b) shows that the proposed

method performs better than all other methods in comparison.

Significant differences (pv0:05) were found for both mean

symmetric and maximal surface-to-surface distance. We therefore

conclude that the proposed method is significantly better than all

other compared methods (BET, 2pBET, BET-B, BSE, HWA,

ROBEX and AFNI) for both metrics.

4.5 Quantitative Evaluation on OASIS Dataset
Overlap Consistency. We have both non-demented and

demented groups for the OASIS dataset. To better account for

differences in brain shapes across ages, we further divided the non-

demented group into 3 age groups: young adults (ND-Y, age

range: 18–39 years); middle-aged adults (ND-M, age range: 40–60

years) and elderly adults (ND-E, age range: 61–94 years). Similar

to our evaluation based on the ADNI dataset, we compared, for

each group dataset, the proposed method with BET, 2pBET,

BET-B, BSE, HWA, ROBEX, and AFNI. For the proposed

method, we used the ICBM high resolution template as the

reference image to generate two brain probability maps (see

Fig. 15): ‘‘Proposed-1’’ indicates the case where the probability

map was generated from the HC group of the ADNI dataset in

Section 4.4; ‘‘Proposed-2’’ indicates the case where the

probability map was generated from the corresponding age group

in the OASIS dataset (e.g. the probability map for the ND-Y is

constructed by randomly selecting 25 training data from the same

group). For each method compared, except our proposed method

and ROBEX, we calculated for each image the best Dice

coefficient given by the method by a grid search over a range of

parameter values (see Table 2), as done previously. For the

proposed method, a fractional intensity threshold value (option ‘‘-

f ’’) of 0.75 was used throughout the experiment. As shown in

Fig. 15, Proposed-1, while giving good results, can be further

improved by utilizing a probability map that is more specific to the

population, i.e., Proposed-2. Note that BET, 2pBET, BSE, HWA,

ROBEX and AFNI show significantly different performance in

different age groups. In general, the performance of BET, 2pBET,

BSE, ROBEX and AFNI decreases with the age; while that of

HWA increases with the age. The median results of the proposed

method Proposed-1 are better than any compared methods

including BET-B in each of the diagnosis groups. Proposed-2

outperforms Proposed-1 and all other methods. Moreover, the

proposed methods do not show significant differences in perfor-

mance among different groups, demonstrating the robustness and

consistency of the proposed framework. Overall, the proposed

methods (Proposed-1 and Proposed-2) give significant improve-

ments (pv0:05) over all other compared methods (BET, 2pBET,

BET-B, BSE, HWA, ROBEX and AFNI).

Figure 11. Sagittal, coronal, and axial views of the false-positive spatial probability maps for the different methods. Values are shown
in natural logarithmic scale.
doi:10.1371/journal.pone.0077810.g011
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Surface-to-surface Distance. Similar to the ADNI dataset,

we evaluated the performance of the proposed method by

measuring surface-to-surface distances in the OASIS dataset.

The mean symmetric surface-to-surface distance results, as shown

in Fig. 16(a), are consistent with the results of the experiment

using the Dice coefficient for performance measurement. BET,

2pBET, BSE, HWA, ROBEX and AFNI show considerable

different performance across age groups. In contrast, Proposed-1

and Proposed-2 consistently give the best results. Proposed-1 is

comparable to BET-B even though a single set of parameters is

used, and it is significantly superior to any other compared

methods. Proposed-2 outperforms Proposed-1 and all compared

methods. The maximal surface-to-surface distance results shown

in Fig. 16(b) reflect that BET, 2pBET, BET-B, BSE, HWA and

AFNI show significant performance differences across age groups.

Similarly, Proposed-1 is comparable to BET-B though a single set

of parameters is used. ROBEX is slightly better than Proposed-1,

while Proposed-2 is slightly better than ROBEX. Among all

methods, Proposed-2 consistently gives the smallest mean

symmetric distances and maximal distances between the bound-

aries of the extracted brain masks and the ground truths. For mean

symmetric surface-to-surface distance, Proposed-2 shows signifi-

cant improvements (pv0:05) comparing with all other methods.

There are also significant differences (pv0:05) between Proposed-

1 and all compared methods except BET-B. Similarly, for

maximal surface-to-surface distance, the differences between the

proposed methods and all compared methods are statistically

significant (pv0:05). We therefore conclude that the Proposed-1

method is significantly better (pv0:05) than the compared

methods except BET-B and ROBEX; and the Proposed-2 method

is significantly better (pv0:05) than all compared methods.

4.6 Quantitative Evaluation on NIHPD Dataset
Complementary to the adult datasets used in previous

evaluations, 150 subjects between 5 to 18 years of age were

randomly selected from the NIHPD dataset, in which 25 subjects

containing all age stages (5 to 18 years of age) were randomly

selected from all subjects to construct the probability map for this

age group. As can be observed from Fig. 17, the proposed method

yields consistently the best results for both Dice coefficients and the

surface-to-surface distances when compared with all other

methods, despite the fact that only one single set of parameters

(with option ‘‘-f ’’ be 0.75) was used for all images, whereas for all

other methods (except ROBEX), the optimized parameters for

each image was obtained by grid search. 2pBET outperforms

BET, BET-B, BSE, HWA and AFNI. ROBEX has similar Dice

coefficients with 2pBET. The proposed method has the best Dice

coefficient and is significantly better (pv0:05) than all compared

methods. 2pBET has relatively low mean surface-to-surface

distance, which is a little superior to ROBEX and AFNI. While

for maximal surface-to-surface distance, BET, BET-B and 2pBET

have similar values, which perform better than ROBEX and

AFNI. The proposed method achieves the best performance for

both mean and maximal surface-to-surface distances, and is

significantly superior (pv0:05) to all other methods in compar-

ison.

The middle column in Fig. 10 gives some typical results of

different methods for the NIHPD Dataset, with some problematic

regions being highlighted by red arrows. BET and 2pBET have

some non-brain tissue unremoved inferior to the brain, including

the eyeball. BET-B over-skull-strips the posterior occipital cortex,

cerebellar region, superior temporal cortex and inferior frontal

cortex. BSE has some brain tissue removed. HWA keeps a part of

the eyeball unremoved, while over-skull-strips the cerebellar area.

ROBEX over-skull-strips the frontal cortex, parietal cortex and

cerebellar area, behaving similar with the adult result. AFNI over-

skull-strips the posterior occipital cortex and parietal cortex, while

keeping part of the eyeball unremoved. These problems are

overcome using the proposed method.

Figure 12. Sagittal, coronal, and axial views of the false-negative spatial probability maps for the different methods. Values are
shown in natural logarithmic scale.
doi:10.1371/journal.pone.0077810.g012

Figure 13. Cumulative histograms for FP and FN of different methods.
doi:10.1371/journal.pone.0077810.g013
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4.7 Quantitative Evaluation on Rhesus Macaque Dataset
Because of the limit number of subjects in the rhesus macaque

dataset compared to the human datasets, Leave-One-Out is

employed here for validation of the proposed method. For each

fold, one subject is used as the testing set, and the remaining 19

subjects are used as the training set to construct the probability

Figure 14. Comparison of different methods on the different subject groups of the ADNI dataset. Measurements include (a) mean
symmetric and (b) maximal surface-to-surface distances.
doi:10.1371/journal.pone.0077810.g014
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map. This is repeated so that each subject in the dataset is used as

the testing set once. For the proposed method, a fractional

intensity threshold value of 0.85 was used throughout the

experiment. For each method compared, as done in previous

sections, the best Dice coefficient for each image given by each

compared method is calculated by a grid search over a range of

parameter values (see Table 2). Note that for the rhesus macaque

dataset, AFNI has one extra option: ‘‘-monkey’’. We found that

2pBET achieves better result compared with BET and BET-B

methods (Fig. 18). Because of the utilization of monkey atlas

information, AFNI achieves larger Dice coefficient on some

subjects compared with 2pBET, yet the variation is also larger.

The mean value of BSE is less than 0.75, and it is thus not shown

in the figure. ROBEX does not work on the rhesus macaque data.

One reason may be that, due to the large difference between

human and rhesus macaque brain, ROBEX fails to perform the

registration correctly using Elastix [50]. Our method gives the best

result, with an overall Dice coefficient around 97%. Thus the

proposed method is significantly superior (pv0:05) over all other

compared methods. Significant differences (pv0:05) can also be

found between the proposed method and the compared methods

on both mean symmetric and maximal surface-to-surface distanc-

es. All methods give consistent performance on both mean

symmetric and maximal surface-to-surface distance. BET-B and

AFNI give the similar results for both mean symmetric and

maximal surface-to-surface distances; while 2pBET performs

better than BET-B and AFNI. The proposed method achieves

the best result compared with all other methods.

Some typical results are given in the last column of Fig. 10,

with some problematic regions highlighted by red arrows. BET

based methods typically over-skull-strip the anterior frontal cortex

and inferior temporal cortex, while leaving some non-brain tissue

anterior to the brainstem unremoved. BSE and HWA do not work

very well on the rhesus macaque dataset, and ROBEX fails to

work on the rhesus macaque dataset as reported previously. AFNI

typically over-skull-strips the frontal cortex and parietal cortex,

while keeping some non-brain tissues anterior to the brainstem.

Overall, the proposed method achieves the best result compared

with other methods.

4.8 Computational Time
All programs run in Linux environment using a single thread on

a 2.8GHz AMD Opteron Processor. The proposed method took

about 2 minutes for registration using FLIRT and Demons, and

less than 1 additional minute for skull-stripping an image. BET,

BSE, and HWA typically took approximately 1 minute. BET-B

took about 13 minutes, ROBEX took about 6 minutes, and AFNI

took about 3 minutes. The computational time of our method is

comparable to the existing methods.

Conclusion

In this paper, an effective population-specific prior-knowledge

guided framework was proposed for accurate and robust skull

stripping on a wide variety of brain MR images consistently with

the minimal parameter adjustment. We first performed an initial

skull stripping by co-registration of an atlas, followed by a localized

refinement phase under the guidance of population-specific prior

information in a surface deformation scheme. Extensive evalua-

tions were performed on diverse large-scale neuroimaging studies

involving a significant number of brain MR images, e.g., the

ADNI dataset, OASIS dataset, NIH pediatrics dataset, and rhesus

Figure 15. Distributions of Dice coefficients for the different methods and the different subject groups in the OASIS dataset. ND-Y,
ND-M, and ND-E represent for young adults, middle-aged adults, and elderly adults in non-demented group, respectively.
doi:10.1371/journal.pone.0077810.g015
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Figure 16. Comparison of different methods on the different subject groups of the OASIS dataset. Measurements include (a) mean
symmetric and (b) maximal surface-to-surface distances.
doi:10.1371/journal.pone.0077810.g016
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Figure 17. Comparison of different methods on the NIHPD dataset. Measurements include (a) Dice coefficients, (b) mean symmetric and (c)
maximal surface-to-surface distances.
doi:10.1371/journal.pone.0077810.g017
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macaque dataset. Experimental results on datasets across almost

the entire human life span as well as nonhuman primates indicate

that our proposed method outperforms the other compared

methods such as BET, Two-pass BET, BET-B, BSE, HWA,

ROBEX and AFNI, with only a single set of parameters, whereas

the optimized set of parameters is obtained for each image in each

compared method (except ROBEX) by a grid search. The

software package of the proposed method has been released as

part of Adult Brain Extraction and Analysis Toolbox (aBEAT)

with graphical user interface, which is publicly available at http://

www.nitrc.org/projects/abeat. The command version of the

software package for various operating systems will be released

in the future, which will be available at http://www.med.unc.edu/

bric/ideagroup/free-softwares.
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