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Abstract

Accurate and consistent skull stripping of serial brain MR images is of great importance in

longitudinal studies that aim to detect subtle brain morphological changes. To avoid inconsistency

and the potential bias introduced by independently performing skull-stripping for each time-point

image, we propose an effective method that is capable of skull-stripping serial brain MR images

simultaneously. Specifically, all serial images of the same subject are first affine aligned in a

groupwise manner to a common space to avoid any potential bias introduced by asymmetric

transforms. A brain probability map, which encapsulates prior information gathered from a

population of real brain MR images, is then warped to the aligned serial images for guiding skull-

stripping via a deformable surface method. In particular, the same initial surface meshes

representing the initial brain surfaces are first placed on all aligned serial images, and then all

these surface meshes are simultaneously evolved to the respective target brain boundaries, driven

by the intensity-based force, the force from the probability map, as well as the force from the

spatial and temporal smoothness. Especially, imposing the temporal smoothness helps achieve

longitudinally consistent results. Evaluations on 20 subjects, each with 4 time points, from the

ADNI database indicate that our method gives more accurate and consistent result compared with

3D skull-stripping method. To better show the advantages of our 4D brain extraction method over

the 3D method, we compute the Dice ratio in a ring area (±5mm) surrounding the ground-truth

brain boundary, and our 4D method achieves around 3% improvement over the 3D method. In

addition, our 4D method also gives smaller mean and maximal surface-to-surface distance

measurements, with reduced variances.
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1. INTRODUCTION

Longitudinal data analyses are especially useful in delineating changes in brain structures

during the normal aging [1], as well as in evaluating the temporal progression of

neuropathology, such as Alzheimer’s disease (AD). Brain volume loss and cortical thinning
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are observed even in healthy subjects during aging in old individuals. Researches on

changes of brain volume [2] and cortical thickness [3] is used for detecting subtle changes in

brain structure in cognitively normal subjects at the risk of developing AD and in subjects

with mild cognitive impairment (MCI). In the longitudinal studies, it is critical and essential

that the methods do not themselves introduce any bias. Methodological biases could

confound placebo-treatment comparisons in trials, and the biased measurements from a pilot

study could lead to under-powering or over-powering of subsequent trials, with ethical as

well as scientific and financial implications [4]. Research on potential biases introduced by

the interpolation methods and registration methods is presented for consistent brain atrophy

estimation [5]; while there is no related research on the potential biases introduced by the

inconsistent skull stripping in the longitudinal study pipeline. In the last decade, many

methods are proposed for automated skull stripping of a single brain image. For studying

longitudinal changes of cortical structures in relation to brain development, aging, and

diseases, more accurate and consistent skull stripping methods are required for serial brain

MR images, especially for measuring subtle cortical changes. However, applying the

existing methods independently for skull stripping of serial brain MR images in a

longitudinal study may generate longitudinally inconsistent results and introduce bias by the

interpolation and registration. As the first step in most neuroimaging processing pipelines,

the bias and inconsistency in skull stripping will be propagated to the following steps, such

as tissue segmentation, image registration, and group analysis.

This paper presents a new method for consistent skull stripping of serial brain MR images

by using a 4D deformable-surface based approach, built on our previous work [6]. Specially,

all serial brain MR images of the same subject are groupwise affine aligned to a common

space to avoid any bias by asymmetric transforms. A brain probability map, which

encapsulates prior information gathered from a population of real brain MR images, is

warped to the groupwise affine aligned serial images for guiding the deformable surface

evolution. The same initial surface meshes are placed on all aligned serial images. With the

temporal smoothness constraint on each vertex, all these surface meshes evolve

simultaneously for all time-point serial images, thus achieving more accurate and consistent

results.

2. METHOD

2.1 Overview

The proposed method consists of the following major steps: 1) Groupwise affine alignment

of all serial brain MR images of the same subject; 2) Initialization by warping a brain

probability map, which is obtained by warping a set of real brain MR images with manually

delineated brain masks to the template space, to the aligned serial images and placing the

initial surface meshes for all serial images; 3) Consistently evolving the initial surface

meshes on all serial images simultaneously using a deformable-surface method with the

temporal constraint, guided by intensity information as well as the brain probability map.

The details of each step are given in the following sections.
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2.2 Groupwise Affine Registration

To consider all serial images of the same subject simultaneously, all serial images need to be

aligned to a common space. To avoid any possible bias introduced by asymmetric

registration to a specific time point, groupwise affine registration is performed on the serial

images of the same subject by using the congealing method [7]. This method was first

introduced by Miller et al. [8] by considering the sum of univariate entropies along pixel

stacks as a joint alignment criterion. Zöllei et al. [9] further extended this method to

groupwise registration of medical images using affine transforms. Here we use the open-

source implementation of the congealing method in ITK by Balci et al. [7]. Specifically, it

optimizes the objective function using the gradient descent algorithm combined with a line

search for the step size and is efficiently implemented by using a stochastic optimization

scheme embedded in a multi-resolution setting. After groupwise affine registration, all serial

images of the same subject are now located in the same space.

2.3 Initialization and Parameter Estimation

A good initialization of the deformable surface is important for avoiding local minima and

suboptimal solutions. To facilitate more accurate parameter estimation and better positioning

of the initial deformable surface, FLIRT (for affine registration) and Demons (for non-linear

registration) are employed to help mask out most of the non-brain voxels. More specifically,

the ICBM high-resolution single subject template (with skull) is warped to the aligned serial

images by using FLIRT, followed by Demons. The accompanying brain probability map

(binarized with the threshold 0), which is obtained by warping a set of real brain MR images

with manually delineated brain masks to the template space, is used to mask the image at

each time point for approximate skull stripping.

After the initial skull stripping, most of the skull and scalp are removed. The resulting serial

brain images are used to estimate a set of parameters for describing the image intensity

distribution for each serial image: intensity minimum Gmin, intensity maximum Gmax, the

intensity threshold separating brain and non-brain matters Gs, and the median intensity

Gmed. All voxels with intensity between Gs and Gmax are regarded as brain voxels and are

used as mass to weight the position of the voxels for the computation of the center of gravity

(COG). Regarding these voxels as forming a spherical volume, the radius of the brain can be

estimated. Finally, the COG and radius for all serial images of the target subject are obtained

by averaging the COGs and radii obtained from all the serial images, and further used to

initialize the brain surface model on all serial images.

2.4 4D Deformable-Surface-Based Skull Stripping

The 4D deformable-surface evolution is implemented by a parametric active surface, and the

brain boundary is modeled by a surface tessellated using connected triangles. The surface is

initialized as a sphere for all serial images using the COG and radius estimated in the

previous step. From the initial position, the surface evolves gradually to the optimal

position, one vertex at a time, driven by four forces as detailed below: 1) the spatial-

smoothness-constrained force; 2) the intensity-based force; 3) the probability-map-guided

force; and 4) the temporal-smoothness-constrained force.
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For the vertex i of the k-th time-point image of a subject, the first force pertaining to the

spatial smoothness constraint consists of two parts:

(1)

where  and  are the tangential and normal components of uk. For the current vertex i, uk

is the difference vector between the position of the current vertex and the mean position of

its one-ring neighboring vertices, which is defined as . The sole role of 

is to shift the vertices along the surface to keep them equally spaced; while  acts parallel

to the local normal nk to move the current vertex into the plane formed by its neighbors to

increase the smoothness of the surface. In Equation (1), ω1 is usually set as 0.5, and ω2 is

defined as a nonlinear sigmoid function adaptive to the local surface geometry (i.e., local

brain curvature) [6].

The second force is from the intensity information in the surface vicinity, and it acts along

the local surface normal nk. It accounts for the voxel intensity changes in the surface vicinity

for each serial image, aiming to drive the surface model to move towards the real brain

surface. For the vertex i, the intensity-based force imposed on the k-th time-point image of a

subject is thus given as:

(2)

where  and  are the local minimum and maximum intensity of the k-th time-point

image and defined by searching along the normal direction pointing inwards from the

current vertex i:

(3)

(4)

where R1 and R2 represent the spatial search ranges pertaining to the minimum and

maximum intensities, respectively. Lk(l) is the intensity of a voxel on the searching line with

the l mm away from the current vertex. Typically, R1 is fixed on 20 mm for each image and

R2 = R1/2. As described in Section 2.3, for the k-th time-point image, the image intensity

minimum , the median intensity , and the threshold  separating brain and non-

brain matters are approximately estimated according to the intensity distribution of the

initial skull-stripped brain image of the k-th time-point image. These values are used to help

avoid outlier voxels that are too dark or too bright.  in Equation (2) is a locally estimated

intensity threshold which is used to distinguish between brain and non-brain tissues in the k-

th time point image:
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(5)

where parameter f is called the fractional intensity threshold and f ∈[0,1].

Relying on image intensity information alone to localize the brain boundary are relatively

susceptible to local minima because of artifacts introduced by the noise or intensity

inhomogeneity. Thus the brain probability map, encapsulating prior information gathered

from a population of real brain MR images, is used to impose realistic shape and topological

constraints for guiding the surface deformation, thus minimize the chances of falling into

less desirable sub-optimal regions. Therefore, for the current vertex i, the third force derived

from the warped brain probability map is introduced for the k-th time-point image:

(6)

where p ∈[0,1] is the probability value from the warped probability map.

To force temporal consistency, the temporal smoothness constraint is also imposed on the k-

th time-point image at the current vertex i:

(7)

where Mk represents the set of the temporal neighborhood of the k-th time point, i.e., Mk =

(k − 2, k − 1, k + 1, k + 2)∩(1, …,K), K is the total number of serial images of a subject, and

cm.= e−(m−k)2/σ. Here σ is set as 2.73 experimentally.

Thus, at iteration t, for each vertex i in the k-th time point, its updated position is:

(8)

where ω3 = ω4 = 0.05 * d; ω5 = 0.1. Here d is the mean inter-vertex distance over the whole

surface, calculated from each vertex to its one-ring neighboring vertices.

3. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated on the ADNI dataset. 20 Health Control (HC) subjects

(age range: 55~90 years) each with 4 time points (with scan time interval of 6 months or 12

months) are randomly selected and used for validation. Before skull-stripping, all images

were resampled to be of dimensions 256×256×256 and resolution 1×1×1 mm3.

Nonparametric nonuniform intensity normalization (N3) [10] and histogram matching were

performed before group-wise alignment. To better validate the effectiveness of our method,

the proposed method is compared with our previously proposed 3D brain extraction method

(without temporal constraint) [6], which has demonstrated state-of-the-art performance.
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3.1 Overlap Consistency

Let A and B represent for the extracted brain image and the manual skull-stripped image

(ground truth), respectively. Their similarity is calculated using the Dice ratio: D(A,B) = 2|A

∩ B|/(|A| + |B|). To better show the difference between our 4D method and the 3D method,

Dice ratio is calculated in the ring area (±5mm) around the ground-truth brain boundary for

each time point. As can be seen from Figure 1, the proposed 4D brain extraction method has

better performance than our previously proposed 3D method, with the results of the 4D

method around 3% superior to the result of the 3D method. Typical skull-stripping results by

our 4D method compared with our previous 3D method are shown in Figure 2, where two

subjects with each having 4-time-point serial images are shown. Due to the existence of

artifacts introduced by noise or intensity inhomogeneity, independent skull-stripping of each

time-point image of one subject is likely causing some time-point image to be trapped into

local minima during the evolution of the deformable surface, e.g., the first-time-point image

in subject (I) and the fourth-time-point image in subject (II), both with some non-brain

tissues unremoved. It can be observed from Figure 2 that the 4D method gives more

consistent and accurate results by accounting for the longitudinal information

simultaneously.

3.2 Surface-to-surface Distance

To further validate the proposed 4D method, the mean symmettric surface-to-surface

distance and the maximal symmetric surface-to-surface distance are also calculated on each

time point image of each subject. These measurements are used to measure the degree of

mismatch between the contours of a pair of brain masks, providing information on shape

differences between the results by the compared method and the ground truth. Specifically,

the mean symmetric surface-to-surface distance measures for each voxel from the boundary

of its estimated brain mask to the nearest boundary voxel in the ground truth and vice versa

(from the voxel in the boundary of the ground truth to its nearest boundary voxel in the

estimated boundary), giving a straightforward interpretation n of the skull-stripping

accuracy. The maximal symmetric surface-to-surface distance takes the maximal value

which is measured from each voxel in the estimated boundary to the nearest boundary voxel

of the ground truth and vice versa. From Figure 3, we can see that the proposed 4D method

consistently gives better results for both mean and maximal symmetric surface-to-surface

distances, with less variance. Specifically, for the proposed 4D method, the mean symmetric

surface-to-surface distance is around 1.1mm, compared to the value of 1.4mm by the 3D

method, and the maximal symmetric surface-to-surface distance is about 5.0mm, compared

to the value of 7.0mm by the 3D method.

Cortical thinning is expected in the healthy elderly subjects [11], and the cortical thickness

thinning in a short period of time (such as 1 year) is generally very subtle (e.g., the annual

decline is around 0.5% even in some regions with significant changes [11]). To further show

the consistency of our 4D method, the cortical thickness (normally with 1–5mm, with the

average value around 2.5mm) is computed for the image at each time point of both the 3D

and 4D skull-stripped images. To achieve this, a 4D segmentation algorithm [12] is first

performed on all skull-stripped serial brain images. Then a 4D cortical surface

reconstruction method [13] is further used for consistent and accurate reconstruction of inner
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and outer cortical surface. Figure 4 shows the trajectories of the average cortical thickness in

a representative ROI (insular cortex) of all 20 subjects. The insular cortex, associated with

bodily sensations and emotions, is observed an age-related decline in the gray matter volume

[14], and this atrophy might contribute directly or indirectly to the cognitive deficits in the

healthy elderly subjects [14]. From Figure 4, we can see that, with the temporal constraint,

longitudinally more consistent results are obtained, which further confirms the advantage of

our 4D method.

4. CONCLUSION

We have presented in this paper a consistent 4D skull-stripping method that is capable of

consistent skull-stripping of serial brain MR images. Specifically, the proposed method

imposes the same initial meshes for all serial images, which simultaneously evolve to the

respective target brain boundaries, with the guidance of forces from the intensity image,

aligned brain probability map, and also both spatial and temporal smoothness requirements.

Experimental results indicate that the proposed 4D method produces more accurate and

consistent results on serial MR brain images than the 3D method.
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Figure 1.
Distributions of Dice ratios for the 3D and the proposed 4D methods.
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Figure 2.
Typical skull-stripping results for serial brain MR images of two subjects, each with 4 time

points. (a) raw images; (b) results by the 3D method; (c) results by our 4D method; (d)

ground truth.
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Figure 3.
Distributions of (a) mean symmetric surface-to-surface distance and (b) maximal symmetric

surface-to-surface distance for the 3D and 4D methods.
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Figure 4.
Longitudinal trajectories (4 time points) of the average cortical thickness in a representative

ROI (insular cortex) of 20 subjects: (a) results by 3D method, (b) results by 4D method; and

(c) the longitudinal trajectory of the average cortical thickness measured respectively by the

3D and 4D methods in this ROI.
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