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Abstract

We propose a simple but generally applicable approach to improving the accuracy of
automatic image segmentation algorithms relative to manual segmentations. The ap-
proach is based on the hypothesis that a large fraction of the errors produced by auto-
matic segmentation are systematic, i.e., occur consistently from subject to subject, and
serves as a wrapper method around a given host segmentation method. The wrapper
method attempts to learn the intensity, spatial and contextual patterns associated with
systematic segmentation errors produced by the host method on training data for which
manual segmentations are available. The method then attempts to correct such errors
in segmentations produced by the host method on new images. One practical use of
the proposed wrapper method is to adapt existing segmentation tools, without explicit
modification, to imaging data and segmentation protocols that are different from those
on which the tools were trained and tuned. An open-source implementation of the
proposed wrapper method is provided, and can be applied to a wide range of image
segmentation problems.

The wrapper method is evaluated with four host brain MRI segmentation methods:
hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus seg-
mentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction
using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al.,
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2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously
segmented voxels than the respective host segmentation methods. In the hippocampus
segmentation experiment with multi-atlas label fusion as the host method, the aver-
age Dice overlap between reference segmentations and segmentations produced by the
wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive
impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain
extraction, white matter segmentation and gray matter segmentation, respectively.

Key words: medical image segmentation, error correction, AdaBoost, hippocampal
segmentation, brain extraction, brain tissue segmentation.

1. Introduction

Accurate automatic segmentation is highly desirable in a large number of neu-
roimaging applications, given the often prohibitive cost of manual segmentation. Many
software tools that address specific segmentation problems are available to today’s re-
searcher. However, the end-users of these tools are not always able to achieve the
high levels of segmentation accuracy reported by the tool developers. For instance, in
(Fischl et al., 2002), the authors of FreeSurfer report average Dice overlap of ∼ 80%
between automatic segmentation of the hippocampus and manual segmentations. In
(Morra et al., 2009, Pardoe et al., 2009), the users of the same tool achieve only ∼70%
average overlap with the manual segmentations. There are multiple possible causes
for such discrepancies. Firstly, the manual segmentation protocols used by the tool
developers and the tool users may be different. The prevailing approach to evaluating
segmentation accuracy is to compare automatic segmentation to manual segmentation
by one or more experts. However, different experts produce different segmentations,
and experts from different centers may use different segmentation protocols or even
disagree on the anatomical definitions of the underlying anatomy. This issue has been
widely discussed in the literature, and significant advances have been made in deriving
a consensus from segmentations by experts with varying degrees of reliability (Warfield
et al., 2004). However, even these advances do not address the problem of disagree-
ment in protocols and definitions of anatomy. Thus, the automatic method may be
performing just fine on the end-user’s data, but the end-user’s definition of the ground
truth may differ from that of the tool developer. The second possible cause of discrep-
ancy is that modern automatic segmentation methods are largely knowledge-based and
incorporate expert knowledge in the form of anatomical shape priors, appearance mod-
els, and other parameters. This knowledge is often constructed based on some specific
dataset that may be consistently different from the end-user’s imaging data.

The aim of this paper is to increase the accuracy of existing automatic segmentation
methods when applied to end-users’ data and evaluated against end-users’ manual seg-
mentations. One way to achieve this would be for the end-user to retrain and retune the
automatic segmentation method on his or her own data, using his or her own segmen-
tation protocol. This approach is not universally available, and may require scientific
and technical expertise far beyond the level needed to apply the segmentation method.
We advocate a simpler alternative approach that works with out-of-the-box automatic
segmentation software.
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When evaluated with respect to manual segmentation, the errors produced by a
segmentation algorithm can be categorized into two classes: random errors and consis-
tent errors (Warfield et al., 2008, Aljabar et al., 2009). The random errors are caused
by random effects, e.g. image noise and random anatomical variation. They can be
reduced by label fusion techniques that combine information from multiple segmen-
tation attempts performed independently, e.g. (Rohlfing et al., 2005, Warfield et al.,
2004, Heckemann et al., 2006, Aljabar et al., 2009, Sabuncu et al., 2010). In this paper,
we focus on addressing the other type of errors, consistent errors. Consistent errors are
errors that follow a systematic pattern and are caused by mistranslating manual seg-
mentation protocols into the criteria followed by the automatic segmentation method.
For example, in hippocampal segmentation, an automatic segmentation method may
mistakenly classify pockets of cerebrospinal fluid (CSF) inside the hippocampus as
parts of the hippocampus, perhaps due to regularization priors and partial volume ef-
fects. A human rater may be more likely to classify these pockets as not belonging to
the hippocampus. Such a difference between automatic and manual segmentations is
systematic because it occurs consistently under a given set of conditions (i.e. low in-
tensity values in a portion of the hippocampus where CSF pockets tend to form). In this
paper, we hypothesize that it is feasible for machine learning techniques to learn the
conditions under which consistent errors in automatic segmentation occur and to subse-
quently detect and correct these consistent errors for other images. For example in the
hippocampal CSF example given above, a classifier could be built to recognize spatial
locations and intensity patterns under which mislabeling of CSF as hippocampal tissue
is likely to occur; applying such a classifier to the results of automatic segmentation on
a new image could properly relabel some voxels as CSF.

In what follows, we use four different neuroimaging segmentation experiments
to demonstrate that the consistent errors between automatic segmentation results and
manual segmentations tend to be associated with a consistent pattern of intensity and
contextual features, which can be modeled and learned by a machine learning algo-
rithm. The main contribution of our paper is a wrapper algorithm that (1) learns these
patterns using example manual segmentations and imaging data provided by the end-
user; and (2) applies a correction to the automatic segmentation results produced by the
out-of-the-box method on the end-user’s data. The wrapper method is capable of cor-
recting even very large consistent errors. For example, in an experiment that analyzes
FreeSurfer hippocampus segmentation, average Dice overlap between automatic and
our reference segmentations is improved from 66% to 84% using only ten reference
segmentations for training.

The wrapper method can also be incorporated into the segmentation tool itself, in
some cases requiring no additional training data. This scenario is illustrated below in
the context of multi-atlas hippocampus segmentation, where the wrapper method pro-
vides a small but significant boost to segmentation accuracy, generating highly com-
petitive results for manual/automatic segmentation agreement reported in the literature.
Our wrapper method can be easily implemented, and a reference implementation is
provided as open-source software.3

3Source code and documentation at http://www.nitrc.org/projects/segadapter
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This paper is organized as follows. The Methods and Materials section summa-
rizes the imaging datasets used to evaluate the proposed approach; details the pro-
posed learning-based wrapper method for segmentation error correction, as well as
two variants used to demonstrate the effectiveness of the specific components of the
method; and describes the four host automatic segmentation methods to which the
wrapper method is applied. The Results section evaluates the performance of wrapper
method relative to manual segmentation, compares the variants of the wrapper method,
and evaluates the sensitivity of the wrapper method to parameters such as training set
size. The strengths, weaknesses and potential use cases of the method are discussed in
the Discussion section.

2. Materials and Methods

2.1. Subjects and Imaging
Our study was conducted on three different segmentation problems: segmentation

of the hippocampus, brain extraction and brain tissue segmentation. Hippocampus
segmentation experiments use the data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) available at http://www.loni.ucla.edu/ADNI. Brain extraction and
brain tissue segmentation experiments use the data from the Internet Brain Segmen-
tation Repository (IBSR) provided by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital and available at http://www.cma.mgh.harvard.edu/ibsr.

2.1.1. ADNI Data
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies and non-profit organi-
zations, as a $60 million, 5-year public-private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid researchers and clinicians to
develop new treatments and monitor their effectiveness, as well as lessen the time and
cost of clinical trials.

ADNI MRI data includes structural 1.5T MRI from all 800 subjects and 3T struc-
tural MRI from 200 subjects. Our experiments were conducted using a subset of the 3T
images for which reference segmentations were already available from an earlier study
of hippocampal atrophy rate estimation in MCI patients (Yushkevich et al., 2010). This
subset consists of baseline 3T MRI scans of 82 MCI patients and 57 controls.

The reference segmentations for evaluation were generated for the ADNI subjects
as follows. First, we applied a landmark-guided atlas-based automatic segmentation
method (Pluta et al., 2009) to obtain an initial hippocampal segmentation for each
image. This method requires six manually-placed landmarks as input. Each initial
segmentation was then edited in three dimensions by M.A. in ITK-SNAP software
(Yushkevich et al., 2006a) following a previously validated protocol (Hasboun et al.,
1996). The reliability of this segmentation protocol is summarized in the Appendix.
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2.1.2. IBSR Data
The dataset contains 18 T1-weighted MR brain images and their manual segmenta-

tions. The images provided by IBSR have been normalized into the Talairach space (ro-
tation only) and preprocessed by intensity inhomogeneity correction routines. The im-
ages have slice thickness of 1.5 mm with in-plane resolution varying between 1.0mm×
1.0mm and 0.84mm × 0.84mm. The manual segmentations contain labels for gray
matter, white matter and the ventricles. Notably, cerebrospinal fluid (CSF) outside of
the ventricles is assigned the gray matter label in the IBSR segmentations.

2.2. Learning-Based Wrapper Methods
To improve the segmentation results produced by a given host automatic segmenta-

tion method, we propose two learning-based wrapper algorithms: a wrapper algorithm
with explicit error correction (EC) and a wrapper algorithm with implicit error cor-
rection. Explicit EC explicitly searches for voxels mislabeled by the host method and
assigns a new label to them. By contrast, implicit EC assigns new labels to voxels
without first determining if they are mislabeled or not. These two methods are equiv-
alent for binary segmentation problems, but for multi-label segmentation, the explicit
EC method is more computationally efficient, as explained later in this section.

The data used to train our wrapper method consist of a set of images, a set of cor-
responding manual segmentations of the structure of interest, and a set of correspond-
ing automatic segmentation results produced by the host method. For evaluation, the
wrapper method is applied to test data, consisting of a set of images and corresponding
segmentations by the host method. To quantify the performance of our error correc-
tion algorithms, corrected and uncorrected automatic segmentations were assessed by
comparison with manual segmentations. Since manual segmentations are available for
all the subjects in our datasets, for each experiment we randomly partition each dataset
into training and test subsets. As a means of cross-validation, experiments are repeated
for multiple random partitions.

Next, we describe the error correction wrapper algorithms in detail.

2.2.1. Explicit Error Correction
Fig. 1 summarizes the explicit EC wrapper method. Using this method, a target

image is segmented as follows. First, the host segmentation method is used to obtain
the initial segmentation of the target image. Second, a classifier attempts to identify
voxels that have been mislabeled by the host method. We refer to this as the error
detection classifier. Next, a second classifier is used to reassign labels to the voxels
tagged as mislabeled by the error detection step. This classifier is referred to as error
correction. To construct the error detection and error correction classifiers, we use
training data for which manual segmentations are available and initial segmentations
are obtained by running the host method. We now describe the training and application
of the error detection and error correction classifiers in detail.

Error Detection as a Binary Classification Problem. Given segmentation results pro-
duced by a host segmentation method, our first step is to identify which voxels are
mislabeled with respect to the manual segmentations. We formulate this problem as a
classification problem, which is addressed via machine learning as follows.
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Figure 1: Flow chart of the explicit EC method. The error detection step finds the voxels that are likely to be
mislabeled by the host method. The error correction step re-assigns a new label to them. Both error detection
and error correction are automatically learned using training segmentations produced by the host method.

We assume that the segmentation problem involves assigning one or more fore-
ground labels to the structures of interest and a background label to the rest of the
image. For each foreground label L, we train one classifier to separate correctly la-
beled voxels from the mislabeled voxels. All voxels across all training images that are
assigned the label L by the host segmentation method serve as examples for training
the classifier for label L (see Table 2). The features used for training these classifiers
are derived from the neighborhood of each voxel, and are discussed later in this section.

The approach is slightly different for the background label, since in many segmen-
tation problems the background region is much larger than the foreground. As before, a
classifier is trained to identify voxels incorrectly assigned the background label by the
host method. However, when the host method works reasonably well, most voxels in-
correctly labeled as background should be in the close proximity of the voxels labeled
as foreground. Hence, instead of using all voxels labeled as background by the host
method as training examples, we only use the subset of these voxels that lie in a region
of interest (ROI) obtained by dilating the set of voxels assigned the foreground label
by the host segmentation. In the rest of the paper, we refer to this region of interest as
the working ROI. The restriction of training to the working ROI excludes the vast ma-
jority of irrelevant background voxels from consideration and simplifies the learning
problem considerably. In our experiments, we choose the dilation radius such that, in
the training set, the working ROIs cover the vast majority of the voxels assigned the
foreground label by the manual segmentation (see the Results section for some exam-
ples). In certain segmentation problems, the foreground region is provided as input,
and there is no need to train the background error detection classifier. For example, in
our experiments with brain tissue segmentation, manual brain extraction masks from
IBSR define the foreground region, and segmentation does not involve the background
label.

Note that for multi-label segmentation problems, the error detection classifiers for
different labels perform different classification tasks, i.e., detecting voxels where the
given label L has been assigned erroneously by the host method. Learning these tasks
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separately decomposes the complex multi-class classification problem into several sim-
pler binary classification problems. However, for segmentation problems with only two
labels, the error detection classifiers for the foreground and background labels perform
equivalent tasks. Hence, to increase the robustness against overfitting for binary seg-
mentation problems, we train a single error detection classifier for both foreground and
background using all voxels within the working ROI.

Error detection classifiers are constructed using the AdaBoost algorithm (Freund
and Schapire, 1995), which has shown excellent ability to learn complex patterns in
the context of medical image segmentation, as exemplified by the work of Tu et al.
(2007) and Morra et al. (2008). AdaBoost builds strong classifiers by combining com-
plementary weak classifiers. Intuitively, AdaBoost iteratively updates the weights as-
sociated with each training sample based on the selected weak classifiers, such that the
samples that are incorrectly classified receive higher weights. By doing so, weak clas-
sifiers selected later in the course of the training complement the previously selected
weak classifiers, in the sense that they only focus on classifying samples that have
been previously classified incorrectly. Combining these complementary weak classi-
fiers produces a strong classifier that performs better than any single weak classifier.

Following common practice (Viola and Jones, 2001, Tu et al., 2007), we build
weak classifiers based on features that are extracted from local image appearance. Let
A∆x,∆y,∆z(i) = I(xi + ∆x, yi + ∆y, zi + ∆z) − I be the appearance feature at
the relative location (∆x,∆y,∆z) for the voxel i with coordinates (xi, yi, zi) . I
is the image intensity. To compensate for different intensity ranges across different
images, the intensity features are normalized by the mean intensity Ī of the working
ROI. Note that our set of appearance features for each voxel includes the complete
local image patch, rather than higher-order quantities derived from partial derivatives of
image intensity. By including all intensity information in the neighborhood of a voxel,
we rely on AdaBoost to find a combination of these intensities that is most useful in the
context of classification. More robust features with scale and rotation invariance could
be included as well. However, since the brain images used in our experiments have
similar scales and orientations, simple appearance features are sufficient to demonstrate
the usefulness of our method.

Image appearance features are capable of capturing certain image intensity pat-
terns associated with consistent segmentation errors (e.g., if the host method makes
consistent errors in CSF regions, which have relatively darker intensity). However,
segmentation errors can also correlate with patterns not captured by the local intensity
patch. For example, the host method may consistently overextend its segmentation past
a certain anatomical boundary for which there is little intensity contrast. To allow the
classifier to learn such patterns of mis-segmentation, we include as features the seg-
mentation labels produced by the host method in the neighborhood of each voxel. We
represent these features by L∆x,∆y,∆z(i) = s(xi + ∆x, yi + ∆y, zi + ∆z), where s
is the segmentation produced by the host method. We refer to these features as con-
textual features because they supplement intensity features with important contextual
information. For instance, they allow the classifier to treat the same intensity patch
differently depending on whether it occurs on the boundary of the host segmentation
or on the interior. As our experiments below demonstrate, the contextual features are
crucially important for the performance of the wrapper method.
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To include spatial information, we add the coordinate feature Sx(i) = xi − x,
Sy(i) = yi − y and Sz(i) = zi − z, where x, y, z are the coordinates of the cen-
ter of mass of the working ROI. To enhance the spatial correlation, we include the
joint feature obtained by multiplying each spatial feature with each appearance and
contextual feature. For example, the joint features of appearance and location in-
clude A∆x,∆y,∆z(i)Sx(i), A∆x,∆y,∆z(i)Sy(i), and A∆x,∆y,∆z(i)Sz(i). In our ex-
periment, all features are sampled in a 5 × 5 × 5 neighborhood of a given voxel (i.e.,
∆x,∆y,∆x ∈ [−2, 2]), which yields a total of 1003 features.

Given the response of a feature at each training voxel, e.g. A(0,0,0)(i), we fol-
low (Viola and Jones, 2001) and construct a weak classifier via a linear transform, i.e.
h(A(0,0,0)(i)) = sign(aA(0,0,0)(i)− b), where a ∈ {−1, 1} and b is a threshold. Both
parameters are optimized through a linear search such that the weighted misclassifi-
cation rate is minimized. After the weak classifiers are built, we apply AdaBoost to
select and combine them into a single strong classifier. In our experiments, we train
every AdaBoost classifier for 500 iterations.

Applying error detection classifiers to test images involves computing the initial
segmentation of the test image using the host method, deriving a working ROI for
the test image by applying dilation to the initial segmentation, and, for each label L,
applying the AdaBoost classifier corresponding to L at each voxel assigned the label
L in the initial segmentation. This results in a subset of voxels in the working ROI
being marked as mislabeled. These voxels are used as the input for the error-correction
classifier.

Error Correction Classifiers. We seek to assign a new, hopefully correct label to the
voxels marked mislabeled by the error detection classifiers. For segmentations with
only two labels, this step is unnecessary, since correction simply involves flipping the
label of the voxels marked as mislabeled by the error correction.

For segmentation problems with more than two labels, we formulate error correc-
tion as a multi-class classification problem. Using all voxels incorrectly segmented
by the host segmentation method as training exemplars, we train a separate classifier
for each label L. Each classifier is trained to separate voxels assigned label L by the
manual segmentation from voxels assigned all other labels by the manual segmentation
(see Table 2). Again, we use AdaBoost learning with the same set of features described
above. As in the case of error detection, we use the mean intensity and the center of
mass of the working ROI to normalize the appearance and the spatial features used for
error correction.

To assign a new label to a voxel marked mislabeled by error detection, we apply
each error correction classifier to that voxel and assign the label whose corresponding
classifier gives the strongest response.

2.2.2. Implicit Error Correction
In explicit EC, we explicitly perform error detection and error correction as separate

steps. This strategy is efficient because only the potentially mislabeled voxels need
to be relabeled for error correction. We also examine an alternative learning-based
approach, which we call implicit error correction. In this approach, we skip the error
detection step and directly perform error correction upon the initial segmentation. This
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method is equivalent to explicit EC where every voxel in the working ROI is marked as
mislabeled.

Since this learning algorithm aims at directly transferring the segmentation pro-
duced by a host method to the corresponding manual segmentation, it implicitly cor-
rects the errors produced by the host method. Fig. 2 summarizes our implicit EC
method.

Figure 2: Flow chart of the implicit error correction method.

To train implicit EC classifiers, we use a working ROI obtained by dilating the set
of voxels labeled as foreground by the host method. Again, dilation is necessary only
when the background label needs to be corrected. Using all voxels within the working
ROI, we train one classifier for each label to recognize voxels actually assigned to
this label by manual segmentation (see Table 2). It is easy to see that explicit EC is
equivalent to implicit EC on segmentation problems with only two labels.

Since implicit EC reevaluates every voxel in the working ROI, it is not affected by
the errors produced by the error detection classifiers in explicit EC. This becomes an
advantage when error detection classifiers are unreliable. On the other hand, implicit
EC has higher computational complexity than explicit EC for both training and testing
because implicit EC trains multiple classifiers using all voxels in the working ROI as
training examples, while explicit EC trains only a single error detection classifier using
the whole working ROI, while using only the voxels marked mislabeled to train the per-
label error correction classifiers. The computational complexity of the two methods is
compared in Table 1.

2.2.3. Direct Learning
To demonstrate the usefulness of including contextual features (i.e, features derived

from the segmentation produced by the host method) in EC classifier learning, we
compare our error correction wrapper methods with a variant of implicit EC, where the
contextual features are not included as a feature. We call this variant the direct learning
(DL) approach. Using the same training data used for implicit EC, we apply AdaBoost
to train one DL classifier for each label to recognize voxels manually assigned to this
label. The only difference from implicit EC is that we only use appearance and spatial
features for learning DL classifiers, while the features L∆x,∆y,∆z are not included.
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In principle, in the absence of a segmentation result by a host method, DL should
use all voxels in the whole image for training. However, to highlight the contribution
of contextual features for learning, we train DL classifiers over the same working ROI
as in explicit/implicit EC. Hence, in our experiments, DL partially benefits from the
results produced by the host segmentation methods.

The general features and the computational cost of the explicit EC, implicit EC and
DL methods are compared in Table 1. The differences in the way the classifiers used
by these three methods are specified in Table 2.

explicit EC implicit EC DL
Explicit search for
mislabeled voxels

yes no no

Contextual features used yes yes no
Computational cost (1 + rnL)N (NA +NL) nLN (NA +NL) nLNNA

Table 1: Summary of explicit EC, implicit EC and DL. nL is the number of labels. N is the size of the work-
ing ROI, in voxels. r is the fraction of voxels mislabeled by the host method. NA and NL are the number
of appearance features and label features, respectively. Explicit EC usually has a smaller computational cost
than implicit EC and DL for multi-label segmentation problems. Implicit EC and explicit EC are equivalent
for two-label problems.

2.3. Host Segmentation Methods

The variants of the wrapper method are evaluated in three common MRI segmenta-
tion problems using four host methods. For the problem of hippocampus segmentation
in ADNI MRI, the host methods are FreeSurfer (Fischl et al., 2002) and a multi-atlas
label fusion segmentation approach (Artaechevarria et al., 2009, Sabuncu et al., 2010).
For brain extraction in IBSR data, the host method is the Brain Extraction Tool (BET)
(Smith, 2002). For the problem of three-tissue segmentation, the FSL FAST algorithm
(Zhang et al., 2001) serves as the host method.

Explicit EC
Implicit EC and DL

Error Detection Error Correction
Number of classifiers nL nL nL

Training exemplars of
class 1 for classifier L

{i : s(i) = L,m(i) = L} {i : s(i) ̸= m(i),m(i) = L} {i : m(i) = L}

Training exemplars for
class 0 for classifier L

{i : s(i) = L,m(i) ̸= L} {i : s(i) ̸= m(i),m(i) ̸= L} {i : m(i) ̸= L}

Voxels in test image to
which classifier L is
applied

{i : s(i) = L} Voxels assigned class 0 by
error detection

All voxels in working ROI

Table 2: A comparison of how the explicit and implicit error correction methods train and apply classifiers.
Above, nL denotes the number of labels in a segmentation problem; i indexes voxels in an image; s(i) is the
initial segmentation produced by the host method at voxel i; and m(i) is the manual segmentation of voxel
i.
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Hippocampus segmentation and brain extraction are binary segmentation problems
(hippocampus segmentation involves segmenting left and right hippocampi, but these
segmentations are performed as independent binary problems). Thus, for these prob-
lems the explicit and implicit variants of the EC method are equivalent. The three-
tissue segmentation problem involves multiple labels and allows these variants to be
compared.

2.3.1. FreeSurfer
FreeSurfer is a software pipeline for the study of cortical and subcortical anatomy.

It contains preprocessing components that extract the brain and compensate for inten-
sity inhomogeneity; segmentation tools; and other utilities for cortical and subcorti-
cal morphometry. Subcortical segmentation is achieved by aligning the target image
with an atlas constructed from a set of manually labeled training images. Although
FreeSurfer is not a specialized tool for hippocampus segmentation, due to its popular-
ity and its good general segmentation performance, hippocampal segmentation results
by FreeSurfer have been used as a benchmark for evaluating the performance of auto-
matic hippocampal segmentation methods in the recent literature (Morra et al., 2009,
Akhondi-Asl et al., 2010, Sanchez-Benavides et al., 2010). As in these papers, we
apply FreeSurfer to imaging data with different acquisition parameters from those on
which FreeSurfer was trained, and evaluate it against reference segmentations gen-
erated using a different hippocampus segmentation protocol. The intention of the
FreeSurfer experiment is to demonstrate that the wrapper method can help reconcile
these differences in imaging and segmentation protocols, making FreeSurfer perform
very well on our data.

In this test, FreeSurfer was applied with the default parameters to segment the left
and right hippocampus in each image in the ADNI dataset. 10 cross-validation experi-
ments were performed, with 70 subjects selected at random to form the training set and
the remaining 69 subjects forming the test set. Additional experiments with training
sets of size 1 to 5, 10 and 20 were also performed to assess the relationship between
the size of the training set and the improvement achieved by the wrapper method.

2.3.2. Multi-Atlas Label Fusion
Multi-atlas based segmentation labels a target image by computing one-to-one cor-

respondences with a set of labeled atlases, i.e., images with similar appearance in which
the segmentation of the structure of interest is given (Rohlfing et al., 2005). Correspon-
dences are computed using deformable image registration, and segmentation labels are
mapped from the coordinate spaces of the different atlases into the coordinate space of
the target image. These warped segmentations are combined into a single consensus
segmentation using a label fusion strategy. Various fusion strategies have been pro-
posed, majority voting being the simplest. Recent work has demonstrated the effective-
ness of strategies where the contribution of each atlas to the consensus segmentation is
weighted by the local intensity similarity of the atlas to the target image (Artaechevarria
et al., 2009). Because of its simplicity and good performance, multi-atlas segmentation
has become a popular approach for medical image segmentation.

Compared with the FreeSurfer experiment, the experiment using multi-atlas label
fusion as the host method is designed to demonstrate the contribution of the wrapper
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method in the absence of systematic differences due to imaging and segmentation pro-
tocols. Thus, the test images and the atlas images in this experiment all come from the
ADNI dataset. The multi-atlas experiment is also an example of a scenario where using
the wrapper method to improve segmentation performance does not require additional
training data beyond that already used by the host algorithm, because the training of
the EC classifiers is performed among the atlases in a leave-one-out fashion.

As before, 10 cross-validation experiments were performed. In each experiment,
20 subjects were randomly chosen as atlases and 20 more were chosen as test images.
Each atlas was registered to each test image, as well as to each other atlas. Global
registration was performed using the FSL FLIRT tool (Smith et al., 2004) with six
degrees of freedom and using the default parameters (normalized mutual information
similarity metric; search range from -5 to 5 in x, y and z). Deformable registration
was performed using the ANTS Symmetric Normalization (SyN) algorithm (Avants
et al., 2008), with the cross-correlation similarity metric (with radius 2) and a Gaussian
regularizer with σ = 3. After registration, reference segmentations from each of the
atlases were warped into the target image space.

To compute the consensus segmentation of each target image, we use the label
fusion strategy determined to be most effective in the recent studies by Artaechevarria
et al. (2009) and Sabuncu et al. (2010). Let TF be a test image and A1 = (A1

F , A
1
S), ..., A

n =
(An

F , A
n
S) be n atlases registered to TF , with Ai

F denoting the warped atlas image, and
Ai

S denoting the corresponding warped reference segmentation. The locally weighted
label fusion strategy produces the final segmentation T̂S(x) as follows:

T̂S(x) = argmaxL∈{1...nL}

n∑
i=1

wi(x)δ(Ai
S(x), L) (1)

where L indexes through the labels, nL is the number of labels (in our case, 2), and δ
is the Kronecker delta function. The spatially varying weight wi(x) measures the con-
fidence that atlas i produces the correct label for the test image at x, which is estimated
from the appearance similarity between the test image and the registered atlas image in
the neighborhood of x. We apply the summed square distance (SSD) and a Gaussian
model (Sabuncu et al., 2010) to estimate the weights as follows:

wi(x) =
exp(−

∑
j∈N (x)

[
TF (j)−Ai

F (j)
]2

/σ)∑n
k=1 w

k(x)
(2)

where N denotes a neighborhood centered at x. We use a (2r + 1) × (2r + 1) ×
(2r + 1) cube-shaped neighborhood specified by the radius r, which is a parameter of
the method. To account for absolute intensity differences between the atlases and the
target image, instead of using the raw image intensities to estimate the similarity-based
weights, we normalize the intensity vector obtained from each local image intensity
patch, such that the normalized vector has zero mean and unit variance. To reduce the
effects of noise, we spatially smooth the weights for each atlas by a mean filter of the
same size as the neighborhood N . After smoothing, the weights are renormalized such
that for any x,

∑n
i=1 w

i(x) = 1.
For each cross-validation experiment, this approach generates a consensus segmen-

tation of each test image, as well as a consensus segmentation of each atlas image
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by all the remaining atlases. The label fusion approach has two free parameters, the
neighborhood radius r and the standard deviation σ in the Gaussian model (2). For
each cross-validation experiment, we determine the optimal values of these parameters
using the atlas subset in a leave-one-out strategy. That is, we measure the average over-
lap between the consensus segmentation of each atlas via the remaining atlases and the
reference segmentation of that atlas, and find the value of r or σ that maximize this av-
erage overlap. Each parameter is optimized separately by evaluating a range of values
(r ∈ {1, 2, 3}; σ ∈ {0.05, 0.1, 0.15, . . . , 1}). Importantly, the reference segmentations
of the test images in each cross-validation experiment are not used for finding the opti-
mal parameters r and σ for that experiment, eliminating the possibility of overfitting.

The input to the EC training consists of the atlas images, their consensus segmen-
tations by the remaining atlases (playing the role of the host method segmentation
result), and their reference segmentations. To boost the size of the training set, the
flipped mirror images of the right hippocampi are combined with the left hippocampi
to train the EC classifiers. EC is then applied to the test images and their consensus
segmentations. For right hippocampus segmentation, the test images are also mirror
flipped before applying the EC classifiers.

2.3.3. Brain Extraction Tool (BET)
BET (Smith, 2002) uses a deformable model to separate the brain from other tissues

in MR images. In our experiments, BET was applied with the default parameters to
segment each of the 18 brain images from IBSR. The EC method was used to improve
the accuracy of brain extraction relative to the brain masks in IBSR. 10 cross-validation
experiments were performed. For each cross-validation evaluation, 9 subjects were
randomly selected for training the EC method, and the remaining 9 for testing. The
brain volumes have millions of voxels, posing a challenge for the AdaBoost learning,
which requires loading all data in memory for efficient learning. For efficiency, we
randomly selected 1% voxels uniformly from the working ROIs for training.

2.3.4. FMRIB’s Automated Segmentation Tool (FAST)
The FAST algorithm (Zhang et al., 2001) is used to segment brain MRI into gray

matter, white matter, and CSF. It takes an expectation-maximization strategy to iter-
atively search for the optimal segmentation and the optimal inhomogeneity bias field
correction solution. The solutions are spatially regularized by a Markov Random Field
prior to reduce the effects of image noise. In our experiment, the FAST algorithm was
applied with the default parameter settings for all 18 subjects. The region of interest
for the three tissue segmentation was restricted to the brain by providing the manually
computed brain masks in the IBSR dataset as input to FAST. The explicit and implicit
versions of the EC method were evaluated in 10 cross-validation experiments with the
same partitioning of subjects into training and test sets as in the BET experiment.

3. Results

3.1. FreeSurfer
FreeSurfer hippocampus segmentations tended to be substantially larger than the

corresponding reference segmentations, and it was sufficient to use a single-voxel di-
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lation to obtain the working ROI for the learning algorithms. On average, this ROI
covered 99.7% of the foreground voxels in the reference hippocampus segmentations
in the training data. Using this working ROI definition, our implementation of the EC
method4 completed AdaBoost training in 6 hours on a 3 GHZ CPU for each cross-
validation experiment. Applying the trained EC classifiers to correct the segmentation
for a test image only took a few seconds of CPU time.

LEFT RIGHT
Exp. initial(Dice) DL(Dice) EC(Dice) initial(Dice) DL(Dice) EC(Dice)

1 0.665±0.045 0.838±0.037 0.864±0.033 0.658±0.041 0.845±0.030 0.866±0.025
2 0.666±0.045 0.839±0.035 0.863±0.028 0.651±0.045 0.843±0.031 0.865±0.025
3 0.662±0.042 0.837±0.036 0.861±0.034 0.655±0.040 0.846±0.028 0.866±0.030
4 0.663±0.046 0.833±0.037 0.861±0.034 0.661±0.037 0.842±0.026 0.870±0.021
5 0.666±0.045 0.839±0.033 0.865±0.034 0.655±0.043 0.843±0.031 0.866±0.031
6 0.668±0.045 0.838±0.031 0.864±0.030 0.655±0.041 0.843±0.026 0.867±0.024
7 0.664±0.047 0.843±0.030 0.865±0.030 0.648±0.043 0.842±0.031 0.866±0.030
8 0.668±0.044 0.838±0.036 0.863±0.033 0.659±0.040 0.842±0.031 0.865±0.031
9 0.665±0.045 0.842±0.034 0.867±0.032 0.652±0.039 0.845±0.032 0.867±0.032

10 0.665±0.045 0.840±0.035 0.865±0.033 0.656±0.042 0.842±0.031 0.863±0.033

Table 3: Results of automatic hippocampus segmentation using FreeSurfer and the wrapper method. Each
row gives the average Dice overlap between automatic and reference segmentations for one cross-validation
experiment. The bold font highlights the best results.

The average size of the working ROI was 5978 voxels, and the average number
of voxels in the reference segmentations was 1598. On average, FreeSurfer produced
1489 mislabeled voxels for each hippocampus. The EC method produced 72.0% fewer
errors (418 mislabeled voxels) than FreeSurfer. By contrast, the DL method produced
slightly worse results with 472 mislabeled voxels. Table 3 shows the results in terms of
Dice overlap with reference segmentations for each of the 10 cross-validation experi-
ments. On average, the EC method increased Dice overlap from 0.660 to 0.865.

Visualization of spatially consistent segmentation errors. Fig. 3 shows examples of
the differences between FreeSurfer hippocampus segmentations and reference segmen-
tations (middle column), and the differences after applying the EC wrapper method
(right column). These differences appear to follow a consistent spatial pattern, with the
FreeSurfer segmentation extending farther in the superior direction than the reference
segmentation. Furthermore, FreeSurfer segmentations include white matter structures
such as the alveus, as well as some CSF voxels, while the reference segmentations
exclude them. Thus, the differences between reference segmentations and FreeSurfer
segmentations are associated with specific spatial locations and specific intensity pat-
terns; both of these can be learned easily by a machine learning algorithm, which

4Recall that for binary segmentation problems the explicit and implicit EC methods are equivalent.
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image FreeSurfer FreeSurfer + EC

Figure 3: Examples of differences between the reference segmentations of the hippocampus and the au-
tomatic segmentations produced by FreeSurfer before and after applying the EC wrapper method. Red:
reference segmentation; blue: automatic segmentation; purple: overlap region between automatic and refer-
ence segmentation. The EC method successfully corrects the spatial inconsistencies between the FreeSurfer
results and the reference segmentations.

explains why the EC method was able to achieve a large improvement in segmentation
accuracy.

To visualize and quantify the pattern of disagreement between FreeSurfer and ref-
erence segmentations across all subjects, we normalize the different hippocampus seg-
mentations into a common coordinate space. Normalization is performed using a
structure-specific shape-based normalization approach (Yushkevich et al., 2007). A
geometrical model, known as the continuous medial representation (cm-rep), is fitted
to each reference segmentation of the hippocampus, and the parameterization of this
geometrical model is used to establish a one-to-one correspondence between the space
inside and near the reference segmentation and a common reference space provided
by a single template manual segmentation. Additional details on how correspondence
maps are established using the cm-rep parameterization are given in the Appendix. Us-
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ing these correspondence maps, we transfer both the reference segmentations and the
FreeSurfer segmentations from subject space into the template space. We emphasize
that since the same mapping is applied to both reference and automatic segmentations,
the differences between these segmentations are maintained by the mapping. Averag-
ing over all subjects, we compute the spatial label distribution in the template space
for the reference segmentations and the FreeSurfer segmentations. These distributions
are shown in Fig. 4. Note that a cm-rep model fitted to a reference segmentation does
not overlap it perfectly. Hence, the mean spatial label distribution of the reference
segmentations in the template space is not a binary image.
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Figure 4: The spatial patterns of disagreement between the automatic segmentations of the hippocampus
in the FreeSurfer experiment and the corresponding reference segmentations, plotted after normalization to
a common reference space. All plots show a sagittal cross-section of the 3D reference space. (a). The
mean of the normalized reference segmentations. (b). The mean of the FreeSurfer segmentations, mapped
into the reference space using the same transformations as the corresponding reference segmentations. (c).
Mean signed difference between FreeSurfer and reference segmentations. FreeSurfer over-segmented the
hippocampus at the superior, anterior and posterior boundaries. (d). Mean signed difference between
DL results and reference segmentations. (e). Mean signed difference between EC results and reference
segmentations. Both DL and EC methods correct the over-segmentation produced by FreeSurfer, the latter
doing so more effectively. (f-j). Standard deviation of the normalized reference segmentations, normalized
automatic segmentations, and their signed differences.

The plot of mean signed difference between the normalized automatic and reference
segmentations in Fig. 4(c) reveals a consistent pattern of disagreement in the anterior,
posterior and superior regions of the hippocampus for the host method. Fig. 4(d) and
4(e) show that after applying the learning-based correction algorithms, this pattern of
disagreement is reduced dramatically, with the EC method producing the greater reduc-
tion in disagreement than the DL method. Interestingly, neither EC nor DL completely
eliminated consistent disagreement with reference segmentations, with both methods
exhibiting a similar pattern of disagreement (slight under-segmentation at the anterior
and posterior boundaries, and slight over-segmentation along the inferior and supe-
rior boundaries). Note that the learning algorithm and the host segmentation method
produced different consistent errors. For example, the DL algorithm produces some
consistent under segmentation around the anterior and posterior regions of the hip-
pocampus, shown in yellow and red colors, however such consistent errors do not ap-
pear in the results produced by FreeSurfer and are significantly reduced in the results
produced by error correction. This result suggests that including the host segmenta-
tion method’s output in learning helps reduce the consistent errors only imposed by the
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pure learning algorithm. Hence, our error correction method outperformed the direct
learning algorithm.

A consistent pattern of difference between the automatic and reference segmenta-
tions can also be seen by examining the volumes of the segmentations. Table 4 shows
the average hippocampal volume produced by FreeSurfer, which is almost double the
average volume of the reference segmentations. Fig. 5 (left) plots the volume correla-
tion between the reference segmentations and the FreeSurfer segmentations, revealing
a substantial bias between the volume measurements, as well as the large variance in
the difference between the measurements. Fig. 5 (right) plots the volume correlation
after applying the EC method. Both the bias and the variance of the volume difference
are dramatically reduced. After error correction, the volume differences between refer-
ence segmentation and automatic segmentation appear to be more similar to zero-mean
random noises, as shown in Fig. 5.
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Figure 5: Bland-Altman plots comparing automatic volume (in mm3) estimates produced by FreeSurfer
to manual volume estimates. Each point corresponds to a hippocampal segmentation of one of the two
hemispheres in one subject. The difference between automatic and manual estimates is plotted against their
average. The solid horizontal line corresponds to the average difference, and the dashed lines are plotted at
average ±1.96 standard deviations of the difference

LEFT RIGHT
manual FreeSurfer DL EC manual FreeSurfer DL EC

1952± 377 3349±599 1919±388 1904±384 1894±391 3412±598 1858±382 1843±385

Table 4: The average hippocampal volumes (mm3) derived from the reference segmentations, the FreeSurfer
segmentations, and the segmentations produced by the DL and EC wrapper methods.

The volume expansion bias observed in our experiment also has been reported in
the literature, as summarized in Table 5. This may be due to the fact that FreeSurfer
was trained on a manual hippocampal segmentation protocol different from ours and
from those used by the other authors reporting the volume expansion bias. Besides
the contribution from employing different manual segmentation protocols, Table 5 also
reveals another potential bias associated with imaging modalities. FreeSurfer tends
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to produce smaller volume expansion and higher segmentation overlap with manual
segmentations on 1.5 T MR images than on 3 T MR images.

methods MRI Field Strength relative volume difference Dice overlap
(Fischl et al., 2002) N/A ∼105% N/A
(Khan et al., 2008) 1.5 T N/A 0.70 to 0.85

(Cherbuin et al., 2009) 1.5 T ∼125% N/A
(Morey et al., 2009) 1.5 T ∼120% ∼0.82
(Morra et al., 2009) 1.5 T N/A 0.73

(Sanchez-Benavides et al., 2010) 1.5 T ∼103% ∼0.78
(Akhondi-Asl et al., 2010) 3 T ∼150% 0.63

(Pardoe et al., 2009) 3 T ∼140% ∼0.7
ours 3 T ∼170% ∼0.66

ours after EC 3 T ∼97% ∼0.86

Table 5: Hippocampal segmentations produced by FreeSurfer reported in the recent literature. The results
are summarized in terms of relative volume difference, i.e. the volume ratio between automatic and manual
segmentations, and Dice overlap compared to manual segmentations. The volume ratios are estimated based
on the volumes of automatic and manual segmentations reported in the corresponding work.

As discussed in the Introduction, all these factors are natural sources of consistent
errors that a segmentation tool may produce when applied to a large variety of appli-
cations. One way to correct these errors would be to retrain and retune FreeSurfer on
our data set. Our error correction method gives a simple alternative approach to adapt
FreeSurfer to our data.

Effect of working ROI size. To investigate the influence of the working ROI size on the
learning algorithms, we repeat the above experiment with working ROIs of different
size. Two additional working ROIs were obtained from the FreeSurfer segmentations
by applying dilations of two and three voxels. Since the working ROIs obtained from
one-voxel dilation already cover most of the manually labeled hippocampi, these two
larger working ROI definitions include more background voxels into consideration.
Table 6 shows the percentage of background voxels and hippocampal voxels covered
by the three working ROI definitions.

Fig. 6 shows the average Dice overlaps over 10 cross-validation experiments using
these three different working ROIs. For the EC algorithm, using larger working ROIs
results in almost identical but slightly worse results. By contrast, DL performance is

Dilation Radius working ROI size (voxels) % Hippocampal voxels in ROI % ROI voxels in hippocampus
1-voxel 5978 99.67 32.19
2-voxel 8904 99.97 21.68
3-voxel 12234 99.99 15.78

Table 6: The ability of working ROIs generated with different radii of dilation to cover the reference hip-
pocampal segmentations.
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Figure 6: Dice overlaps of hippocampal segmentation when different dilations are used to generate the
working ROIs for direct learning and error correction. Results for left and right sides are displayed separately.

more significantly reduced when larger working ROIs are used. This result implies
that the location of the initial segmentation produced by the host method is informative
for the segmentation problem. Ignoring this information by including more irrelevant
background voxels indeed complicates the learning problem. Hence, in the remaining
experiments, we restrict ourselves to use small working ROIs that have good coverage
of the manually labeled foreground in the training data.

Effect of training set size. The experiments above use reference segmentations from
70 subjects for training. Such a large training set may be impractical for real-world
applications. To investigate the effect of training set size on the error correction perfor-
mance, we performed experiments using various numbers of training subjects (1-5, 10,
and 20). To facilitate the comparison with the earlier results, the 10 cross-validation
experiments above were repeated with the same partitioning of the subjects into train-
ing and test sets. However, in each experiment, only a subset of the full training set
was used to train classifiers.

Fig. 7 shows the error correction performance with respect to the number of train-
ing data. Even using a single image for training, our method achieves a significant
improvement over the host method. As more subjects are added to the training set, the
segmentation performance increases, although with diminishing returns.
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Figure 7: Effect of training set size on EC performance. Left: the average number of mislabeled voxels after
error correction vs. the size of the training set (error bars at ±1 s.d.). The average number of mislabeled vox-
els before error correction, ±1 s.d., is shown in blue. Right: Dice overlap between EC results and reference
segmentations vs. training set size, with the blue line showing Dice overlap without error correction.

3.2. Multi-Atlas Segmentation with Label Fusion
Fig. 8 shows the results of the parameter selection experiment for one of the cross-

validation experiments. The optimal parameters for this experiment, found using leave-
one-out analysis among the atlases, were r = 2 and σ = 0.05. Optimal parameters
found for the remaining 9 cross-validation experiments were similar, with r ∈ [2, 3]
and σ ∈ [0.05, 0.1].

On average, the multi-atlas approach produced 372 mislabeled voxels for each hip-
pocampus. The working ROI for EC and DL training was obtained by a single-voxel
dilation of the host segmentation results. On average, this ROI covered 98.7% of the
manually labeled hippocampal voxels. The EC method produced 13.7% fewer errors
than the multi-atlas method alone (321 mislabeled voxels). By contrast, DL produced
worse results with 435 mislabeled voxels. Fig. 10 shows the spatial patterns of dis-
agreement between automatic and reference segmentation before and after applying
EC and DL. Consistent under-segmentation near the head and tail of the hippocam-
pus is reduced substantially by the EC method, while the DL method introduces a
new pattern of over-segmentation along the hippocampus boundary. Fig. 9 shows the
volume differences after applying the error correction. The negative volume bias is
significantly reduced. Table 7 shows the average Dice overlap for each of the cross-
validation experiments. Overall, EC improves the Dice overlap from 0.88 to 0.90. The
improvement is statistically significant, with p < 0.00001 on the paired t-test.

Fig. 11 shows the performance of the multi-atlas approach and the error correction
method with respect to the number of atlases used. The numbers of atlases tested are
2, 3, 4, 5, 10, and 20. The experiment with one atlas is not included because using one
atlas cannot produce training data for the error correction algorithm. Note that using
fewer atlases, the multi-atlas label fusion technique produced less accurate segmenta-
tions. As the number of atlases increased, the segmentation accuracy also increased
but with reduced increasing rates. This observation is consistent with previous studies,
such as (Heckemann et al., 2006), that quantified the relationship between the number
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Figure 8: Performance of the image similarity based local weighting technique. The left plot shows the
performance w.r.t. the Gaussian weight function when the local appearance window has r = 2. The right
plot shows the best results achieved at different local appearance windows.

of atlases used for label fusion and segmentation accuracy. On the other hand, us-
ing fewer atlases also provided fewer training data for the EC algorithm. In this test,
similar improvements were produced by the error correction technique when different
numbers of atlases were used.

3.3. Brain Extraction
Since BET segmentations were well aligned with the manual segmentations, and

most segmentation errors were cases of background mislabeled as brain tissue, we
defined the working ROI by performing a one-voxel dilation of the brain segmentation
produced by BET. On average, this ROI covered 99.3% of the foreground voxels in the
manual segmentation.

An example of the segmentation improvement produced by the EC method is shown
in Fig. 12. On average, each brain contains 9.7× 105 voxels. BET produced 1.1× 105

mislabeled voxels. EC produced 29% fewer errors (8.0 × 104 mislabeled voxels); by
contrast, DL produced worse segmentations with 9.1× 104 mislabeled voxels. Table 8
shows the results in terms of average Dice overlap for each of the 10 cross-validation
experiments. The improvement achieved by EC over the host method is significant,
with p < 0.00001 on the paired t-test.

Fig. 13 shows the error correction performance with respect to the number of train-
ing data. Again, the pattern noted in hippocampal segmentation experiments was ob-
served. Although BET already produces good brain extraction results, the wrapper
algorithm still could make significant improvements with only one training image.

3.4. Brain Tissue Segmentation
The manual segmentation protocol in IBSR presents certain challenges for evalu-

ating segmentation methods. The protocol merges extraventricular CSF into the gray
matter label (see Fig. 14). Consequently, a voxel labeled as CSF by FAST should be
considered correctly labeled if that voxel has the grey matter label in the IBSR manual
segmentation. To allow quantitative evaluation, we merge CSF into the gray matter
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LEFT RIGHT
Exp. initial(Dice) DL(Dice) EC(Dice) initial(Dice) DL(Dice) EC(Dice)

1(σ = 0.05, r = 2) 0.878±0.036 0.858±0.025 0.896±0.030 0.874±0.017 0.859±0.022 0.895±0.020
2(σ = 0.05, r = 3) 0.877±0.029 0.866±0.026 0.895±0.025 0.863±0.040 0.869±0.028 0.893±0.032
3(σ = 0.1, r = 2) 0.885±0.026 0.866±0.023 0.904±0.020 0.869±0.039 0.861±0.034 0.892±0.036
4(σ = 0.05, r = 3) 0.881±0.026 0.867±0.026 0.902±0.025 0.866±0.043 0.868±0.029 0.892±0.038
5(σ = 0.05, r = 3) 0.886±0.020 0.870±0.024 0.906±0.017 0.877±0.026 0.872±0.025 0.901±0.023
6(σ = 0.1, r = 2) 0.889±0.030 0.866±0.034 0.904±0.029 0.882±0.025 0.869±0.025 0.904±0.023
7(σ = 0.1, r = 3) 0.891±0.018 0.868±0.024 0.904±0.019 0.869±0.022 0.873±0.026 0.897±0.021
8(σ = 0.1, r = 3) 0.883±0.027 0.879±0.017 0.908±0.019 0.873±0.031 0.870±0.023 0.895±0.027
9(σ = 0.1, r = 2) 0.896±0.024 0.872±0.024 0.910±0.020 0.882±0.023 0.870±0.024 0.900±0.021

10(σ = 0.05, r = 2) 0.890±0.016 0.874±0.019 0.908±0.013 0.872±0.024 0.876±0.016 0.903±0.021

Table 7: Results of automatic hippocampus segmentation using the multi-atlas label fusion method and the
wrapper methods. Each row gives the average Dice overlap with reference segmentation for one cross-
validation experiment. The bold font highlights the best results.

Exp. initial(Dice) DL(Dice) EC(Dice)
1 0.941±0.032 0.954±0.033 0.959±0.031
2 0.956±0.010 0.967±0.007 0.972±0.007
3 0.935±0.036 0.943±0.034 0.948±0.036
4 0.952±0.018 0.968±0.011 0.973±0.010
5 0.955±0.017 0.967±0.009 0.971±0.008
6 0.946±0.032 0.960±0.030 0.964±0.029
7 0.950±0.024 0.967±0.025 0.970±0.024
8 0.945±0.030 0.957±0.028 0.961±0.027
9 0.951±0.016 0.959±0.012 0.963±0.009
10 0.944±0.031 0.957±0.028 0.962±0.028

Table 8: Results of automatic brain extraction using BET and the wrapper methods. Each row gives average
Dice overlap with manual segmentation for one cross-validation experiment. The bold font highlights the
best results.
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Figure 9: Bland-Altman plots comparing automatic volume estimates produced by multi-atlas based seg-
mentation to manual volume estimates. Each point corresponds to a hippocampal segmentation of one of the
two hemispheres in one subject. The difference between automatic and manual estimates is plotted against
their average. The solid horizontal line corresponds to the average difference, and the dashed lines are plotted
at average ±1.96 standard deviations of the difference

label for both manual and automatic segmentation, and report overlaps for the white
matter and merged gray matter labels. Note that our wrapper methods could be directly
applied with any manual segmentation protocol. Merging CSF into gray matter is done
purely to avoid an unfair comparison with FAST.

Fig. 14 shows segmentation examples produced by the FAST algorithm and the
two wrapper algorithms. The average volume of the brain ROI was 9.7 × 105 voxels
(recall from the Methods section that the working ROI for this experiment is the manual
brain mask from IBSR). On average, FAST produced 8.9×104 mislabeled voxels. For
explicit EC, the error detection step produced the precision of 92% (i.e., the fraction of
voxels marked mislabeled that were actually mislabeled) with the recall of 84% (i.e.,
the fraction of mislabeled voxels that were detected). The error correction step cor-
rectly assigned new labels to 91% of the detected mislabeled voxels. Overall, explicit
EC produced 21% fewer errors than FAST (7.0 × 104 mislabeled voxels). Implicit
EC produced 17% fewer errors than FAST (7.4 × 104 mislabeled voxels). Since the
gray matter and white matter have good appearance contrast, error detection achieved
high accuracy. As a result, explicit EC outperforms implicit EC, despite having a lower
computational cost. By contrast, DL produced worse segmentations with 8.1 × 104

mislabeled voxels. Again, the improvements achieved by implicit EC and explicit EC
are significant, with p < 0.00001 on the paired t-test. Table 9 shows the results in terms
of Dice overlap for each of the 10 cross-validation experiments. Like in the previous
experiments, the error correction methods outperformed DL and the host segmentation
method.

Fig. 15 shows the error correction performance with respect to the number of train-
ing data for both EC algorithms. When only one or two training subjects were used,
implicit EC produced slightly better performance than explicit EC. These results sug-
gest that due to the limited number of training subjects, error detection could not be
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Figure 10: The spatial patterns of disagreement between the automatic segmentations of the hippocampus
in the multi-atlas label fusion experiment (MALF) and the corresponding reference segmentations, plotted
after normalization to a common reference space. See caption to Fig. 4 for details.
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Figure 11: The figure on the left plots the average number of mislabeled voxels after error correction vs.
the size of the training set (error bars at ±1 s.d.). The average number of mislabeled voxels before error
correction, ±1 s.d., is shown in blue. The figure on the right similarly plots Dice overlap between error
correction results and reference segmentations vs. training set size, with the blue line showing Dice overlap
without error correction.

reliably done. However, when more than two training subjects were used, explicit EC
produced slightly better results than implicit EC. Overall, significant improvements
were achieved by both implicit and explicit EC when two or more training subjects
were used, and using more training data consistently resulted in greater improvement.

4. Discussion

Across all four applications considered above, both EC algorithms achieved a sig-
nificant improvement in accuracy relative to the manual segmentations. The number
of mislabeled voxels was reduced by 72% for FreeSurfer hippocampus segmentation,
14% for multi-atlas hippocampus segmentation, 29% for BET brain extraction, and
21% for FAST brain tissue segmentation. In each experiment, both EC methods out-
performed the DL method, demonstrating that including the results of the host method
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image manual BET error correction

Figure 12: Brain extraction on T1-weighted MR images. Left to right: original image, manual brain extrac-
tion, initial brain extraction produced by BET, final segmentation produced by the EC method. The second
row gives a zoomed in view.

segmentation as contextual features improves classifier performance. However, as Fig-
ures 4(d,e) and 10(d,e) show, neither DL nor EC are capable of completely eliminating
consistent differences between automatic and reference segmentations. This suggests
that some aspects of these consistent differences are too complex for AdaBoost to learn,
at least using the features employed in this paper. In all four experiments, improve-
ments were achieved even when very few images were used for training. However,
larger training sets consistently led to improved performance. Overall, these results
suggest that the EC method is capable of consistently improving segmentation perfor-
mance across a broad range of medical image segmentation problems.

4.1. Comparison to the State of the Art Segmentation Methods

Segmentation performance produced by the EC method compares favorably with
the state of the art in published work. Before making such a comparison, we echo the
point made by Collins and Pruessner (2010) that direct comparisons of Dice overlaps
and other quantitative segmentation quality measures across publications are difficult
and not always fair, as these measures depend not only on the ability of the automatic
method to mimic the human expert, but also on the underlying segmentation protocol,
the imaging protocol, and the patient population. Nevertheless, the comparisons carried
out below indicate the highly competitive performance achieved by combining host
methods with error correction.

Segmentation of the hippocampus. Due to the central role of the hippocampus in mem-
ory encoding and its vulnerability to neurodegenerative diseases, there has been intense
interest in MRI-based hippocampal morphometry. Many automatic approaches for hip-
pocampus segmentation have been proposed, e.g. (Carmichael et al., 2005, Hammers
et al., 2007, Powell et al., 2008, Morra et al., 2008, van der Lijn et al., 2008, Morra
et al., 2009, Chupin et al., 2009, Pluta et al., 2009, Wolz et al., 2009, Collins and
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Figure 13: Effect of training set size on EC performance in the brain extraction experiment. Left: the average
number of mislabeled voxels after error correction vs. the size of the training set (error bars at ±1 s.d.). The
average number of mislabeled voxels before error correction, ±1 s.d., is shown in blue. Right: average Dice
overlap between EC results and manual segmentations vs. training set size, with the blue line showing Dice
overlap for BET without error correction.

Gray Matter White Matter
Exp. initial DL IEC EEC initial DL IEC EEC

1 0.939±0.010 0.949±0.006 0.951±0.009 0.954±0.008 0.882±0.022 0.898±0.010 0.901±0.013 0.907±0.012

2 0.935±0.005 0.944±0.008 0.946±0.006 0.949±0.006 0.874±0.019 0.890±0.022 0.896±0.019 0.902±0.019

3 0.938±0.006 0.933±0.022 0.941±0.016 0.941±0.021 0.882±0.011 0.879±0.026 0.892±0.017 0.894±0.022

4 0.936±0.007 0.945±0.008 0.948±0.007 0.951±0.007 0.880±0.014 0.892±0.011 0.899±0.010 0.905±0.010

5 0.937±0.010 0.946±0.008 0.950±0.006 0.953±0.006 0.878±0.022 0.891±0.017 0.901±0.013 0.907±0.013

6 0.939±0.008 0.947±0.007 0.950±0.006 0.954±0.006 0.886±0.016 0.898±0.012 0.904±0.009 0.910±0.008

7 0.937±0.007 0.941±0.023 0.949±0.008 0.949±0.015 0.879±0.022 0.893±0.020 0.903±0.016 0.906±0.018

8 0.938±0.010 0.946±0.008 0.951±0.007 0.954±0.006 0.879±0.021 0.892±0.019 0.902±0.015 0.909±0.014

9 0.939±0.009 0.943±0.012 0.949±0.009 0.951±0.010 0.880±0.021 0.884±0.029 0.898±0.022 0.902±0.024

10 0.934±0.006 0.947±0.008 0.948±0.005 0.951±0.005 0.874±0.019 0.893±0.019 0.898±0.015 0.904±0.015

Table 9: Results of automatic brain extraction using FAST and the wrapper methods. Each row gives average
Dice overlap with manual segmentation for one cross-validation experiment. The bold font highlights the
best results.
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image manual FAST implicit EC explicit EC

Figure 14: Brain tissue segmentation in T1-weighted MR images. Left to right: original image; manual
segmentation consisting of white matter and gray matter and ventricle labels; three-tissue segmentation pro-
duced by the host method (FSL FAST); segmentation after correction by implicit EC; segmentation after
correction by explicit EC. The second row displays a zoomed in view of the left temporal lobe. The arrow
points to one significant correction made by the two EC methods. Note that the sulcal CSF in the FAST result
is merged with the gray matter label for consistency with the manual segmentation (see text for details).

Pruessner, 2010, Leung et al., 2010). Table 10 summarizes the results of automatic hip-
pocampus segmentation from recent publications. Most results are reported in terms
of average Dice overlap, but a few are reported in terms of the average Jaccard index
(JI(A,B) = |A ∩ B|/|A ∪ B|). A trend revealed in the table is that most of the
best hippocampal segmentation approaches use multi-atlas label fusion. Furthermore,
automatic hippocampal segmentation tends to reach better consistency with manual
segmentations in healthy subjects than in subjects with neurodegenerative diseases.

Our experiment with FreeSurfer demonstrates how the error correction scheme can
adapt a general segmentation tool to a different manual segmentation protocol and a
different imaging modality. On the 3T MR images used in our experiment, FreeSurfer
produced segmentations that overlapped poorly with our reference segmentations (the
average Dice overlap was 0.660). However, the EC approach successfully adapted
FreeSurfer segmentations better to match those created by the reference segmentation
protocol. Dice overlaps with the reference segmentation after error correction (0.865
on average) are competitive with many of hippocampal segmentation results for normal
controls and MCI patients published in the last few years.

However, our most competitive hippocampus segmentation results were achieved
by pairing the EC method with multi-atlas label fusion. According to Table 10, the best
published results for hippocampus segmentation to date have been produced by Collins
and Pruessner (2010) and Leung et al. (2010). Both papers use multi-atlas segmenta-
tion. Collins and Pruessner (2010) evaluate segmentation performance using a leave-
one-out strategy on 80 normal controls. Leung et al. (2010) use a template library of 55
atlases; however, for each atlas, both the original image and its flipped mirror image are
used as atlases. Hence, Leung et al. (2010) effectively use 110 atlases for label fusion.
Our multi-atlas approach uses only 20 atlases and, without error correction, produces
results that are comparable to the state of the art for normal controls and are slightly
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Methods and description Dice JI Tested Cohort
(Heckemann et al., 2006): multi- 0.82 30 normal controls

atlas based segmentation
(Hammers et al., 2007): multi- 0.76(sclerotic side) 9 patients with unilateral

atlas based segmentation 0.83(contralateral side) hippocampal sclerosis
(Powell et al., 2008): machine 0.85 15 subjects (with no
learning based classification population description)
(Barnes et al., 2008): multi- 0.87 19 normal controls,

atlas based segmentation 0.86 36 AD patients
(Khan et al., 2008): single- 0.86 4 normal controls

atlas based segmentation with
initialization by FreeSurfer
(van der Lijn et al., 2008): 0.858 20 elderly subjects covering

multi-atlas + graph cuts 7 population variation in
7 hippocampus size

(Morra et al., 2009): machine 0.835 20 normal controls
learning based classification 0.802 20 AD patients
(Wolz et al., 2009): multi- 0.860 20 normal controls

atlas + graph cuts + 20 MCI patients + 20 AD patients
(Chupin et al., 2009): landmark- 0.87 16 young normal controls

guided single-atlas based 0.85 8 normal controls
segmentation, followed by a 0.84 8 normal controls + 8 with known
registration error detection hippocampal sclerosis + 7 with
and correction procedure normal hippocampal volumes

(Collins and Pruessner, 2010): 0.887 80 young normal controls
multi-atlas based segmentation

(Leung et al., 2010): multi- 0.80 10 normal controls
atlas based segmentation 0.81 10 MCI patients

Multi-atlas based segmentation 0.887 0.798 57 normal controls
0.872 0.774 82 MCI patients

Multi-atlas+error correction 0.908 0.833 57 normal controls
0.893 0.808 82 MCI patients

FreeSurfer: single-atlas 0.673 0.508 57 normal controls
based segmentation 0.651 0.485 82 MCI patients

FreeSurfer+error correction 0.877 0.782 57 normal controls
0.859 0.754 82 MCI patients

Table 10: Hippocampal segmentation performance reported in the recent literature compared to the results
obtained by the EC wrapper method with FreeSurfer and multi-atlas label fusion as the host methods. The
results are given in terms of Dice overlap (Dice(A,B) =

2|A∩B|
|A|+|B| ) and Jaccard index (JI(A,B) =

|A ∩ B|/|A ∪ B|). Note that Morra et al. (2009) report results by mixing controls and AD patients. They
also report the performance for each diagnostic group relative to the mixed results. The results reported here
for (Morra et al., 2009) are estimated from their reported results.
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Figure 15: The average number of voxels mislabeled by the implicit and explicit variants of the EC method
vs. the size of the training set (error bars at ±1 s.d.). The average number of voxels mislabeled by the host
method, ±1 s.d., is shown in blue.

worse than the state of the art for MCI patients. With error correction, the results for
both groups improve by ∼2% Dice overlap, yielding the same accuracy as the state of
the art for MCI patients and better accuracy than the state of the art for normal controls.
Thus, in so far as Dice overlaps across different methods can be compared, our method
produces segmentation results as good or better than the state of the art, while requiring
substantially fewer manually labeled images for training. However, unlike a number
of other methods, our evaluation did not include AD subjects. Hence, it remains un-
clear how well multi-atlas segmentation with EC performs in the presence of severe
hippocampal atrophy. Another potential limitation in our evaluation is that our gold
standard segmentations were produced by manually editing automatic segmentations
rather than manually segmenting each hippocampus from scratch. Hence, it is possi-
ble that our gold standard segmentations are influenced by the automatic segmentation
results produced by (Pluta et al., 2009).

Brain extraction and tissue segmentation. Liu et al. (2009) evaluate a number of recent
brain extraction methods, including (Shattuck and Leahy, 2002, Segonne et al., 2004,
Zhuang et al., 2006), and their own method on the IBSR dataset. Their reported Dice
overlap varies from 0.897 to 0.955. In our experiments, the BET algorithm produced
competitive results with the average Dice overlap of 0.947. After EC, we produced
Dice overlap of 0.964, which is almost 1% higher than the best results reported in (Liu
et al., 2009).

For the brain tissue segmentation problem, Awate et al. (2006), Greenspan et al.
(2006), Huang et al. (2009) report their methods’ performance on the IBSR data set.
However, the problem of inaccurate CSF labels was handled differently in each paper.
Hence, only the white matter segmentation results are comparable between these pa-
pers. The average Dice overlaps in the white matter reported by these three papers are
0.887, 0.857, and 0.876 respectively. In our experiments, FAST produced competitive
results with the average Dice overlap of 0.879. After error correction, we produced
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0.905, which is almost 2% higher than the other methods.
Our improvements over these state of the art methods are at least comparable to the

improvements introduced by these state of the art methods over their predecessors.

4.2. Relationship with Prior Work on Object Segmentation and Machine Learning

Our error correction method applies learning-based classification to perform seg-
mentation, which is a commonly used technique in computer vision (Kumar and Hebert,
2003, Shotton et al., 2006, Tu and Bai, 2010) and medical image analysis (Tu et al.,
2007, Morra et al., 2008). In particular, our work is closely related to (Morra et al.,
2008, Tu and Bai, 2010), where instead of segmentation results produced by other seg-
mentation methods, the results produced by earlier iterations of the learning algorithm
itself are treated as high-level contextual features and are included in the learning pro-
cess. By contrast, the main novel idea in our paper is to use machine learning as a
corrective technique for segmentations produced by a given host method, rather than
training classifiers from scratch to perform the segmentation problem. As a conse-
quence, we report substantially better hippocampus segmentation results than Morra
et al. (2009) for normal controls (0.908 vs. 0.835).

As in our approach, Chupin et al. (2009) also use an error correction procedure to
improve the final results of their hippocampal segmentation application. However, their
error correction approach was specially designed for their hippocampal segmentation
problem. By contrast, our technique is general and can be easily applied to a wide
range of segmentation problems.

4.3. Scenarios for Practical Application of Error Correction

The experiments in this paper illustrate two usage scenarios for the proposed method.
In the first scenario, error correction is used to boost the performance of an existing au-
tomatic segmentation tool, provided example manual segmentations on a sample of the
user’s imaging data. As the FreeSurfer example illustrates, error correction is capable
of adapting the host method to the particular imaging and segmentation protocols em-
ployed by the user, without the need to explicitly retrain the host method. This scenario
is also illustrated by the experiments on whole brain segmentation. The drawback of
this scenario is the need for the user to provide example manual segmentations. Thus,
the benefit to users with small datasets may be limited. Such users may decide that if
they were to embark on the path of manual segmentation, then they might as well seg-
ment all their images manually. However, for users with large datasets, the burden of
segmenting the whole dataset manually is significantly larger than the cost of providing
10 or 20 training examples, while even a small improvement in segmentation accuracy
may be of significant benefit. Additionally, many users with small or large datasets
may be able to leverage existing segmentations from earlier studies, provided that they
use similar imaging and anatomical protocols and cover similar subject populations.
Lastly, the burden of manual segmentation may be reduced by manually editing the
results of the host segmentation method, rather than generating manual segmentations
from scratch.

For users with access to example manual segmentations, an alternative to error cor-
rection is to retrain or retune the host segmentation method. Based on the experiments
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performed in this paper, it is not possible to predict which approach would lead to
greater improvement in segmentation accuracy. However, retraining may be outside
of the technical expertise for some users, or such an option might not be provided by
the software implementation of the host method. By contrast, error correction can be
performed relatively easily, and a reference open-source software implementation has
been provided.

The second scenario, illustrated in the multi-atlas experiment, is for error correc-
tion to be incorporated into an image segmentation tool by the tool’s developer. The
multi-atlas experiment shows that even when there are no imaging or anatomical pro-
tocol differences between the data on which a host method is trained and the data to
which it is applied, error correction can still improve performance significantly. Fur-
thermore, when the host method is itself trained using example data, no additional ex-
ample segmentations are needed for error correction, since training can be performed
in a leave-one-out framework. Thus, error correction offers an opportunity to improve
the performance of various existing segmentation tools at little additional cost to the
developer, and virtually no cost to the user.

4.4. Limitations and Future Work
We have chosen a fairly straightforward approach to apply machine learning, which

combines AdaBoost and simple intensity features. Other classifiers may perform bet-
ter than AdaBoost, or they may be complimentary to it, leading to more accurate error
correction. Likewise, including additional higher-order features may improve perfor-
mance. For example, Haar filters offer information-rich and robust features that have
been successfully applied to many other medical image applications (Tu et al., 2007,
Morra et al., 2008). Using such features will be more appropriate for problems where
there is a significant variation in the scale and orientation of the images.

In the current EC method, error correction is performed independently at each
voxel. Imposing regularity conditions on the final segmentation after error correc-
tion, for instance using a Markov random field prior or a prior that enforces topological
constraints, may further improve segmentation accuracy.

In our current approach, we use a single host method, a set of example segmen-
tations from a single expert, and a single training set that combines all cohorts in a
given study. A natural extension of the method is to combine results from multiple
host methods, to provide the ability to handle segmentations by different experts, and
to offer strategies for dealing with heterogeneous subject populations. The challenge
in dealing with multiple host segmentations and multiple manual segmentations is that
the number of patterns of systematic disagreement between manual and automatic seg-
mentation grows quadratically. One way to address this problem is to derive consensus
automatic and manual segmentations using a method such as STAPLE (Warfield et al.,
2004), which would allow the current error correction method to be applied directly.
However, this approach sacrifices much of the information contained in the original
automatic and manual segmentations. Heterogeneous populations may be handled by
training error correction classifiers separately for subjects with different diagnoses.
Alternatively, diagnosis and demographic variables could be included as features for
classifier training, allowing the classifier to learn the patterns of error that are common
across the population.
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5. Conclusions

We presented a simple but effective learning-based method for reducing the con-
sistent errors that automatic tools make relative to manual segmentations. The main
contribution over prior work on learning-based medical image segmentation was to
include the results of the segmentation by a given host method as contextual features
for classifier training. Our results, conducted in three different segmentation prob-
lems using four different host methods showed that the proposed approach consistently
improves segmentation accuracy relative to manual segmentations, even when just a
handful of training datasets are provided. Furthermore, by pairing our error correc-
tion method with well-established host segmentation methods, we obtained some of
the best results published so far for hippocampus segmentation, brain extraction, and
brain tissue classification. Anticipating that similar improvements can be obtained in
other segmentation problems, we provided an open-source implementation of the error
correction method and identified two usage scenarios, one targeting users of existing
segmentation tools that seek to adapt these tools to their data, and the other targeting
developers of training-based automatic segmentation algorithms.
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Appendix

Reliability of Manual Hippocampus Segmentation
To put our hippocampus segmentation results in the proper context, we report the

reliability of our manual segmentation protocol. Table 11 summarizes the intra-rater
and inter-rater reliability in terms of Dice overlap when the raters segmented the hip-
pocampus from scratch. The reliability test was done on 10 randomly selected images.

intra-rater inter-rater
0.900 0.865

Table 11: The average Dice overlap for intra-rater and inter-rater manual segmentation on 10 subjects when
manual segmentation is done from scratch.

To efficiently obtain reference segmentations for the 139 ADNI images, the manual
segmentations used in our experiment were obtained by a rater (MA) editing the auto-
matic segmentation results produced by a semi-automatic method (Pluta et al., 2009).
For this case, the intra-rater reliability test obtained an average 0.923 Dice overlap on
9 randomly selected images, slightly better than segmenting from scratch.

Shape-Based Normalization of the Hippocampus for Visualizing Patterns of Disagree-
ment Between Automatic and Manual Segmentation

To normalize the reference and automatic segmentations of the hippocampus from
multiple subjects to a common coordinate space, we employ the shape-based normal-
ization approach from (Yushkevich et al., 2006b). A deformable cm-rep model is fit-
ted to each binary reference hippocampus segmentation. The cm-rep model is a de-
formable model that explicitly specifies the medial axis of the hippocampus as a para-
metric surface, as well as the local thickness of the hippocampus as a parametric scalar
field defined over the medial axis. The boundary of the hippocampus is derived from
the medial axis and thickness scalar field analytically. This model is fitted to binary
segmentations of the hippocampus by maximizing the overlap between the region en-
closed by the model’s boundary and the binary segmentation. The model imposes a 3D
coordinate system on the interior of the hippocampus. The medial axis of the model
is parameterized by a pair of variables µ1 and µ2, which denote two axes of the cm-
rep coordinate system. For every location on the medial manifold, two line segments,
called spokes, emanate and reach the boundary of the model. These line segments are
orthogonal to the boundary; they completely span the model’s interior, and thus provide
the third axis in the cm-rep coordinate system, denoted by the variable ξ. ξ describes
the relative depth of a point on a model’s interior. It varies from 0 at points on the
medial axis to +1 and -1 at points where the two spokes reach the boundary. Therefore,
any point within the hippocampal volume is represented by the vector (µ1, µ2, ξ). The
3D coordinate system establishes a one-to-one correspondence between the interiors
of models fitted to different hippocampus binary segmentations. To extend the cor-
respondence to the exterior of the fitted models, we allow ξ to take values beyond ±
1. Additional details on shape-based correspondence using the cm-rep model are in
(Yushkevich et al., 2006b).
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