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Abstract The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multi-
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center study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early
detection and tracking of Alzheimer’s disease (AD). The initial study, ADNI-1, enrolled 400 subjects
with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly
controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive
renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article
reviews all papers published since the inception of the initiative and summarizes the results to the end
of 2013. Themajor accomplishments of ADNI have been as follows: (1) the development of standard-
ized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography
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(PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the pat-
terns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI pa-
tients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by
b-amyloid cascade (Hardy, JAlzheimer’s Dis 2006;9(Suppl 3):151–3) and tau-mediated neurodegen-
eration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted pat-
terns but exhibit differing rates of change depending on region and disease severity; (3) the
assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select
and combine optimum features from multiple modalities, including MRI, [18F]-fluorodeoxyglu-
cose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers
for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and
the assessment of a-syn as an additional biomarker; (5) the development of methods for the early
detection of AD. CSF biomarkers, b-amyloid 42 and tau, as well as amyloid PET may reflect the
earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are lead-
ing candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial
efficiency through the identification of subjects most likely to undergo imminent future clinical
decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods
incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Re-
finements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes
further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage
quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently
identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact
through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China,
Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI,
and AD through integration of ADNI biomarker and clinical data to stimulate research that will
resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing
efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow
sharing of all raw and processed data without embargo to interested scientific investigators
throughout the world.
Published by Elsevier Inc. on behalf of the Alzheimer’s Association.
Keywords: Alzheimer’s disease; Mild cognitive impairment; Amyloid; Tau; Biomarker
1. Introduction to Alzheimer’s Disease Neuroimaging
Initiative: Goals, history, and organization

1.1. Background

Alzheimer’s disease (AD), the most common form of de-
mentia, is a complex disease characterized by an accumula-
tion of b-amyloid (Ab) plaques and neurofibrillary tangles
composed of tau amyloid fibrils [1] associated with synapse
loss and neurodegeneration leading to memory impairment
and other cognitive problems. There is currently no known
treatment that slows the progression of this disorder. Accord-
ing to the 2014 World Alzheimer report, there are an esti-
mated 44 million people worldwide living with dementia at
a total cost of more than US$600 billion in 2010, and the inci-
dence of AD throughout the world is expected to triple by
2050. There is a pressing need to find and validate biomarkers
to both predict future clinical decline and for use as outcome
measures in clinical trials of disease-modifying agents to
facilitate phase II-III studies and foster the development of
innovative drugs [2]. To this end, Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) was conceived at the beginning of
the millennium and began as a North American multicenter
collaborative effort funded by public and private interests in
October 2004. Although special issues focused on North
American ADNI have been published in Alzheimer’s and De-
mentia [3] and Neurobiology of Aging [4] in addition to a
number of other review articles [5–12], the purpose of this
review is to provide a detailed and comprehensive overview
of the approximately 500 papers that have been published
as a direct result of ADNI to the end of 2013. The original
review [350] covered approximately 200 papers to the end
of 2010. The first update [351] detailed an additional 150 pa-
pers published from 2011 to mid-2012, and this material is
highlighted in yellow. The current iteration adds around 200
more publications from mid-2012 to the end of 2013, and
these are highlighted in green. To mid-2014, an additional
70 publications indicate the continuing impact of ADNI.
1.2. Disease model and progression

One approach toward a greater understanding of the events
that occur in AD is the formulation of a disease model [3,12–
16]. According to the Ab hypothesis, AD begins with the
abnormal processing of the transmembrane Ab precursor
protein. Proteolysis of extracellular domains by sequential b
and g secretases result in a family of peptides that form
predominantly b-sheets, the b-amyloids (Ab) (Fig. 1). The
more insoluble of these peptides, mostly Ab42, have a



Fig. 1. Generation of soluble b-amyloid (Ab) fragments from amyloid precursor protein. Reproduced with permission from Ref [7].
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propensity for self-aggregation into fibrils that form the senile
plaques characteristic of AD pathology. Subsequently, it is
thought that the microtubule-associated tau protein in neurons
becomes abnormally hyperphosphorylated and forms neurofi-
brillary tangles that disrupt neurons. However, although
ADNI and other biomarker data support this sequence of
events, by direct examination of postmortem human brains,
Braak and Del Tredici have shown that tau pathology in the
medial temporal limbic isocortex precedes the development
of Ab deposits with advancing age in the human brain [17].
Downstream processes such as oxidative and inflammatory
stress contribute to loss of synaptic and neuronal integrity,
and eventually, neuron loss results in brain atrophy. Jack
et al [14,16] presented a hypothetical model for biomarker
dynamics in AD pathogenesis. The model begins with the
abnormal deposition of Ab fibrils, as evidenced by a
corresponding drop in the levels of soluble Ab42 in
cerebrospinal fluid (CSF) and increased retention of the
positron emission tomography (PET) radioactive tracer
[11C]-labeled Pittsburgh compound B (11C-PiB) in the
cortex. Sometime later, neuronal damage begins to occur, as
evidenced by increased levels of CSF tau protein. Synaptic
dysfunction follows, resulting in decreased [18F]-
fluorodeoxyglucose (FDG) uptake measured by PET. As
neuronal degeneration progresses, atrophy in certain areas
typical of AD becomes detectable by magnetic resonance
imaging (MRI). Themodel provided by Jack et al [14] is high-
ly relevant to many papers reviewed in section 4 (Studies of
the ADNI cohort), which often provide empirical evidence
to support it. An example of a model that proposes a series
of pathological events leading to cognitive impairment and
dementia is summarized in Fig. 2.
1.3. Mild cognitive impairment

Similar to many disease processes that originate in micro-
scopic environments and are asymptomatic until the start of
organ failure, the course of AD pathology is likely to be 20 to
30 years. It is now generally accepted that the initial AD pa-
thology develops in situ while the patient is cognitively
normal, sometimes termed the “preclinical stage” [18,19].
At some point in time, sufficient brain damage
accumulates to result in cognitive symptoms and
impairment. Originally defined in 1999, this has been
classified in a number of ways, including as predementia
AD or as mild cognitive impairment (MCI), a condition in
which subjects are usually only mildly impaired in
memory with relative preservation of other cognitive
domains and functional activities and do not meet the
criteria for dementia [5], or as the prodromal state AD
[18]. Epidemiological studies of participants aged 70 to 89
years who were nondemented found the prevalence of
MCI in this population to be approximately 15%, with an
approximate 2:1 ratio of two identified phenotypes, amnestic
and nonamnestic [20,21]. Studies showed that MCI patients
progressed to AD at a yearly rate of 10% to 15%, and that
predictors of this conversion included whether the patient
was a carrier of the 34 allele of the apolipoprotein E
(APOE) gene, clinical severity, brain atrophy, certain
patterns of CSF biomarkers and of cerebral glucose
metabolism, and Ab deposition [5]. The National Institute
on Aging-Alzheimer’s Association (NIA-AA) has devel-
oped criteria for MCI due to AD that use biomarkers to
determine the likelihood of AD pathology and classify pa-
tients accordingly [350]. The application of these criteria
to ADNI is described later in this review [352–354].
1.4. History of biomarker development

Although the etiology of AD was not known, there was
sufficient knowledge of the mechanisms of AD pathology
at the beginning of the past decade to allow the development
of new drugs. Once transgenic mice expressing Ab in their
brains were available [22], development of treatments to



Fig. 2. Model for Alzheimer’s disease (AD) progression. Reproduced with permission from Ref [14].
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slow the progression of AD began in earnest. Although
considerable work had been done to develop quantitative
measurements of cognitive function and activities of daily
living for clinical trials of symptomatic treatments such as
acetylcholinesterase inhibitors, it was recognized that
changes in cognition did not necessarily signify “disease
modification.” Therefore, investigators from academia and
the pharmaceutical industry became interested in how “dis-
ease modification” of AD could be detected using a variety
of biomarkers, including brain MRI scanning, and blood
and CSF analytes. This led to a decision by the National
Institute on Aging (NIA) to fund the ADNI and to structure
it as a public–private partnership.

The development of AD biomarkers for clinical trials,
both for use in subject selection and as outcome measures,
is paramount to the success of ADNI. During the genesis
of the initiative, Frank et al [23] described the importance
of biomarkers to ADNI and to clinical trials. In the first paper
to come out of ADNI, Trojanowski [24] reviewed candidate
AD biofluid biomarkers thought to be most promising at the
time, homocysteine, isoprostanes, sulfatide, tau, and Ab, and
described how ADNI was poised, as a large public–private
collaboration, to identify and validate the best candidate
AD biomarkers. Mueller et al [25] reported on the scientific
background at the beginning of ADNI and the limitations of
the clinical and neuropsychological tests available for moni-
toring disease progression at that time. Principally, a defini-
tive diagnosis of AD required severe cognitive deficits and
autopsy confirmation, whereas the clinical criteria for the
detection of the MCI transitional phase were much less
certain. Accordingly, outcomemeasures for assessing the ef-
ficacy of new drugs relied primarily on neurocognitive tests
such as ADAS-cog (cognitive subscale of the Alzheimer’s
Disease Assessment Scale), the efficacy of which was
limited by substantial ceiling effects and variability in sub-
ject performance over time. There was a clear need to
develop biomarkers, biological tools that “mark” the pres-
ence of pathology, for the early diagnosis of AD and for
measuring clinical drug trial outcomes [8].

Relatively early in the initiative, a major concern was
developing an AD biomarker that distinguished AD from
other dementias, such as Lewy body dementia, frontotempo-
ral degeneration, and Parkinson disease with dementia [10].
Based on a model of AD pathogenesis fundamentally similar
to that described in the paper by Jack et al [14], Shaw et al
[10] reviewed a number of potential biomarkers, including
some, such as isoprostanes and total plasma homocysteine,
that did not subsequently prove to be of use. Others, such
as levels of soluble Ab42 or tau protein in CSF, reflected
the increase in deposition of Ab in fibrillar plaques or the
later release of tau protein as a result of neuronal damage.
Neuronal metabolism and neuronal degeneration could be
measured using FDG-PET and by examining the concentra-
tions of total tau protein (t-tau) and tau phosphorylated at
serine 181 (p-tau181p) in CSF, respectively. Volumetric
changes to brain structure could be assessed by MRI of spe-
cific regions such as the hippocampus, entorhinal cortex,
temporal and parietal lobes, and ventricles. Additional po-
tential risk biomarkers included genetic susceptibility fac-
tors, such as the APOE genotype, plasma homocysteine
levels, and isoprostanes as non-AD-specific indicators of
oxidative stress. By the following year, the wide range of po-
tential biomarkers had been substantially narrowed to
include CSFAb42, t-tau and p-tau181p hippocampal volume,
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voxel-based volumetry, deformation-based morphometry
(DBM), functional MRI, and FDG-PET [26]. In tandem
with the development of these biomarkers, a new imaging
technology using 11C-PiB in PET scans was being developed
[27,28], and the possibility of a diagnostic approach
predicated on the concept of certain combinations of
biomarkers providing complementary information was
raised [8,26].

In 2008, twin reviews were published in Neurosignals
[8,15] by members of the ADNI Biomarker Core at the
University of Pennsylvania. The first paper reviewed
potential biomarkers for the early detection of AD. In
addition to the potential biomarkers described previously,
these included MRI T1r relaxation times to image neuritic
plaques and single-photon emission computed tomography
(SPECT) using a 125I-labeled imidazole derivative (6-iodo-
2-(4’-dimethylamino-)phenyl-imidazo[1,2]pyridine) as an
alternative approach to amyloid PET imaging [29]. The sec-
ond paper distinguished between diagnostic biomarkers and
risk biomarkers, such as the APOE 34 allele and plasma total
homocysteine levels, suggesting that although they were not
sufficiently sensitive for diagnostic purposes, they were
indicative of increased risk for AD and were predictive of
disease progression. Finally, in 2010, Hampel et al [7] pre-
sented a review that updated our current understanding of
tau and Ab biomarkers, including levels of Ab42 and activ-
ity of BACE1 (the major amyloid precursor protein-cleaving
b-secretase in the brain) in CSF, blood plasma levels of
Ab40 and Ab42, and human antibodies against Ab-related
proteins. Thus, the search for biomarkers to fulfill a variety
of niches is an ongoing quest and is without doubt set to
evolve even further as research progresses.
1.5. Goals of ADNI

A comprehensive description of the goals of ADNI is
given in papers by Mueller et al [2] and Weiner et al [3].
At initiation, ADNI had the overall objective of character-
izing clinical, genetic, imaging, and biochemical biomarkers
of AD and identifying the relationships between them over
the course of disease progression from normal cognition to
MCI to dementia. Specific goals of ADNI included the
development of optimized and standardized methods for
use across multiple centers, the enrollment of a large cohort
(.800) of healthy elderly subjects, MCI patients, and AD
patients for baseline characterization and longitudinal
studies, and the establishment of repositories of data and bio-
logical samples, both of which were to be accessible to the
wider scientific community without embargo. A specific pre-
specified goal was to identify those imaging (MRI and PET)
and image analysis techniques and blood/CSF biomarkers
that had the highest statistical power to measure change
(defined as the sample size required to detect a 25% reduc-
tion of rate of change in 1 year) and thus, it was hoped, detect
effects of treatments that would slow the progression of AD.
With these goals, ADNI hoped to identify a combination of
biomarkers that could act as a signature for a more accurate
and earlier diagnosis of AD, and that could be used to
monitor the effects of AD treatment [2,3].

When originally conceived, ADNI had not included aims
around genetic or proteomic analysis. Additional add-on
studies supported the evolution of the Genetics Core (see
later in the text) and the study of protein changes in plasma
and CSF. Plasma proteomic data from a 190-analyte multi-
plex panel have been posted to the ADNI Web site and are
available for additional data mining.
1.6. The evolution of an idea: ADNI-1, ADNI Grand
Opportunities, and ADNI-2

Drs. Neil Buckholz and William Potter had discussed
the overall concept of a large biomarker project to study
AD for many years. Dr. Buckholz convened an NIA
meeting focused on AD biomarkers in 2000. In 2001,
Drs. Michael Weiner and Leon Thal (since deceased) pro-
posed a longitudinal MRI study of AD, MCI, and control
subjects. Subsequently, Dr. Buckholz brought together a
number of investigators from the field of AD as well as in-
dustry leaders, all of whom strongly supported the overall
concept. The NIA published a Request for Applications,
and ADNI was funded in 2004. The initial ADNI was pro-
jected to run for 5 years and to collect serial information,
every 6 months, on cognitive performance; brain structural
and metabolic changes; and biochemical changes in blood,
CSF, and urine in a cohort of 200 elderly control subjects,
200MCI patients, and 400 AD patients [2–4]. It was funded
as a public–private partnership, with $40 million from the
NIA and $27 million from 20 companies in the
pharmaceutical industry and 2 foundations for a total of
$67 million, with the funds from private partners
provided through the Foundation for the National
Institutes of Health. An interesting perspective of the
process by which potential competitors in the race to
develop new drugs for AD were brought together in a
consortium under the auspices of the Foundation for the
National Institutes of Health is given in the paper by
Schmidt et al [30], who emphasize the importance of the
cooperative, precompetitive nature of ADNI. When the
ADNI grant was first submitted and funded, the signifi-
cance and impact of 11C-PiB [27,28] studies were not
fully appreciated, and there was no infrastructure to
conduct multisite clinical trials with 11C-PiB. Therefore,
Ab imaging with 11C-PiB was not included in the
application. However, after the first year of funding, Chet
Mathis proposed adding an 11C-PiB substudy to ADNI,
which was funded by the Alzheimer’s Association and
General Electric. In addition, further industry and
foundation funding was secured to allow supplemental or
“add-on” genomewide association studies (GWAS), and
for additional lumbar punctures to obtain CSF, as new
technologies emerged to make these studies feasible in a
large-scale initiative such as ADNI.
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In 2009, toward the end of the ADNI study, aGrandOppor-
tunities grant, ADNI-GO, was secured to extend the original
ADNI-1 studies with both longitudinal studies of the existing
cohort and the enrollment of a new cohort of early MCI pa-
tients to investigate the relationship between biomarkers at
an earlier stage of disease progression. Technical advances
made it possible to add analyses of the new cohorts using
AV45 (Florbetapir; Eli Lilly, Indianapolis, IN) amyloid imag-
ing. Additional experimental MRI sequences included for
evaluation ofADNI-GO andADNI-2 are arterial spin labeling
perfusion imaging and diffusion tensor imaging. The develop-
ment of the [18F]-labeled AV45 amyloid imaging agent with a
substantially longer radioactive half-life than the 11C form
made it practicable to extend amyloid imaging studies to addi-
tional sites beyond those undertaken in ADNI-1 [7].

A competitive renewal of the ADNI-1 grant, ADNI-2,
was awarded with total funding of $69 million on October
1, 2010, together with funding from the pharmaceutical in-
dustry in a cooperative agreement similar to the original
initiative, to further extend these studies with additional co-
horts [3,4,31]. It is anticipated that the study of very mild
MCI patients in ADNI-GO and ADNI-2 will help identify
subjects at risk who are candidates for preventative therapy
when they are mildly symptomatic or asymptomatic [30].
Table 1 summarizes details of the three initiatives.
Table 1

Comparison of ADNI-1, ADNI-GO, and ADNI-2

Study characteristics ADNI-1 A

Primary goal Develop CSF/blood and imaging

biomarkers as outcome measures

A

Funding $40 million federal (NIA), $20

million industry and foundation,

$7 million industry for

supplemental studies

$2

Duration/start date 5 years/October 2004 2

Cohort 200 elderly control subjects200

MCI400 AD

Ex

Study techniques

MRI X X

fMRI X

FLAIR (microhemorrhage detection) X

T2* GRE (microhemorrhage detection) X

Vendor-specific protocols (1) resting

state (task-free) fMRI to Phillips

systems, (2) perfusion imaging

(ASL) to Siemens, and (3) DTI

to General Electric

X

FDG-PET X X

AV45 X

Biosamples X X

“Add-on” studies GWAS, PiB-PET, lumbar puncture

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI-GO

tute on Aging; MCI, mild cognitive impairment; AD, Alzheimer’s disease; EMCI,

functional magnetic resonance imaging; FLAIR, fluid attentuated inversion recove

tensor imaging; FDG-PET, [18F]-fluorodeoxyglucose-positron emission tomograph

B-positron emission tomography.
1.7. Structure and organization of ADNI

A full description of ADNI structure is given in the paper
by Weiner et al [3]. Briefly, ADNI is governed by a Steering
Committee that includes representatives from all funding
sources as well as principal investigators of the ADNI sites
and is organized as eight cores, each with different responsi-
bilities, under the direction of an Administrative Core, led by
Dr. Weiner, as well as a Data and Publications Committee
(DPC), led by Dr. Green (Fig. 3). The eight cores comprise
(1) the Clinical Core, led by Drs. Aisen and Petersen, respon-
sible for subject recruitment, collection and quality control of
clinical and neuropsychological data, testing clinical hypoth-
eses, and maintaining databases; (2) the MRI and (3) PET
Cores, led by Drs. Jack and Jagust, respectively, responsible
for developing imaging methods, ensuring quality control be-
tween neuroimaging centers, and testing imaging hypotheses;
(4) the Biomarker Core, led by Drs. Shaw and Trojanowski,
responsible for the receipt, storage, and analysis of biological
samples; (5) the Genetics Core, led by Dr. Saykin, responsible
for genetic characterization and analysis of participants as
well as banking DNA, RNA, and immortalized cell lines at
the National Cell Repository for Alzheimer’s Disease; (6)
the Neuropathology Core, led by Drs. Morris and Cairn,
responsible for analyzing brain pathology obtained at
DNI-GO ADNI-2

ct as bridging grant between

ADNI-1 and ADNI-2, examine

biomarkers in earlier stage of

disease progression

Develop CSF/blood and imaging

biomarkers as predictors of cognitive

decline, and as outcome measures

4 million American Recovery

Act funds (stimulus finds)

$40 million federal (NIA), $27 million

expected industry and foundation

years/September 2009 5 years/September 2011

isting ADNI-1 cohort plus:

200 EMCI

Existing ADNI-1 and ADNI-GO cohort

plus:150 elderly control subjects100

EMCI150 MCI150 AD

X

X

X

X

X

X

X

X

, Grand Opportunities grant; CSF, cerebrospinal fluid; NIA, National Insti-

early mild cognitive impairment; MRI, magnetic resonance imaging; fMRI,

ry; T2* GRE, T2* gradient echo; ASL, arterial spin labeling; DTI, diffusion

y; GWAS, genomewide association studies; PiB-PET, Pittsburgh compound



Fig. 3. Alzheimer’s Disease Neuroimaging Initiative (ADNI) structure and

organization.
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autopsies of ADNI participants; (7) the Biostatistics Core, led
by Dr. Beckett, responsible for statistical analyses of ADNI
data; and (8) the Informatics Core, led by Dr. Toga, respon-
sible for managing data sharing functions [2,3].
Additionally, Dr. Robert Green directs a recently funded
project involving whole genome sequencing of ADNI DNA.
The Private Partner Scientific Board (PPSB), convened by
the Foundation for the National Institutes of Health and
chaired in 2013 by Dr. Adam Schwarz, provides an
independent, precompetitive forum for study-related scienti-
fic exchange among industry partners. Representatives of
the PPSB liaise with the Steering and Executive Committee
and with the ADNI Cores. A schematic of ADNI structure
is given in Fig. 3. In addition to the Core leaders, the NIA es-
tablished a completely independent committee, chaired by
Tom Montine (U. Washington), to review and make recom-
mendations concerning requests for ADNI blood, CSF, or
DNA samples. Instructions concerning the preparation of re-
quests for samples can be found at www.ADNI-info.org.
Since the founding of ADNI in 2004, 11 batches of samples
have been provided to requestors. The results of all sample an-
alyses can be found in the ADNI data base at UCLA/LONI/
ADNI.
1.8. Data sharing and informatics

An objective of ADNI, in addition to its scientific goals
outlined in section 1.5, was to make data available to the sci-
entific community, without embargo. To this end, the Infor-
matics Core of ADNI at the Laboratory of Neuro Imaging
(LONI) at the University of Southern California in conjunc-
tion with the DPC, has developed policies and procedures for
immediate, open-access data sharing on a previously unprec-
edented scale. The principles for this data sharing were
developed in the initial months of the ADNI project in
consultation with the Executive Committee and presented
to the Steering Committee for adoption in the first year.
The infrastructure for implementing this policy is through
the LONI data archive (LDA), enabling the widespread
sharing of imaging, clinical, genetics, and proteomic
ADNI results, while overcoming fundamental hurdles such
as the question of ownership of the disseminated scientific
data, and the collection of data from multiple sites in a
form that supports data analysis [32]. Briefly, LONI has
developed automated systems that deidentify and upload
data from the 57 ADNI sites, ensure quality control of im-
ages before removing them from quarantine status and
make them available for download, manage preprocessing
and postprocessing of images and their linkage to associated
metadata, support search functions, and manage user access
and approval. Clinical data are collected by the Alzheimer’s
Disease Cooperative Study through their online data capture
system and transferred to the ADNI repository at LONI
through nightly data transfers. After these data are received
at LONI, portions of the clinical data are used to update data
in the ADNI repository to ensure consistency of demo-
graphic and examination data and to update the status of im-
age data based on quality assessment results. Additional
nightly processes integrate other clinical data elements, so
they may be used in querying the data in the repository.
Any researcher who has been granted access to ADNI data
is able to analyze any part of the available data and can
post results to LONI. In addition to ADNI data, LDA also
contains data from the parallel Australian Imaging Bio-
markers and Lifestyle (AIBL) Flagship Study of Ageing,
which were collected using protocols comparable with those
of ADNI. To date, from 35 countries worldwide, more than
1300 investigators from academic and governmental institu-
tions, the pharmaceutical and biotechnology industries, and
the scanner manufacturing sector have accessed ADNI data
through the LDA [32]. The number of downloads of ADNI
data has increased yearly since 2006, and in 2014, more
than 5.5 million images, 322,000 sets of clinical data
(including cognitive tests and levels of CSF biomarkers),
and sets of genetic data were downloaded by more than
3000 distinct downloaders.

Recently, ADNI has been held up as an example of
comprehensive and elegant data sharing in the clinical
research community. It has been estimated that the costs of
data sharing, which include infrastructure costs and adminis-
tration, amount to approximately 10% to 15%of themonetary
cost of the initiative and that providing data in a standardized
form with documentation takes approximately 15% of inves-
tigators’ time [355]. A considerable number of NIH grants
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have been funded to investigators not directly funded by
ADNI for analysis of ADNI data. A query of the NIH database
indicates that a total of 23 separate NIH grants of this type
have been funded. In 2014, there were 20 active grants of
this sort, indicating the continued impact of ADNI-
generated data throughout the research community.

To further enhance the utility of ADNI T1-weighted
screening and baseline MR images to the scientific commu-
nity, Heckemann et al[226] automatically segmented images
of 816 healthy elderly, MCI, and AD patients in the ADNI
database. They used the MAPER approach to generate
WM, GM and CSF labels in 83 regions from the raw
ADNI data with the aim of reducing future computation
times. The automatic segmentations were in strong agree-
ment with independent atlas-subset based segmentations of
the target images, making this work a highly significant
contribution to the repository.

Although LONI acts as the ADNI data repository, the
DPC is responsible for developing policy around publica-
tion, granting access to the data to investigators around the
world, and reviewing publications that result from this
data use. Briefly, members of the scientific community can
apply for access to ADNI data for either research or teaching
purposes and must submit a data use agreement (available at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Data_Use_Agreement.pdf) for approval. Several
thousand data applications from across the world had been
approved, predominantly from academia, but also from the
biotechnology, pharmaceutical, and other industries. Part
of the data use agreement requires applicants to include
certain language in manuscripts prepared from ADNI data,
including citing “for the Alzheimer’s Disease Neuroimaging
Initiative” as an ADNI group acknowledgment, and the
recognition of ADNI’s role in data gathering in the Methods
section and of ADNI’s funding in the Acknowledgments.
Manuscripts must be submitted for approval to the DPC
before publication. The full publication policy can be found
at: http://adni.loni.usc.edu/wp-content/uploads/how_to_app
ly/ADNI_DSP_Policy.pdf. The role of the DPC in this step
is primarily to check that manuscripts are compliant with
ADNI publication policy, and not to provide a scientific
peer review. Papers found to be noncompliant are returned
to the authors for editing and can subsequently be resubmit-
ted for approval. This process is primarily designed to track,
tabulate, and standardize the publication of manuscripts us-
ing ADNI data.

The approval by the Food and Drug Administration
(FDA) of Florbetapir for clinical use brought into question
the ADNI policy of nondisclosure of research results to
study participants. Shulman et al [356] surveyed ADNI in-
vestigators about their willingness to disclose amyloid imag-
ing results to different clinical groups and found that a
majority were in favor of releasing results to MCI patients,
whereas fewer supported data release to cognitively normal
controls. The study also reported a desire for guidance on
this issue from investigators and may reflect a need for
ADNI to respond to a changing research/clinical environ-
ment with a review of disclosure policy.
1.9. The ADNI special issue of Alzheimer’s and Dementia

Weiner et al [3] introduced the special ADNI issue of Alz-
heimer’s and Dementia in 2010 with an overview of ADNI’s
background, rationale, goals, structure, methods, impact,
and future directions. A set of papers followed highlighting
the achievements of individual ADNI cores and perspectives
of the Industry Scientific Advisory Board (or ISAB), which
is now referred to as the Private Partner Scientific Board (or
PPSB). Jack et al [33] described the achievements of the
MRI Core of ADNI in areas ranging from the development
of MRI technology to the elucidation of AD biology, and
concluded that this Core had succeeded in demonstrating
the feasibility of multicenter MRI studies in ADNI and val-
idity of this method as a biomarker in clinical trials. The
progress of the PET Core of ADNI in developing FDG-
PET and 11C-PiB PET protocols, ensuring quality control,
and acquiring and analyzing longitudinal data was reviewed
by Jagust et al [34], who similarly concluded that the Core
had successfully demonstrated both the feasibility of this
technology in a multicenter setting and the potential of
FDG-PET to reduce sample sizes in clinical trials. Troja-
nowski et al [12] reviewed progress by the Biomarker
Core of ADNI in developing profiles of CSF or plasma bio-
markers that would act as a “signature” of mild AD or pre-
dict future MCI to AD conversion. Moreover, the review
described studies in support of a temporal sequence of
changes in individual biomarkers that reflected proposed tra-
jectories of Ab deposition and the formation of neurofibril-
lary tangles in AD progression [14]. The accomplishments
of the Clinical Core of ADNI were reviewed by Aisen
et al [35], who reported that the Core had successfully re-
cruited a cohort of .800 subjects, characterizing them
both clinically and cognitively at baseline and following
them longitudinally over the course of the study. As the Clin-
ical Core provided data management support to ADNI, this
review also reported on the contribution of ADNI biomarker
and MRI findings to improving clinical trial design by deter-
mining the most powerful outcome measures and reducing
sample size using subject selection strategies. The contribu-
tion of the Genetics Core of ADNI to untangling the appar-
ently complex genetic contributions to AD was reviewed by
Saykin et al [6], who reported considerable progress in the
identification of novel AD susceptibility loci and of candi-
date loci worthy of further investigation, often using AD bio-
markers as quantitative traits (QTs) in imaging genetics and
GWAS. The role of the Neuropathology Core in developing
procedures to improve the autopsy rate of ADNI patients and
to standardize neuropathological assessment was reviewed
by Cairns et al [36]. Finally, Schmidt et al [30] discussed
the contributions of the Industry Scientific Advisory Board,
including acting as a conduit of information to and from
sponsoring companies and foundations, supporting add-on
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studies, and contributing to the scientific review of protocols
and procedures.
2. Development and assessment of treatments for AD:
Perspectives of academia and the pharmaceutical
industry

Given that the ultimate goal of ADNI is to develop bio-
markers to facilitate clinical trials of AD therapeutics, it is
germane to consider the perspective of investigators from
academia and the pharmaceutical industry on the develop-
ment of these biomarkers. The aim of this section is to re-
view those papers that focus on this issue.

Although ADNI is a natural history study, and it is not
known whether its biomarkers can measure the effect of
candidate treatments in drug trials, the primary focus of
ADNI has been the development of diagnostic biomarkers
for the early detection of AD and development of prognostic
biomarkers that would be used to monitor disease progres-
sion [37]. Mueller et al [38] and Weiner et al [3] reaffirmed
the definition of an ideal biomarker formulated at the first
meeting of the NIAworking group on AD biomarkers, which
proposed that an ideal AD biomarker should detect a funda-
mental feature of AD pathology; be minimally invasive, sim-
ple to analyze, and inexpensive; and meet criteria with
regard to specificity and sensitivity outlined in Table 2. Prog-
nostic biomarkers should be representative of a stage of AD
at which the treatment has maximal effect, and also be repre-
sentative of the proposed mechanism of action of the treat-
ment [3,38].

Both diagnostic and prognostic biomarkers are required
for clinical trials. To date, such clinical trials have been frus-
tratingly unsuccessful. It was thought that the failures of
phase III clinical trials of high-profile putative antiamyloid
therapies, flurizan and Alzhemed, were in part due to meth-
odological difficulties, such as the initial subject selection,
and the statistical comparison of results from multiple cen-
ters [7,9,39]. In the case of the first generation of clinical
trials focusing on patients with MCI, there was a lack of
consistency in numbers of patients progressing to AD over
a certain period, likely due to the heterogeneous nature of
MCI; it is possible that one-half of study participants did
not have underlying AD pathology [7,11,40]. Correctly
distinguishing patients with AD pathology is critical,
Table 2

Characteristics of an ideal biomarker

Characteristic Ideal

Sensitivity: % of patients correctly identified as having AD .80%–85%

Specificity: % of patients correctly identified as not

having AD.

.80%

Positive predictive value: % of patients who are positive

for biomarker and have definite AD pathology at autopsy

.80%

Negative predictive value: % of patients who, at autopsy,

prove not to have the disease

.80%

NOTE. Adapted from Refs [7] and [10].
especially considering the overlap that exists between
various late-life neurodegenerative pathologies. For
example, the Lewy bodies that characterize Parkinson’s dis-
ease are found in .50% of patients with AD, in addition to
neuritic plaques and tangles. Therefore, there is a real need
for biomarkers that reliably distinguish between different
types of dementias [8,10].

Diagnostic biomarkers that meet the criteria outlined pre-
viously are urgently needed for subject selection, thereby al-
lowing the stratification and enrichment of clinical trials.
There is a need to select subjects at an early stage of the Alz-
heimer’s continuum who are likely to progress through MCI
to dementia, and also to eliminate subjects with other pathol-
ogies. In phase I, II, and III trials, biomarkers that detect the
earliest indications of AD pathology, Ab deposition, such as
CSF Ab42, and 11C-PiB PET are most likely to be useful.
FDG-PET as a measure of metabolism could also have po-
tential [41].

The biomarkers used in a clinical trial will differ depend-
ing on the mechanism of action of the therapeutic, the goals
of the trial, and questions at hand. In small, short phase I tri-
als, CSF and plasma measures can be used to monitor Ab
turnover in healthy subjects. In phase II proof-of-principle
or proof-of-concept trials, Ab biomarkers in brain can be
used to confirm the mechanism of action of a new treatment
and “target engagement.” For phase II and III trials, CSF tau
and phosphorylated tau, MRI, and Ab PET can be used to
determine whether there is evidence of an effect of treatment
on disease progression. Clinical MRI is used routinely for
subject selection, to exclude confounding medical condi-
tions, and for detection of vasogenic edema as a safety end
point of “immune”-based treatments [41]. Finally, Ab PET
imaging, MRI, CSF and plasma biomarkers, and FDG-
PET are candidates as prognostic biomarkers in phase II
trials for selection of nondemented subjects at risk for devel-
oping AD to test whether treatments have the potential of
preventing or delaying the onset of AD. The predictive po-
wer of these biomarkers in isolation or in combination varies
and will need to be factored into consideration. None of the
current generation of treatments proposed to modify the pro-
gression of AD is free of safety concerns. Estimation of the
probability of developing AD will be required for assessing
the risk versus possible benefit of participating in research
trials [41]. Figure 4 shows ADNI biomarkers that could be
used at different stages of the drug development process.

Looking at drug development as a whole, Cummings [37]
saw a wide variety of roles for biomarkers, from identifying
disease pathology and tracking disease progression, to
demonstrating pharmacokinetic effects of the body on the
drug, to facilitating proof-of-principle and determining
doses for subsequent trials, to determining drug efficacy,
and, finally, to contributing to corporate decision making,
such as whether to proceed with riskier and more expensive
later-phase trials (Fig. 5). Fleisher et al [9] reviewed progress
in developing neuroimaging biomarkers, either alone or in
conjunction with CSF biomarkers, for subject selection,



Fig. 4. AD drug development. Black arrows show the phases of drug devel-

opment; the brick-colored arrows show the ADNI biomarkers that could be

used in that stage. Reproduced with permission from Ref [37].
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and in developing biomarkers functioning at later stages in
disease, such as MRI measures of brain atrophy or changes
in cerebral glucose metabolism detected by FDG-PET as
outcome measures. This review also highlighted the need
for biomarkers in drug development and discussed the use
of imaging biomarkers in replacing cognitive end points in
clinical trials.

Both common sense and regulatory policies of the Food
and Drug Administration (FDA) and regulators in other
countries require that treatment trials need to demonstrate
a significant effect on cognition and function. Although
effects on biomarkers would provide additional evidence
of treatment effect and evidence of disease modification,
there are no validated surrogates for AD trials, and such
surrogates will take many years to develop. Different bio-
markers are likely to be effective over different phases of
the disease [11,41]. To be used as surrogates for clinical
measures, biomarkers would need to be validated as
reflecting clinical and/or pathological disease processes
with a high degree of specificity and sensitivity. To qualify
for validation as an outcome measure, the biomarker must
be shown to predict clinical outcome over several trials
and several classes of relevant agents by following
subjects through disease progression and even possibly to
autopsy [3,9,37]. This validation process is likely to be
aided by the contribution of ADNI to standardizing
procedures, particularly for imaging techniques, to reduce
Fig. 5. Roles of biomarkers in AD drug development. Abbreviations: AD-

MET, absorption, distribution, metabolism, excretion, toxicity; BBB,

blood–brain barrier; POP, proof of principle. Reproduced with permission

from Ref [37].
measurement errors in clinical trials [42]. A review by Pe-
tersen and Jack [11] discussed neuroimaging and chemical
biomarkers, either alone or in combination, for the predic-
tion of the development of dementia in MCI patients. These
authors provided an excellent and succinct summary of the
issues facing clinical trials for AD-modifying drugs and
the role of both U.S. and worldwide ADNI in developing
biomarkers to facilitate these trials.

A detailed discussion of the position of the FDA on
biomarker validation is given by Carrillo et al [31], and it
is likely that the process will require a wider population of
well-characterized subjects than is available through
ADNI. To this end, and for the further study of therapeutic
interventions for AD, Petersen [40] proposed the establish-
ment of a national registry of aging. In their editorial in
the Journal of the American Medical Association, Petersen
and Trojanowski [39] introduced a paper that reports on
the evaluation of CSF biomarkers in a large multicenter
study. Placing this in the context of other work in the same
area, and in research undertaken as part of ADNI, they
concluded that as biomarkers become more sophisticated,
they will play even greater roles in AD clinical trials, and
may one day be of use in clinical practice in a diagnostic
capacity. Hill [41] concluded in his perspective on neuroi-
maging and its role in assessing safety and efficacy of
disease-modifying therapies for AD: “.there is now suffi-
cient experience of imaging for Alzheimer’s disease in
both natural history and therapeutic trials for a clear recipe
for success to be emerging.” Weiner [43] concluded that
the use of biomarkers to select cognitively normal subjects
who have AD-like pathology and as validated outcome mea-
sures in clinical trials “is the path to the prevention of AD.”

ADNI has proven to be a rich data set for industry-
sponsored research, including an assessment of disease pro-
gression in the AD population [44]. Results from ADNI data
have been combined with additional placebo data from clin-
ical trials conducted in AD and are publicly available on the
Coalition Against Major Diseases (CAMD) Web site for
additional data mining [227]. Modeling efforts have high-
lighted the importance of age, baseline cognitive status,
and APOE status on disease progression rates; a model is
currently under qualification review through newly devel-
oped European Medicines Agency (EMA) and FDA qualifi-
cation procedures. These types of models will inform
clinical trial design and streamline analysis for drug studies
conducted in mild-to-moderate AD.

ADNI has also enabled clinical studies in predementia,
and many have been posted to www.clinicaltrials.gov, high-
lighting the use of CSF and amyloid PET biomarkers in
cognitively impaired subjects to enrich for predementia clin-
ical trials. Application to registration-level, phase III studies
remains a challenge, as the biomarkers in ADNI have not yet
been qualified for use or received regulatory approval. To
address some of the remaining challenges, precompetitive
and industry-sponsored initiatives were recently conducted
to qualify CSFAb-42 and t-tau as biomarkers for enrichment
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in predementia study with the EMA, and a positive qualifica-
tion opinion was posted on the EMA site for these particular
biomarkers. Additional efforts are ongoing with the FDA.
For the most part, industry has been using the biomarkers
as enrichment tools in predementia and mild-to-moderate
AD studies, and as secondary or exploratory efficacy mea-
sures to assess impact of exploratory drugs on biomarker
measures of disease progression.

In 2012-2013, ADNI has continued to provide an ever
richer data set and important venue for precompetitive
public-private interaction around biomarkers and clinical
trial methodologies for AD, greatly facilitating the applica-
tion of biomarkers and new methods in clinical trials. CSF
and hippocampal volume biomarkers remain the focus of
ongoing qualification efforts with the FDA. Amyloid bio-
markers are actively used for subject selection in clinical tri-
als of candidate therapeutics.

Amyloid biomarker substudies in the recent solanezumab
and bapineuzumab phase III programs revealed that even in
AD dementia populations, more than 20% of enrolled mild
and moderate AD subjects were amyloid negative by CSF
Ab or amyloid PET. Subsequent trials of antiamyloid thera-
peutic candidates are requiring amyloid biomarkers at
screening and amyloid positivity as an inclusion criterion.
Longitudinal measures of amyloid are also being increas-
ingly used later in the drug development process to assess
potential disease-modifying effects.

Hippocampal volume, as measured from structural MRI
scans, decreases rapidly in the MCI phase preceding transi-
tion to AD and is strongly associated with imminent clinical
decline. While not pathologically specific, screening for
reduced baseline hippocampal volume selects a more homo-
geneous population of rapidly declining subjects, decreasing
variability in longitudinal clinical outcome measures. Hip-
pocampal volume was also recently qualified by the EMA
for enrichment of amnestic MCI clinical trial populations,
based in part on de novo analyses of ADNI data and coordi-
nated in a precompetitive fashion by CAMD [357].

Thewidespread application of biomarkers in large, global
trials owes much to the methods and data generated by
ADNI.
3. Methods papers

A considerable proportion of papers published as a result
of ADNI concerns the development and testing of methods
for use in ADNI, in the cohorts of other studies, or in clinical
trials. These run the gamut from papers examining the best
way to reduce differences between scanners in multicenter
studies to those describing a new way to discriminate be-
tween AD, MCI, and control subjects, to methods for enrich-
ing clinical trials to reduce required sample sizes and
therefore the associated cost, to new methods for examining
genotype–phenotype relationships in neuroimaging GWAS.
This section presents an overview of these papers.
3.1. Standardization of ADNI procedures
3.1.1. Magnetic resonance imaging

3.1.1.1. Assessment of scanner reliability
A key feature of assessing the reliability of scanner hard-

ware over longitudinal scans is the use of a high-resolution
geometric “phantom” that can detect linear and nonlinear
spatial distortion, signal-to-noise ratio, and image contrast,
allowing these artifactual problems to be identified and sub-
sequently eliminated. Although these are commonly used
for periodic adjustments to quality control, they are scanned
after every patient in the ADNI MRI protocol. Gunter et al
[45] estimated that these artifactual problems would
contribute to .25% imprecision in the metric used, and
found that phantom analysis helped correct scanner scaling
errors and/or miscalibration, thereby increasing the potential
statistical power of structural MRI for measuring rates of
change in brain structure in clinical trials of AD-
modifying agents. The utility of a scanner phantom was
once again underscored by Kruggel et al [46], who examined
the influence of scanner hardware and imaging protocol on
the variability of morphometric measures longitudinally
and also across scanners in the absence of a phantom in a
large data set from the ADNI cohort. Using different acqui-
sition conditions on the same subject, the variance in volu-
metric measures was up to 10 times higher than under the
sample acquisition conditions, which were found to be suf-
ficient to track changes. Their results suggested that the
use of a phantom could reduce between-scanner imaging ar-
tifacts in longitudinal studies. Accurate ventricular segmen-
tation also has an important role in estimating disease
progression. Khan et al. [358] described the construction
and testing of a physical brain ventricle phantom constructed
to accurately simulate brain tissue T1 relaxation times. The
phantom proved suitable for the validation of ventricular
segmentation algorithms as it was life size, easy to fabricate,
inexpensive, and accurately mimicked brain tissue.

Kruggel et al [46] also investigated the effect of scanner
strength and the type of coil used on image quality and
found that a 3.0-T array coil system was optimal in terms
of image quality and contrast between white matter (WM)
and gray matter (GM). Ho et al [47] similarly tested the abil-
ity of 3.0-T and 1.5-T scanners to track longitudinal atrophy
in AD and MCI patients using tensor-based morphometry
(TBM). They saw no significant difference on the ability
of either scanner type to detect neurodegenerative changes
over a year, and found that TBM used at both field strengths
gave excellent power to detect temporal lobe atrophy longi-
tudinally. Marchewka et al [359] used voxel-based
morphometry (VBM) with diffeomorphic registration to
examine the effect of the different magnetic field strengths
on the estimation of AD-related atrophy. They found slight
grey matter volume differences related to field strength in
the cerebellum, precentral cortex, and thalamus. The
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authors concluded that diffeomorphic registration was most
accurate when scans were pooled across the study to create a
common anatomic template regardless of scanner type or
disease status.

While the scanning of a geometric phantom helps elimi-
nate artifacts introduced by the machine, Mortamet et al [48]
described an automated method for accounting for patient
artifacts that can affect image quality, such as edge, flow,
and aliasing artifacts. They developed two quality indices
and tested their ability to differentiate between high- and
low-quality scans, as assigned by an expert reader at the
ADNI MRI center. Both indices accurately predicted the
“gold standard” quality ratings (sensitivity and specificity
.85%), and the authors proposed that this method could
be integrated into a real-time or online MRI scanning proto-
col to eliminate the need to rescan at a later date due to a
poor-quality scan, in keeping with the goal of placing as
minimal burden on the patient as possible. Clarkson et al
[49] examined within-scanner geometric scaling drift over
serial MRI scans, as assessed by geometric phantoms, and
developed a nine degrees-of-freedom registration algorithm
to correct these scaling errors in longitudinal brain scans of
patients. They found that the nine degrees-of-freedom regis-
tration was comparable with geometric phantom correction,
allowing atrophy to be measured accurately, and the authors
suggest that this registration-based scaling correction was
the preferred method to correct for linear changes in gradient
scaling over time on a given scanner. This in turn could
obviate the need for scanning a phantom with every patient.
Bauer et al [50] assessed the utility of collecting whole brain
quantitative T2 MRI from multiple scanners using fast spin
echo (FSE)/dual spin echo sequences, which have been
shown to be useful in the early detection of AD pathology
in MCI patients. Although FSE–T2 relaxation properties
were related to the global dementia status, the authors
concluded that the utility of the method was affected by
the variability between scanners. Several papers were aimed
at reducing between-scanner effects, including those by
Gunter et al [45] and Clarkson et al [49]. Leung et al [51]
presented a method aimed at overcoming variability in serial
MRI scans for the detection of longitudinal atrophy bymodi-
fying the boundary shift integral (BSI) method of image
analysis. Two improvements to the BSI method were
made: (1) tissue-specific normalization was introduced to
improve consistency over time, and (2) automated selection
of BSI parameters was based on image-specific brain bound-
ary contrast. The modified method, termed KN-BSI, had
enhanced robustness and reproducibility and resulted in a
reduction in the estimated sample sizes, required to see a
25% reduction in atrophy in clinical trials of AD-
modifying drugs, from 120 to 81 AD patients (80% power,
5% significance).

3.1.1.2. Development of protocols
Jack et al [52] described the development of standardized

MRI procedures for use in the multiple ADNI centers, a pro-
cess guided by the principle of maximizing the scientific
benefit of a scan while minimizing the burden on the patient.
Using technology widely available in 2004 to 2005, and
limiting scanner platforms to three vendors, they succeeded
in developing a protocol that could be run in ,30 minutes
and that included the use of a phantom scan to monitor scan-
ner performance over time and across different centers,
back-to-back T1-weighted magnetization-prepared rapid
gradient echo scans to capture structural information while
minimizing the need to rescan patients due to technical dif-
ficulties, and T2-weighted dual-contrast FSE sequences for
the detection of pathologies. Postacquisition corrections
were instituted to remove certain image artifacts. Serial
MRI scans, such as those used in ADNI, often suffer from
problems associated with the uniformity of signal intensity
that introduce artifacts into the results. Boyes et al [53]
tested the ability of nonparametric nonuniform intensity
normalization (N3) to eliminate these artifacts on higher-
field 3-T scanners, which had a newer generation of receiver
coils, in serial 2-week scans of healthy elderly control sub-
jects. They found that the robustness and reliability of the
N3 correction were highly dependent on the selection of
the correct mask to identify the region of the scan over which
the N3 worked, and on the smoothing parameter used for
head scans at different pulse sequences. Leow et al [54]
also used serial scans, 2 weeks apart, of healthy elderly con-
trol subjects to investigate the stability of different pulse se-
quences. They used TBM to generate maps of computed
changes that could be statistically analyzed and to give infor-
mation on MRI reliability, reproducibility, and variability.
This optimization of pulse sequences contributed to the
design of the ADNI MRI protocol, and authors concluded
that TBM is a useful tool for the study of longitudinal
changes in brain structure.

Vuong et al. [360] compared the accuracy or T1- versus
T2-weighed MRI sequences in determining intracranial
volume and found that the T2-based measurement
improved the strength of associations between cognitive
function and brain volume in MCI and AD patients
compared with T1-weighted sequences in the standard
ADNI protocol.

Although many methods have focused on the develop-
ment of automated hippocampal segmentation, manual hip-
pocampal segmentation remains the gold standard. Boccardi
et al. [361] determined the most reliable orientation for
manual segmentation to be anterior-posterior permissive
and defined four segmentation units able to account for inter-
protocol differences (the minimum hippocampus, the alve-
olus/fimbria, the tail, and the subiculum). The results were
presented to a Delphi panel to develop a harmonized manual
hippocampal segmentation protocol. Nestor et al. [362]
directly compared the performance of five hippocampal-
labeling protocols for multiatlas-based segmentation
selected by the Hippocampal Harmonization Initiative. Us-
ing ADNI-1 baseline and 24-month scans and a fully auto-
mated multiatlas segmentation technique, the Sunnybrook
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Hippocampal Volumetry (SBHV) tool, they found that pro-
tocols differed in voxel overlap accuracies between auto-
matic and manual labels, the ability to distinguish between
MCIc and MCInc patients, and sample size estimates for
clinical trials, suggesting that the choice of protocol for auto-
matic multitemplate-based segmentation can influence seg-
mentation accuracy.

3.1.1.3. Standardization of ADNI data sets
The lack of standardized ADNI data sets has hampered

the direct comparison of results and the replication and eval-
uation of techniques published using ADNI data. The MRI
core proposed offering a series of standardized data sets
that include scans that have both passed quality control mea-
sures and have been performed on the same scanner to
reduce interscanner variability. They proposed that deviation
from the use of these prespecified data sets be reported in the
published papers to facilitate comparison and replication of
results. With the increasing role of multimodal studies, other
ADNI cores are also working toward making available stan-
dardized data sets to achieve the same goals across the
breadth of the initiative. Ongoing efforts by the ADNI
Biomarker Core have also been directed toward the stan-
dardization of CSF biomarker assay methods to minimize
the sources of analytical variability and to develop standard
reference methods.
3.1.2. Ab- and FDG-PET
Variability across scanners is also a major factor in ADNI

PET studies, which are spread over 50 different centers and
involve 15 different scanner/software combinations. Joshi
et al [55] tackled the problem of reducing between-scanner
variability in PET images that has been observed despite
the use of standardized protocols. Major sources of
between-scanner variability are high-frequency differences,
mostly related to image resolution, and low-frequency dif-
ferences, mostly related to image uniformity and also to cor-
rections for scatter and attenuation. Joshi et al [55] scanned a
Hoffmann phantom at each participating center, and by
comparing the scans to the Hoffman “gold standard” digital
phantom, they developed corrections for both types of vari-
ability, which were tested on scans from the ADNI cohort.
They found that the high-frequency correction, by smooth-
ing all images to a common resolution, reduced interscanner
variability by 20% to 50%, but that the low-frequency
correction was ineffective, perhaps due to differences in ge-
ometry between the Hoffman phantom and the human brain.
Jagust et al [34] reported the development of a standardized
protocol for the acquisition of FDG-PET and 11C-PiB PET
data that first granted approval to participating sites based
on the results from a pair of phantom scans on the three-
dimensional (3-D) Hoffman brain phantom using defined
acquisition and reconstruction parameters. These were as-
sessed for image resolution and uniformity using a quality
control process that used the digital gold standard phantom
for comparison. In this way, corrections were made for dif-
ferences in PET images across sites. A stable reference
region is also critical to detecting metabolic changes with
optimum sensitivity across different sites and scanners.
Rasmussen et al [363] used an approach based on differences
in coefficients of variation of FDG ratios over time
across selected anatomic regions. They found the superior
portion of the cerebellum to be the optimum reference
region because of its stability over time compared with
AD patients.

Amyloid PET using the longer half-life ligand Florbeta-
pir was introduced into ADNI-2. Landau et al [364]
compared amyloid imaging results in 32 individuals from
ADNI cohort with both Florbetapir and PiB scans acquired
on a variety of scanner types and processed using a variety
of methods. They found that the numeric scale of cortical
retention ratios was affected predominantly by the type of
radioligand and the reference region used for scanning,
but not by image preprocessing or analysis methods. By
estimating a conversion factor in a study population scanned
by both ligands, they were able to account for differences in
scales and found that both ligands were in excellent agree-
ment in the categorization of patients as amyloid positive
or negative.
3.1.3. Biomarkers
The measurement of CSF concentrations of Ab-42, t-tau,

and p-tau is recognized to reflect early AD pathology.Within
ADNI, levels of these analytes are measured by flow cytom-
etry using monoclonal antibodies provided in the INNO-
BIA Alz Bio3 immunoassay kit (Innogenetics, Ghent,
Belgium) with xMAP technology (Luminex, Austin, TX)
[56,57]. The Biomarker Core of ADNI has worked to
make this a standardized procedure across multiple ADNI
sites, and Shaw et al [56] presented an analysis of within-
site and intersite assay reliability across seven centers using
aliquots of CSF from normal control subjects and AD pa-
tients. Five CSF pools were tested, each pool made up of
either AD patients (n ¼ 2) or controls (n ¼ 3). Each center
performed three analytical runs using separate fresh aliquots
of each CSF sample and data were analyzed using mixed-
effects modeling to determine assay precision. The coeffi-
cient of variation was 5.3% for Ab-42, 6.7% for t-tau, and
10.8% for p-tau within center, and 17.9% for Ab-42,
13.1% for t-tau, and 14.6% for p-tau between centers. The
authors concluded that although they found good within-
laboratory assay precision, the reason for the reduced inter-
laboratory precision is not fully understood and may be
caused by many sources of variability. As for any test
method, strict attention to the laboratory standard operating
procedures, inclusion of CSF quality control specimens in
each analytical run, and following the manufacturer’s guid-
ance for test performance are essential to assure best perfor-
mance of this immunoassay test system [228].
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The ADNI Biomarker Core has continued to focus on
improving chemical biomarker assays. Korecka et al [365]
compared the diagnostic utility of ultraperformance liquid
chromatography–tandem mass spectroscopy (UPLC-MS-
MS) with the AlzBio3 immunoassay for quantifying
Ab42. They demonstrated that a surrogate matrix consisting
of artificial CSF containing 4 mg/mL of bovine serum albu-
min provided linear and reproducible calibration compara-
ble to human pooled CSF. Analyses of CSF Ab42 showed
that UPLC-MS-MS distinguished neuropathologically diag-
nosed AD subjects from healthy controls with diagnostic
utility at least equivalent to AlzBio3 indicating that this tech-
nique provides selective, reproducible, and accurate results
and should be considered as a candidate reference method.

Kang et al [366] reviewed the clinical performance and
reliability of immunoassays used in clinical studies of CSF
Ab42, t-tau, and p-tau181 as biochemical markers of the
presence of AD neuropathology. They found that measure-
ments of these biomarkers using the most widely used
immunoassay platforms reliably reflected the AD neuropa-
thology in patients with MCI or even in presymptomatic
patients. These CSF biomarker tests were therefore deemed
useful for early diagnosis of AD, prediction of disease pro-
gression, and efficient design of drug intervention clinical
trials.

3.2. Methods for MRI image preparation and processing

A large portion of ADNI research relies on the extraction
of information from MRI images; therefore, the develop-
ment of automated methods to reliably and robustly process
thousands of scans from multiple centers is vital to the proj-
ect. Processing steps include whole brain extraction, image
registration, intensity normalization, tissue classification
(segmentation), cortical thickness estimation, and brain atro-
phy estimation [58].

3.2.1. Whole brain extraction
The separation of brain from nonbrain voxels in neuroi-

maging data, known as whole brain extraction or “skull-
stripping,” is an important initial step in image analysis.
Inaccuracies at this step can lead to the introduction of arti-
facts adversely affecting further analysis; therefore, a robust
and accurate automated method for this step is highly desir-
able. To this end, Leung et al [58] compared the accuracy of
a technique, multiatlas propagation and segmentation
(MAPS), previously developed for hippocampal segmenta-
tion ([59]; see later section), with three other widely used
automated brain extraction methods: brain extraction tool,
hybrid watershed algorithm, and brain surface extractor.
They found that compared with the semiautomated “gold
standard” segmentation, MAPS was more accurate and reli-
able than the other methods and that its accuracy approached
that of the gold standard, with a mean Jaccard index of 0.981
using 1.5-T scans and 0.980 using 3-T scans of control, MCI,
and AD subjects.
3.2.2. Automated registration and segmentation
As manual registration and segmentation of images into

WM, GM, and CSF is time-consuming, rater-dependent,
and infeasible for a large study because of its often prohibi-
tive cost, a number of studies have focused on developing
automated registration and segmentation methods.

3.2.2.1. Atlas-based registration
Wolz et al [60] offered a solution in which atlases are

automatically propagated to a large population of subjects
using a manifold learned from a coordinate embedding sys-
tem that selects similar images and reduces the potentially
large deformation between dissimilar images, thereby
reducing registration errors. This learning embeddings for
atlas propagation method resulted in a more accurate seg-
mentation of the hippocampus compared with other multiat-
las methods [60].

The use of more than one atlas on which to register brain
images has been recognized as a powerful way to increase
accuracy of the automatic segmentation of T1-weighted
MRI images, as it addresses the problem of brain variability.
The steps of the process have been described by Lotjonen
et al [61] and are presented in Fig. 6. Initially, multiple at-
lases are nonrigidly registered to the patient image, after
which majority voting is applied to produce class labels
for all voxels. Then, postprocessing by a variety of algo-
rithms takes into account intensity distributions of different
structures.

The addition of atlases has been found to increase seg-
mentation accuracy in a logarithmic manner, that is,
rapidly at first, but eventually slowing toward a
maximum. This increased accuracy must be balanced by
the increased computation time required for each addi-
tional atlas [61]. Lotjonen et al [61] obtained the best seg-
mentation accuracy with relatively few [8–15] atlases,
and, additionally, found that postprocessing using either
the graph cuts or expectation maximization algorithms
contributed to an optimized multiatlas segmentation
method that balanced accuracy and computation times.
They also found that the use of normalized intensity
differences in the nonrigid registration step produced
segmentation accuracy similar to that found using the
more computationally intensive normalized mutual
information method.

The selection of the atlases is a critical step. Heckeman
et al [62] described the case in which the use of atlases based
on the brains of young people resulted in occasional gross
segmentation failures due to ventricular expansion in the
older AD subjects. To overcome this problem, they modified
a hierarchical registration approach by changing the first
three levels to a tissue classification algorithm, instead of us-
ing native magnetic resonance (MR) intensity data. This
multiatlas propagation with enhanced registration approach
was found to create accurate atlas-based segmentations and
was more robust in the presence of pathology than previous
approaches. Li et al [229] presented another approach to



Fig. 6. Steps of multiatlas segmentation. (I) nonrigid registration used to register all atlases to patient data, (II) classifier fusion using majority voting for pro-

ducing class labels for all voxels, and (III) postprocessing of multiatlas segmentation result by various algorithms, taking into account intensity distributions of

different structures. Reproduced with permission from Ref [61].
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account for ventricular expansion and other variations in tis-
sue composition that occur in older subjects, such as WM
hyper- and hypo- intensities, and changes in subcortical
shape and cortical thickness. They employed a deformable
registration algorithm that embeds 3D images in surfaces
in a 4D Reimannian space to topological changes caused
by false deformation. The method compared favorably
with other registration methods employing diffeomorphic
demons when tested on MR images with lesions from the
ADNI data set.

Leung et al [58] generated multiple segmentations using
nonlinear registration to best-matched manually segmented
library templates and combined them using a simultaneous
truth and performance level estimation algorithm. MAPS
was then used to measure volume change over 12 months
by applying the BSI. The accuracy of MAPS was found to
compare favorably to manual segmentation, with a mean dif-
ference between automated and manual volumes of approx-
imately 1% and a Dice score of 0.89 compared with other
methods developed by ADNI (0.86: Morra et al [63]; 0.85:
Wolz et al [64]; and 0.89: Lotjonen et al [61]).

The efficacy of three established manifold learning tech-
niques (Isomap, Laplacian Eigenmaps, and Locally Linear
Embeddings [LLE]) for the selection of atlases for multiatlas
automatic hippocampal segmentation was compared by
Hoang Duc et al [367] using the ADNI data set. LLE was
found to result in the most accurate segmentations with a
mean Dice similarity index of 0.883 on unseen data.

In heterogeneous populations, improvements in registra-
tion and segmentation may be gained by selecting atlases
based on clusters of homogeneous morphologic features.
The data-driven and unsupervised framework of Ribbens
et al [368], termed SPARC, automatically identifies
such subgroups that largely correspond to clinical status
and constructs probabilistic atlases for each cluster to guide
segmentation.

3.2.2.2. Other registration methods
In addition to registration of images to one or more at-

lases, segmentation of images may use image statistics to
assign labels for each tissue or use geometric information
such as deformable models or active contours [65]. A
method that combines elements of these two approaches
was described by Huang et al [65], who used an edge-
based geodesic active contour. They found that this method
segmented a range of images more accurately and robustly
than those using individual statistical or geometric features
only.

Calvini et al [66] developed software for the automatic
analysis of the hippocampus and surrounding medial tempo-
ral lobe (MTL) and the calculation of a novel statistical indi-
cator, the D-box, computed on intensities of the
automatically extracted regions Their method did not
directly segment the hippocampus, relying instead on the
use of the D-box to assess intensities after a manual extrac-
tion step. A refinement and generalization of this method
that standardizes the intensity scale of MR images, automat-
ically extracts hippocampal volume, and generates tem-
plates using a clusterization method was subsequently
described by Cataldo et al [369]. The authors propose that
this simple and easily reproducible method could be easily
applied to other regions of the brain.
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A computational processing application to measure
subtle longitudinal changes using nonlinear registration
to the baseline image was described by Holland and
Dale [67]. This method, called quantitative anatomical
regional change (QUARC), used nonrigid 12-parameter
affine registration, image smoothing minimization,
normalization of local intensity nonuniformity, direct
calculation of the displacement field of the region of inter-
est (ROI) rather than the Jacobian field, and bias correc-
tion. When QUARC was compared with four other
common registration methods used on ADNI data, it pro-
duced significantly larger Cohen d effect sizes in several
ROIs than FreeSurfer v4.3 (Athinoula A. Martinos Center
for Biomedical Imaging, Massachusetts General Hospital,
Boston, MA; http://surfer.nmr.mgh.harvard.edu/), voxel-
based morphometry, and TBM, and a similar whole brain
effect size to the standard KN-BSI method. Although, un-
like the other methods, the signal-to-noise ratio of the raw
images obtained using QUARC was enhanced by back-to-
back repeat scans, the authors concluded that QUARC is a
powerful method for detecting longitudinal brain morpho-
metric changes in levels varying from the whole brain to
cortical areas to subcortical ROIs [230]. Lorenzi et al
[370] described a novel nonlinear registration method,
LCC (local correlation coefficient)–Demons, designed
for both intersubject and intrasubject studies. Based on
the log-Demons diffeomorphic registration algorithm, it
retained the computational efficiency of the log-Demons
algorithm while using stationary velocity fields to param-
eterize the transformation. The algorithm was flexible,
robust, and efficient when tested on ADNI cross-
sectional and longitudinal data.

Robitaille et al [371] presented an alternative approach to
tissue-based standardization called STandardization of In-
tensities (STI), which uses a spatial intensity correspon-
dence between an input image and a standard determined
using joint intensity histograms. The method was tested on
the ADNI data set and was found to be superior to
histogram-matching techniques.
3.2.3. Automated temporal lobe and hippocampal
segmentation

3.2.3.1. Temporal lobe and hippocampus
In AD, atrophy in MTL and, in particular, the hippo-

campus is associated with declining cognitive function. It
is not surprising, then, that a substantial body of work
has been published on the subject of analyzing structural
MRI T1-weighted measurements of this region. Chupin
et al [68] developed a fully automated method for hippo-
campal segmentation based on probabilistic information
derived from an atlas built from the manually segmented
hippocampi of 16 young subjects and anatomical informa-
tion derived from stable anatomical patterns. Wolz et al
[64] used a fully automated four-dimensional (4-D)
graph-cut approach to hippocampal segmentation that
segmented serial scans of the same patient. Power analysis
of the method revealed that a clinical trial for an AD-
modifying drug would require 67 AD or 206 MCI patients
to detect a 25% change in volume loss (80% power and 5%
significance). Morra et al [69] developed the auto context
model (ACM), a fully automated method to segment the
hippocampus, based on the machine learning approach,
AdaBoost. After training the classifier on a training set,
ACM was able to discriminate between AD, MCI, and con-
trol groups, suggesting that the automatic segmentation is
sufficiently sensitive to detect changes in hippocampal vol-
ume over the course of disease progression. This method
was compared with manual and other automated methods
for hippocampal segmentation, and also with TBM, which
was used to assess whole brain atrophy in an earlier paper
by the same group [63]. These authors found that ACM
compared well with hand-labeled segmentation and that
the volume atrophy over clinical groups and correlation
with clinical measures with ACM were comparable with
that found with other automated methods and better than
TBM, suggesting that the latter method may not be optimal
for assessing hippocampal atrophy.

Lotjonen et al [231] developed an automatic hippocam-
pal segmentation method using an intermediate template
space between unseen data and atlas spaces to increase pro-
cessing speed and partial volume modeling to increase
classification accuracy. The authors reported that this
method more than halved the processing time on a standard
laptop computer and resulted in a Dice overlap compared
to manual segmentation of 0.869, in the range of previously
reported accuracies (0.85 [63] and 0.93 [59]), supporting
the feasibility of the method for clinical use. Tong et al
[372] combined an alternative strategy, Fixed Discrimina-
tive Dictionary and Learning for Segmentation (F-DDLS)
with fast coding techniques, for image reconstruction and
reported computation burden. When the method was tested
on hippocampal segmentation using ADNI cohort data, a
Dice overlap of 0.879 was obtained. A similar Dice overlap
(0.903) was obtained using a method, STEPS (Similarity
and Truth Estimation for Propagation Segmentation), based
on the STAPLE algorithm, which used a local ranking
strategy to estimate the voxel-by-voxel classifier perfor-
mance [373]. Using STEPS, statistically significant differ-
ences were found between subject groups in both
baseline hippocampal volume and hippocampal atrophy
rates.

Automated hippocampal segmentation may gain accu-
racy by considering not only volume but surface geometric
variations. Shi et al [374] used a surface fluid registration
method based on the use of holomorphic one-forms to
compute a global conformal parameterization that can map
a service to a rectangular plane, followed by multivariate
TBM to compare in morphometry between study groups.
The method successfully detected differences in hippocam-
pal shape between APOE 34 allele carriers and noncarriers
in both control and MCI groups.

http://surfer.nmr.mgh.harvard.edu/
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Automatic image segmentation is prone to systematic er-
rors, which are introduced when these mostly knowledge-
based protocols mistranslate manual segmentation protocols
into the automatic format. Wang et al [70] presented a
wrapper algorithm that can be used in conjunction with auto-
matic segmentation methods to correct such consistent bias.
The algorithm uses machine learning methods to first learn
the pattern of consistent segmentation errors and then applies
a bias correction to the mislabeled voxels detected in the
initial step. When the algorithm was applied to four different
segmentation methods, it decreased the number of mislabeled
voxels by 14% (multiatlas hippocampal segmentation) to
72% (FreeSurfer hippocampal segmentation) and resulted in
a higher Dice overlap than other hippocampal segmentation
methods, including some of those by Leung et al, Chupin
et al, and Morra et al, described in this review [59,68,69].

3.2.3.2. Cortical thickness segmentation and estimation
Cortical thickness, which is correlated with disease pro-

gression, offers an alternative approach to ROIs to assessing
disease progression. Consequently, the development of auto-
mated methods to analyze this region is an important step in
monitoring disease progression [232]. Cardoso et al [233]
presented a new method of post-processing for accurate seg-
mentation of cortical thickness that reduced bias towards
anatomical priors, explicitly models partial volume effects
and improved the modeling of sulci and gyri using a locally
varying Markov Random Field model. When the algorithm
was tested on ADNI data, the authors reported an improve-
ment in accuracy over established methods.

With the progression from ADNI-1 to ADNI-GO to
ADNI-2, analysis of longitudinal ROI data has become of
increasing importance. Several papers have focused on the
accurate comparison of time points using 4D segmentation
to determine rates of atrophy. Wang et al [375] proposed a
method for longitudinal cortical thickness estimation in
which all scans at every time point are included in the seg-
mentation process, cortical thickness is maintained within
a reasonable range using a spatial cortical thickness
constraint, and artificial variations between time points are
suppressed by a temporal constraint. When the method
was compared in the ADNI data set to FreeSurfer (4D seg-
mentation that lacks the temporal constraint), it produced
more consistent and smoother thickness measurements in a
more computationally efficient manner. Another approach,
also involving temporal constraint, was described by Li
et al [376]. First, they used a deformable parametric surface
method to reconstruct the cortical surfaces of a group-mean
image of all longitudinal images. They then used their mean
surfaces to simultaneously reconstruct all longitudinal
cortical surfaces. Themethod was tested on the ADNI cohort
and found to be sufficiently sensitive to detect subtle changes
in cortical surfaces such as a thinning of 0.02 mm over 24
months in normal aging.

Specific regions of the cortexmay be of particular interest
to researchers. For example, the perirhinal cortex may play a
critical role in memory and has been shown to accumulate
neurofibrillary tangles very early in disease progression. Au-
gustinack et al [377] used probabilistic mapping on ADNI
images to predict allocation for the perirhinal cortex and
confirmed this with histologic staining. Using this method,
they confirmed the utility of cortical thickness in this region
as a specific metric for disease progression.

Segmentation bias can also be introduced when one base-
line image is used as a reference in the comparison of multi-
time point longitudinal images to estimate brain atrophy
from changes in cortical thickness. Leung et al [230] devel-
oped a method based on BSI that utilized affine registration,
differential bias correction and symmetrical global registra-
tion for multiple time points through the concept of a geo-
metric mean to overcome this asymmetry. They found that
this locally adaptive cortical segmentation algorithm
(LoAD) consistently reduced bias and increased cortical
thickness estimation accuracy compared to established
methods when tested on the ADNI data set. Another chal-
lenge in cortical segmentation is filtering geometric topolog-
ical outliers without causing unintended shrinkage to other
parts of cortical surface. Shi et al [378] used a unified
Reeb analysis that offered an integrated regularization of
these outliers and also enhanced tissue classification at the
subvoxel level. When tested on images from ADNI, the
method was shown to be robust, accurate, and computation-
ally efficient, requiring roughly a third of the computing time
of FreeSurfer.

3.2.4. TBM and DBM
Bossa et al [72] used the method of TBM, which exam-

ines the deformation fields generated when an image is regis-
tered to a template. Previous work used large deformation
algorithms for the nonrigid registration step, as they have
the flexibility to characterize anatomical variability in
cross-sectional studies. These algorithms are, however,
computationally intensive, and the authors proposed a
simplified version of the large deformation algorithms, sta-
tionary velocity field diffeomorphic registration. When the
method was evaluated using ADNI subjects, it provided
brain atrophy maps at high spatial resolution with lower
computational requirements. Hua et al [73] examined two
methods of image registration in TBM and found that the
method in which each image is aligned to a single template
was a more effective measure of brain deterioration. They
also found TBM to be better suited to analyzing morpho-
metric changes over larger areas, such as the entire temporal
lobe, rather than specific ROIs, such as the hippocampus,
and that atrophic changes detected by their method corre-
lated well with clinical measures of brain deterioration
(Mini-Mental State Examination [MMSE] and clinical de-
mentia rating [CDR] scores). The use of multi-template
registration was investigated by Koikkalainen et al [234],
who developed and compared the classification accuracy
of four methods with a single template registration method.
They found that all four multi-template methods improved
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classification accuracy and resulted in smaller sample size
estimates.

Yushkevich et al [74] examined the use of DBM, a tech-
nique closely related to TBM in estimating longitudinal
hippocampal atrophy in the ADNI cohort. They found that
without a correction for asymmetry that arises during longitu-
dinal image registration, substantial bias can result in
the overestimation of the rate of change of hippocampal atro-
phy. Park and Seo [75] tackled the problem of accurate regis-
tration algorithms required in DBM to compute the
displacement field. They proposed amethod that usesmultidi-
mensional scaling to improve the robustness of the registration
step, and found that this method improves the ability of DBM
to detect shape differences between patients. The same group
reported a further advance using a manifold learning method,
ISOMAP, embedding that represents high-dimensional imag-
ing data in the low dimensional manner [379].

3.2.5. Quantification of brain morphometric changes
Several papers have focused on the development of

methods for quantifying structural changes across the
whole brain from structural MRI scans. Chen et al [76]
developed a semiquantitative brain and lesion index based
on T1- and T2-weighted imaging. They found that both
the T1-based and T2-based scores correlated with age and
cognitive performance and differentiated between control,
MCI, and AD subjects. Acosta et al [77] presented a new ac-
curate and computationally efficient voxel-based method
for 3-D cortical measurement. The method, which uses an
initial Lagrangian step to initialize boundaries using partial
volume information and a subsequent Eulerian step to
compute the final cortical thickness, offered higher statisti-
cal power to detect differences between clinical groups with
a slight increase in computational time compared with
methods using only the Eulerian step. The authors proposed
that the increased accuracy and precision are attributable to
the Lagrangian step, which effectively achieves subvoxel
accuracy.

The reliability of two common algorithms, Siena and
Siena X, used for measuring changes in whole brain volume
cross-sectionally and longitudinally in MRI studies, was as-
sessed by Cover et al [235] using ADNI data. They found
that Siena was more reproducible than Siena X, that both al-
gorithms gave estimates of atrophy rates in the ADNI cohort
in line with atrophy rates reported in other cohorts, and that
the distribution of atrophy in the ADNI cohort appeared to
have a non-Gaussian distribution. The study demonstrated
the utility of ADNI data as a benchmark for assessing the
reliability of future algorithms for measuring brain atrophy.

3.2.6. Fractal analysis
A different approach for detecting atrophy in disease pro-

gression based on fractal analysis has been described by
King et al [78]. Recognizing that the cerebral cortex has
fractal properties, such as being statistically self-similar,
this group investigated the effect of AD on gyrification using
fractal analysis. They found that fractal analysis of cortical
ribbons was able to discriminate between AD and control
subjects in all of the seven regions tested, apart from the hip-
pocampus, and suggested that this method may play a com-
plementary role to ROI approaches, especially at earlier
stages of disease progression. In a subsequent work, King
et al [79] presented a newmethod for fractal dimension anal-
ysis of the cortical ribbon that also measured cortical thick-
ness. When this method was compared with gray/white and
pial surface cortical models, they found that it was the only
measurement to have a significant correlation with cortical
thickness and ADAS-cog scores, and that it best discrimi-
nated between control subjects and AD patients. The authors
concluded that the fractal dimension of the cortical ribbon
has strong potential as a quantitative marker of cerebral cor-
tex atrophy in AD. Li et al [80] presented a method to reli-
ably measure cortical thickness for longitudinal studies by
incorporating 4-D information from successive scans
directly into processing steps. In the absence of a gold stan-
dard against which to test their method, they used power
analysis of the correlation between cortical thickness and
the MMSE to show that this method improved longitudinal
stability compared with 3-D methods that do not take the
temporal factor into account.

3.2.7. Other MRI methods
Risser et al [81] presented a new method to compare

imaged shapes, either longitudinally or against an atlas, on
several different scales simultaneously, and to quantify the
deformations on a single scale using large-scale deformation
diffeomorphic mapping. When the method was applied to
examine hippocampal atrophy in ADNI patients using base-
line and 24-month scans, it was found to be able to extract
information at the desired scale among all the scales.

A modification of the voxel-based analysis and statistical
parametric mapping method for the detailed spatial analysis
of image data without a priori defined ROIs was proposed by
Zhang and Davatzikos [82]. Their method, optimally
discriminative voxel-based analysis, uses non-negative
discriminative projection applied to the spatial neighbor-
hood around each voxel to find the optimally discriminative
direction between two groups, determines a statistic for each
group, and obtains a statistical parametric map of group dif-
ferences. Optimally discriminative voxel-based analysis was
found to perform well compared with traditional statistical
parametric mapping using an ADNI data set.

Beyond volumetric analysis of ROIs, recent research
has focused on extracting more meaningful information
from the shape of brain structures, but most studies have
not considered the pose, or location and orientation, of the
structure. Bossa et al [71] presented a method for the statis-
tical analysis of the relative pose of subcortical nuclei. The
framework of the analysis was a variety of approaches based
on similarity transformations with Reimannian metrics. Sig-
nificant group differences were found between control sub-
jects, MCI patients who did or did not subsequently
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convert to AD (MCI-c and MCI-nc, respectively) and AD
patients, and the authors suggested that the method may be
particularly useful as an AD biomarker in conjunction
with shape analysis, as both approaches leverage comple-
mentary information. Two new approaches for analyzing
longitudinal MRI data sets were reported by Skup et al
[380] and Bernal-Rusiel et al [381]. The multiscale adaptive
generalized method of moments [380] tackles the problem
of analysis of longitudinal MRI data sets that have multiple
response images per subject. The spatiotemporal linear
mixed-effects modeling approach [381] uses the large num-
ber of spatial locations in a mass univariate setting and offers
large gains in statistical power over other methods especially
in a small sample setting.
3.3. Methods for AD classification from imaging data

The development of automatic methods for the accurate
classification of patients into clinical groups from imaging
data has been the aim of multiple ADNI studies. Many of
these classification methods are based on support vector ma-
chines (SVMs), a set of algorithms that uses supervised
learning of pattern recognition in a training set to build a
classifier to predict the category to which a new example be-
longs. Some methods condense imaging data into one score
that is reflective of brain abnormalities associated with AD
to allow the direct comparison of patients, thereby facili-
tating their classification into patient group [83–85],
whereas others examine which combination of imaging,
CSF biomarkers, genetics, and other factors results in the
most accurate classifiers [86,87], or formulate novel
approaches for identifying AD-like patterns [87–90]. Other
methods leverage the changes in spatial connectivity
between different areas of the brain that most likely occur,
as functional connectivity becomes affected during disease
progression [65,83]. Finally, some methods [91,92] use an
alternative approach to machine learning, a relevance
vector machine (RVM), which, unlike the binary SVM, is
a probabilistic machine learning algorithm. A brief
description of these methods is given later in the text, and
their results are presented and compared with existing
methods of classification in section 5.4.1.

3.3.1. Magnetic resonance imaging
Fan et al [83] used an SVM to construct a classifier based

on patterns of spatial distribution of brain tissue from T1-
weighted MRI scans of control subjects and AD patients
and applied this classifier to scans of MCI patients. The clas-
sifier, which acts as an indicator of how the structural profile
of an individual fits that of AD or control subjects, also pro-
duced a structural phenotypic score (SPS) that allowed direct
comparison of patients. This approach differs from ROI or
voxel-based analyses, as it examines spatial patterns of atro-
phy rather than individual brain regions, and is also able to
examine functional connectivity. Shen et al [89] also devel-
oped a method that integrated feature selection into the
learning process, but used sparse Bayesian learning methods
instead of an SVM. They reported that their automatic rele-
vance determination and predictive automatic relevance
determination, in general, outperformed the SVM used for
comparison and classified patients more accurately than
the method of Hinrichs et al [88]. Stonnington et al [91]
used regression analysis based on an RVM to analyze T1-
weighted MRI data and predict clinical scores, whereas
Franke et al [92] used an RVM combined with an automatic
preprocessing step and dimension reduction using principal
component analysis to estimate the age of healthy subjects
from T1-weighted MRI data, and found the method to be
reliable, efficient, and scanner independent. In contrast to
the supervised SVMs used in the aforementioned studies,
Filipovych and Davatzikos [93] used a semisupervised
SVM to classify MCI-c and MCI-nc patients. In the super-
vised approach, there is an assumption that patterns in a het-
erogeneous construct like MCI are known, but in a
semisupervised approach, only some of the data, in this
instance, baseline MRIs from AD patients and control sub-
jects, are labeled, whereas scans of MCI patients are left un-
labeled. Using a leave-one-out approach, scans were then
classified as having a degree of AD-like or normal-like
anatomic features, as defined by Fan et al [83]. Likewise,
Spulber et al [382] derived a severity index reflective of
the degree of AD-like neurodegeneration based on a pri-
ori–defined MRI regions from baseline MRI scans of NC
and AD patients. They then used an orthogonal projection
to latent structure algorithm as an alternative to SVM for
analyzing high-dimensional data.

A more data-driven approach for patient classification
that circumvents the need for a priori defined ROIs by using
an initial independent component analysis (ICA) step was
proposed by Yang et al [94]. Their preliminary study com-
bined the ICA step to extract defining neuroimaging fea-
tures with a subsequent SVM for classification of scans
into AD, MCI, and control subjects, and the resulting
method was tested on two cohorts, including ADNI.
Pelaez-Coca et al [95] compared ability of anatomical
versus statistically defined ROIs to discriminate between
control and AD subjects. Using a variety of classifiers,
they sought to restrict the number of features using principal
component analysis and found that a higher number of fea-
tures did not necessarily correspond with higher classifica-
tion accuracy. When generalizability of the algorithm was
tested by analyzing classification performance of 20
different experiments in which different subsets of the
cohort were used as training and testing sets, they found
that the resulting variability was larger than within the
different classifiers used. Finally, they found that statisti-
cally defined ROIs representing voxels with the largest sig-
nificance difference in a group comparison with an unbiased
atlas (belonging to voxels in the hippocampi and amyg-
dalae) resulted in better classification accuracy than
anatomically predefined ROIs in the hippocampi, lateral
ventricles, and amygdalae.
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Shen et al [236] described a method to leverage differ-
ences in hippocampal shape for the discrimination of AD
from control patients. The approach selected a subset of
landmarks by using shape descriptors from statistical shape
models that were further selected by statistical means for
direct involvement in AD-specific neurodegeneration.
Selected landmarks, including the CA1 subfield and the sub-
iculum, were then used in a principal component analysis
with SVMs for classification and their targeted use resulted
in an increase in the discriminatory power of statistical shape
models.

An alternative to a priori defined ROIs in AD classifica-
tion is the use of cortical thickness estimates. Pachauri
et al [232] used a topology-based kernel construction algo-
rithm to measure cortical thickness. They suggested that
this automated method can leverage discriminative informa-
tion found on cortical surfaces that can be included in multi-
modal or multi-variate models to boost the signal of interest.
Cho et al [237] employed an incremental learning method
that represented cortical thickness data using the manifold
harmonic transform to overcome problems of noise sensi-
tivity in vertex based methods and the lack of detailed spatial
variation of cortical thickness of region-wise methods. They
found that this method was more robust than traditional
methods and resulted in high classification accuracy. Park
et al [383] reduced the dimensionality of selected ROIs of
cortical thickness and sulcal depth using principal compo-
nent analysis and trained an SVM on a small sample of
ADNI patients. A novel approach for leveraging more infor-
mation from cortical thickness measures by taking into ac-
count the relationship between morphological features was
proposed by Wee et al [384]. By constructing a similarity
map of correlations between pairs of ROIs, they augmented
classification accuracy over ROIs alone. Beyond cortical
thickness, differences exist in cortical folding patterns be-
tween patient groups in ADNI. Cash et al [385] described
an alternative method to the fractal analysis of King et al
[78] that uses a gyrification index as a summary statistic rep-
resenting the degree of cortical folding in addition to indices
describing cortical curvature and shape.

Increasingly, the ability to discriminate between MCI pa-
tients who will either remain stable or convert to AD is para-
mount to the selection of clinical trial populations. To this
end, Eskildsen et al [386] defined differential patterns of
cortical thinning in MCI patients depending on their time
to conversion. They identified disease stage–specific neuro-
degenerative changes: initial thinning in the parahippocam-
pal gyrus followed by the hippocampus and then the
amygdala and occipital areas closer to conversion. Selected
regions were applied to a linear discriminant analysis classi-
fier. They also tested the effects of “double dipping”—the
practice of reusing the training set in the test set—and found
this artificially inflated classification accuracy.

ADNI acquires MRI data across multiple centers and
scanner types. Abdulkadir et al. [238] investigated the ef-
fects of hardware heterogeneity on the classification accu-
racy of fully automated machine learning methods using
an SVM classifier. They found that the negative effects of
differences in scanner strength (1.5 T versus 3.0 T) on accu-
racy were offset by the gain made from the larger data sets
available from multiple sites. A maximum accuracy of
87% in the classification of AD patients from controls was
reported using data acquired with heterogeneous scanner
settings.

Selection of MR features representative of change to a
more AD-like morphometry has allowed the development
of models that predicts future clinical decline from MR
data. Zhang et al [239] targeted the use of both baseline
and longitudinal data in a method that uses a longitudinal
feature selection approach developed from a sparse linear
regression model of each time point and which finally ex-
tracts a set of most relevant features longitudinally for input
into a multi-kernel SVM. They found that the addition of
longitudinal data substantially increased prediction accu-
racy. Aksu et al[240] used an approach intermediate between
supervised and unsupervised machine learning to construct
an automatic prognosticator of MCI to AD conversion and
to define a conversion point between the two disease states.
When an MCI patient showed any region of the brain as be-
ing “AD-like,” they were classified as converters which re-
sulted in a higher prognostic accuracy than a CDR-based
method.

Disease classification using MRI is plagued by the curse
of dimensionality in which the number of voxels for whole
brain analysis is so large that a direct SVMapproach becomes
prohibitively computationally expensive and does not neces-
sarily lead to the best classification as not all features are rele-
vant to disease pathology. Feature selection is one approach
frequently used to address this challenge. In 2012 and 2013,
therewas a trend to considering higher level imaging features
such as relationships betweenROIs rather than low-level fea-
tures such as voxelwise GM. The method of Suk et al [387]
used as a stacked autoencoder to incorporate latent high-
level information residing in patterns between low-level fea-
tures in combination with the lower level features, them-
selves. Liu et al [388] likewise took into account structural
variability in pathologic degeneration both at coarse and
fine levels using a tree-based method of feature selection.
Cuingnet et al [389] accounted for the structural and func-
tional connectivity of imaging data in their alternative
method that included a regularization step to add spatial
and anatomical priors. Using ADNI imaging data, all
methods increased classification accuracy over methods
with low-level feature selection alone. Interestingly, when
the effects of feature selection and sample size on classifica-
tion accuracy were systematically examined, larger sample
sizewas found to generally have a greater effect in classifica-
tion accuracy than feature selection [390]. One exception to
this was when ROIs were used as a feature selection; in this
case, a large sample size was less advantageous.

Liu et al [391] presented a modification of the Lasso algo-
rithm for dimensionality reduction in which hierarchical tree–
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guided regularization is added to identify relationships be-
tween the imaging voxels. Testing this tree-guided sparse cod-
ing method on ADNI data, they found that inclusion of this
step was able to achieve better classification to L1-
regularized Lasso alone using fewer features that were
concentrated in areas known to be most relevant to AD such
as the hippocampus, entorhinal cortex, parahippocampal gy-
rus, and amygdala. The use of Lasso regularization for dimen-
sionality reduction in the multimodal setting has also been
reported [392–394] and described in Section 3.3.4.

Most classificationmethods are based on SVM and kernel
approaches which, in the process of dimension reduction,
may discard useful information contained in the images.
An alternative approach that operates directly in the voxel
space was proposed by Casanova et al [241] who used penal-
ized logistic regression and coordinate-wise descent optimi-
zation to overcome these problems of large scale
classification. A subsequent paper by the same group [395]
examined classification methods from structural MRI from
the perspective of linear ill-posed problems and in the
absence of dimensionality reduction techniques. They found
that logistic regression, linear regression, and SVM classi-
fiers were robust to increased dimensionality. Conversely,
Liu et al [396] found that LLE as a method of dimensionality
reduction improved classification accuracy universally using
regularized logistic regression, SVM, and linear discrimi-
nant analysis. Their algorithm had the additional advantage
of selecting the most discriminatory MRI features using un-
supervised learning.

3.3.2. [18F]-fluorodeoxyglucose-positron emission
tomography

Haense et al [84] also used a discrimination procedure,
developed by the European Network for Standardization of
Dementia Diagnosis, which generates a measure reflective
of scan abnormality from FDG-PET data. This measure,
AD t-sum, is calculated from the sum of abnormal t-values
in voxels known to be affected by AD, and was used for
discrimination of clinical groups. A similar approach was
used by Chen et al [85], who developed an automatically
generated hypometabolic convergence index (HCI) reflec-
tive of the degree to which the patient’s pattern and magni-
tude of cerebral hypometabolism corresponded to that of
probable AD patients. Arbizu et al [397] combined the
HCI with age and gender in a multivariate model to produce
an AD score in an automated analysis method. To reflect the
developing idea of AD as a continuum of disease rather than
a progression of discrete states, they categorized patients
into sixtile groups that had a progressive monotonic increase
in AD scores. They also developed a similar index, the AD-
conv-score, generated from FDG-PET data from the poste-
rior cingulate index in combination with MMSE score and
APOE 34 genotype, gender, and age.

Huang et al [65] identified changes in spatial connectivity
patterns based on sparse inverse covariance estimation using
FDG-PET data. Salas-Gonsalez et al [90] developed an auto-
mated procedure to classify AD patients from FDG-PET
data using a t test to select voxels of interest and factor anal-
ysis to reduce feature dimension. The resulting factor load-
ings were tested on three different classifiers, two
Gaussian mixture models with either linear or quadratic
discriminant functions and an SVM. Lemoine et al [87]
used a combination of feature selection and data fusion to
construct SVMs from both FDG-PET and clinical data. To
extract the most meaningful features from FDG-PET scans,
they used an evolutionary algorithm in which each feature
corresponded to one gene, the number of features was arbi-
trarily selected to be 30, and which was complete when an
area under the curve (AUC) of 0.98 was achieved on the
training data set. SVMs were also constructed for a range
of clinical features, and the results of these and the FDG-
PET classifiers were weighted and data finally fused to
create a final classifier. Martinez-Murcia et al [398] selected
maximally discriminative voxels using significance mea-
sures and ICA for dimensionality reduction and finally
used an SVM or Bayesian classifier. The method was robust
and accurate when applied to ADNI FDG-PET data. Tous-
saint et al [399] used a combination of univariate voxel-
based analysis using two sample t tests and multivariate
(ICA) techniques to discern patterns of glucose hypometab-
olism. These patterns in conjunction with a SVM were used
to discriminate between patient groups. Derado et al [400]
used a Gaussian process based on Bayesian theory as an
alternative to an SVM to construct a hierarchical framework
that used spatial correlations in the data. The method pre-
dicted glucose uptake patterns at 6 months for good accuracy
and compared favorably with other methodologies.

Inspiration for improving classification accuracy increas-
ingly comes from fields outside of neuroimaging. An alter-
native method for scoring brain images based on the
principles of information retrieval, a computer science tech-
nique often used in Internet search engines, was described by
Clark et al [242]. In this method, PET scores were arranges
in a vector space with one dimension per voxel and orthog-
onal vectors were subtracted to refine queries. Cosine simi-
larity between vectors was used between residual vectors to
score the PET scan relevance to a diagnostic query. The re-
sulting cosine similarity scores were used to construct clas-
sifiers. Keator et al [401] applied a biophysically inspired
hierarchical filtering model for image recognition developed
in the computer vision community to ADNI FDG-PET data.
The hierarchical filtering pipeline determined which steps
were most important for classification accuracy and thus
produced outputs for training on neural networks or logistic
regression classifiers. This method performed well
compared with others (e.g., [402]) and outperformed a hu-
man rater in classification accuracy.

The large, heterogeneous ADNI data set proved an ideal
testing ground for assessing the efficacy of a previously
described classification method [243] which included prin-
cipal component analysis and Fisher discriminant analysis.
Markiewicz et al [244] successfully verified their



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e22
multivariate approach and found that the highest accuracy
for the whole sample verification was achieved using 4 prin-
cipal components.

One of the issues with the use of FDG-PET data the selec-
tion of an appropriate reference region for either longitudi-
nal or group comparison studies that measure changes in
brain metabolism that can be leveraged for classification
purposes. The method described by Rasmussen et al [245]
sought to improve this critical step by the selection of candi-
date reference regions based on heat maps of coefficients of
variation of FDG ratios over time. They found that intensity
normalization systematically isolated the superior portion of
the cerebellum as the test reference region for detecting rates
of decline and baseline deficits in AD patients.

3.3.3. Cognitive methods
Llano et al [96] developed a cognitive test based on

ADAS-cog as an alternative to imaging or CSF biomarkers
for use as an outcome measure or for subject enrichment
in clinical trials. The ADAS.Tree composite was derived
by weighting test components of ADAS-cog based on their
ability to discriminate between control, MCI, and AD sub-
jects of the ADNI cohort using a Random Forests tree-
based algorithm. ADAS.Tree discriminated between patient
groups as well as, or better than, the best imaging or CSF
biomarkers or cognitive tests. Optimal sets of markers for
the prediction of 12-month decline were then determined us-
ing machine learning algorithms, and performance of the
derived cognitive marker was found to be comparable
with, or better than, other individual or composite baseline
CSF or neuroimaging biomarkers. The authors suggest that
the ADAS.Tree might prove more widely applicable than
expensive and/or invasive imaging or CSF biomarkers.

Tractenberg et al [246] presented an alternative method
for quantitating neuropsychological decline using inter-
individual variability in cognitive testing. They found that
this approach resulted in similar effect sizes to the total
scores of MMSE and Clock Drawing test for discriminating
between both controls and AD, and MCI and AD patients.
The authors suggested that this may be a useful addition
for measuring neuropsychological performance that is
reflective of underlying neurobiology. Measuring cognitive
decline in longitudinal studies often requires using different
versions of the same test that are assumed to be equivalent.
Gross et al [403] compared three equating methods—
mean, linear, and equipercentile—for testing equivalence
of alternative versions of the AVLT used in ADNI. They
found that the equipercentile method performed best as it
accommodated tests more difficult than the reference test
at different percentiles of performance and adjusted for re-
test effects in models of within-person change.

3.3.4. Combined modalities
The new machine learning algorithm of Hinrichs et al

[88], which uses data from both MR and FDG-PET images,
integrates a spatial discrimination step to identify AD-
related patterns in different brain regions, rather than assess-
ing these relationships at the pre- or postprocessing steps.

The development of a panoply of multimodal classifiers
that leverage information from imaging, biological and neu-
ropsychological sources has been a major focus of ADNI pa-
pers published in 2011-2012. Likewise, the selection of
features that are most ‘AD-like’ across multiple modalities
is a critical step in constructing an accurate classifier and
new approaches to this step have been reported in a number
of papers. Hinrichs et al. [247] developed a method based on
the Multi-Kernel Learning framework to produce a classifier
that, in addition to classifying control and AD patients, also
produced a Multi-Modality Disease Marker (MMDM) that
could be used for the prediction of MCI to AD conversion.
The method leveraged information from FDG-PET and
MR scans and the authors reported that this method consis-
tently outperformed a similarly trained SVM using the
ADNI data set. An alternative method for AD classification
that uses a non-negative matrix factorization for feature se-
lection in combination with SVMs with bounds of confi-
dence for classification was reported by Padilla et al[248].
The authors found that this method was an accurate tool
for classifying AD patients from a combination of SPECT
and PET data. Zhang et al [249] reported the first work to
combine not only imaging but also biological data in the
form of levels of CSF biomarkers into multi-modal classifier.
They used a linear SVM with an intrinsic feature selection
mechanism to rank top features of 93 ROIs (MR or FDG-
PET) and CSF biomarkers were added directly as features.
This method achieved high classification accuracy.

The next step in utilizing these classifiers is to determine
their effectiveness in the prediction of future cognitive
decline in addition to classification problems. Combining
MR, FDG-PETand CSF data is again the focus of a later pa-
per by Zhang et al[250] who presented a method, multi-
modal multi-task (M3T), that uses this disparate data to es-
timate both continuous variables, such as scores on neuro-
psychological tests (MMSE, ADAS-cog), by regression
and a categorical variable (classification class). M3T com-
bines a multi-task feature selection with a multi-modal
SVM that fuses selected features for regression and classifi-
cation. They found that M3T was more effective than a
concatenation method of combining features in both classi-
fication and prediction of future clinical scores and compa-
rable to other reported prediction methods such as that
described by Misra et al [118]. To account for the fact that
brain structures in imaging data are interconnected, Wang
et al [251] proposed the Sparse Multi-task Regression and
Feature Selection (SMART) method that jointly analyzed
all imaging and clinical data using a single regression model
with sparse multi-task learning, and found that this method
was an improvement on multi-variate regression when
used to predict decline in AVLT scores.

In 2012 and 2013, there has been substantial improve-
ment in the accuracy and computational efficiency of
methods that use multimodal data. A modification by Liu
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et al [404] of M3T learning [25] tried to preserve comple-
mentary information between modalities by introducing a
new constraint after treating the selection of features
from each modality as a task. A further paper by the
same group [392] describes a novel multiple kernel
learning framework that improves on by the method of
Zhang et al using Fourier transform approaches to approx-
imate Gaussian kernels and reduce learning complexity to a
linear scale. They used group Lasso regularization to
enforce sparsity in the different modalities. The tree-
based random forests algorithm was used by Gray et al
[405] to derive consistent pairwise similarity measures
from multiple modalities. The resulting embedding simul-
taneously encoded information on all features for
multimodal classification. To combine data from both
high- and low-dimensional modalities, Singh et al [406]
used a partial least squares approach to allow the weighted
fusion of these data and then achieved optimum classifica-
tion accuracy using a quadratic discriminant analysis.

The prediction of continuous variables such as clinical
scores has also received additional attention. Cheng et al
[407] used a semisupervised multimodal relevance vector
regression to predict MMSE and ADAS-cog scores of
MCI patients. In a similar manner, Zhou et al [407] attemp-
ted to predict the scores over 4 years from baselineMRI data.
The prediction of each time point (6, 12, 18, 24 months) was
considered as a separate task, and the authors used two novel
Lasso-based multitask regression formulations and longitu-
dinal stability selection to identify patterns of biomarker
change through disease progression. A similar method,
temporally constrained group Lasso (tgLasso) used longitu-
dinal data to predict clinical scores [394]. TgLasso trains a
linear regression model and uses group regularization to
group together weights corresponding to the same brain re-
gions at different time points. When the model was used to
predict clinical scores from longitudinal ADNI data, it out-
performed other Lasso-based methods.

A number of studies have focused on using multimodal
data to predict MCI to AD conversion. Young et al [408]
made this prediction using a Gaussian process classification
that integrates multimodal data in a probabilistic manner and
reported that their method integrated multimodal data more
efficiently than SVMs. Cheng et al [409] leveraged imaging
and biomarker data from patient groups to discriminate be-
tween MCI converters and nonconverters. Their method,
domain transfer SVM classification, uses auxiliary domain
data combined with a modified SVM to help infuse domain
knowledge. Yu et al [410] used a Bayesian classifier to deter-
mine which combinations of structural MRI, FDG-PET, and
CSF biomarker measures, along with APOE genotype and
cognitive scores, most accurately predicted progression
from amnestic MCI to AD within 2 years. Overall, structural
MRI measures were found to be the most predictive (78%
accuracy), and a combination of MRI, genotype, and cogni-
tive scores was found to provide the best trade-off between
trial cost and time, in the context of clinical trial enrichment.
A multimodal approach reported by Casanova et al [411]
distills information from multiple indices into a single index
representative of the degree of AD-like features, the AD
Pattern and Similarity (AD-PS) score. This method differs
from scores such as STAND and SPARE-AD, which use
an SVM, in that it uses logistic regression with sparsity reg-
ularization combined with feature selection and dimension-
ality reduction techniques. The probabilistic model creates a
hypercube in which each dimension represents a range from
normal to AD characteristics of a component such as GM,
WM, CSF, and cognitive score. The AD-PS score of an indi-
vidual is determined by their position in the hypercube
(Fig. 32). The AD-PS score can then be analyzed directly us-
ing an index-based receiver operational characteristic
(ROC). An alternative to this is described by Wu et al
[412] who constructed a multivariate ROC that directly
incorporated information from multiple indices.

With the development of multimodal classification and
prediction, it has become increasingly recognized that the
incompleteness of data can be problematic in these ap-
proaches. For example, in the ADNI data set, there are
half as many controls as AD cases with proteomic measure-
ments, but 40% more control cases than AD cases with MRI
measurements [413]. An assumption of most longitudinal
studies is that missing data is random. Lo et al [414] used
univariate and multivariate approaches to examine associa-
tions between baseline demographic and clinical features
and loss of data at follow-ups for CSF biomarkers and found
that the missingness of data was nonrandom but tended to be
blockwise and predictable. Yuan et al [415] described an
incomplete Multi-Source Feature (iMSF) learning model,
which initially partitioned patients into disjoint groups pos-
sessing the same data source combinations. They then
applied independent feature learning for each group before
combining results from all groups and found that this method
was an improvement over other missing value estimation
methods and over single modality classification alone. How-
ever, this model was not able to discern the most relevant
data sources or provide a consistent prediction model for a
specific data source across groups. Xiang et al [416] pro-
posed a new bi-level multisource learning framework
(incomplete source feature selection [iSFS]) that unifies
feature- and source-level information and avoids the direct
imputation of missing data, instead presenting efficient algo-
rithms for calculating the missing data.

One impact of missing or imbalanced data on classifica-
tion performance is that they achieve a much lower sensi-
tivity and specificity. Dubey et al [413] examined this
problem by testing a variety of sampling approaches, six
feature reduction techniques, and two classifiers and by
determining the optimum ensemble of these techniques for
classification accuracy and balance of sensitivity and speci-
ficity. They demonstrated that the K-Medoid under sampling
approach was superior to other data resampling techniques.
In combination with sparse logistic regression with stability
selection, it yielded competitive results with both an SVM
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classifier and a tree-based random forest algorithm using
both MRI data and proteomic data separately. This compre-
hensive study outlines promising methodology to aid other
researchers in improving classification performance using
ADNI data.

For methods based on combined modalities to ultimately
be useful in a clinical setting, they must present patient data
clearly to aid in the physician’s diagnosis and ideally help
reduce diagnostic errors. Mattila et al [252] and Soininen
[253] created a diagnostic decision support system by repre-
senting cognitive, imaging, biological and genetic data in a
graphical form termed a Disease State Fingerprint (DSF),
as well as statistically distilling a score, the Disease State In-
dex (DSI), that reflects the likelihood of a patient having AD
(Fig. 26). The DSI can be used for both diagnostic classifica-
tion and prediction of future decline. The PredictAD tool
developed by this group has been further evaluated. This
software increased classification accuracy over clinicians
provided with test results directly in paper form and
improved inter-rater agreement and the rater’s confidence
in their decision [417]. Liu et al [418] examined the efficacy
Fig. 7. Group differences in average thickness (mm) for left hemisphere.

Top row: NC vs. SMCI; middle row: normal controls (NC) vs. MMCI; bot-

tom row: NC vs. AD. Left mesial views, right lateral views. The scale ranges

from , 20.3 (yellow) to . 10.3 (cyan) mm thickness. Areas on the red-

yellow spectrum indicate regions of thinning with disease: approximate co-

lor scale in mm is20.05 to20.15 dark red,20.20 bright red,20.25 orange,

and,20.30 yellow. For thicker regions:10.05 to10.15 blue. Any differ-

ences smaller than 6 0.05 mm are gray. Reproduced with permission from

Ref [109].
of PredictAD software in predicting AD conversion within 3
years in comparison with currently recommended criteria for
prodromal AD: episodic memory impairment, visual assess-
ment of medial temporal atrophy, and abnormal CSF bio-
markers. They found that the software significantly
outperformed these criteria and were equally effective with
the aid of clinician. Both papers provide further support
for the utility of software that can integrate heterogeneous
data and provide objective, evidence-based information on
the state of the patient that is not limited to binary classifica-
tion. Escudero et al [419] created a similar metric to the Dis-
ease State Index using an unsupervised K-means machine
learning technique. The bioprofile was characteristic of the
disease and predictive of MCI to AD progression, whereas
individual bioindices measured the closeness of an individ-
ual’s data pattern to the profile.

An overarching consideration in the clinical setting is
cost as many of the current biomarker tests are expensive
to perform. Today’s health care environment requires
biomarker tests that are maximally informative but mini-
mally expensive. Escudero et al [420] proposed an approach
to minimize the number of biomarkers required for diag-
nosis. This personalized and iterative approach initially at-
tempts to classify the patient by comparison of available
variables with data from a pool of local diagnosed patients.
If this classification is below a threshold value of confidence,
the method then selects a biomarker test that either mini-
mizes the number of biomarkers required or maximizes
cost-effectiveness.

3.5.5. Blood-based biomarkers
The identification of a blood-based biomarker for AD has

been the goal of researchers for many years [254] and AD-
NI’s extensive collection of biological specimens provides
an ideal testing ground for new methods developed to this
end [255]. The improved precision performance of a robot-
ized version of the multiplex xMAP INNO-BIA plasma Ab
immunoassay for measurement of Ab1-40 and Ab1-42 in a
longitudinal study of ADNI study subjects was described by
Figurski et al [256]. Using this method in a longitudinal
study of complementary measures of Ab pathology (PiB,
CSF and plasma Ab) and other biomarkers in the ADNI
cohort, Toledo et al [257] correlated baseline Ab1-40 and
Ab1-42 plasma measurements in 205 cognitively normal
subjects (CN), 348 patients with MCI and 162 with AD
with PiB PET, MRI, and CSF tau and Ab1-42 measures.
Plasma Ab1-42 levels were mildly correlated with other bio-
markers of Ab pathology and were associated with infarc-
tions in MRI. They were also related to baseline and
longitudinal diagnoses in addition to a number of health con-
ditions. Longitudinal measurement of Ab1-40 and Ab1-42
plasma levels showed modest value as a prognostic factor
for clinical progression, suggesting that plasma Abmeasure-
ments have limited value for disease classification and pre-
diction over the three year follow-up. However, with
longer follow-up, within subject plasma Ab measurements



Fig. 8. Annual atrophy rates as a function of degree of clinical impairment. Clinical impairment measured using baseline clinical dementia rating-sum of boxes

(CDR-SB) scores. Mean atrophy rates are represented as a percent change in neocortical volume and mapped onto the lateral (left), ventral (middle), and medial

(right) pial surface of the left hemisphere. These data demonstrate that atrophy rates are most prominent in posterior brain regions early in the course of disease,

spreading to anterior regions as the level of impairment increases, with relative sparing of sensorimotor regions. Reproduced with permission from Ref [111].
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could be used as a simple and minimally invasive screen to
identify those at increased risk for AD. This study and a
recent review [258] emphasized the need for a better under-
standing of the biology and dynamics of plasma Ab as well
as for longer term studies to determine the clinical utility of
measuring plasma Ab. Finally, Soares et al [259] recently re-
ported a study conducted in collaboration with Biomarkers
ConsortiumAlzheimer’s Disease Plasma Proteomics Project
that sought to develop a blood-based test as a screen for AD
for early intervention. A multiplex immunoassay panel was
used to identify plasma biomarkers of AD using ADNI
plasma samples at baseline and at 1 year. These were
analyzed from 396 (345 at 1 year) patients with MCI, 112
(97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy
control subjects. Multivariate and univariate statistical ana-
lyses across diagnostic groups and relative to the APOE ge-
notype revealed increased levels of eotaxin 3, pancreatic
polypeptide, and N-terminal protein B-type brain natriuretic
peptide in MCI and AD patients, paralleling changes re-
ported in CSF samples. Increases in tenascin C levels and de-
creases in IgM and ApoE levels were also observed. All
participants with APOE 33/ 34 or 34/ 34 alleles showed
a distinct biochemical profile characterized by low C-reac-
tive protein and ApoE levels and by high cortisol, interleukin
13, apolipoprotein B, and gamma interferon levels. The use
of plasma biomarkers improved specificity in differentiating
patients with AD from controls, supporting the potential use-
fulness of these analytes as a screening tool. These studies
have been extended by comparing the ADNI dataset with
similar data obtained from ADNI independent cohorts fol-
lowed at the University of Pennsylvania and Washington
University as described by Hu et al [260]. This study used
the same targeted proteomic approach described above and
measured levels of 190 plasma proteins and peptides in



Fig. 9. Distribution of atrophy scores used to classify subjects with MCI.

MCI atrophy score was derived from LONI data archive trained on data

from all control subjects and subjects with AD. Discriminant model

assumed equal prior group probabilities. Individuals were classified as hav-

ing control phenotype if their scores were above –0.33. Cutoff score was

chosen to maximize overall accuracy of classifying control subjects and

subjects with AD on whom this model was trained. Average atrophy score

for subjects with MCI was –0.50. Atrophy score is not normally distributed

(Kolmogorov–Smirnov test¼ 0.73, df¼ 175, P¼ .025) but shows evidence

of bimodal distribution. Reproduced with permission from Ref [117].
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600 participants from two independent. 17 analytes were
identified as being associated with the diagnosis of very
mild dementia/MCI or AD. Four analytes (ApoE, B-type
natriuretic peptide, C-reactive protein, pancreatic polypep-
tide) were also found to be altered in clinical MCI/AD in
the ADNI cohort (n ¼ 566). Regression analysis showed
CSF Ab42 levels and t-tau/Ab42 ratios to correlate with
the number of APOE 3/4 alleles and plasma levels of B-
type natriuretic peptide and pancreatic polypeptide. Notably,
4 plasma analytes were consistently associated with the
diagnosis of very mild dementia/MCI/AD in these 3 inde-
pendent clinical cohorts, but further studies are need to
determine if these plasma biomarkers may predict underly-
ing AD through their association with CSF AD biomarkers.

Most studies have examined either serum or plasma for
potential biomarkers, but not both. O’Bryant et al [255]
sought to identify blood-based markers that were highly
correlated across both plasma and serum and to construct a
classifier using them. They found 11 suitable proteins,
including C-reactive protein, factor VIII, fatty acid binding
protein and adiponectin, and tested the classifier using
ADNI biological samples.

In 2012 and 2013, the investigation of blood- and plasma-
based biomarkers as a less invasive and therefore more clin-
ically useful tool for AD diagnosis has continued to produce
promising results. A blood-based panel of analytes identified
from the AIBL study and validated in the ADNI cohort [421]
identified biomarkers that overlapped biomarkers selected in
studies by O’Bryant et al [255] and Soares et al [259]. Llano
et al [422] used multivariate analysis to identify from a panel
of 146 plasma analytes four proteomic signatures able to
discriminate between AD and control patients. Associations
between a panel of plasma analytes and amyloid burden as
assessed by PiB-PET were investigated by Kiddle et al
[423] who found a set of 13 analytes that along with the co-
variates age, APOE status, gender and education accounted
for more than 30% of amyloid burden. This was more than
double that of covariates alone, suggesting that these analy-
tes reflect amyloid burden. Similarly, Burnham et al [424]
selected five analytes in addition to APOE status, age, and
CDR-SB scores to construct a blood-based biomarker signa-
ture able to predict amyloid burden. The most frequently re-
ported analytes from these studies that are associated with
diagnostic status are pancreatic polypeptide, brain natri-
uretic peptide, C-reactive protein, vascular cell adhesion
molecule-1, a2-microglobulin, tenascin-C, and lymphocyte
secreted protein B, and those most commonly associated
with increased amyloid load are cortisol and interleukin
15. Panels of these analytes have been shown to classify
AD patients with similar accuracy to other more established
methods (Section 4.5.5) and therefore have exciting clinical
potential.
3.4. Other imaging methods

Rousseau [97] presented a method for generating a high-
resolution image from a low-resolution input, using jointly
one low-resolution image and intermodality priors from
another high-resolution image to create a super-resolution
framework, for instance, a high-resolution T1-weighted im-
age and a low-resolution T2-weighted image from the same
patient. The method, when tested on clinical images from
ADNI data, automatically generated high-resolution images
from low-resolution input, and the authors suggest that this
method may permit the investigation of multimodal imaging
at high resolution.

The problem of representing a high dimensionality of
brain images amassed in common neuroimaging applica-
tions was tackled by Gerber et al [98], who proposed that
these images can be approximated by a low-dimensional,
nonlinear manifold representative of variability in brain
anatomy. They constructed a generative manifold model
through kernel regression and tested this using ADNI data,
and their finding was that important clinical trends were
captured by this manifold when learned manifold coordi-
nates and clinical parameters were subjected to analysis by
linear regression.
3.5. Statistical methods

Interpretation of imaging data is a key facet in the process
of extractingmeaningful information from these scans. As the
volume of neuroimaging data generated byADNI studies bur-
geons, there is an obvious need for more sophisticated anal-
ysis techniques. Habeck and Stern [99] reviewed advances



Fig. 10. Individual trajectories of hippocampal volume change. Thick black lines indicate the mean trajectory change of each group. Reproduced with permis-

sion from Ref [121].
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in multivariate analysis techniques that are being developed to
supersede the more commonly used univariate, voxel-by-
voxel analysis of imaging data. By evaluating the correlation
or covariance of activation across brain regions, these multi-
variate techniques produce results that can be interpreted as
neural networks, thereby addressing brain functional connec-
tivity. Habeck and Stern [99] directed this review specifically
at neuroscientists to explain the “bewildering variety of
(multivariate) approaches .presented.typically by people
with mathematics backgrounds.” In an effort to further spread
the word to neuroscientists about this technique, a video
article is also available [100].
Fig. 11. Group differences in regional shape deformations. Abbreviations: Am, am

caudate; Pu, putamen; Pa, globus pallidus; Th, thalamus. Reproduced with permi
Wu et al [101] presented a method to assess the reliability
of hypometabolic voxels during the statistical inference
stage of analysis. The aim of this method was to incorporate
the differential involvement of each voxel into the multiple
comparison correction, as opposed to current methods in
which each location is treated equally. They used statistical
parametric mapping and bootstrap resampling to create a
bootstrap-based reliability index and compared this
approach with the commonly used type I error approach,
and found a strong, but nonlinear, association between the
two methods. The authors suggest that this approach could
have utility in both cross-sectional and longitudinal studies,
ygdala; Hp, hippocampus; V, ventricles; iLV, inferior lateral ventricles; Cd,

ssion from Ref [122].



Fig. 12. Cumulative distribution function (CDF) plots for voxelwise correlation of progressive temporal lobe tissue loss in MCI, AD, and pooled groups. (A)

Correlations with various biomarker indices, including Ab-42 (AB142), tau protein (TAU), phosphorylated-tau 181 (PTAU), tau/Ab-42 ratio (TAUAB), and

p-tau/Ab-42 ratio (PTAUAB), and (B) correlations with various clinical measures. Reproduced with permission from Ref [113].
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Fig. 13. Apolipoprotein E (APOE) gene effects on regional brain volumes. Maps show the mean percent differences in regional brain volumes for four different

group comparisons. Percent differences are displayed on models of the regions implicated: (A) ventricular cerebrospinal fluid (CSF), (B) sulcal CSF, (C) hippo-

campi, and (D) temporal lobes; dotted lines show the boundary of the hippocampus. Reproduced with permission from Ref [112].
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in the early detection of AD, and in tracking disease progres-
sion in clinical trials.

A method to control for the effects of confounding vari-
ables was described by Dukart et al [261] and applied to
the problem of controlling for the effects of age in group
comparisons. Using a linear detrending model in terms of
the general linear model, the method is able to control for
Fig. 14. Association of regional brain tissue volumes with body mass index. Thes

percentage, for every unit increase in body mass index, after statistically controllin

radiological convention (left side of the brain shown on the right) and are displayed

within each cohort (mean deformation template). Reproduced with permission fro
the effects of age between groups of subjects. The applica-
tion of this correction to either SVM classification or to
the detection of disease-related GM using VBM in AD pa-
tients who differed in age from control subjects resulted in
substantial gains in accuracy.

Singh et al [102] presented a new method to relate com-
plex anatomical changes observed in AD patients with
e represent the estimated degree of tissue excess or deficit at each voxel, as a

g for the effects of age, sex, and education on brain structure. Images are in

on a specially constructed average brain template created from the subjects

m Ref [133].



Fig. 15. The episodic memory network. Along with the hippocampal for-

mation, the cortical areas shown here are part of the episodic memory

network. Shown here are pial cortical representations of selected parcella-

tions in the left hemisphere. From left to right: medial, ventral, and lateral

views. Reproduced with permission from Ref [136].

ig. 16. Correlations between biomarker levels, structural abnormalities

nd cognitive performance in APOE 34 carriers and noncarriers. Smoothed

iomarker (A and B) or STAND (C) z score curves plotted as a function o

ognitive performance (Mini-Mental State Examination, MMSE). Abbrevi

tion: STAND, Structural Abnormality Index. Reproduced with permission

from Ref [128].
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changes in cognition based on a statistical analysis of large
deformation diffeomorphic metric mapping. In this method,
the diffeomorphic transformations were analyzed using a
multivariate and partial least squares approach without seg-
mentation or the use of a priori defined ROIs. They found
that this approach associated ventricular expansion, cortical
thinning, and hippocampal atrophy with worsening scores
on neuropsychological variables such as ADAS-cog, Rey
Auditory Verbal Learning Test (AVLT), and clinical demen-
tia rating-sum of boxes (CDR-SB), confirming that this data-
driven approach was able to reach similar conclusions as
other studies based on predefined ROIs [261,262].

The selection of MCI patients likely to progress for clin-
ical trials is made more challenging by well-recognized het-
erogeneity of the MCI construct. Tatsuoka et al [425]
proposed an alternative approach for analyzing the neuro-
psychiatric tests given to MCI patients based on the statisti-
cal method of partially ordered set (poset) models. Poset
models in this instance allow direct links to be established
between a specific cognitive function and the risk of conver-
sion to AD. When poset models were applied to baseline
data of ADNI MCI patients, specific cognitive domains
were correlated with conversion within 2 years.

Ziegler et al [426] present an overview of current statisti-
cal approaches for modeling age-related structural brain
decline and interindividual variations within this process.
All analytical approaches are applicable to voxel- and
surface-based whole brain MRI and include both parametric
and nonparametric models. The focus of the overview is on
estimating age trajectories of structural change and account-
ing for both nonlinear trajectories and differences in rates of
change in specific regions.

3.6. Genetics methods

Genetic contributions to AD are being revealed by GWAS
that search for associations between QTs in the form of
F
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Fig. 17. Biomarker trajectories through disease progression. For each biomarker, individual z scores are plotted against ADAS-cog (cognitive subscale of the

Alzheimer’s Disease Assessment Scale) scores, and the fitted sigmoid curve is displayed. Full circles denote healthy control subjects, full squares MCI patients

converted to AD, empty circles early AD, and full triangles late AD patients. Sigmoid fitting was better than linear fitting for tau, Ab-42, and hippocampus (for

the latter: sigmoid nonsignificantly better than linear); linear fitting was better for [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET). Re-

produced with permission from Ref [153].
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imaging or biomarker data and genetic loci. The standard
approach (mass univariate linear modeling), which com-
pares each phenotype–genetic loci pair individually and
then ranks the association in terms of significance, is
extremely computing-intensive and can miss information
from areas surrounding a particular association. Methods
that boost power to detect genetic associations and therefore
reduce sample sizes are considered necessary for replicable
genetics results. Vounou et al [103] proposed a new method,
sparse reduced rank regression, which overcomes these
problems by enforcing sparsity of regression. They found
sparse reduced rank regression to be less computing-
intensive and to have better power to detect deleterious
genetic variants than mass univariate linear modeling.
Kohannim et al [427] reported a similar approach that used
Lasso regression for dimensionality reduction of a multivar-
iate GWAS investigating gene effects on temporal lobe vol-
ume. This gene-centric approach jointly considers groups of
genetic variants that are correlated through a sparsity-driven
LI penalty and associates them jointly in partial F tests with
the MRI-derived temporal lobe volume measure. It identi-
fied more genes and at higher significance than traditional
univariate methods. An alternative approach to reducing
computational requirements, while retaining a high degree
of significance to AD, has been presented by Chen et al
[104], who used each of 142 preselected imaging ROIs as
QTs in a GWAS. Heat maps and hierarchical mapping
were then used to organize and visualize results and to select
target SNPs, QTs, or associations for further analysis.

Meda et al [263] presented a method for multivariate
analysis of GWAS data based on the premise that genetic de-
terminants are not randomly distributed throughout the
genome, but tend to cluster in specific biological processes
related to AD. Their method used a parallel ICA and a
hypothesis-free, data-driven statistical technique to simulta-
neously examine multiple modalities. They found that the
parallel ICA was effective on the large sample, sizes in
ADNI and that it identified clusters of SNPs potentially
related in different metabolic pathways associated with
AD. Similarly, to address the issue of underlying interactions



Fig. 18. Separation of control, MCI, and AD subjects using a CSFAb-42/t-tau mixed model signature. A combined CSFAb-42/t-tau mixed model was applied

to the subject groups. Densities of each signature are represented with confidence ellipses, and signature membership of the subject based on the mixture is

indicated with the corresponding color (signature 1 is the AD signature [red]; signature 2 is the healthy signature [green]). Reproduced with permission

from Ref [159].
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between SNPs and QTs such as imaging data, Wang et al
[264] developed a novel method, Group-Sparse Multi-task
Regression and Feature selection (G-SMuRFS) that is built
on multivariate regression analysis with a new form of reg-
ularization. Application of the method using the ADNI
data-set demonstrated its ability to predict continuous re-
sponses of brain imaging measures and to select relevant
SNPs in a more efficient manner than conventional multivar-
iate linear regression. Univariate and multivariate genetic
Fig. 19. Association between temporal lobe atrophy and conversion to AD.

Subjects who converted from MCI to AD over a period of 1 year after their

first scan were coded as “1”; nonconverters were coded as “0.” A negative

correlation suggests that temporal lobe degeneration predicts future conver-

sion to AD. Reproduced with permission from Ref [112].
analysis techniques and sparse regression methods aimed
at reducing the dimensionality of imaging and genomics do-
mains are reviewed by Shen et al [428].

In addition to computational challenges, imaging
genetics studies with multiple testing are also prone to
false-positive results, and both familywise error and false
discovery rate corrections are used to adjust significance
thresholds across multiple voxels. Silver et al [105]
measured false-positive rates using VBM to investigate the
effect of 700 null SNPs on GM volume in the ADNI cohort.
They found that although false-positive rates were generally
Fig. 20. Effect size of imaging biomarkers for MCI converters versus MCI

nonconverters. Effect sizes (Cohen d) of the comparison between MCI sta-

ble (MCI nonconverter) and MCI converter groups evaluated for selected

imaging biomarkers. Reproduced with permission from Ref [114].



Fig. 21. Significance maps of correlation between ventricular shape and cognitive decline. Significance maps correlate baseline ventricular shape with subse-

quent decline, over the following year, in three commonly used clinical scores. Reproduced with permission from Ref [126].
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found to be well controlled, under certain conditions, such as
under low cluster-forming thresholds, the false-positive rates
were substantially elevated. Consequently, they proposed
the use of parametric random field theory cluster size infer-
ence and alternative nonparametric methods under different
circumstances.
Fig. 22. Maps of associations with MMSE scores at baseline and 1 year later, MCI

show areas of significant associations between local volumetric atrophy in the cauda

values color-coded at each surface voxel. Reproduced with permission from Ref
3.7. Methods for Clinical Trials

ADNI data has recently been utilized to test methods for
improving clinical trials of compounds with the potential to
attenuate the progression of AD. These are commonly de-
signed as long-term, randomized, placebo-controlled trials
-to-AD conversion, and CSF concentrations of tau. Three-dimensional maps

te andMMSE scores at baseline and after a 1-year follow-up interval, withP

[130].



Fig. 23. Pittsburgh compound B-positron emission tomography (PiB-PET)

and magnetic resonance imaging (MRI) comparisons of MCI converters

versus MCI nonconverters. Left: MCI progressor. Top: positive PiB-PET.

Bottom: MRI illustrating atrophic hippocampi and ventricular enlargement.

Right: MCI nonprogressor. Top: negative PiB-PET with nonspecific white

matter retention but no cortical retention. Bottom: MRI illustrating normal

hippocampi and no ventricular enlargement. Reproduced with permission

from Ref [152].

Fig. 24. Mean biomarker levels (t-tau, p-tau, and Ab-42) for the APOE ge-

notype groups. The APOE 32 carriers are represented in black, the 33 homo-

zygotes in gray, and the 34 carriers in white. The CSF Ab-42 levels show a

significant stepwise trend downward, from APOE 32 carriers to 33 homozy-

gotes to 34 carriers, whereas the t-tau and the p-tau levels show the opposite

trend. Reproduced with permission from Ref [208].
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(RPCTs), which present the problem of whether the expo-
sure of pre-symptomatic AD patients to placebos long term
is ethical. Spiegel et al [265] proposed a method to over-
come this ethical dilemma with a placebo group simulation
approach (PGSA) which involved construction of univari-
ate and multivariate models based on baseline data
of MCI patients in ADNI. Gender, obesity, Functional Ac-
tivities Questionnaire (FAQ), MMSE, ADAS-cog and Neu-
ropsychological Battery scores were used to predict
ADAS-cog scores after 24 months and models corre-
sponded closely to real observed values (R2 ¼ .63, resid-
ual S.D ¼ 0.67). These results suggest that the PGSA
approach has the potential to complement future RCPTs
for AD drugs. Another issue with RCPTs is the selection
of a primary end-point, which is often either time-to-
event (for example, progression to dementia) or a contin-
uous measure of disease severity such as ADAS-cog to
assess the effect of the treatment. Donohue et al[266]
compared the power to detect an effect of these two
methods by using Cox proportional hazard models to esti-
mate time-to endpoint, and linear mixed models to estimate
continuous variables and found that linear models consis-
tently demonstrated greater power than Cox proportional
hazard models when tested on the ADNI data-set
(Fig. 27). The authors concluded that linear models may
be more robust and appropriate for the detection of MCI
to AD progression in clinical trials of MCI patients.

3.8. Methods papers: Summary and conclusions

Papers focused on method development have been instru-
mental in facilitating ADNI research thus far and promise to
deliver improvements in reliability, efficiency, and effective-
ness in ADNI-GO and ADNI-2. The establishment of stan-
dardized protocols that account for problems of variability,
both across the multicenter setting of ADNI and longitudi-
nally, has been a primary accomplishment. Likewise, the
development of methods for automatic tissue registration
and segmentation that avoid the necessity of time-
consuming and costly manual segmentation is critical for
the analysis of ADNI data. The majority of these approaches
are atlas-based, although statistically based registration has
also been proposed. Automatic segmentation of the hippo-
campus, a prominent AD biomarker, poses particular chal-
lenges because of its size and location, and several studies
have made contributions to the analysis of its volume, shape,
and pose. TBM and DBM methods and fractal approaches
offer an alternative to volumetric ROI analysis. Methods to
allow the classification of patients according to disease sta-
tus have primarily been based on SVMs and the related
RVMs, which are used to build classifiers that can include
MRI, FDG-PET, biomarker, APOE 34, and cognitive data.
Finally, statistical methods have been developed to deal
with the complexities of the volume and diverse types of
data generated by ADNI studies.

In the 2011-2012 year, focus has shifted from the estab-
lishment of standardized protocols and methods for auto-
matic segmentation and registration of the hippocampus



Fig. 25. Worldwide ADNI sites. Abbreviations: NA-ADNI, North American ADNI; Arg-ADNI, Argentinean ADNI; E-ADNI, European ADNI; C-ADNI, Chi-

nese ADNI; K-ADNI, Korean ADNI; J-ADNI, Japanese ADNI; T-ADNI, Taiwanese ADNI; A-ADNI, Australian ADNI.
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to other areas including extracting information from
cortical thickness data and developing increasingly sophis-
ticated and powerful classification methods that select and
combine AD-like features from multiple modalities.
Methods to predict future clinical decline have appeared,
sometimes in conjunction with classifiers – ‘multi-tasking’
is a recent area of interest in methods development.
Fig. 26. Disease State Index values of a patient with subtle indication of AD (total D

node. Larger nodes discriminate better between healthy and diseased patients (visu

AD profile (visualization of DSI). Here, ADAS and MRI contribute most to the A

campal volume, whose computation is depicted on the right hand side, push the tot

[252].
Another trend has been the use of the ADNI data set, either
images or biological materials, as a test set for approaches
beyond the bounds of the original ADNI objectives, such as
the development of blood-based biomarkers for AD. The
importance of GWAS studies in unraveling the genetic
contribution to AD is reflected in the publication of
methods that capitalize on the underlying
SI value ¼ 0.56). The name of the test and DSI value is shown next to each

alization of relevance). ‘Hot,’ i.e., red, nodes highlights patient data that fits

D DSI, indicated by the largest node size. MRI variables, especially hippo-

al DSI value towards AD population. Reproduced with permission from Ref



Fig. 27. Simulated power for studies in MCI and MCI with amyloid dysregulation (MCI-Ab) versus total sample size, n. Lines represent LOESS smooths.

Abbreviation: PH, proportional hazard. Reproduced with permission from Ref [266].
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interconnectedness of genes with quantitative traits.
Finally, finding solutions to ethical problems associated
with RCPTs and increasing clinical trial efficiency have
been the focus of two reports.

In 2012-2013, significant methodological advances have
been made in the areas of MRI segmentation and Florbetapir
imaging, multimodal classification, blood-based bio-
markers, and genetics. In imaging, major advances include
methods that address the four-dimensional segmentation
challenges of longitudinal MRI studies and that leverage in-
formation contained within relationships between regions
and in shape, rather than simple volumetric changes, and
studies describing the use of Florbetapir radiotracer intro-
duced into ADNI for amyloid imaging. Multimodal classifi-
cation has largely evolved beyond identifying optimal
combinations of modalities to finding the best way to
combine them using feature selection methods and by main-
taining data dimensionality. This research has also shifted
away from binary disease classification toward probabilistic
approaches that view AD as a continuum of disease and the
prediction of MCI to AD conversion. The problem of miss-
ingness of data in the ADNI data set and its effect on classi-
fication accuracies has also been recognized. Some ADNI
sections have proposed standardized data sets to circumvent
these challenges. Blood- and plasma-based biomarker devel-
opment has continued at an increasing rate, and this
approach shows promise as a less-invasive first-screen clin-
ical option. Software to aid clinicians in diagnosis and to
optimize cost-effective use of biomarkers in a clinical envi-
ronment has been developed and tested. Finally, genetics
methods have progressed toward gene-centric approaches
to reduce dimensionality.
4. Studies of the ADNI cohort

4.1. Clinical characterization

Central to achieving the goals of ADNI was the recruit-
ment of a study population that mirrors cohorts used in
MCI and mild AD trials. Petersen et al [106] presented a
baseline and 12-month longitudinal clinical characterization
of the ADNI cohort, comprising 229 normal control sub-
jects, 398 subjects with MCI, and 192 subjects with mild
AD, and provided clear support for the success of ADNI in
this regard. The demographic characteristics of the partici-
pant groups, given in Table 3, indicate that the cohort was
mostly white and well educated, and that there were a high
proportion of APOE 34 carriers, consistent with populations
recruited for clinical trials. At baseline, each study group
differed significantly in a range of cognitive measures,
with the MCI group intermediate between the control and
AD groups in measures of memory impairment and in levels
of CSF biomarkers (Table 4). In contrast to AD subjects who
were impaired in virtually all cognitive measures, MCI sub-
jects were only mildly impaired in nonmemory cognitive
measures. After 12 months, 16.5% of MCI subjects had



Table 3

Demographic characteristics of ADNI participant groups

Characteristic Control subjects (n ¼ 229) MCI group (n ¼ 398) AD (CDR: 1.0) group (n ¼ 192) P value P , .05*

Age, mean 6 SD, years 75.8 6 5.0 74.7 6 7.4 75.3 6 7.5 .137

Education, mean 6 SD, years 16.0 6 2.9 15.7 6 3.0 14.7 6 3.1 ,.001 b, c

Years from symptom onset Not available Not available 3.9 6 2.5 NA

% Female 48.0 35.4 47.4 .002 a, c

Marital status, % .002 a

Married 80.2 81.2

Widowed 17.5 12.1 10.4

Divorced 7.4 6.3 4.7

Never married 6.6 1.5 3.6

Unknown 0.4 0 0

APOE 34, % ,.001 a, b, c

Carriers 26.6 53.3 66.1

Noncarriers 73.4 46.7 33.9

Ethnicity

American Indian 0 0.3 0

Asian American 1.3 2.3 1.0

African American 7.0 3.5 4.2

Hispanic 0.9 3.5 2.1

White 90.8 90.5 92.2

Other 0 0 0.5

NOTE. Reproduced with permission from Ref [106].

*Multiple comparisons abbreviated as: (a) control subjects differ from subjects with AD, (b) subjects with MCI differ from subjects with AD, (c) control

subjects differ from subjects with MCI.
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converted to AD, and a greater increase in the ADAS-cog
was seen in the AD group compared with the MCI group.
Little change was observed in control subjects. The study
also found that baseline Ab-42 levels were predictive of
the progression of clinical measures over 12 months.
4.2. Medication use

Medication use among the ADNI cohort was investi-
gated by Epstein et al [107]. They found a high rate of poly-
pharmacy, with 85% of participants taking more than four
medications, the average being eight (SD ¼ 4). Moreover,
22% of participants reported taking one or more Beers list
medications deemed to be potentially dangerous in the
elderly population. The most common medications for
symptomatic treatment of AD or MCI were the cholines-
terase inhibitor donepezil and the N-methyl-D-aspartate
partial receptor agonist memantine, which were frequently
taken as a combination therapy. Despite the lack of FDA
approval for use of these drugs to treat MCI, donepezil,
memantine, and other cholinesterases were commonly
used by MCI patients. Women, less educated, and more
elderly participants were less likely to receive treatment.
Schneider et al [108] focused on the use of cholinesterase
inhibitors and memantine in the ADNI cohort. They found
that 44% of MCI patients and 85% of mild AD patients
were treated with cholinesterase inhibitors, and that 11%
of MCI patients and 46% of mild AD patients were treated
with memantine. In both patient groups, use of these med-
ications was associated with increased cognitive impair-
ment at baseline, a higher rate of clinical decline over 2
years, and a more rapid progression to dementia in MCI pa-
tients. Cholinesterase inhibitors and memantine appeared
to be more frequently prescribed to patients diagnosed as
having MCI due to AD, despite a lack of evidence from
clinical trials and lack of FDA approval for this treatment.
The authors suggested that use of these medications may
affect the interpretation of clinical trial outcomes. Medica-
tion has been implicated in an increased risk of falls in the
elderly. Epstein et al [429] investigated the association be-
tween medications in mild MCI (memantine and cholines-
terase inhibitors) and falls in the ADNI cohort. They found
that the use of these medications increased the hazard of fall
by approximately 63%.
4.3. Baseline and longitudinal studies of biomarker
changes during disease progression

ADNI has afforded a unique opportunity to examine
biomarker changes that occur during disease progression
in a large, well-defined cohort. Using MRI, CSF, 11C-PiB
PET, and FDG-PET data, cross-sectional and longitudinal
studies focused either on evaluating spatial pattern and
regional rates of atrophy or on characterizing biomarkers
for varying disease stages have together resulted in a more
detailed and coherent picture of this complex process.
4.3.1. Magnetic resonance imaging
A cross-sectional study by Fennema-Notestine et al [109]

examined the feasibility of high-throughput image analysis to
detect subtle brain structural changes in the early stages of
AD. They further divided the MCI group, based on



Table 4

Baseline assessments of the ADNI cohort

Assortment variable

Control subjects MCI AD

Mean SD Mean SD

Z score

MCI–control Mean SD Z score AD–MCI P value P , .05*

MMSE score 29.1 6 1.0 27.0 6 1.8 218.8 23.3 6 2.1 221.3 ,.001 a, b, c

CDR global score 0.0 6 0.0 0.5 6 0.0 397 0.7 6 0.3 13.4 ,.001 a, b, c

CDR-SB 0.0 6 0.1 1.6 6 0.9 34.9 4.3 6 1.6 21.3 ,.001 a, b, c

Memory 0.0 6 0.0 0.6 6 0.2 61.3 1.0 6 0.3 16.5 ,.001 a, b, c

Orientation 0.0 6 0.0 0.2 6 0.3 17.5 0.8 6 0.4 17.7 ,.001 a, b, c

Judgment 0.0 6 0.1 0.4 6 0.3 21.8 0.8 6 0.4 14.6 ,.001 a, b, c

Community affairs 0.0 6 0.0 0.2 6 0.2 13.1 0.7 6 0.4 16.9 ,.001 a, b, c

Hobbies 0.0 6 0.0 0.2 6 0.3 15.1 0.8 6 0.5 15.9 ,.001 a, b, c

Personal care 0.0 6 0.0 0.1 6 0.2 4.4 0.2 6 0.4 4.3 ,.001 a, b, c

Hachinski score 0.6 6 0.7 0.6 6 0.7 0.8 0.7 6 0.7 0.7 .418 NA

GDS score 0.8 6 1.1 1.6 6 1.4 7.3 1.7 6 1.4 0.6 ,.001 a, b

FAQ 0.1 6 0.6 3.9 6 4.5 16.2 13.0 6 6.9 16.8 ,.001 a, b, c

ADAS-cog total 6.2 6 2.9 11.5 6 4.4 18.1 18.6 6 6.3 14.0 ,.001 a, b, c

ADAS word list immediate recall 2.9 6 1.1 4.6 6 1.4 16.8 6.1 6 1.5 12.2 ,.001 a, b, c

ADAS word list recognition 2.6 6 2.3 4.6 6 2.7 10.1 6.6 6 2.8 8.2 ,.001 a, b, c

ADAS-cog without word list 0.8 6 0.9 2.3 6 2.0 12.9 5.9 6 4.1 11.4 ,.001 a, b, c

ADAS word list delayed recall 2.9 6 1.7 6.2 6 2.3 20.8 8.6 6 1.6 15.0 ,.001 a, b, c

AVLT trials 1-5 43.3 6 9.1 30.7 6 9.0 216.7 23.2 6 7.7 210.4 ,.001 a, b, c

AVLT delayed recall 7.4 6 3.7 2.87 6 3.3 215.6 0.7 6 1.6 210.3 ,.001 a, b, c

AVLT DR/trial, 5% 65.8 6 27.6 32.1 6 33.1 213.9 11.2 6 22.0 29.3 ,.001 a, b, c

Trails A 36.5 6 13.2 44.9 6 22.8 5.9 68.0 6 36.9 8.0 ,.001 a, b, c

Trails B 89.2 6 44.3 130.7 6 73.5 8.8 198.9 6 87.2 9.2 ,.001 a, b, c

Category fluency (animal) 19.9 6 5.6 15.9 6 4.9 29.1 12.4 6 4.9 28.1 ,.001 a, b, c

Category fluency (vegetable) 14.7 6 3.9 10.7 6 3.5 212.7 7.8 6 3.3 29.8 ,.001 a, b, c

Number cancellation 0.4 6 0.7 1.0 6 0.9 8.0 1.8 6 1.3 7.6 ,.001 a, b, c

Boston Naming Test 27.9 6 2.3 25.5 6 4.1 29.4 22.4 6 6.2 26.2 ,.001 a, b, c

Digit backward 7.2 6 2.2 6.2 6 2.0 26.0 5.0 6 1.8 27.2 ,.001 a, b, c

Clock drawing 4.7 6 0.7 4.2 6 1.0 27.6 3.4 6 1.3 27.5 ,.001 a, b, c

CSF biomarkers (pg/mL) (n ¼ 114) (n ¼ 199) (n ¼ 102)

Tau 69.7 6 30.4 101.4 6 62.2 6.0 119.1 6 59.6 2.4 ,.001 a, b

Ab242 205.6 6 55.1 162.8 656.0 26.6 143.0 6 40.8 23.5 ,.001 a, b, c

p-tau181P 24.9 6 14.6 35.5 6 18.0 5.7 41.6 6 19.8 2.6 ,.001 a, b, c

Abbreviations: GDS, Geriatric Depression Score; FAQ, Functional Activities Questionnaire; ADAS-cog, cognitive subscale of the Alzheimer’s Disease

Assessment Scale; AVLT, Rey Auditory Verbal Learning Test; CDR-SB, clinical dementia rating-sum of boxes.

NOTE. Reproduced with permission from Ref [106].

*Multiple comparisons abbreviated as: (a) control subjects differ from subjects with MCI, (b) control subjects differ from subjects with AD, (c) subjects with

MCI differ from subjects with AD.
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neuropsychological performance, into single-domain and
multidomain groups, which they proposed represented earlier
and later stages in disease progression, respectively. Using
comparisons of cortical thickness, they found a pattern of pro-
gressive atrophy from normal control subjects to single-
domain MCI subjects, to multidomain MCI subjects, and
finally to subjects with AD (Fig. 7). When ROIs were exam-
ined, they found that the regions that differed between the
control group and the single-domain MCI group included
not only the hippocampus and entorhinal cortex, which had
the largest effect sizes, but also other temporal regions, the
temporal horn of the lateral ventricle, rostral posterior cingu-
late, and several parietal and frontal regions. Relative to con-
trol subjects, multidomain MCI patients had greater
differences in the same regions as well as in the lateral infe-
rior, middle, and superior temporal gyri and fusiform cortices.
Additional atrophy was seen in AD patients relative to control
subjects in the inferior parietal, banks of the superior temporal
sulcus, retrosplenial, and some frontal regions. Similar results
were reported in a cross-sectional study by Karow et al [110],
who found a pattern of atrophy spreading from the mesial
temporal lobe in MCI patients to widespread areas in AD pa-
tients patients and by Asku et al [240] who differentiated be-
tweenMCI converters and non-converters and found the most
active areas of degeneration in converters tended to lie in the
parietal and temporal cortex, whereas those areas discrimi-
nating between AD and control patients included occipital
and frontal regions.

An emerging view of disease progression is that spatial
patterns of structural changes are coordinated with distrib-
uted cognitive networks. Carmichael et al [430] identified
data-driven groupings of cortical regions that exhibited high-
ly correlated rates of atrophy in amnestic MCI patients over
2 years. Conversion to AD was associated with groupings
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that included sections of the default-mode network and the
prefrontal and medial-temporal structures, suggesting that
multiple coherent modes of longitudinal brain atrophy may
act simultaneously in the early stages of the AD pathologic
process, with each grouping corresponding to a distinct bio-
logical substrate.

Fennema-Notestine et al [109] also explored the trajec-
tories of change of ROIs over the course of the disease and
found that although some regions, such as mesial temporal
regions, exhibited a linear rate of atrophy through both
MCI stages to AD, other regions, such as the lateral temporal
middle gyrus, retrosplenial cortex, inferior parietal cortex,
and rostral middle frontal cortex, exhibited accelerated atro-
phy later in the disease.

The idea that rates of change of atrophy are not uniform
but vary by disease stage is supported by several studies.
When MCI groups were classified according to subsequent
clinical outcome, Leung et al [59] found higher rates of hip-
pocampal atrophy in MCI-c than MCI-nc patients. McDo-
nald et al [111] examined regional rates of neocortical
atrophy in the ADNI cohort, dividing MCI subjects into
two groups by their CDR-SB scores. The less impaired
MCI group had CDR-SB scores of between 0.5 and 1.0,
whereas the more impaired group had CDR-SB scores of be-
tween 1.5 and 2.5 (AD subjects had CDR-SB scores of
.2.5). They found that over the course of disease progres-
sion, atrophy changed from the medial and inferior lateral
temporal, inferior parietal, and posterior cingulate cortices
initially, to the superior parietal, prefrontal, and lateral oc-
cipital cortices, and finally to the anterior cingulate cortex
(Fig. 8). Moreover, the rates of change differed among the
three groups. The least impaired MCI patients showed the
greatest rates of atrophy in the medial temporal cortex,
whereas later in disease progression, rates of atrophy were
higher in the prefrontal, parietal, and anterior regions.
Similar patterns were found by several other groups using
a range of MRI methods. Hua et al [112] and Leow et al
[113] both used TBM to create 3-D maps of structural
changes over 12 months. Risacher et al [114,115]
examined a variety of structural MRI markers for their
sensitivity to longitudinal change and clinical status using
multiple methods, including VBM and ROIs, whereas
Schuff et al [116] focused on changes in hippocampal vol-
ume, and McEvoy et al [117] calculated an atrophy score
based on ROIs most associated with AD atrophy. A more
recent comprehensive analysis of longitudinal ADNI MRI
data by Leung et al [431] focused on global cerebral atrophy,
hippocampal atrophy, and ventricular expansion over 6-
month intervals to 3 years. They found expected between-
group differences in atrophy rates and an acceleration of
rates of ventricular enlargement in both MCI and AD pa-
tients of 0.27 and 0.88 mL/y, respectively. An acceleration
of hippocampal atrophy rates in MCI patients of 0.22%
was also observed, which appeared to be primarily driven
by MCI patients who later converted to AD. This rate of ac-
celeration is small compared with the actual rate of atrophy
in MCI patients (around 3.5%), suggesting that the transition
to pathologic losses observed in AD occurs slowly. Collec-
tively, these studies showed atrophy spreading from the
MTL to the parietal, occipital, and frontal lobes over the
course of the disease, with MCI patients, in general, having
a more anatomically restricted AD-like pattern of change.
MCI subjects who converted to AD within the time frame
of the study (MCI-c) had a more AD-like pattern of atrophy,
and nonconverters (MCI-nc) had a pattern more intermedi-
ate between control and AD subjects (Fig. 9). Several studies
[114,115,118,119] divided theMCI group into those patients
who converted to AD within a year and those who remained
stable. Each group had distinct profiles when assessed using
a score derived from patterns of structural abnormality, the
future converters having mostly positive scores that
reflected a largely AD-like pattern of brain atrophy.
Conversely, the distribution of abnormality scores in the
MCI-nc group was bimodal, reflecting the heterogeneity of
this group that appears to contain some members who,
with abnormality scores close to those of AD patients, are
likely to convert in the near future.

The highest rates of change occurred in AD subjects and
MCI-c patients in measures of hippocampal volume and en-
torhinal cortex thickness [115,120]. Schuff et al [121] found
that atrophy was detectable at 6 months and accelerated with
time to 12 months in MCI and AD subjects, with the highest
rates of atrophy seen in AD patients (Fig. 10). Hua et al [120]
used TBM to examine the effects of age and sex on atrophic
rates and found that the atrophic rates of women were 1% to
1.5% higher than for men. They also observed a 1% increase
in atrophic rate and a 2% increase in ventricular expansion
for every 10-year decrease in age, with correlations strongest
in the temporal lobe.

A different data-driven approach to determining the time
course of brain volume changes in healthy elderly, MCI, and
AD subjects without using a priori models was taken by
Schuff et al [116]. Using generalized additive models to
analyze serial MRI scans over 30 months, they found that at-
rophy rates varied nonlinearly with age and cognitive status,
most noticeably in temporal regions, and that atrophy tended
to level off in control and MCI-nc subjects, but decline
further in MCI-c and AD patients. The authors suggest
that these differences are a reflection of the different pro-
cesses involved in healthy versus disease-related neurode-
generation. The regions with the greatest effect sizes
between young control and AD subjects were the entorhinal
cortex, the hippocampus, and the lateral ventricles, suggest-
ing that rates of change in these regions have potential as
biomarkers for the early detection of AD.

Beyond simple volumetric analysis, one approach to
analyzing brain morphometric changes in greater detail
has been to assess changes in shape of ROIs. Qiu et al
[122] used large deformation diffeomorphic metric mapping
to reveal that the anterior of the hippocampus and the baso-
lateral complex of the amygdala had the most surface inward
deformation in MCI and AD patients, whereas the most
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surface outward deformation was found in the lateral ventri-
cles (Fig. 11). These results are in agreement with the volu-
metric findings of Apostolova et al [123] and also with many
findings documenting the enlargement of the lateral ventri-
cles with disease progression. Greene et al[267] examined
atrophy of sub-regions of the hippocampus over time and
found that the head appears to be initially affected followed
by the body and tail of the structure. Cash et al [385] exam-
ined changes in cortical folding patterns throughout disease
progression, using several metrics to represent the degree of
cortical folding, curvature, and shape. Stable MCI, MCI-c,
and AD patient groups had a progressively lower degree of
cortical folding and a progressive reduction in the depth
and area of sulcal folds, suggesting a widening and flattening
of these areas due to neurodegeneration.

Disease progression appears to be influenced by other
factors such as genotype, gender and age differences. The in-
fluence of the APOE 34 allele on GM loss in MCI patients
was investigated by Spampinato et al [268] who found
greater atrophy in a variety of regions including the hippo-
campus, temporal and parietal lobes and insulae inMCI con-
verters who were carriers compared to non-converter
carriers. GM loss was greatest in the first 12 months, sup-
porting the idea of non-linearity of atrophy throughout dis-
ease progression. Furthermore, they found no difference in
cognitive decline between carriers and non-carriers of the
APOE 34 allele, suggesting that accelerated hippocampal
and neocortical atrophy did not completely account for the
cognitive deterioration in this study. Skup et al [269] exam-
ined longitudinal atrophy in selected ROIs to look for sex-
specific patterns of atrophy. They found that female MCI
and AD patients differed from controls in right caudate nu-
cleus atrophy, that between MCI and AD patients, there
were female-specific differences in insula and amygdala at-
rophy and male specific differences in the atrophy of the left
precuneus, and that sex differences tended to be bilateral in
MCI patients and side-specific in those with AD. These re-
sults suggest that disease progression has gender differences
that may be more widespread during the MCI stage. The
question of whether disease progression is a set process
over a range of ages was examined by Stricker et al [270]
who compared changes in cognition and brain morphometry
in the young old (ages 60-75) and the very old (ages > 80
years) compared to age-matched controls. In the very old
group, there was comparatively less atrophy in a number
of regions and less impairment in a number of cognitive do-
mains than in the young-old group, likely a reflection of
normal age-related changes in the control group. Conversely,
atrophy of the hippocampus and MTL substantially eclipsed
these age-related changes and remained salient markers of
AD, regardless of age. Rates of clinical decline and brain at-
rophy decreased with age in controls, MCI patients, and AD
patients but increased with age in the normal elderly [432].
Consequently, rates of change of many measures converged
at a point close to 85 years. Baseline clinical measures did
not differ by age, implying that the association between
neuropathologic markers and AD attenuates with age and
that in the oldest old, AD can be difficult to distinguish
from normal aging.

While aging is associated with cognitive decline, im-
provements in cognition are well documented in MCI and
even mild-AD patients, suggesting that cognition in aging
is a dynamic process. Song et al [433] studied changes in
cognition (MMSE and ADAS-cog) and structural brain
changes (brain and lesion index [BALI] and Medial Tempo-
ral Atrophy Score [MTAS]) over 2 years. Although cogni-
tion and brain structure declined overall, increases in both
the BALI score and cognitive improvements were observed
in some patients. Two-thirds of patients who showed struc-
tural improvement on BALI also showed cognitive improve-
ment, and no MCI patient with structural improvement
converted to AD. These results suggest that brain aging is
a dynamic process in which improvements in both structural
and cognitive aspects may be observed despite the fact that
decline dominates overall.

4.3.2 CSF biomarkers
In the first longitudinal study of CSF biomarkers in ADNI

cohort, Toledo et al [434] investigated biomarker dynamics
and trajectories in controls, MCI patients, and AD patients
for up to 4 years. The longitudinal stability of Ab42,
p-tau181, and t-tau varied inpatientswith normal baseline levels
of biomarkers: one group had stable biomarker levels, whereas
another had decreasing Ab42 and increasing p-tau181 levels
over time.When the stable populationwas excluded fromanal-
ysis, the time taken to reach cut point levels of biomarkers was
significantly shortened, with changes in p-tau181 occurring
before changes in Ab42. Furthermore, whereas low baseline
Ab42 predicted greater increases in p-tau181 levels, the
converse was not true, implying that changes in Ab42 levels
precede those in p-tau181 levels (Fig. 33).

4.3.3. PET
Toussaint et al [399] identified hypometabolic patterns in

the areas constituting the default mode network known to
be involved in memory processing and found that these pat-
terns evolve in a specific manner with disease progression.
Leveraging newly differentiated EMCI and LMCI cohorts
from ADNI-GO and ADNI-2, Wu et al [435] studied the dy-
namics of amyloid deposition and its relationship to glucose
hypometabolism in MCI patients. AV45 retention increased
from control to EMCI to LMCI groups in diffuse areas, but
no further amyloid burden was detected in AD patients. In
contrast, FDG-PET indicated that hypometabolism was
essentially unchanged in EMCI patients compared with con-
trols but then increased sequentially in LMCI and AD patients
in a variety of regions. These observed dynamics are in accor-
dance with the model by Jack et al [15].

4.3.4. Cognitive
Johnson et al [436] examined baseline and longitudinal

change over 36 months of five cognitive factors (memory,
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executive function/ processing speed, language, attention,
and visuospatial awareness) in control and MCI patients.
In the cognitively normal elderly, memory was the sole
measure observed to decline over the study period,
whereas all measures declined in MCI patients. Interest-
ingly, executive function declined more rapidly than mem-
ory in these patients suggesting that different patterns of
cognitive change exist in MCI compared with normal
cognition. Executive function may therefore play an
important role in distinguishing MCI from cognitively
normal patients.
4.4. Associations between characteristics of the ADNI
cohort

A major area of focus in research using ADNI data has
been the elucidation, both at baseline and longitudinally,
of associations between various imaging, CSF, genetic,
and clinical correlates in different clinical groups to gain a
better understanding of the interplay of biomarkers
throughout disease progression.

4.4.1. Magnetic resonance imaging

4.4.1.1. Temporal lobe
Structures within the temporal lobe have long been associ-

ated with AD decline because of their critical role in the for-
mation of long-term memory, one of the first functions to be
affected in disease progression. Leow et al [113] found tem-
poral lobe atrophy to be associated with increased cognitive
impairment in MCI patients, as indicated by changes in
CDR, MMSE scores, and the AVLT (Fig. 12). Among the
structures of the temporal lobe, hippocampal atrophy is the
best studied structural biomarker, as it is one of the earliest
structures to degenerate in AD. In a small initial study, Morra
et al [63] found that bilateral hippocampal atrophy at baseline
was strongly correlated with both MMSE and CDR-SB
(Table 5). A further larger study by the same group [124]
examined rates of hippocampal atrophy over 12 months and
found that these correlatedwith both baseline cognitive scores
on MMSE and global and sum of boxes CDR and with longi-
tudinal change in these measures (Table 5). Wolz et al [64]
also revealed significant correlations between rates of hippo-
campal atrophy and both baseline MMSE and CDR, and
changes in these measures over 12 months (Table 5). Addi-
tionally, a study by Schuff et al [121] found that rates of
change of MMSE and ADAS-cog were associated with rates
of hippocampal atrophy (Table 5). Using TBM, Hua et al [73]
found that baseline temporal lobe atrophywas associatedwith
both baseline and change in the CDR-SB in MCI and AD pa-
tients, but with change in the MMSE only in the AD group,
providing further evidence for the acceleration of atrophic
change with disease progression.

The relationships between hippocampal volume and
memory retention were examined by Apostolova et al
[123], who found that MCI patients had bilateral associa-
tions between hippocampal volume and radial distance
and three tests of delayed recall (DR): ADAS-cog-DR,
AVLT-DR, and the Wechsler Logical Memory Test II-DR,
whereas associations between these tests in AD patients
were stronger in the left hippocampus both at baseline and
at the 12-month follow-up (Table 5). In addition, they found
highly significant regional associations for memory perfor-
mance, especially in the CA-1 subregion and the subiculum
on the anterior hippocampal surface. Greene et al [267]
examined the relationship between subregions of the hippo-
campus and neuropsychological measures and atrophy in
other regions. Most cognitive decline measures were corre-
lated most strongly with the hippocampal head, a subregion
that includes the histologically defined CA1 and CA3 sub-
fields (Table 5). With both cognitive and volumetric mea-
sures, the strength of association diminished from the
head to the body to the tail of the hippocampus (Table 5).
In cognitively normal participants, Carmichael et al [437]
reported that localized atrophy in several hippocampal sub-
regions, and not whole hippocampal atrophy, was signifi-
cantly associated with CSF measures of Ab and tau. In
contrast, both total hippocampal volume and various subre-
gional measures were significantly associated with a wide
range of neurocognitive measures included in the ADNI
neuropsychological battery. These results suggest that amy-
loid and tau abnormalities may be associated with atrophy in
specific regions of the hippocampus in asymptomatic pa-
tients, whereas changes in cognition occur later in disease
and are related to overall volumetric changes in the hippo-
campus.

Associations between temporal lobe degeneration and
memory performance (Wechsler Memory Scale-Revised—
Logical Memory, immediate recall and DR) were also found
by Hua et al [73].

Along with hippocampal atrophy, ventricular expansion
is a hallmark of brain morphometric changes that occur
during AD progression and has great potential as a struc-
tural biomarker, as the lateral ventricles are comparatively
easy to measure, because of their high contrast under MRI,
and are highly sensitive to disease progression. Evans et al
[125] found that ventricular expansion differentiated be-
tween patient groups was associated with ADAS-cog
scores in AD patients, and that MCI-c patients had higher
rates of ventricular expansion than MCI-nc patients. Chou
et al [126] automatically mapped ventricular geometry and
examined correlations between surface morphology, clin-
ical decline, and CSF biomarkers. They found that ventric-
ular enlargement at baseline correlated with diagnostic
group, depression severity, both baseline and rates of
change of cognitive function (MMSE and CDR-SB), and
lower CSF Ab-42. In a subsequent study by the same group
[127] using automated radial mapping to generate statisti-
cal maps, ventricular enlargement was found to correlate
with a large number of measures of clinical decline as
well as with lower levels of CSF Ab-42 and the APOE
34 allele (Fig. 13). Chou et al [126] also noted expansion



Table 5

Associations between biomarker and clinical measures in ADNI cohort (correlation coefficients)

Biomarker N Clinical group

Clinical correlates

MMSE DMMSE CDR-SB DCDR-SB ADAS-cog DADAS-cog LM-II-DR LT TMTA and B Reference

Hippocampal
volume (L/R)

21 Pooled sample 0.423*/0.529y 20.369*/20.705y [63]

12-month
hippocampal
atrophy rate (L/R)

490 Pooled sample 20.191y/20.168y 0.117y/0.136y 0.173y/0.181y 20.174y/20.171y [124]

12-month
hippocampal
atrophy rate (L/R)

555 Pooled sample 20.52z/20.43z 0.36z/0.30z 0.47z/0.38z 20.27z/20.21z [64]

Hippocampal radial
distance (L/R)

245 MCI 20.20y/20.17y 0.24x/0.31x 27x/0.25x [123]
98 AD 20.21*/NS NS/NS 21*/NS

Hippocampal
atrophy rate

498 Pooled sample 0.18* [121]
607 MCI earning Retention [140]

36z 0.37z
Cortical thickness
Entorhinal 33z 0.33z
Parahippocampal 22z 0.23z
Frontal caudal

middle
16z NS

Rostral middle 23z 0.16c
Lateral orbitofrontal 16z NS
Inferior parietal 24z 0.17z
Precuneus 25z 0.16z
Cortical thickness (L/

R)
536 Pooled sample

Posterior cingulate 14z/0.13y 0.22y/0.19y [138]
Caudal middle S/NS 0.17y/0.15y High EF: TM

A 1 B
Low EF:
AVLT

Rostral middle 30y/0.13z 0.18y/0.21y
Superior frontal S/0.13y 0.16y/0.17y
Operculum S/NS 0.14y/0.16y
Lateral bifrontal S/NS 0.15y/NS
Frontal polar S/NS 0.17y/NS
STAND score 399 Pooled sample 20.50z 0.59z [132]

192 MCI 20.19y 0.26z
98 AD 20.29y 0.34z

Ab242 399 Pooled sample 0.31z 20.37z
192 MCI NS NS
98 AD NS NS

Caudate volume 400 Pooled sample 0.175* 20.209* [130]
Hippocampal

volume [130]
0.349* 20.365*

Ventricular volume 20.205* 0.225*
Predicted scores

from whole brain
gray matter
volumes

586 Pooled sample [91]

MMSE 0.47z
ADAS-cog 0.49z
AVLT S
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Table 5

Associations between biomarker and clinical measures in ADNI cohort (correlation coefficients) (Continued )

Biomarker N Clinical group

Clinical correlates

MMSE DMMSE CDR-SB DCDR-SB ADAS-cog DADAS-cog LM-II-DR AVLT TMTA and B Reference

Biomarker N Clinical group Clinical correlates
MMSE DMMSE CDR-SB DCDR-SB FAQ ADAS-cog LM-II-DR AVLT TMTA and B

FDG 12 months ROI
decline in CMRgl

154 MCI 0.22y 20.19* NS [104]
69 AD NS 20.25* NS

FDG-PET regional-
to-whole brain
CMRgl (L/R)

[134]

Posterior cingulate 298 Pooled sample NS 20.47x/NS
Precuneus 0.36x/0.37x 20.46x/20.49x
Parietal 0.26x/0.36x 20.42x/20.47x
Temporal 0.43x/0.32x 20.41x/20.41x
Frontal 0.23x/0.22x 20.24x/20.26x
Medial temporal NS 20.36x/20.41x
Occipital 0.31x/0.22x 20.37x/20.26x
DPiB uptake 61{ Pooled sample 20.22 (P ¼ .09) NS [16]
Ventricular

expansion
20.52y 20.42y

161 Pooled sample Learning Recognition [136]
Hippocampal

volume
0.35x,** 0.34x,**

Parahippocampal
complex volume

NS 0.17*,**

Precuneus cortical
thickness

0.22y,** NS

Inferior parietal lobe
metabolism

0.23y,** NS

Hippocampal
metabolism

0.15*,** 0.25x,**

APOE genotype NS 0.14*,**
FDG-ROIs baseline 95 AD NS 21.95y,** [135]
DFDG-ROIs 21.21y,** 23.25z,**

FDG-ROIs baseline 208 MCI 20.88z,** 20.66y,**

DFDG-ROIs NS 21.08z,**

Hypometabolic
convergence index

188 Pooled sample 20.48 0.54 0.53 20.43 0.45 [85]
50 MCI [155]

Hippocampal
volume

NS NS 0.41*

Retrosplenial volume 20.42* 20.43* NS
Retrosplenial

metabolism
0.47* NS NS

Entorhinal
metabolism

0.38* NS NS

D LM-II Boston
Naming

Category
fluency

TMT B [142]

Right medial lobe
atrophy rate

20.41z,yy

Left entorhinal
cortex

0.47z,yy

Left lateral lobe
thinning

0.31z,yy

Left temporal lobe
atrophy rate

0.38z,yy

Left frontal lobe
—pars orbitalis

0.33z,yy
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of the posterior regions of the ventricles in MCI patients
and in the frontal regions of the superior horns in AD pa-
tients compared with control subjects, suggesting a topo-
graphic sequence of morphometric change throughout
disease progression.

The relationship between hippocampal atrophy and
regional neocortical thinning was investigated by Desikan
et al [163] who sought to determine whether disruptions to
the medial temporal lobe and heteromodal association areas,
shown to preferentially accumulate amyloid plaques and
neurofibrillary tangles, contribute to a functional isolation of
the hippocampus. In all patients, the strongest associations
with hippocampal atrophy were with thinning of regions in
the temporal lobe. However, additional associations were
identified in control and MCI, but not AD patients within
the occipital, frontal and parietal cortices.

The studies of Morra et al [124], Wolz et al [64], Hua
et al [112], and Risacher et al [115] all found that carriers
of the APOE 34 allele had higher rates of hippocampal at-
rophy than noncarriers. In contrast, Schuff et al [121] found
that increased rates of hippocampal atrophy were associ-
ated with APOE 34 in the AD, but not MCI or control,
group. Using Structural Abnormality Index (STAND)
scores to reflect the overall level of AD-like anatomic fea-
tures, Vemuri et al [128] also found that the APOE 34 allele
contributed to MRI atrophy. Hua et al [112] found that the
APOE 34 allele had a dose-dependent detrimental risk with
greater atrophy in the hippocampus and temporal lobe in
homozygotes than heterozygotes in MCI and AD groups
(Fig. 13). Hostage et al [438] quantified the effect of the
APOE 34 and APOE 32 alleles on hippocampal volume
across the disease spectrum, reporting that the APOE 34
allele had a dose-dependent effect on MCI and AD patients
equating to an approximate loss of 4% volume per allele
below mean hippocampal volume. Cognitively normal par-
ticipants were unaffected and APOE 32 appeared to
confer a modest protective effect.

The recently identified AD risk allele GRIN2b was
associated with higher rates of temporal lobe atrophy in
the pooled group, but more weakly than APOE 34 [120].
Other thus far unidentified genetic risk factors likely
contribute to AD, with epidemiological studies suggesting
maternal history of the disease increases the risk of devel-
oping AD. Andrawis et al [129] examined the influence of
maternal history of dementia on hippocampal atrophy and
found smaller baseline and 12-month follow-up hippocam-
pal volumes in MCI patients with maternal, but not
paternal, history. APOE 34-positive patients also had
decreased hippocampal volumes, regardless of parental
history. These results suggest the involvement of mater-
nally inherited genetic material, encoded on either the X
chromosome or mitochondrial genome. The latter may
be more likely, given that decline in mitochondrial func-
tion has been found to lead to increased generation of
reactive oxygen species, enhanced apoptosis, cell loss,
and brain atrophy [129].
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4.4.1.2. Other ROIs
Although the caudate has not been the subject of intensive

AD research, it plays a crucial role in the formation of new
associations required for the acquisition of explicit mem-
ories. Madsen et al [130] found that baseline caudate atrophy
was associated with a number of clinical and biochemical
measures, including, most strongly, body mass index
(BMI), in the AD group alone and in the pooled sample,
and CDR-SB and MMSE scores at baseline (Table 5). There
appeared to be preferential right caudate atrophy in AD pa-
tients, and the authors proposed that caudate atrophy might
function as a complementary biomarker to other structural
measures. The inferior parietal lobe (IPL) is involved in sen-
sory and motor association and possibly comprises part of
the memory circuitry. Greene and Killiany [131] examined
the associations between subregions of the IPL (gyrus,
banks, and fundus) and cognitive measures in control,
MCI, and AD subjects. They found that compared with con-
trol subjects, MCI patients differed only in the thickness of
the banks of the left IPL, a change that correlated with
decreased scores in the AVLT-DR, whereas AD patients
had significant morphometric changes in all subregions of
the right IPL. These results suggest a temporal sequence of
changes during disease progression, with atrophy beginning
in the left IPL and spreading to the right.

Like the IPL and caudate, the role of the amygdala in AD
has received comparatively little attention despite post-
mortem evidence to suggest that atrophy is similar to that
observed in the hippocampus. Poulin et al [271] found a
similar degree of atrophy in both structures in patients with
early AD. They also found that amydalal atrophy had a com-
parable association with decline in the MMSE but a weaker
association with decline in the CDR-SB than hippocampal at-
rophy (Table 5), suggesting that cognitive changes in mild AD
may be caused by atrophy of both these MTL structures.

4.4.1.3. Multiple ROIs and whole brain studies
Other MRI studies have used approaches based on the

whole brain or multiple ROIs, rather than specific ROIs.
Evans et al [125] examined brain atrophy rates using
the brain BSI technique and found atrophy to be associ-
ated with MMSE and ADAS-cog scores in MCI and AD
patients. Within the MCI group, they found greater rates
of change, in a range similar to that observed in the AD
group, in subjects who converted to AD within the time
frame of the study. Stonnington et al [91] found that
whole brain GM at baseline predicted baseline scores on
the ADAS-cog and, MMSE, but not on the AVLT
(Table 5). Similarly, Zhang et al [272] used the Brain
and Lexion Index (BALI), a score summarizing brain
structural changes in aging, to assess changes in cognition
throughout disease progression and found that it corre-
lated significantly with baseline MMSE (b ¼ 2 0.310,
P ¼ .008) and 2 year follow-up MMSE (b ¼ 2 0.725,
P ¼ .0010 and ADAS-cog scores at baseline
(b ¼ 0.612, P ¼ .013) and at follow-up (b ¼ 0.126,
P ¼ .003). The latter is a more specific test of memory,
and the authors suggest that whole brain methods may
be preferentially more highly sensitive to tests, unlike
the AVLT, that involve diverse brain regions. Vemuri
et al [132] used STAND scores as a measure of the degree
of AD-like anatomic features to assess correlations be-
tween brain morphometric changes and cognitive scores,
and found that STAND scores were highly correlated
with CDR-SB and MMSE scores in individual groups
and the pooled sample (Table 5). These studies lend sup-
port for atrophy of the whole brain or multiple ROIs as
biomarkers, based on their ability to differentiate between
patient groups and healthy control subjects, and to track
disease progression and clinical decline.

In addition to memory loss, AD is commonly associated
with other neuropsychiatric symptoms such as depression,
apathy, agitation, and aggression. Trzepacz et al [439] re-
ported that frontolimbic ROIs involved in the salience
network were associated with greater severity of agitation
and aggression in MCI and AD patients, suggesting that
AD may disrupt behavioral control via modulation of this
neural network. Zahodne et al [440] examined the associa-
tions between both apathy and depression and longitudinal
regional cortical atrophy in MCI patients. Apathy was not
predictive of longitudinal cortical atrophy, but depression
was associated with both baseline entorhinal cortex thick-
ness and increased longitudinal atrophy in the anterior
cingulate cortex. These results are consistent with hypoth-
eses regarding the relationship between depression and
AD: either depression is indicative of increased neurode-
generation or depression lowers cognitive reserve, which
in turn allows more rapid progression of AD neuropa-
thology.

A measure derived from a multidimensional scaling
method for quantifying shape differences using DBM [75]
had a strong inverse correlation with the MMSE (r ¼
20.53), although the findings were limited by small sample
size. Using the related method of TBM, Ho et al [133]
created regional maps of changes in brain tissue and used
the resulting Jacobian values to represent brain tissue excess
or deficit relative to a template. They found that lower brain
volume in the frontal, parietal, occipital, and temporal lobes
was associated with higher BMI in MCI and AD patients,
and that ventricular expansion correlated with higher BMI
in AD, but not MCI, patients (Fig. 14). Every unit increase
in BMI was associated with a 0.5% to 1.5% decrease in brain
volume in patients of the ADNI cohort.

Elevated levels of homocysteine, a risk factor for AD, are
associated with cortical and sub-cortical atrophy and may
promote the magnitude of atrophy in the brain. Rajagopalan
et al [273] found that elevated homocysteine levels
( > 14mM) was significantly associated with atrophy in
frontal, parietal and occipital WM irrespective of disease
status and in the MCI group alone, suggesting that Vitamin
B supplements such as folate that reduce homocysteine con-
centrations may help prevent AD.
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4.4.1.4. White matter changes
In addition to the well-recognized Ab plaque and tau

fibril deposition considered to be emblematic of AD, there
is increasing evidence that white matter abnormalities
play a role in exacerbating cognitive problems. Although
patients with high risk for cerebrovascular disease are
excluded from study in ADNI, cardiovascular risk factors
are consistently associated with cognitive decline and AD.
Provenzano et al [441] found that higher whitematter hyper-
intensity (WMH) volume, an indicator of cerebrovascular
disease, was associated with AD diagnosis independent of
amyloid deposition, providing support for the idea that
white matter damage may provide a “second hit” required
for clinical manifestation of AD symptoms. Guzman et al
[442] reported that temporal lobe WMH volume was inde-
pendently associated with entorhinal cortex volume to a
greater extent than Ab42 or p-tau181. Lo et al [443] also
investigated whether the presence of WMHs was associated
with established AD biomarkers. Baseline WMHs were not
predictive of changes in CSF biomarkers, glucose meta-
bolism, or hippocampal atrophy but were significantly asso-
ciated with cognitive decline, particularly executive
function. These results suggest that vascular disease may
target different cognitive domains than AD-type pathology
and thus may be an independent additive factor contributing
to the disease. However diagnostic groups within ADNI
share most vascular factors and rates of longitudinal cardio-
vascular events, suggesting that vascular factors may
already have contributed to cognitive decline [444].

Changes in the white matter architecture have been
modeled as structural brain networks, and changes in the
functional connectivity over the course of the disease can
be studied using diffusion tensor imaging (DTI) included
in ADNI-2. A preliminary study found that network mea-
sures of baseline connectivity were predictive of future
white matter changes [445], suggesting that less optimal
baseline small-world architecture may be a useful
biomarker in predicting WM changes in the prodromal
phase of the disease. Widespread group differences be-
tween MCI and AD patients were also detected using
DTI, with the greatest effect sizes in the left hippocampal
cingulate and throughout the temporal lobe and posterior
brain regions. White matter disruptions were associated
with MMSE, ADAS-cog, and CDR-SB scores [446]. Row-
ley et al [447] measured both mean diffusivity and frac-
tional anisotropy in patients with amnestic MCI,
nonamnestic MCI, and AD. No difference in either measure
was detected between nonamnestic MCI patients and
cognitively normal controls. However, patients classified
as amnestic MCI had around 28% white matter abnormality
compared with the control group, and AD patients had
reduced structural connectivity between the hippocampus
and the temporal, inferior parietal, posterior cingulate,
and frontal regions suggesting that white matter abnormal-
ities in the advanced patients have a significant influence on
connectivity.
4.4.2. Glucose metabolism

4.4.2.1. [18F]-fluorodeoxyglucose-positron emission
tomography

FDG-PET has been used by several groups to investigate
relationships between cerebral glucose hypometabolism
and other factors, including cognitive measures and CSF
biomarkers. Several papers confirmed that there is a charac-
teristic regional pattern of hypometabolism in MCI and AD
patients. Wu et al [101] found that hypometabolic voxels
were associated with the posterior cingulate/precuneus
and parietotemporal regions. Lower bilateral cerebral meta-
bolic rate for glucose (CMRgl) at baseline in these regions
and in the frontal cortex was associated with higher CDR-
SB and lower MMSE scores in MCI and AD groups [134]
(Table 5). Although the pattern of hypometabolism was
similar in the two groups, the magnitude and spatial extent
were greater with increasing disease severity. In the AD
group alone, however, lower MMSE correlated with lower
left frontal and temporal CMRgl, suggesting that the char-
acteristic pattern of baseline reductions in glucose meta-
bolism shifts to the frontal cortex after the onset of
dementia. Chen et al [104] investigated declines in CMRgl
in statistically predefined ROIs associated with AD over 12
months in the ADNI cohort and found significant changes in
MCI and AD groups compared with control subjects bilat-
erally in the posterior cingulate, medial and lateral parietal,
medial and lateral temporal, frontal, and occipital cortices.
These changes correlated with CDR-SB, but not ADAS-
cog, scores in both groups, and with MMSE scores in the
MCI group (Table 5). Habeck et al [448] used the recently
developed psychometric composite score of ADNI-mem
[449] to represent memory. Impairedmemory inMCI patients
was associated with reduced metabolism in regions of the pa-
rietal and temporal lobes, whereas memory deficits in AD pa-
tients were associated with hypometabolism in the frontal and
orbitofrontal regions. The differential location of hypometab-
olism in relation to memory in MCI and AD groups suggests
that frontal regions may play a role in compensating for mem-
ory as the disease progresses. Landau et al [135] found a
greater decline in CMRgl in all a priori defined ROIs in AD
patients and in a composite score of ROIs in MCI patients
compared with control subjects. Longitudinal glucose decline
was associated with concurrent ADAS-cog scores and decline
on the Functional Activities Questionnaire (FAQ), validating
the relevance of longitudinal measures of glucose metabolism
to both cognitive and functional decline. The annual decline
in the ADAS-cog and FAQ was greatest in AD patients, fol-
lowed by the MCI and control groups, in accordance with
an acceleration of the disease process over time (Table 5).
FDG-PETand hippocampal volume, but not whole brain vol-
ume, were independently related to ADAS-cog as a measure
of disease progression [450]. The independence of glucose
metabolism from other biomarkers in its relationship with
cognitive decline suggests that cognitive decline in MCI pa-
tients with reduced hippocampal volume but higher glucose
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metabolismmay be delayed or reduced. The hypometabolism
index reported by Chen et al [85] correlated with cognitive
measures of disease severity, hippocampal volume, and CSF
biomarkers (Table 5). These papers support the use of glucose
metabolism as a sensitive measure of cognition in AD.

4.4.2.2. Arterial spin labeling
Arterial spin labeled (ASL) MRI is an imaging tech-

nique that reveals alterations in cerebral blood flow
(CBF) and that has been shown to overlap with FDG-
PET measures of hypometabolism. ASL can be performed
at the same time as structural MRI, obviating the need for a
separate FDG-PET scan with its attendant costs and expo-
sure to radioactive tracer. ADNI-2 has added an ASL pro-
tocol to a portion of the cohort, presenting an opportunity
to assess the utility of this method as a biomarker in a
multicenter study. Wang et al [451] examined associations
between ASL measures in ROIs previously determined to
be most emblematic of AD in FDG-PET studies and hippo-
campal volume with disease severity as measured by CDR-
SB. They found that mean meta-ROI CBF was associated
with group status in a manner comparable to hippocampal
volume. However, whereas hippocampal volume differ-
ences only reached significance between control and AD
groups, differences in CBF reached significance between
control and LMCI groups. Regression analysis indicated
that CBF and hippocampal volume provide complementary
information regarding disease severity. The results suggest
that CBF may be an effective biomarker for an equivalent
point in disease progression to FDG-PET.
4.4.3. Cognitive

4.4.3.1. Association with imaging or CSF biomarkers
A number of studies have focused on the relationship be-

tween cognitive function and imaging or CSF biomarkers.
Atrophic changes in the episodic memory network
(Fig. 15), which is composed of MTL structures, medial
and lateral parietal cortical areas, and prefrontal cortical
areas and is involved in the formation of new episodic mem-
ories, are presumed to underlie ongoing memory loss in AD.
Walhovd et al [136] studied how baseline brain morphom-
etry and metabolism within the episodic memory network
and APOE genotype predicted memory, as assessed by the
AVLT. They found that in the total sample of the ADNI
cohort, hippocampal volume and metabolism, parahippo-
campal thickness, and APOE genotype predicted recogni-
tion, whereas hippocampal volume and metabolism,
cortical thickness of the precuneus, and inferior parietal
metabolism predicted learning, suggesting that MTL struc-
tures are related to learning, recall, and recognition, whereas
parietal structures are involved solely in learning (Table 5).
The authors concluded that MRI and FDG-PET imaging
have differential sensitivity to memory in AD and thus pro-
vide complementary information. Episodic memory likely
involves a number of different cognitive processes, such as
initial encoding, learning on repeated exposure, and DR,
which may be subserved by disparate components of the
episodic memory network. Wolk and Dickerson [137] inves-
tigated whether verbal episodic memory could be fraction-
ated into dissociable anatomic regions in mild AD
patients, using cortical thickness of predefined “AD signa-
ture” ROIs and hippocampal volume as structural measures
and different stages of the AVLT as a verbal memory mea-
sure. They found that initial immediate recall trials were
most significantly associated with the temporal pole region,
but that regions in the MTL became more significantly asso-
ciated in later trials. In tests of DR, only the hippocampus
correlated with performance, whereas the perirhinal/entorhi-
nal cortex was most strongly associated with delayed recog-
nition discrimination. The authors concluded that their
results lend support to models hypothesizing that dissociable
brain regions are involved in differential episodic memory
processes. Associations between memory learning and brain
morphometry in the MTL were found in a study by Chang
et al [138]. MCI patients were differentiated into learning-
deficit and retention-deficit subgroups using the AVLT.
Low memory retention was associated with changes in the
medial temporal regions, particularly the hippocampus and
entorhinal cortex, whereas low memory learning correlated
with a more widespread pattern of morphometric changes
beyond the temporal lobe, including areas of the frontal
and parietal lobes (Table 5). While memory loss is a hall-
mark of AD, a subset of MCI patients is impaired primarily
in their executive function. Dickerson and Wolk [139] iden-
tified dysexecutive and amnestic phenotypes in patients with
MCI or very mild AD based on performance on the Trail
Making Test and ADAS-cog subscale: Word recognition.
They found that the memory-impaired group had a more
frequent occurrence of the APOE 34 allele status than the
dysexecutive group, and that patients with low executive
function had thinner frontoparietal cortical regions and
were more impaired in daily life than those with predomi-
nantly memory impairment. A further study by Chang et al
[140] found that MCI patients with high executive function
performed better on tests of verbal memory than those with
low executive function, and that morphometric measures of
the two groups differed primarily in the dorsolateral prefron-
tal and posterior cingulate cortices, where more thinning was
evident in low executive function patients (Table 5). Results
from both studies suggest that the dysexecutive phenotype
may reflect differences in underlying pathology in brain re-
gions beyond the MTL.

4.4.3.2. Neuroanatomic regions and cognition
The ideas that different brains regions subserve

different cognitive functions and that MCI is a heteroge-
neous construct led Wolk et al [141] to examine the influ-
ence of APOE genotype on memory and executive
function in AD. When cortical thickness in predefined
ROIs was examined in carriers and noncarriers of the
APOE 34 allele who had a CSF biomarker profile
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consistent with AD, carriers were more impaired in mea-
sures of memory retention and had greater atrophy in
medial temporal regions, whereas noncarriers were more
impaired in tests of executive function, working memory,
and lexical access and had greater frontoparietal atrophy.
The finding that neuroanatomic regions thought to sub-
serve different cognitive processes are differentially
affected by APOE 34 allele status supports the hypothesis
that this allele exerts its effect on AD by influencing
different large-scale brain networks.

The question of whether domain-specific cognitive defi-
cits in MCI are caused by global atrophy or progressive atro-
phy within specific regions was studied by McDonald et al
[142], who examined 2-year regional atrophy rates in MCI
patients. Stepwise regression models revealed that left ento-
rhinal atrophy, left lateral lobe thinning, left temporal lobe
atrophy, left frontal lobe atrophy rate, and the right MTL at-
rophy rate were associated with memory decline (Logical
Memory II), naming decline (Boston Naming Test), seman-
tic fluency decline (Category Fluency Test), executive func-
tion (Trail Making Test B; TMT-B), and clinical decline
(CDR-SB), respectively (Table 5). Semantic memory
impairment (Boston Naming Test) in mild AD cases was
associated with anterior temporal lobe atrophy, with the
strongest correlation being with the dorsal temporal pole
[452]. These studies afford a glimpse into the specific struc-
ture–function relationships that occur early in disease pro-
gression and enhance our understanding of the neural basis
of cognitive impairments.

An alternative method to individual cognitive tests and
ROI approaches for studying brain structure-cognition rela-
tionships was reported by Nho et al [453]. They used
recently reported psychometric composite scores of memory
(ADNI-Mem [449]) and executive function (ADNI-Exec
[454]) in concert with voxelwise and cortical thickness
whole brain measures of brain atrophy. Across the ADNI
cohort, they found strong positive associations between
memory and temporal lobe atrophy, particularly hippocam-
pal atrophy in the MCI and AD groups. Executive function
was strongly associated with cortical thickness and GM den-
sity across large areas of the brain, particularly bilateral pa-
rietal and temporal lobes. After adjusting for memory and
GM density/cortical thickness in the pooled sample, execu-
tive function was additionally related to frontal lobe GM
density and cortical thickness. This study provides insight
into brain changes associated with different cognitive pro-
cesses involved.

4.4.3.3. Functional decline
Although studies, such as those described previously,

have focused on the relationship between brain atrophy,
APOE 34 status, and cognitive decline, relatively little is
known about the biomarkers of functional decline, a hall-
mark of AD. Impairment of instrumental activities of daily
living (IADL) such as driving, handling finances or prepar-
ing meals, leads to a greater burden on care-givers and in-
stitutionalization as the patient loses independence. A
number of papers have focused on the prevalence of func-
tional impairment, its rate of decline and its association
with cerebral atrophy, other cognitive measures and biolog-
ical biomarkers. Brown et al [274] examined IADL in MCI
and AD patients and found that, despite a definition that
does not include substantial impairment of daily function,
MCI was associated with a high prevalence of IADLs;
nearly three-quarters of MCI patients reported deficits in
some items of the FAQ, a measure of the ability of patients
to maintain daily function, compared to 97.4% of patients
with AD and 7.9% of cognitively normal controls. Func-
tional impairment was also associated with deficits in
memory, processing speed and atrophy of the hippocampus
and entorhinal cortex. The rate of decline in the FAQ, a
measure of the ability of patients to maintain daily func-
tion, and how it is affected by cerebral atrophy and
APOE 34 allele status, was studied by Okonkwo et al
[143]. They found that AD patients had a higher rate of
functional decline than control subjects, with the rate of
MCI patients intermediate between the two. Moreover,
MCI patients who subsequently progressed to dementia
had higher rates of decline on the FAQ than stable MCI pa-
tients. Increasing ventricle-to-brain ratio, the measure of
neurodegeneration chosen for the study, correlated with
increased functional impairment in MCI patients. Those
patients who were both APOE 34-positive and had elevated
ventricle-to-brain ratio were the most functionally
impaired. These results have shown neurodegeneration
and APOE 34 status to be associated with cognitive
decline. Whereas the APOE 34 allele is detrimental to dis-
ease progression, the APOE 34 allele may have a protec-
tive effect. Bonner-Jackson et al [275] found that at 24
months, carriers of the APOE 34 allele showed signifi-
cantly less functional decline that non-carriers in the
pooled ADNI cohort and that individual groups showed
the same trend. This allele was also associated with better
scores in composite measures of memory and executive
function in the pooled sample, suggesting that the
APOE 34 allele may slow the rate of functional decline
as well as positively influence neurocognition.

Okonkwo et al [144] investigated the relationships be-
tween CSF biomarkers and everyday function, as assessed
by the FAQ. They found that biomarkers were more sensitive
to functional decline in control subjects and MCI patients
than in AD patients, and that in the latter group, scores on
the ADAS-cog were more highly correlated with functional
activity. Combinations of tau and Ab-42 abnormalities had
the steepest rates of functional decline across clinical
groups. The authors suggested that the effect of CSF abnor-
malities on functional decline is partially mediated by their
effect on cognitive status. The relationship between func-
tional impairment and amyloid burden as assessed by 11C-
PiB PET imaging was subsequently investigated by
Marshall et al [276] in control and MCI patients of the
ADNI cohort. They found that increased cortical PiB
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retention was associated with greater IADL impairment in
the pooled sample (r2 ¼ 0.40, P ¼ .0002) and in the
MCI group (r2 ¼ 0.28, P ¼ .003) and that poorer perfor-
mance on FAQ was also associated with poorer performance
in the AVLT and MMSE in all subjects. A companion paper
by the same group [277] examined the relationship between
functional impairment and executive function in a longitudi-
nal study of the ADNI cohort. Executive dysfunction was
strongly correlated with IADL impairment across all sub-
jects (r2 ¼ 0.60, P , .0001). MCI patients with impaired
executive function also had greater impairment of IADL
than patients with no executive dysfunction, possibly repre-
senting a portion of the heterogeneous MCI construct more
likely to progress to AD.

Depression may also influence functional decline. A
study of the effect of subsyndromal symptoms of depression
(SSDs) on functional ability of MCI patients [455] reported
that these symptoms, present in 77% of this group, increased
the risk of having poorer FAQ scores by 1.77-fold. However,
although SSDs were associated with higher disability at
baseline, they were not associated with longitudinal decline
in FAQ scores or faster conversion to AD. The authors
posited that treatment of SSD may therefore reduce the
burden of disability in MCI patients but is unlikely to slow
AD progression.

4.4.3.4. Other neuropsychiatric symptoms
A number of neuropsychiatric symptoms and apathy,

anxiety, hallucinations, depression, and psychosis are asso-
ciated with AD and are highly prevalent in the MCI popula-
tion. Despite this, their association with functional
impairment has not been fully evaluated. Wadsworth et al
[456] found that baseline apathy, anxiety, and hallucinations
were all significantly associated with functional impairment,
as measured by CDR-SB scores. Hallucinations and apathy
at baseline were also associated with functional impairment
over time and increased the risk of MCI to AD conversion,
suggesting that these symptoms may be predictive of current
and future disease progression. Similarly, Ramakers et al
[457] reported that anxiety, but not depression or apathy,
was associated with abnormal levels of Ab42, t-tau, and t-
tau/Ab42, supporting the idea that anxiety may be a result
of underlying disease pathology in these MCI patients. Ri-
chard et al [458] focused on the association between apathy
and disease progression, finding that symptoms of apathy
alone, but not symptoms of depression alone or symptoms
of apathy and depression together, increased the risk of con-
version to ADwithin the study period. Therefore, apathy and
depression may differ in their effects on cognitive decline.
One distinct variant of AD is AD with psychosis, which is
associated with more rapid functional decline related to
frontal lobe impairments. Koppel et al [459] investigated as-
sociations between psychosis and glucose metabolism and
found both a decline in orbitofrontal brain metabolism and
an accelerated functional decline in patients with active psy-
chosis.
4.4.3.5. Association of cognition with body mass index
In elderly populations, in addition to brain atrophy or ge-

netic studies, BMI has been associated with cognitive
decline. Cronk et al [145] examined the relationship between
BMI and cognition in MCI patients and found that lower
BMI at baseline was associated with a decline in the
MMSE, ADAS-cog, and a global composite of the ADNI
neuropsychological battery, but not with CDR-SB scores
or conversion to AD. The causal relationships between
BMI and cognitive decline in MCI remain to be elucidated,
but the authors suggest either that low BMI is a result of fac-
tors associated with MCI or that MCI patients with low BMI
are predisposed to more rapid disease progression.

4.4.3.6. Cognitive reserve
The concept of the cognitive reserve describes the mind’s

resilience to neuropathological changes in the brain and may
account for the observed dissociation between AD pathol-
ogy and cognition. Vemuri et al [278] investigated whether
a measure of cognitive reserve, the American National Adult
Reading Test (AMNART) modified the relationship between
biomarkers of pathology and cognition in AD. In cognitively
normal patients, they observed that the AMNART, but not
CSF biomarkers or STAND scores correlated with cognitive
measures (MMSE, ADAS-cog, AVLT-memory, Trails B and
Boston Naming tests) whereas in MCI patients, all three
were associated with cognitive performance in an additive
manner. The authors propose a model (Fig. 28) in which
cognitive reserve acts to shift curves of cognitive decline
relative to biomarker trajectories over time; high cognitive
reserve delays cognitive decline whereas low cognitive
reserve results in an earlier cognitive decline. This evidence
is consistent with the early increase in Ab levels and subse-
quent later increase in cerebral atrophy in the disease pro-
gression model of Jack et al [14]. Further evidence that
cognitive reserve buffers the effects of the disease comes
from studies by Ewers et al [460] and Pillai et al [461]. In
cognitively normal patients identified as having preclinical
AD by the abnormal levels of Ab42, higher education was
associated with lower glucose metabolism in the posterior
cingulate and angular gyrus [460]. Thus, education appeared
to buffer cognitive function in the presence of AD pathology
that impairs glucose metabolism. This supports the idea that
cognitive reserve has a compensatory function that acts to
preserve a clinical state despite more advanced pathology.
Higher education was associated with lower, not higher,
cortical thickness in selected areas [461]. In addition, Guo
et al [462] reported that larger initial brain volumes, as
measured by intracranial volume (ICV), were associated
with reduced clinical deterioration in amnestic MCI patients
and also with a lesser impact of APOE status. ICV did not
impact the effect of APOE on atrophy progression or the
rate of atrophy itself. These studies support the idea that
the nature of this compensatory function is an improvement
in connectivity rather than a passive reserve of increased
neural substrate. Guo et al [462] proposed that the brain



Fig. 28. Model illustrating the independent effect of cognitive reserve on

the relationship between biomarkers of pathology and cognition in subjects

with (A) low, (B), average and (C) high cognitive reserve. In (A) and (C), the

levels of Ab are indicated by a square and the levels of atrophy are indicated

by a circle at the point where cognitively normal subjects progress to MCI.

This illustrates that at an equivalent clinical diagnostic threshold, subjects

with high cognitive reserve have greater biomarker abnormalities than those

with low cognitive reserve. Reproduced with permission from Ref [278].
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reserve confers protective effects earlier in the disease, but
beyond a certain threshold of neurodegenerative burden, it
is no longer advantageous.

4.4.3.7. The ADNI special issue of Brain Imaging and
Behavior, 2012

A special issue of Brain Imaging and Behavior was pub-
lished in 2012 focusing on cognition research within ADNI.
Mungas et al [463] introduced papers that had been pre-
sented at the Advanced Psychometric Methods in Cognitive
Aging Conference, in June 2011 at Friday Harbor, WA.
These papers will be discussed individually in this review
and fall into four primary groups. The first set of articles
focused on the measurement of cognition and on improving
reliability, sensitivity, and validity of measurements of
different cognitive domains [449, 454, 464, 465]. A second
set examined neuroimaging-cognition relationships [448,
453, 466], and a third set examined sequencing of
biomarker and cognitive changes in relation to the model
by Jack et al [14, 467, 468]. A final area examined genetic
contributions to cognition using high-dimensional genetic
data [469–471].

4.4.3.8. Psychometric analysis of cognitive tests
As cognitive testing plays such a critical role in ADNI,

confidence that the tests used accurately reflect subject
cognition is paramount. To this end, psychometric analysis
has been applied to a number of cognitive tests to assess
the validity of test components and their combined perfor-
mance. The ADAS-cog plays a critical role in detecting clin-
ical change in ADNI. However, as the test was originally
developed for AD, its sensitivity to cognitive decline at the
increasingly targeted earlier stages of the disease has not
been fully explored. Posner et al [472] reviewed two critical
papers by Hobart et al that use different analytical ap-
proaches to evaluate the performance of ADAS-cog in
ADNI data. Using traditional psychometric methods, Hobart
et al [473] found that 8 of 11 components of the ADAS-cog
had a limited response distribution that may underestimate
performance differences and therefore limit the usefulness
of this test in detecting clinical change in mild MCI popula-
tions. Other weaknesses of the test were identified using
Rasch measurement theory methods [474]: the range of
cognitive performance in every cohort was not well matched
to the range of scale (Fig. 34), and 6 of 11 components of
scale were bunched instead of evenly spread out across the
continuum. In addition, the validity of the way in which
the 11 components were combined to create a simple vari-
able was questioned given that the scale was not constructed
on a specific definition of cognition. These analyses may
provide a starting point for specific improvements to make
the ADAS-cog better suited to its role in the upcoming early
intervention clinical trials.

Crane et al [449] derived a single composite memory
score from elements of the RAVLT, MMSE, and Logical
Memory, and ADAS-cog tests firstly to address questions
of equality of different versions of word lists in ADAS-cog
and RAVLT administered in ADNI study, and secondly to
facilitate a statistically more simple analysis of relationships
between memory and other factors such as imaging data,
biomarkers, and clinical diagnoses. The memory composite
score, ADNI-Mem, performed comparably to other memory
measures in the prediction of clinical change over time and
was able to differentiate changes over time in participants
with or without the AD CSF biomarker signature. It was
strongly associated with neuroimaging parameters previ-
ously associated with memory performance, suggesting
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this improvement could simplify ADNI protocol by allowing
a single test for memory to be administered.

Trzepacz et al [475] developed three subscales of the
Neuropsychiatric Inventory Questionnaire (NPI-Q) to mea-
sure agitation/aggression, mood, and frontal syndromes.
They used principal component analysis to determine how
the subscales relate to each other and evaluated them in
two cohorts including ADNI. They concluded that the sub-
scales were valid based on the similarity of results across
the two cohorts.
4.4.4. CSF biomarkers

4.4.4.1. b-amyloid and tau
The relationship between CSF biomarkers and neuronal

degeneration has been investigated by a number of groups
within and outside ADNI following the seminal publication
by Shaw et al [57], which defined cut points for CSF tau and
Ab-42 based on an ADNI-independent cohort of autopsy-
confirmed AD patients as well as normal control subjects
and then applied these cut points successfully to the ADNI
cohort. Follow-up studies went on to test the hypothesis
that changes in levels of biomarkers occur early in disease
and thus are likely predictive of future brain atrophy, if not
directly associated with all parts of the degenerative process.
For example, Tosun et al [146] examined how rates of
regional brain trophy were related to levels of CSF bio-
markers in MCI patients and healthy elderly control sub-
jects. They found that lower CSF Ab-42 levels and higher
tau levels were associated with increased atrophy in
numerous brain regions, beginning primarily in the temporal
and parietal cortices in MCI patients and extending to re-
gions not normally associated with amyloid pathology,
such as the caudate and accumbens areas, in AD patients.
Schuff et al [121] also found that increased rates of hippo-
campal atrophy were associated with lower levels of Ab-
42 in the MCI, but not AD or control, group. Leow et al
[113] used TBM to examine rates of atrophy and found
that lower CSFAb-42 levels, higher tau levels, and a higher
p-tau/Ab-42 ratio were significantly associated with tempo-
ral lobe atrophy in the pooled group, and, additionally, that
within the AD group, levels of CSF p-tau and the p-tau/
Ab-42 ratio were also significantly associated. Fjell et al
[147] investigated whether baseline levels of CSF bio-
markers were associated with baseline brain morphometric
differences between control, MCI, and AD subjects, as
measured by cortical thickness in a number of ROIs. They
found that although CSF biomarkers levels could not ac-
count for baseline differences, they were moderately associ-
ated with longitudinal change in multiple areas, including
medial temporal regions and beyond. Stricker et al [467]
examined associations between baseline levels of Ab-42
and p-tau and rates of atrophy of the precuneus, the first
area to be affected by amyloid deposition, and hippocampus,
the first area to be affected by neurofibrillary tangles. Neither
of the baseline CSF measures was associated with the thin-
ning of the precuneus, but both were associated with the
rate of hippocampal atrophy. Furthermore, lower baseline
Ab-42 levels in cognitively normal controls and higher base-
line p-tau in the MCI and AD groups were associated with
increased rates of hippocampal atrophy, suggesting that
Ab-42 exerts its effect earlier and that tau exerts its effect
later in disease progression.

A second focus of research into CSF biomarkers has been
how they are modulated by APOE genotype and their asso-
ciation with cognitive measures. Shaw et al [57] reported
that Ab-42 concentrations were dose dependent on the num-
ber of APOE 34 alleles, with the highest concentrations
found in homozygotes. Vemuri et al [128] found that Ab-
42 is more closely associated with APOE genotype than
cognitive function (MMSE, CDR-SB), but that APOE geno-
type had no significant effect on levels of t-tau (Fig. 16). An
earlier study by the same group [132] investigated the rela-
tionship between CSF biomarkers and cognitive function
(MMSE and CDR-SB), and found that the CSF biomarkers
Ab-42, t-tau, and p-tau181p were only significantly correlated
with cognitive function in the pooled sample (Table 5). Ott
et al [148] studied the relationship between CSF biomarkers
and ventricular expansion with the hypothesis that ventricu-
lar dilation may reflect faulty CSF clearance mechanisms re-
sulting in reduced levels of Ab. They found that ventricular
expansion was associated with reduced CSF Ab levels in
normal elderly carriers of APOE 34, but that in APOE 34-
positive AD patients, ventricular expansion was associated
with increased levels of tau and not Ab. The authors sug-
gested that the APOE 34 allele may exert its effect through
modulation of CSF–blood–brain barrier function.

Toledo et al [476] examined the relationship between
CSF and plasma apoE protein levels and APOE genotype
with cognition and AD biomarker changes. At baseline,
higher CSF apoE levels were associated with higher total
and phosphorylated CSF tau levels. CSF apoE levels were
also associated with longitudinal cognitive decline, MCI to
AD conversion, and GM atrophy rate but not changes in
CSFAb or tau levels. Plasma apoE levels showed a mild cor-
relation with CSF apoE levels but were not associated with
longitudinal cognitive and MRI changes. The authors pro-
posed that increased CSF apoE2 or apoE3 levels might
represent a protective response to injury in AD and may
have neuroprotective effects by decreasing neuronal damage
independent of tau and amyloid deposition in addition to
their effects on amyloid clearance.

The results from these studies support a model in which
changes in the levels of CSF biomarkers are an early step
in the course of the disease that reflects the degree of AD pa-
thology, and in which Ab-42 is modulated by the APOE 34
allele, which functions in the early stages of pathology by
reducing the efficiency of Ab-42 clearance. As described
in the Genetics section 5.3, Kim et al [149] performed a ge-
nomewide search for markers associated with CSF analyte
levels in the ADNI cohort. Overall, CSF Ab-42 and tau, in
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conjunction with imaging measures of atrophy, are prom-
ising biomarkers for early detection of AD.

Two recent studies by Ewers et al [279] and Vidoni et al
[280] investigated the relationship between markers of early
AD and BMI, which appears to have a paradoxical associa-
tion with the disease; high BMI in mid-life increases the risk
of the disease whereas it appears to be protective in later life
[279, 280]. Vidoni et al found that the association between
amyloid burden (measured by both CSF Ab levels and
global PiB uptake) and low BMI was strongest in MCI
patients and cognitively normal controls (Table 6). Ewers
et al found that BMI was significantly lower in patents
with levels of CSF Ab and t-tau above a pre-defined cut-
point (F ¼ 27.7, df ¼ 746, P , .001), regardless of
diagnosis. These results provide further evidence that AD
pathology is present before the disease becomes a clinically
evident and suggest that low BMI may either be a systemic
response due to the presence of this pathology, or constitute a
trait that predisposes an individual to its development. If the
latter scenario is correct, then therapies that address BMI is-
sues are of interest in the treatment of AD. Rajagopalan et al
[477] investigated associations between BMI, regional brain
volumes, and leptin, a hormone produced by adipose tissue
which regulates appetite and energy expenditure. Higher
levels of leptin were associated with lower volumes of the
frontal, parietal, temporal, and occipital lobes, and the brain-
stem and cerebellum, and these associations persisted after
controlling for BMI. As leptin levels can be manipulated,
it may represent a promising therapeutic target for the treat-
ment of AD.
Table 6

Associations between imaging, clinical, and CSF biomarkers (correlation coeffici

CSF biomarker correlates

Imaging or clinical

biomarker N

Clinical

group Ab242 t-tau p-tau1

Hippocampal

volume (L/R)

388 Pooled

sample

0.11*/

0.17y
20.17y/0.21z 20.17

20

Mean cortical

PiB SUVR

55 Pooled

sample

20.73z 20.42x 0.49z

FDG-PET

composite ROI

0.33y 0.24 (P ¼ .08) 0.34y

MMSE NS 0.26 (P ¼ .055) 0.28*

Ab242 0.38y
APOE 34 77 CN 20.50z NS NS

119 MCI 20.49z 0.39z 0.34y
54 AD 20.53z NS NS

BMI 112 CN 0.19z 20.20z

193 MCI NS 20.17*

100 AD NS NS

Abbreviations: NS, not significant; SUVR, standard uptake value ratio.

*P , .05.
yP , .01.
zP , .001.
xP , .0001.
4.4.4.2. a-Synuclein and dementias with Lewy bodies.
AD is frequently comorbid with Lewy body diseases

such as Parkinson’s disease, with a-synuclein (a-syn)–pos-
itive Lewy bodies found in 40% to 50% of AD patients.
Faster cognitive decline has been noted in these patients,
and this neuronal damage may be accelerated by the a-
syn–mediated aggregation of Ab and tau in the ADNI
cohort. Levels of a-syn and p-tau181 were strongly corre-
lated in AD, MCI, and Parkinson’s disease patients [478].
There was an inverse correlation between levels of a-syn
and p-tau181, suggesting that this inverse CSF signature in-
dicates concomitant AD and Lewy body disease pathology
[478]. Korff et al [479] reported that CSF a-syn differenti-
ated between patient groups and that increased a-syn was
associated with decreased MMSE scores but not with
APOE status. Clearly, further investigation of a-syn as a
biomarker for AD is warranted.

At autopsy, a high percentage of coincident pathologies
are reported in demented patients. In a consecutive series
of the first 22 ADNI autopsies, Toledo et al [480] found
that only four patients had pure AD pathology. Coincident
dementia with Lewy bodies (DLB), medial temporal lobe
pathology (TDP-43 proteinopathy, argyrophilic grain dis-
ease, and hippocampal sclerosis), and vascular pathology
occurred in 45.5%, 40.0%, and 22.7% of patients, respec-
tively. DLB was predicted by hallucinations and a severe
dysexecutive profile, and coincident DLB was classified by
occipital FDG-PET hypometabolism. These results suggest
that biomarkers can be used to independently predict coinci-
dent AD and DLB pathology.
ents)

81p t-tau/Ab242

FDG-PET

composite

ROI

Mean cortical

PiB SUVR Reference

y/
.23z

20.17y/
20.21z

20.24*/

20.23*

[151]

0.28* [34]

0.63z NS

[146]

20.43y [280]

20.32z

NS
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4.4.5. Amyloid imaging

A complementary method for assessing amyloid deposi-
tion is 11C-PiB PET imaging. Jack et al [16] investigated the
relationship between amyloid deposition and ventricular
expansion in the ADNI cohort by examining serial 11C-
PiB PET and MRI scans. They found no difference in the
rate of global PiB retention between clinical groups, and
changes in global PiB retention only weakly correlated
with concurrent decline onMMSE and CDR-SB. In contrast,
ventricular expansion increased from control subjects to
MCI to AD groups and correlated strongly with concurrent
cognitive decline (Table 5). The relationship between PET
and CSF biomarkers and cognitive measures in the ADNI
cohort at baseline was investigated by Jagust et al [150].
CSFAb-42 and 11C-PiB PETwere found to be in substantial
agreement as measures of amyloid deposition, and neither
measure correlated with MMSE scores. In contrast, FDG-
PET, as a measure of cerebral glucose metabolism, was
strongly correlated with MMSE scores, but much less so
with CSF biomarkers (Table 6). Apostolova et al [151]
also examined associations between hippocampal atrophy,
CSF biomarkers, and average cortical, precuneal, and parie-
tal uptake of 11C-PiB. They found that although all CSF bio-
markers were associated with hippocampal atrophy, the
strongest correlations were with p-tau181p and the weakest
with Ab-42. Precuneal 11C-PiB uptake was most strongly
associated with hippocampal atrophy. Jack et al [152] exam-
ined the relationship between log relative hazard of pro-
gressing from MCI to AD and both hippocampal atrophy
and amyloid load, measured as a composite of 11C-PiB
PET and CSF Ab-42 data. They found that although the
risk profile was linear throughout the range of hippocampal
atrophy, amyloid load reached a ceiling at a certain concen-
tration earlier in disease progression. These papers support a
disease model in which initial amyloid deposition occurs in
the early stages and does not correlate with cognitive
decline, but stabilizes later in disease, and in which neurode-
generation accelerates with disease progression with
concomitant cognitive decline. A protocol using the longer
half-life Florbetapir amyloid ligand was added to ADNI-
GO and ADNI-2. An initial study compared Florbetapir
binding with FDG uptake as differential indicators of meta-
bolism [481]. The percentage of patients classified as Flor-
betapir positive increased from 29% of cognitively normal
controls to 43% of EMCI patients to 62% of LMCI patients
to 77% of AD patients. Additionally, cognitive decline in
cognitively normal patients was more closely linked to Flor-
betapir binding than to FDG abnormalities, but the reverse
was found in MCI and AD patients. Murphy et al [482]
investigated associations between amyloid deposition, age,
clinical status, and APOE status and found that while age
was not associated with Florbetapir signal, APOE status
had a strong influence on the uptake of this radiotracer. In
all patient categories, APOE 34 1 patients had higher
densities of amyloid plaques across all cortical regions
than patients lacking this risk allele. APOE 34 status had
a far larger effect on Florbetapir uptake than clinical status
(Fig. 35). These results suggest that APOE status is a better
predictor of amyloid deposition than age or clinical status
and that high amyloid deposition precedes the manifestation
of clinical symptoms, whereas glucose hypometabolism oc-
curs later in progression in accordance with the Jack model
of disease progression [14]. A second study by Landau et al
[483] found that Florbetapir binding and levels of CSF Ab
were inversely correlated in 86% of subjects both longitudi-
nally and cross-sectionally. The number of subjects who
were discordant for these measurements dropped threefold
when a 5% confidence interval was applied to the cutoff
point.

4.4.6. Combined modalities

The dynamics of CSF, MRI, and FDG-PET biomarkers
in the ADNI cohort were studied by Caroli and Frisoni
[153] in an effort to understand how they change over the
course of the disease. Each biomarker differed between
clinical groups after post hoc analysis, and the authors
found that these measures of disease progression fit better
in sigmoidal, rather than linear, models, suggesting that in-
dividual biomarkers vary in their rate of change during dis-
ease progression. Ab-42 imaging signals increased early in
disease progression and then plateaued, whereas CSF Ab-
42 declined early and then plateaued, and hippocampal vol-
ume followed a similar trajectory, with volumes increasing
later in disease progression. In contrast, FDG-PET mea-
sures of glucose metabolism and CSF tau began to increase
early in disease progression and only stabilized at later
stages of disease, suggesting that there is an ongoing reduc-
tion in glucose metabolism and tau-mediated neurodegen-
eration throughout the early stages of AD (blue line in
Figs. 2 and 17). Carriers of the APOE 34 allele had earlier
hippocampal atrophy. A similar study by Beckett et al [154]
also found that measures associated with early disease,
such as Ab-42, had greater changes in MCI patients than
in AD patients, and that those associated with later
changes, such as those in FDG-PET ROIs, were more
evident in AD patients (Table 7). The authors hypothesized
that changes in biomarkers may not be linear and that for
each biomarker, there may be steeper rates of change in
some stages of disease progression than others. An exten-
sion of this study examined trajectories of CSF Ab42,
FDG uptake and hippocampal volume loss and the influ-
ence of the APOE 34 allele study up to 36 months from
the original 12 months [281]. Ab42 levels declined most
rapidly in cognitively normal participants, glucose meta-
bolism declined most rapidly in AD patients and hippocam-
pal atrophy accelerated with disease progression. Presence
of the APOE 34 allele acted primarily to accelerate hippo-
campal atrophy in MCI and AD patients. These results are
in keeping with the model of Jack et al [14], which was sub-
sequently empirically tested in a further paper by the same
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group [282]. Using cut-points demarcating normal from
abnormal levels of CSF Ab42 and t-tau, and of hippocam-
pal volume, Jack et al examined the distribution of these
biomarkers in control, MCI and AD patients at baseline
and 12 months using ADNI cohort data. They found sup-
port for the model in that the percentage of abnormal
biomarker findings increased with disease severity as as-
sessed by clinical status and MMSE score, and in the tem-
poral progression of the appearance of biomarker
abnormalities: Ab42 first followed by t-tau and lastly by
hippocampal volume (Fig. 29). Biomarker dynamics
continue to be the subject of intense interest. With substan-
tial longitudinal data now available through ADNI, ADNI-
GO, and ADNI-2 and with the addition of an E-MCI cohort
in ADNI-2, a convincing body of evidence has accumulated
for the temporal ordering of biomarkers and the shape of
their trajectories. Jedynak et al [484] computed a disease
progression score for each patient in the ADNI cohort
and produced a data-driven plot of biomarker dynamics
that was in substantial agreement with the model by Jack
et al [14]. One exception was the AVLT-30 test added to
ADNI-GO and ADNI-2 protocols, which appeared to be
the first biomarker to become abnormal (Fig. 36). The
sequential nature of these models predicts that in order to
affect cognition, Ab must be dependent on tau and neuro-
imaging variables, whereas tau must only be dependent
on neuroimaging variables. The longitudinal study of Han
et al [468] largely supported the prediction with two
notable exceptions: Ab was found to have effect on brain
structure and function independent of tau, and tau was
found to have effect on baseline cognition independent of
neuroimaging measures. All study variables had significant
overlap between clinical groups, suggesting that these
groups differ quantitatively but not qualitatively. Risacher
et al [485] characterized cognition and biomarker levels
in the EMCI cohort. The status was associated with
impaired cognition, abnormally high levels of tau, and
brain atrophy, but not with increased amyloid deposition.
Table 7

Mean (standard deviation) of annualized change for selected ADNI variables

Variable name

Annualized mean change by diagnosis

Normal control MC

Mean (SD) CV Mea

CSF Ab242 20.94 (18) 1914 21.

CSF tau 3.45 (13) 377 2.34

PiB 0.098 (0.18) 184 20.

FDG-PET: ROI-avg 20.006 (0.06) 1000 20.

Hippocampus 240 (84) 210 280

Ventricles 848 (973) 115 155

ADAS-cog total 20.54 (3.05) 565 1.05

MMSE 0.0095 (1.14) 12,000 20.

CDR-SB 0.07 (0.33) 471 0.63

AVLT 5-trial total 0.29 (7.8) 2690 21.3

NOTE. Reproduced with permission from Ref [154].
In contrast, APOE 34 status was significantly associated
with increased amyloid deposition and abnormal levels of
tau in not only EMCI patients but also the cognitively
normal controls. These results suggest that amyloid deposi-
tion occurs at an extremely early stage of the disease and
that this event is substantially modulated by the APOE
34 allele in agreement with the results obtained in the

Florbetapir study of Murphy et al [482]. Mouiha et al
[486] examined biomarker trajectories, predicted in the
model by Jack et al [14] to be sigmoidal in shape. Fitting
the data to one of six possible models, they reported that
the FDG-PET trajectory appeared to be linear in contrast
to all other biomarkers, which best fit either a quadratic
model (Ab42) or a penalized B-spline model (p-tau, t-tau,
and hippocampal volume). Some facets of the Jack model
[14] were not supported by a study by Yang et al [487]
who found that t-tau, p-tau181, and Ab42 discriminated be-
tween controls and both MCI and AD groups, but only
Ab42 discriminated betweenMCI and AD groups, suggest-
ing that Ab levels may plateau after tau in the pathologic
cascade.

In seeking an optimum combination of imaging and CSF
biomarkers to predict normal control/AD classification,
Walhovd et al [155] examined the relationships between
the best predictive biomarkers and changes in cognitive
scores in the MCI group. They found that changes in
MMSE scores correlated with retrosplenial volume and
metabolism as well as entorhinal volume, but that only hip-
pocampal volume was associated with the Logical Memory
II-DR, and only retrosplenial volume was associated with
changes in CDR-SB. No CSF biomarkers were significantly
associated with cognitive scores in this clinical group
(Table 5). Once again, these results are consistent with the
disease progression model in that earlier changes that are re-
flected in CSF biomarkers do not correlate with clinical mea-
sures, whereas changes in brain metabolism and
morphometry occur at later stages of the disease and there-
fore correlate better with cognitive measures. Further
I AD

n (SD) CV Mean (SD) CV

4 (17) 1214 20.1 (14) 14,000

(21) 897 1.24 (24) 1935

008 (0.18) 2250 20.004 (0.25) 6250

015 (0.064) 426 20.081 (0.047) 58

(91) 114 2116 (93) 80

1 (1520) 98 2540 (1861) 73

(4.40) 384 4.37 (6.60) 151

64 (2.5) 390 22.4 (4.1) 171

(1.16) 184 1.62 (2.20) 135

7 (6.6) 31 23.62 (5.6) 24



Fig. 29. Box plots and superimposed data points showing the distribution of AD biomarkers by baseline diagnosis and visit. The dotted horizontal line extending

across all box plots represents the cut point delineating normal from abnormal for each biomarker. Reproduced with permission from Ref [282].
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support for this model comes from the study of the annual
change in MRI and CSF biomarkers and how these are influ-
enced by APOE genotype in control, MCI, and AD subjects
[156]. Levels of neither Ab-42 nor t-tau changed signifi-
cantly over 12 months in any clinical group, but annual
changes in ventricular volume increased with disease
severity and were correlated with worsening cognitive and
functional indices. APOE 34 carriers had higher rates of
change in ventricular volume, but not in levels of CSF bio-
markers, consistent with the model in which levels of Ab
and tau plateau as neurodegeneration becomes detectable
by MR measures.

The question of whether structural or metabolic mea-
sures are the most sensitive biomarkers of changes asso-
ciated with early stages of AD was investigated by
Karow et al [110]. Directly comparing the ability of
MR and FDG-PET measures in prespecified ROIs to
detect such changes by quantifying and comparing their
effect sizes (Cohen d), they found that largest morpho-
metric effect size (hippocampal volume: 1.92) was
significantly greater than the largest metabolic effect
size (entorhinal metabolism: 1.43). Both measures were
significantly associated with ADAS-cog and AVLT
scores in AD patients, but in MCI patients, the relation-
ship was only maintained with hippocampal volume
(Table 5). The authors concluded that for the detection
of early AD, MRI may be preferable to FDG-PET, as
it is more sensitive, more widely available, less invasive,
and less costly.
4.4.7. Genetic associations

Following the identification of novel AD genetic risk fac-
tors (Section 5), several studies have focused on associations
between these risk variants and biomarkers such as amyloid
burden and brain atrophy. Nondemented elderly carriers of
the AD risk variant rS3818361 SNP in CR1 (A/A or A/G)
had a lower brain amyloid burden relative to noncarriers
[488]. In addition, noncarriers of the allele (G/G) had a greater
variability of amyloid burden, which could be partially ac-
counted for by APOE genotype as the APOE 34 allele was
associatedwith higher amyloid burden in noncarriers. Howev-
er, in carriers of the risk allele, there was no significant differ-
ence between the amyloid burden of carriers and noncarriers
of APOE 34 allele. The finding that carriers of this risk allele
have a reduced amyloid burden and that the presence ofAPOE
does not influence this suggests that the CR1 ! APOE inter-
action might modify early changes in AD pathogenesis, influ-
encing brain amyloid levels in nondemented older individuals.
Sabuncu et al [489] generated a polygenic score from the
aggregate of many genetic markers for disease susceptibility
and examined its associations with clinical status, cortical
thickness in defined ROIs, and CSF biomarkers. Their poly-
genic score was significantly associated with clinical status
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and cortical thickness measurements at predefined ROIs in
cognitively normal individuals. Ab, but not tau, was also
significantly associated with a polygenic score and remained
associated in individuals with subthreshold levels of CSF
Ab42. These results suggest that AD susceptibility genes
may modulate neurodegeneration even in individuals who
are cognitively normal and lack amyloid burden.

Recently, maternal history of AD has been linked to
risk of LOAD. Honea et al [490] reported a confirmatory
study in a larger ADNI data set that examined relation-
ships between family AD history and biomarkers of AD
pathophysiology. Patients with maternal but not paternal
family history of the disease had significantly higher
global PiB uptake and greater PiB uptake in parietal cor-
tex, precuneus, and sensimotor cortex than those with no
family history group. In MCI patients, only a maternal
family history was associated with significantly increased
CSF Ab42 and higher t-tau/Ab42. Results are consistent
with earlier findings that suggest that early changes in
the disease process are associated with a maternally in-
herited genetic factor.
4.4.8. Summary and conclusions of papers concerning
associations of the ADNI cohort

ADNI has succeeded in recruiting a cohort of MCI and
mild AD patients that mirrors populations used for clinical
trials of AD therapies. A number of cross-sectional and lon-
gitudinal studies have lent support to a model of disease pro-
gression in which the earliest indications of
neurodegeneration occur within the MTL, particularly the
hippocampus, and atrophy becomes more widespread in
later stages, ultimately encompassing areas of the parietal,
occipital, and frontal lobes. Rates of atrophy are initially
fastest in the temporal lobe, but accelerate in other regions
as the disease progresses. Cortical atrophy and that of spe-
cific regions identified in the model of disease progression
as well as ventricular enlargement have been correlated
with measures of clinical severity. Structure–function rela-
tionships within the brain are being elucidated with findings
that atrophy in dissociable anatomic regions, especially
within the episodic memory network, is associated with
different cognitive functions. Patterns of glucose hypome-
tabolism associated with AD have been identified, with the
precuneus and posterior cingulate typically displaying the
most reduced CMRgl and with reduced metabolism in these
key areas being associated with lower scores on cognitive
tests. The differential effects of an SNP in brain-derived neu-
rotrophic factor suggest that genetics may modulate glucose
metabolism. Levels of CSF biomarkers, particularly Ab and
tau, have been associated with earlier stages of neurodegen-
eration. 11C-PiB PETAb imaging has largely confirmed that
decreased levels of CSF Ab and increasing 11C-PiB PET
represent an early event in disease progression, and neither
amyloid imaging nor studies of CSF biomarkers have found
that levels of these biochemicals are strongly associated with
cognitive decline. Levels of CSF biomarkers have been
found to be abnormal (i.e., decreased CSFAb and increased
CSF tau) early in disease and then plateau with little detect-
able change, whereas glucose metabolism remains relatively
stable until the latest stages of disease progression. Presence
of the APOE 34 allele has been shown to enhance neurode-
generation and to modulate levels of CSF biomarkers, but
the exact mechanism by which it exerts its effect remains un-
clear. Likewise, the role of BMI has been the subject of con-
tradictory reports, and it is unknown whether changes in
BMI influence disease development or occur as a result of
the disease.

In 2011-2012, evidence accumulated supporting the dis-
ease model of Jack et al [14], and detailing how hippocampal
atrophy is associated with neocortical atrophy or neuropsy-
chological measurements. The relationship between amyg-
dalal atrophy and cognitive decline revealed parallels with
the hippocampal atrophy – cognitive decline relationship,
suggesting that this structure warrants further investigation.
There was further development of the use of summary scores
based onMRI data reflecting the degree of AD-like neuroan-
atomical changes as an indicator of disease status. The
importance of functional decline, in addition to decline in
the traditional cognitive domains was reflected in a group
of studies highlighting the associations between difficulties
in performing daily living activities and various biomarkers.
The association of the cognitive reserve with cognition and
biomarkers was reported and provided evidence for a model
in which the degree of cognitive reserve affects curves of
CSF biomarkers throughout disease progression. Finally,
studies provided insight into possible mechanisms by which
the known AD risk factors, BMI and high homocysteine
levels may act by investigating their associations with AD
biomarkers.

The model by Jack et al [14] was again well supported in
numerous studies published in 2012 and 2013, including a
data-driven observational study across all ADNI partici-
pants. Florbetapir binding was shown to correlate with clin-
ical status and CSFAb levels and to be modulated by APOE
34 allele, indicating this radiotracer to be an accurate

biomarker of amyloid deposition. The deleterious effects
of the APOE 34 allele were documented in repeated works,
and studies of genetic associations extended to include novel
risk variants identified and confirmed in GWAS studies.
Glucose hypometabolism in specific regions was associated
with measures of cognitive decline. The newly introduced
ASL modality revealed that the changes in CBF in regions
identified by FDG-PET as typically hypometabolic in AD
occur later in disease progression. This technique warrants
further investigation as a potential biomarker. Increasing
recognition that AD patients may also harbor white matter
changes leads to the inclusion of DTI in the ADNI-2 proto-
col. WMHs detected by this method were correlated with
clinical status and may significantly disrupt structural con-
nectivity in later stages of the disease. The common comor-
bidity of ADwith Lewy body dementias suggests that a-syn,
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which was associated with clinical groups, CSF biomarkers,
and memory measures, may also have potential as a
biomarker. Finally, studies have suggested that cognitive
reserve is the result of improved functional connectivity
and not increased neural substrate.
4.5. Diagnostic classification of study participants

The ability to accurately diagnose to which clinical group
a subject belongs is a crucial one in the clinical trial design.
To this end, some researchers have investigated the ability of
individual MRI, FDG-PET, and CSF biomarkers to discrim-
inate between ADNI AD participants and ADNI control sub-
jects, and between MCI-c and MCI-nc subjects. Others have
tried to determine the optimum combination of these bio-
markers for ADNI participant classification, with many
studies leveraging knowledge of associations between
various structural and fluid biomarkers and the sequence of
brain morphometric change over the course of disease to
guide development of marker combinations. Discrimination
between the clinically distinct ADNI participant groups of-
fers an important first step in identifying biomarker diag-
nostic tools that can be validated in representative
population-based studies before clinical use. More recently,
a view has emerged of AD as a continuum of increasing pa-
thology and clinical manifestation of symptoms. Accord-
ingly, more studies have focused on predicting continuous
variables instead of binary classification.

4.5.1. Magnetic resonance imaging

4.5.1.1. Temporal lobe structures
Atrophy of the hippocampus, the best studied structure

affected by AD, has been used in patient classification by
a number of groups. Chupin et al [68] correctly distinguished
AD patients from control subjects 76% of the time, and MCI
patients who would convert within 18 months from control
subjects 71% of the time (Table 8). Karow et al [110] found
that hippocampal volume discriminated between control
subjects and AD patients with an AUC of 0.90, and between
control subjects and MCI patients with an AUC of 0.75
(Table 8). The discriminative ability of the rate of hippocam-
pal atrophy was investigated by Wolz et al [64], who found
that their method correctly classified 75% to 82% of AD pa-
tients and 70% ofMCI patients who converted to AD over 12
months. Their method was also able to discriminate between
MCI-c and MCI-nc patients at a rate of 64% (Table 8). Lot-
jonen et al [231] comparedWolz’s method to their own auto-
matic hippocampal extraction method using the same data
and found that it resulted in significantly more accurate clas-
sification of both AD patients from controls and MCI con-
verters from non-converters (Table 8). The division of the
hippocampus into head, body and tail subregions extracted
further information from this structure for use in diagnostic
classification. Greene et al[267] found that the combined left
and right hippocampal head produced the most accurate
classifications of any hippocampal subregions, but that the
best accuracy was attained by a combination of left hippo-
campal body, right hippocampal tail, AVLT and Digit Sym-
bol which classified controls, MCI and AD patients with
accuracies of 95.5%, 82.4% and 78.9%, respectively. Calvini
et al [66] derived a statistical indicator from the hippocam-
pus and other MTL structures and were able to discriminate
between AD and control groups, and between MCI and con-
trol groups, with AUCs of 0.863 and 0.746, respectively
(Table 8). The classification index of Chincarini et al [283]
used seven maximally discriminative small volumes in the
medial temporal lobe to distinguish between AD and control
groups, MCI and control groups and MCI converters from
non-converters with AUCs of 0.97, 0.92 and 0.74, respec-
tively (Table 8).

4.5.1.2. Multiple ROIs and whole brain
Other methods have focused on many ROIs across the

brain, using the degree of association with AD to construct
a score reflective of the anatomic profile of AD. These
include temporal, cingulate, and orbitofrontal regions. The
classifier developed by Fan et al [83] produced an SPS that
allowed direct comparison of patients and was able to
discriminate between AD and control subjects, between
MCI and control subjects, and between AD and MCI sub-
jects with AUCs of 0.965, 0.846, and 0.750, respectively
(Table 8). Similarly, Misra et al [118] extracted an abnormal-
ity score that discriminated MCI-c patients fromMCI-nc pa-
tients with a classification accuracy of 81.5 and an AUC of
0.77 (Table 8). Using a semisupervised SVM, Filipovych
and Davatzikos [93] discriminated between MCI-c and
MCI-nc patients with an AUC of 0.69, comparing favorably
with fully supervised SVM methods (Table 8). They also
found that 79.4% of all converters were classified as AD-
like (the remainder being classified as normal-like). In addi-
tion, 51.7% of nonconverters were classified as normal-like
and the remainder as AD-like, perhaps representing a pro-
portion of MCI patients who would convert to AD further
in the future. The authors also found that semisupervised
SVM performed better than a fully supervised SVM in in-
stances when there were a small number of labeled images.
The classifier developed by Yang et al [94], which relied on
image features defined by ICA, discriminated between con-
trol and AD subjects with an accuracy of 80.7%, a sensitivity
of 81.9%, and a specificity of 79.5%, and between control
and MCI subjects with an accuracy of 71.1%, a sensitivity
of 73.2%, and a specificity of 68.6%, based on GM images
and a training set-to-test set ratio of 90%:10% (Table 8).

McEvoy et al [117] presented data from their fully cross-
validated linear discriminant model compared with partially
cross-validated models, and found that the fully cross-
validated model discriminated between AD and control
subjects with an accuracy of 89%, a sensitivity of 83%, a spec-
ificity of 93%, and anAUCof 0.915 (Table 8). They noted that
these numbers were lower than those obtained using the
partially cross-validated model, suggesting that numbers pre-



Table 8

Methods for the classification of MCI and AD patients

Method

Control vs AD Control vs MCI Control vs MCI-c MCI-c vs MCI-

SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE A AUC Cross-validated? Reference

Hippocampal volume 75 77 76 61 71 72 72 67 66 60 [68]

Hippocampal volume 82 89 49 89 62 67 [68]**

12-month hippocampal atrophy rates 81 83 82 0.88 59 71 63 0.71 73 78 76 62 68 66 [60]

Hippocampal volume 79.7 63 [283]

Compared to 12 month hippocampal atrophy

rates using same data

71.6 60

MTL structural atrophy 74 85 0.86 45 85 0.75 85 83 0.88 [66]

SPS score 82 0.97 76 0.85 Yes [83]

SPS score 71 77 70 73 62 69 [83]**

ROI atrophy score 83 93 89 0.92 Yes [117]

DBM-multidimensional scaling 86.3 [75]

Cortical thickness 82 93 66 76 63 76 [107]

Single template TBM 74 84 80 68 65 66 Yes [81]

Multiple template TBM

Mean deformation 78 88 84 64 69 68

Mean of Jacobians 79 91 86 74 68 70

Mean of features 81 91 86 64 63 63

Combination of classifiers 79 90 85 65 63 64

Classification index 89 94 0.97 89 80 0.92 72 65 0.74 Yes [215]

ROI atrophy score 81 0.70 Yes [118]

Semisupervised SVM, SPS score 79.6 85.7 82.9 0.69 Yes [93]

ICA and SVM–gray matter 81.9 79.5 80.7 73.2 68.6 71.1 [94]

Combined MR features Yes [102]

Linear Discriminant analysis 85 93 82 86 69 67

SVM 75 94 67 93 14 92

Age correction MR data Yes [261]

No age correction 83 85

Age correction applied

FDG-PET abnormality index 83 78 0.90 [84]

FDG-PET functional connectivity 88 88 Yes [65]

FDG-PET factor analysis feature selection 98.1 92.5 95.2 91.2 80.8 88.0 Yes [90]

FDG-PET information retrieval/residual

vectors plus FAQ scores

94.4 84.8 93.6 89.7 62.9 76 [242]

FDG-PET baseline and 12 month ROIs

combined

83.2 93.6 88.4 79.8 82.9 81.3 52.2 73.2 63 [285]

FDG-PET non-negative matrix factorization 87.5 85.4 86.6 [249]

AD-like brain regions Yes [88]

MRI 85 80 82 0.88

FDG-PET 84 82 84 0.87

Hippocampal volume [110]

MRI 0.90 0.75

Entorhinal metabolism

FDG-PET 0.71 0.63

AD-like brain regions–Bayesian approach 87.6 [89]

(Continued )
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Table 8

Methods for the classification of MCI and AD patients (Continued )

Method

Control vs AD Control vs MCI Control vs MCI-c MCI-c vs MCI-

SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE A AUC Cross-validated? Reference

Hippocampal volume, ventricular expansion,

APOE, age

82 0.95 Yes [86]

Hippocampal volume, ventricular expansion,

age

71 0.86

T-tau 69.3 92.3 80.6 0.83 [57]

Ab242 96.4 76.9 87.0 0.91

p-tau181p 67.9 73.1 70.4 0.75

t-tau/Ab242 85.7 84.6 85.2 0.92

p-tau181p/Ab242 91.1 71.2 81.5 0.86

LRTAA model 98.2 79.5 89.9 0.94

Cortical normalized thickness index (NTI) 0.76 Yes [165]

AVLT 0.67

ADAS-cog–DR 0.67

MMSE 0.64

Longitudinal cortical thickness: static,

dynamic, and network features

96.1 81 0.88 [225]

MRI: Hippocampal volume, entorhinal

thickness, retrosplenial thickness

85.0 [155]

FDG-PET: Entorhinal, retrosplenial, lateral

orbitofrontal metabolism

82.5

CSF: t-tau/Ab242 81.2

Combination: Hippocampal volume,

retrosplenial thickness; entorhinal,

retrosplenial, orbitofrontal metabolism, t-

tau/Ab242

88.8

t-tau/Ab–42, left entorhinal cortex,

hippocampal volume

82.5 90.1 86.7 Yes [161]

t-tau/ Ab242, RAVLT immediate and

delayed recall, TMT2B*

93.8 95.6 94.8

LTRAA, left entorhinal cortex, hippocampal

volume

90.1 92.1 91.1

LTRAA, left entorhinal cortex, hippocampal

volume, RAVLT immediate and delayed

recall, TMT-B

92.2 97.5 95.2

ADAS-cog 0.93 Yes [87]

FDG-PET–30 best features 0.94

Combined classifier 0.97

Multiple Kernel Learning Yes [247]

Imaging modalities 78.9 93.8 87.6 0.94

Biological markers 58.1 79.4 70.4 0.77

Cognitive scores 89.2 92.6 91.2 0.98

All modalities 86.7 96.6 92.4 0.98

Multi-modal multi-task learning 93.3 83.2 Yes [250]

(Continued )
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Table 8

Methods for the classification of MCI and AD patients (Continued )

Method

Control vs AD Control vs MCI Control vs MCI-c MCI-c vs MCI-nc

SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC SEN SPE ACC AUC Cross-validated? Reference

Multi-modal: kernel combination 93 93.3 93.2 81.8 66.0 76.4 Yes [249]

Multi-modal automatic data-driven 96.4 48.3 67.1 0.80 Yes [287]

Blood-based biomarkers

11 serum/plasma proteins 54 78 0.70

11 serum/plasma proteins 1 age, sex,

education and APOE

79 87 0.88

Blood-based biomarkers [286]

11 item signature 1 APOE 64.8 85.9

11 item signature 2 APOE 71.1 77.0

Metafeature signature 1 APOE 86.7 85.6

Metafeature signature 2 APOE 83.0 90.7

Age stratification CN vs MCI and AD [288]

ACC AUC

,75 >75 All ,75 > 75 all

Neuropsychological measures 84 85 84 0.92 0.94 0.93

CSF biomarkers (t-tau/Ab42) 77 70 73 0.83 0.71 0.77

MRI ROIs 84 83 82 0.88 0.88 0.88

FDG-PET ROIs 79 75 76 0.86 0.69 0.77

Combined modalities 92 88 85 0.96 0.95 0.93

Abbreviations: t-tau, total tau; SEN, sensitivity; SPE, specificity; ACC, accuracy; AUC, area under the curve; SPS, structural phenotypic score; MTL, medial temporal lobe; DBM, deformation-based morphom-

etry; SVM, support vector machine; ICA, independent component analysis.

*MRI measures no longer significant in this model ** in [158].
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sented by other studies using partially cross-validated models
may be artificially high. Hinrichs et al [88] used a classifier
based onGMprobability maps and found that it discriminated
between AD and control subjects with a sensitivity of 85%
and a specificity of 80%. Park and Seo [75] tested their
method of multidimensional scaling (MDS) of DBM and
compared it with the ability of hippocampal volume to
discriminate between AD and control subjects. They found
that their MDS method outperformed hippocampal volume,
yielding accuracies of 86.3% and 75.0%, respectively
(Table 8). Further details of classifier construction using
SVMs are given in the Methods section 3.3.

Longitudinal measurements of cortical thickness were
the focus of a classifier constructed by Li et al [157]. They
found that although the pattern of cortical thinning was
similar in all patient groups, the rate of thinning and ratio
of follow-up to baseline measures provided a better tool
for distinguishing between MCI-c and MCI-nc patients.
An additional complementary component in the form of a
brain network feature computed from the correlations of
cortical thickness changes with ROIs further improved clas-
sification accuracy. The final classifier, comprising static,
dynamic, and network measures, discriminated between
normal control subjects and AD patients with an accuracy
of 96.1%, and between MCI-c and MCI-nc patients with
an accuracy of 81.7% (Table 8). The classifier of Park et al
[383] based on cortical shape and sulcal depths discrimi-
nated between control and MCI patients with an accuracy
of 73%, a sensitivity of 73%, and a specificity of 73%. Noise
sensitivity and spatial variation problems of other cortical
thickness estimation methods were overcome by more
robust method of Cho et al [237] which discriminated suc-
cessfully between control and AD patients or MCI con-
verters, or between MCI converters and non-converters
(Table 8). An automated method developed by Pachauri
et al [232] to leverage information found in cortical surface
topology boosted the classification accuracy of hippocampal
volume in discriminating between AD and control patients
by 4% and of other ROIs by around 3%.

The penalized logistic regression approach of Casanova
et al[241] to the high dimensional classification of patients
from MRI data discriminated between AD patients and con-
trols with accuracies, specificities and sensitivities of 85.7%,
90% and 82.9%, respectively, using GM and 81.1%, 82.5%
and 80.6%, respectively, using WM. The effect of registra-
tion to multiple templates on classification accuracy of
TBM was investigated by Koikkalainen et al [234] who
found that all 4 multi-template methods investigated resulted
in better discrimination of both AD from controls patients
and MCI converters from non-converters (Table 8).

Applying a correction to account for age-related atro-
phy in controls was shown by Franke et al[92] to increase
the accuracy of classification of AD patients from controls
from 83% to 85%, indicating that controlling for the ef-
fects of such confounding variables as age is critical to
achieving clinically useful classification accuracies with
MR data.

Leveraging information contained within structural and
functional connectivities in imaging data has increasingly
been a focus for improving classification. Cuingnet et al
[389] included a regularization step to take these relation-
ships into account and found that the addition of the step
to an SVM increased classification accuracy over an SVM
alone. Using cortical thickness measures, AD patients
were discriminated from normal controls with an accuracy
of 87%, a sensitivity of 83%, and a specificity of 90%
compared with the SVM alone, which achieved an accuracy
of 83%, a sensitivity of 74%, and a specificity of 90% in the
same classification challenge. Likewise, a method [384] that
takes into account the relationships between morphologic
features of ROIs augmented classification accuracy over
ROIs alone, and an approach that integrated the correlative
data via multikernel SVMs further improved classification
accuracy. The integrated approach discriminated between
AD and controls with an accuracy of 92.4% and between
MCIc and MCInc patients with an accuracy of 75%. The
OLPS score of Spulber et al [382], reflective of the degree
of AD-like neurodegeneration, achieved a sensitivity of
86.1%, a specificity of 90.4%, an accuracy of 88.4%, and
an AUC of 0.948 for the same classification challenge. An
improvement to the feature selection step proposed by Liu
et al [388], which takes into account pathologic degenera-
tion, achieved classification accuracies of 90.2%, 87.2%,
and 70.7% for the classification of AD patients versus con-
trols, MCIc versus controls, and MCIc versus MCInc pa-
tients, respectively.

Combining automatically estimated features from
different structural MRI analysis techniques augmented
classification accuracy in a study by Wolz et al [284].
When TBM, hippocampal volume, cortical thickness and a
manifold-based learning framework were combined, they
improved classification accuracy over single features using
both a SVM and linear discriminant analysis (Table 8). A
novel dimensionality reduction approach [379] improved
classification accuracies over a DBM–based technique and
discriminated between AD and control patients and between
MCI and control patients with accuracies of 84% and 76%,
respectively. Likewise, the tree-guided sparse coding
method of Liu et al [391] was able to achieve better classifi-
cation to L1-regularized Lasso alone using fewer features
that were concentrated in areas known to be most represen-
tative of AD such as the hippocampus, entorhinal cortex,
parahippocampal gyrus, and amygdala. The addition of
LLE as a method of dimensionality reduction improved
the efficacy of three different classifiers [396]. For example,
MRI features alone using a SVM discriminated between
control and AD patients with an accuracy of 50%, a sensi-
tivity of 48%, and a specificity of 51%. The results improved
to an accuracy of 90%, a sensitivity of 87%, and a specificity
of 92% with the addition of LLE.
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Normalization approaches in automated structural MRI
processing pipelines can affect classification accuracy. Us-
ing non-normalized cortical thickness measures and volu-
metric measures normalized to intracranial volume,
Westman et al [491] achieved a classification accuracy of
91.5% between control and AD patients and of 75.9% be-
tween MCI converters and nonconverters.

4.5.1.3. White matter hyperintensities
Provenzano et al [441] used the level of WMHs in pa-

tients who were PiB positive for diagnostic classification.
At a cutoff of 1.25 cm3 for “high” WMH, they were able
to discriminate between AD and control patients with a
sensitivity of 83% and a specificity of 64%.

4.5.1.4. Comparison of MRI methods
Cuingnet et al [158] directly compared 10 methods for the

automatic classification of AD patients from anatomical MR
data using the ADNI database. Five voxel-based approaches,
three cortical approaches, and two methods based on hippo-
campal shape and volume were tested for their ability to
discriminate between control, MCI-c, MCI-nc, and AD sub-
jects. They found that voxel- or cortical thickness-based whole
brain methods yielded highest sensitivities for AD versus con-
trol subjects (maximumof81%), but that sensitivitieswere sub-
stantially lower for discriminating betweenMCI-c andMCI-nc
subjects (maximum of 70%). Casanova et al [411] compared
classification data from a number of studies and illustrated
the difficulty in directly comparing studies that differ in many
aspects beyond simple methodology. Eskildsen et al [386]
directly tested the effects of “double dipping” (the practice of
reusing the training set as the test set) by using a dependent
test set. They found that the practice artificially inflated classi-
fication accuracies, in one case to 87.4% from 74.6%. Young
et al [408] noted the difficulty in comparing studies of the pre-
diction of conversion because of differences in the length of
time to conversion or because of the use of longitudinal data
versus baseline data. These studies again emphasize the diffi-
culty in comparing the results from different studies using
different methodologies. For this reason, the 2012-2013 update
has not included additional classification data in Table 8. As
ADNI progresses, it is increasingly clear that standardized sys-
tematic studies of the cohort such as those reported byCuingnet
et al [158] are required tomake soundconclusions regarding the
efficacy of each technique.

Combining automatically estimated features from
different structural MRI analysis techniques augmented
classification accuracy in a study by Wolz et al [284].
When TBM, hippocampal volume, cortical thickness and a
manifold-based learning framework were combined, they
improved classification accuracy over single features using
both a SVM and linear discriminant analysis (Table 8).

4.5.2. [18F]-fluorodeoxyglucose-positron emission
tomography

As AD affects not only morphology but also metabolism
in the brain, Haense et al [84] used the AD t-sum measure of
scan abnormality from FDG-PET data to discriminate be-
tween AD and control subjects with a sensitivity of 83%
and a specificity of 78% (Table 8). The HCI of Chen et al
[85], which also capitalized on hypometabolism data across
the entire brain, was significantly different in control, MCI-
nc, MCI-c, and AD subject groups. The method of Hinrichs
et al [88], described in the MRI section, was also used with
FDG-PET data and was able to discriminate between AD
and control subjects with a sensitivity of 78% and a speci-
ficity of 78% (Table 8). Huang et al [65] used FDG-PET
data to examine functional connectivity between brain re-
gions and then leveraged the patterns they found to be typical
of AD for classification purposes. They found that compared
with control subjects, AD patients had decreased temporal
lobe inter-regional connectivity, especially in the hippocam-
pus, and weaker between-lobe and between-hemisphere
connectivity. In contrast, MCI patients had increased con-
nectivity between occipital and frontal lobes compared
with control subjects, illustrating the uniqueness of this con-
dition. This method discriminated between AD and control
subjects with a specificity of 88% and a sensitivity of 88%
(Table 8). Using their method based on feature selection us-
ing factor analysis and an SVM, Salas-Gonzalez et al [90]
discriminated between AD and control subjects with sensi-
tivity, specificity, and accuracy of 98.1%, 92.5%, and
95.2%, respectively, and between MCI and control subjects
with sensitivity, specificity, and accuracy of 92.1%, 80.8%,
and 88.0%, respectively (Table 8). The classifier constructed
by Clark et al [242] based on information retrieval tech-
niques was able to discriminate between control and AD pa-
tients with a sensitivity, specificity and accuracy of 94.4%,
92.5% and 93.6%, respectively and between MCI converters
and non-converters with a sensitivity, specificity and accu-
racy of 89.7%, 62.9% and 76.5%, respectively when the
model include FAQ scores (Table 8). An alternative
approach using non-negative matrix factorization was
described by Padilla et al [248] and achieved an accuracy
of 86.6%, a sensitivity of 87.5% and a specificity of 85.4%
in the classification of AD patients from controls
(Table 8). Having identified entorhinal metabolism as the
FDG-PET measure with the largest effect size for the detec-
tion of early AD, Karow et al [110] found that this measure
discriminated between control and AD subjects with an
AUC of 0.71, and between control and MCI subjects with
an AUC of 0.63 (Table 8). Mormino et al used 11C-PiB
PET imaging to deduce a cutoff point to optimally separate
PiB-positive from PiB-negativeMCI patients, and found that
PiB-positive MCI patients had lower hippocampal volumes
and greater episodic memory loss compared with MCI pa-
tients with 11C-PiB levels below the cutoff point of 1.465.
The selection of maximally discriminative voxels using sig-
nificance measures was used in a classifier described by
Martinez-Murcia [398] and applied to ADNI FDG-PET
data. It discriminated between AD and control patients
with an accuracy of 91%, a sensitivity of 92%, and a speci-
ficity of 89%. The addition of longitudinal data to baseline
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data to improve classification accuracy from anatomically
selected features of FDG-PET scans was the approach taken
by Gray et al [285]. Across all categories, improved classifi-
cation accuracies were reported, ranging from 65% in the
MCI converter versus non-converter classification to 88%
in discriminating between control and AD patients (Table 8).

Arbizu et al [397] used their AD-conv score, based pri-
marily on hypometabolism in the posterior cingulate area
in addition to clinical and cognitive variables to divide
MCI patients into groups with different probabilities of
progressing to AD. These ranged from 8% in the first sixtile
to 38% in the fourth sixtile to 100% in the top sixtile. This
approach differs from conventional binary approaches to
classification and emphasizes the concept of AD as a con-
tinuum of disease. The classification of MCIc versus
MCInc patients by this method was improved significantly
with the addition of clinical variables: the combined mo-
dalities reached an accuracy of 82%, a sensitivity of 85%,
and a specificity of 80%.

A direct comparison of the diagnostic ability of three
methods summarizing FDG PET data into a single score
was made by Caroli et al [492] in three data sets including
ADNI. In the ADNI cohort, the hyperbolic convergence in-
dex (HCI) [85] significantly outperformed the PMOD Alz-
heimer discrimination analysis tool [84] and a set of meta-
analytically derived regions of interest (metROI) [135].
However, other methods were superior in other cohorts.
Classification using all indices improved with increasing
disease severity with AUCs ranging from 0.800 to 0.949
(PALZ), 0.774 to 0.967 (metaROI), and 0.801 to 0.983
(HCI), for the classification of MCIc and moderate AD
compared with controls, respectively. The authors concluded
that all three indices are differentially sensitive to disease
severity and are therefore of utility in the detection of disease
in both research and clinical settings.

4.5.3. CSF biomarkers
Shaw et al [57] examined CSF biomarkers in the ADNI

cohort as well as in a cohort of non-ADNI autopsy-
confirmed AD patients, with the goal of developing a
“biomarker signature” best able to predict AD and to classify
patients correctly. Like many smaller studies, they found that
t-tau and p-tau181p, as well as the t-tau/Ab-42 and p-tau181p/
Ab-42 ratios, all increased in MCI patients compared with
control subjects, whereas CSF Ab-42 decreased. The best
single measure for discriminating between AD and control
subjects was CSF Ab-42, which had an AUC of 0.913, a
sensitivity of 96.4%, a specificity of 76.0%, and an accuracy
of 87% (Table 8). Linear regression analyses determined
which variables, including APOE genotype, contributed
most to the discrimination, and a final linear regression
model, which included Ab-42, APOE 34 carriers, and t-tau
(LRTAA model), resulted in enhanced discrimination over in-
dividual factors (Table 8). De Meyer et al [159] used an un-
supervised learning method that did not presuppose clinical
diagnosis to identify biomarkers of AD. Amixture modeling
approach derived a signature, consisting of both Ab-42 and
t-tau concentrations, which had a sensitivity of 94% in
autopsy-confirmed AD patients from an independent cohort
and was present in 90%, 72%, and 36% of patients with AD,
MCI, and no cognitive impairment, respectively (Fig. 18).
APOE 34 carriers were over-represented in those patients
with the AD biomarker signature by a factor of 6.88:1. Inter-
estingly, when modeling single biomarkers, the cutoff con-
centration of Ab-42 that optimally delineated AD patients
from healthy elderly subjects was found to be 188 pg/mL,
close to that found by Shaw et al [57] and Schott et al
[160]. Moreover, the proportion of healthy elderly subjects
with an identifying ADCSF biomarker signature was similar
to that found by Schott et al [160], and likely reflects a pro-
portion of cognitively normal elderly subjects whowill prog-
ress to MCI and AD in the future. Further, De Meyer et al
[159] examined another data set with MCI patients (n ¼
57) followed up for 5 years, and they showed that their model
had a sensitivity of 100% in patients progressing to AD. The
finding that AD pathology is detectable in significant
numbers of healthy elderly control subjects has important
implications for future clinical trials and suggests the possi-
bility of presymptomatic treatment studies of potential AD-
preventive compounds. Initial studies have reported that
given the often shared pathology between AD and Lewy
body dementias such as Parkinson’s disease, CSF levels of
a-syn may have potential as a biomarker of AD. Korff
et al [479] found that the marker alone offered only modest
sensitivity (65%) and specificity (74%) and an AUC of 0.719
for the classification of AD from control patients. However,
the addition of either a-syn levels alone or the ratio of a-syn
to p-tau181 to established CSF biomarkers improved classifi-
cation accuracy between both controls and AD patients and
between MCI converters and nonconverters [478], suggest-
ing that in combination of other markers, a-syn may repre-
sent a useful additional tool for AD diagnostics.

4.5.4. Clinical
Llano et al [96] compared the ADAS-cog and MMSE

tests with a new form of ADAS-cog in which the subscores
were given weights using a Random Forests tree algorithm,
thereby resulting in a new metric, the composite ADAS.-
Tree. Therefore, ADAS.Tree represents a multivariate model
in which subscales have been weighted according to their
importance in discriminating between AD and control sub-
jects. When the ability of ADAS.Tree to classify control,
MCI, and AD subjects was compared with that of ADAS-
cog and MMSE, the composite model generated a numeri-
cally highest test statistic. The authors suggest that this
derivative of an internationally recognized and easily admin-
istered test may offer a more widely useful and less expen-
sive approach to other imaging and CSF biomarkers that
can be invasive and/or expensive.

Another cognitive test that may have utility in diagnosing
MCI is the FAQ. Brown et al [274] identified two items of the
FAQ, the ability to keep business papers organized and the
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ability to remember important dates and occasions, that
effectively differentiated between control and MCI patients.
Ito et al [493] proposed a bounded model which takes into
consideration the nonnormal distribution of data at the
boundaries of the FAQ scores. The censored approach
greatly improved predictability of disease progression in
FAQ scores over a standard approach.

4.5.5. Blood based biomarkers
A new direction of research in 2011-2012 has been the

development of blood-based biomarkers for diagnostic clas-
sification as a potentially more clinically feasible alternative
to more costly or invasive modalities as a first line screening
method for the disease. O’Bryant et al [255] constructed a
classifier from blood based markers that were highly corre-
lated across both serum and plasma. These 11 proteins were
comparable to CSF biomarkers in their ability to discrimi-
nate AD patients from cognitively normal controls, but the
addition of demographic data (age, sex, education, APOE
status) resulted in a model with similar classification accu-
racies to the best CSF-basedmodels (Table 8). A study of po-
tential plasma based markers by Johnstone et al [286]
identified 11 analytes that were maximally discriminative
between controls and MCI converters. Once again, APOE
status increased classification accuracy (Table 8). The refine-
ment of the model by the addition of ‘metafeatures,’ able to
identify and leverage information from potentially biologi-
cally linked features, further enhanced accuracy (Table 8).
A proteomic signature identified by Llano et al [422] from
a bank of plasma analytes using a multivariate analysis con-
tained 14 analytes and discriminated between control and
AD patients with a sensitivity of 86.5%, a specificity of
84.2%, and an AUC of 85.3%. The blood-based panel of an-
alytes developed by Doecke et al [421], which overlapped
with biomarkers selected by both O’Bryant et al [494],
was able to discriminate AD from control patients with an
accuracy of 83% and an AUC of 85%. They found that the
inclusion of APOE status, education, BMI, age, and sex
also strengthened the model. Dubey et al [413] compared
the diagnostic ability of proteomic versus MRI data and
found that proteomic data were on a par with MRI data in
discriminating between controls and AD patients and had
increased accuracy, sensitivity, and specificity in diagnosing
MCI patients.
4.5.6. Combined modalities

4.5.6.1. Early approaches
The approach of Kohannim et al [86] combined multiple

factors, including MRI and FDG-PET measures, CSF bio-
markers, APOE genotype, age, sex, and BMI, to enhance
machine learning methods for AD diagnosis. They found
that the optimum combination of factors to discriminate be-
tween AD and control subjects—hippocampal volume, ven-
tricular expansion, APOE genotype, and age—yielded an
AUC of 0.945 with an accuracy of 82%, whereas to detect
MCI patients, the optimum combination of hippocampal
volume, ventricular expansion, and age yielded an AUC of
0.860 and an accuracy of 71% (Table 8). Walhovd et al
[155] likewise sought the optimum discriminatory combina-
tion of biomarkers. They found that the best MRI combina-
tion to discriminate between AD and control subjects
consisted of hippocampal volume, entorhinal thickness,
and retrosplenial thickness (85% accuracy); the best FDG-
PET combination was entorhinal, retrosplenial, and orbito-
frontal metabolism (82.5% accuracy); and the best CSF
combination was t-tau/Ab-42 (81.2% accuracy). Using step-
wise linear regression, they developed a final model that
included retrosplenial thickness and the t-tau/Ab-42 ratio
as predictors and which achieved 88.8% accuracy in the clas-
sification of AD versus control subjects. For the discrimina-
tion ofMCI from control subjects, the optimum combination
of factors was found to be hippocampal volume and the t-tau/
Ab-42 ratio, with an accuracy of 79.1 % (Table 8). Ewers
et al [161] tested a variety of cross-validated models of sin-
gle or multiple predictors for their ability to discriminate be-
tween control and AD subjects. They found that the addition
of neuropsychological tests, specifically the AVLT immedi-
ate free recall and DR and the TMT-B, to models that
included only CSF and/or genetic biomarkers and imaging
measures resulted in increased overall classification accu-
racy. The best model, which included CSF t-tau/Ab-42,
the number of APOE 34 alleles (the previously described
LRTAA model [57]), left entorhinal volume, and hippocam-
pal volume, in addition to the aforementioned neuropsycho-
logical tests, resulted in an accuracy of 95.2%, a sensitivity
of 92.2%, and a specificity of 97.5% (Table 8). Van Gils et al
[162] also demonstrated that cognitive tests such as the
CDR, MMSE, and the neuropsychological battery
comprised the most important feature category of all classi-
fiers designed to discriminate between different patient
groups. The classifier constructed by Lemoine et al [87]
from data fusion of both FDG-PETand clinical data discrim-
inated between control and AD subjects with an AUC of
0.97, an improvement over the best single FDG-PET classi-
fier (AUC¼ 0.94) or the best clinical classifier (derived from
ADAS-cog data: AUC ¼ 0.93) (Table 8). Vemuri et al [132]
compared STAND score measures from MRI with CSF and
concluded that CSF and MRI biomarkers independently
contribute to intergroup diagnostic discrimination, and the
combination of CSF and MRI provides better prediction
than either source of data alone.

4.5.6.2. Multimodal classification
A significant technical advance in classification was the

development of classifiers that combine information from
multiple modalities. The multi-kernel learning framework
developed by Hinrichs et al [247] combined multiple mo-
dalities for classification of AD patients. They found that
while the classifier based on all modalities performed
best overall, cognitive scores alone separated AD patients
from controls to almost the same level of accuracy
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(Table 8). Similarly, two studies by Zhang et al [249]
focused on combining MR, FDG-PET and CSF biomarker
data using different methods (multi-modal multi-task
[250], and kernel combination [249]). They found that
combination of different modalities outperformed single
modalities in classification accuracy [250] (Table 8) and
that the kernel combination method correctly identified
91.5% of MCI converters and 73.4% of MCI non-con-
verters. Likewise, both Westman et al [495] and Yang
et al [487] found that combinations of MRI measures
representative of AD brain morphology changes and CSF
biomarkers were most effective at discriminating MCI
from control patients with accuracies of 77.6% and 72%,
respectively. Yang et al [487] also reported improved clas-
sification accuracies using hippocampal and ventricular
volumes rather than shapes.

With the optimum combination of modalities for classifi-
cation largely established (usually a combination of MRI
and CSF data, with APOE status, gender, and age), new
methodologies have been developed that have realized
further gains in accuracy by optimizing the ways in which
features are selected and modalities combined. The multi-
modal classifier of Gray et al [405], based on the random for-
ests algorithm, enhanced classification accuracy for AD
versus controls, and MCI versus controls over all single-
modality classifications. However, it was no more accurate
in discriminating between MCI converters and nonconvert-
ers than MRI data alone. The novel multiple kernel classifier
of Liu et al [392] combinedMRI and CSF data to improve on
the classification accuracies attained by the SVM of Zhang
et al [249]. The authors attributed this improvement to the
use of group Lasso regularization to enforce sparsity in the
different modalities. Instead of focusing on binary classifica-
tion, the multimodal approach of Cheng et al [393] estimated
clinical scores from MRI, FDG-PET, and CSF data using
relevance vector regression. Their approach attained correla-
tion coefficients of 0.80 and 0.78 for the estimation of
MMSE and ADAS-cog scores, respectively. Not all multi-
modal approaches have proven optimal. Casanova et al
[411], who condensed multimodal information to a single
score, AD-PS, found that although this index improved
MCIc versus MCInc classification accuracy beyond other
summary indices such as STAND and SPARE-AD, it did
not perform as well as individual structural or cognitivemea-
sures in other classification problems.

Can multimodal techniques improve diagnosis in the
clinical setting? Simonsen et al [417] compared the accuracy
of their PredictAD software with that of clinical raters asked
to classify patients into a range of categories depending on
their likelihood of developing the disease. The software
increased classification accuracy over paper information
alone from 63.2% to 70% and additionally improved inter-
rater agreement and increased the raters’ confidence in their
decision. The PredictAD appears capable of beneficially
combining data from different modalities and therefore
may prove a useful adjunct for decision support in a clinical
environment. The study of Escudero et al [420] addressed
cost-effectiveness of biomarker-based diagnosis. They
found that when the number of biomarkers was minimized,
classification accuracies were comparable to methods that
include all biomarkers. However, the selection of bio-
markers solely to minimize costs lowered accuracies. This
proof-of-concept study supports the feasibility of a personal-
ized clinical diagnostic aid for AD that can be optimized for
cost and time efficiency.

4.5.6.3. Feature selection
Given the high dimensionality of imaging techniques, the

selection of a minimum set of features that optimally pre-
serve complementary information between modalities is a
critical step. A number of feature selection techniques
have been borrowed from computer graphics fields, and
the incorporation of these into AD classification represents
a significant advance. Using an automatic data-driven
method for the selection of multi-modal features and SVM
trained on AD and control patients, Cui et al [287] also found
that combined optimal MR, CSF and neuropsychological
features outperformed any single modality in the classifica-
tion ofMCI converters versus non-converters. From baseline
features, they predicted conversion of MCI to AD within 24
months with an accuracy of 67.1%, a sensitivity of 96.4%, a
specificity of 48.3% and an AUC of 0.796 (Table 8). Liu et al
[404] reported an accuracy of 67.8%, a sensitivity of 64.9%,
and a specificity of 70% in the classification of MCIc versus
MCInc groups. Dukart et al [496] used meta-analyses to
combine MRI and FDG PET data for improved classifica-
tion. The combination discriminated between control and
AD patients with an accuracy of 85.7%, a sensitivity of
89.3%, and a specificity of 82.1%. Additionally, when
ADNI data were used for training the SVM, classification
in another cohort reached similar accuracies, showing the
applicability of ADNI data to the wider community. Suk
et al [387] applied deep learning techniques developed for
vision processing to neuroimaging to improve feature selec-
tion. The incorporation of high-level information such as re-
lationships between features improved classification
accuracy over the use of only low-level features, such as
gray matter volumes.

4.5.6.4. The effect of age on classification
The possibility that different modalities may not be

equally useful in classification of patients of different
ages was explored by Schmand et al[288] who analyzed
the efficacy of neuropyschological measures, CSF bio-
markers and FDG-PET and MRI measures in classifying
two age-stratified groups (younger and older than 75 years)
within the ADNI cohort. They found that, regardless of age,
neuropsychological and MRI measures resulted in the most
accurate classification. Classifications based on CSF bio-
markers were more accurate in those aged younger than
75 but neither FDG-PET nor CSF data augmented accuracy
in older individuals (Table 8). Once again, combined fea-
tures resulted in the most accurate discrimination of the
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cognitively impaired (AD and MCI) from the cognitively
normal.

4.5.6.5. Missing data
In any large study involving multiple tests, it is inevitable

that some data will be missing from the overall data set. Two
approaches for addressing the issue of missing data in multi-
modal classification represented by Yuan et al [415] and
Xiang et al [416] who tested their methods (iMSF and
iSFS, respectively) on the ADNI cohort and found both
improved classification over other missing value estimation
methods and over single-modality classification. A compar-
ison of their results is presented in Fig. 37.

4.5.7. Diagnosis of MCI using National Institute on Aging-
Alzheimer’s Association criteria

The NIA-AA criteria for MCI due to AD recently incor-
porated the use of biomarkers for both amyloid deposition
(CSF Ab42, 11C-PiB-PET) and neuronal injury (CSF tau,
hippocampal and whole brain atrophy on MRI, FDG-PET)
in addition to clinical information [497]. According to these
criteria, MCI patients are classified into four categories:
MCI high (a high likelihood of AD—both Ab and neuronal
biomarkers positive), MCI intermediate (an intermediate
likelihood of AD—one or other of the biomarker types pos-
itive), MCI unlikely (unlikely to progress to AD—neither
biomarker type positive), and MCI core (conflicting/missing
biomarkers, no probability assigned). Petersen et al [353]
compared these criteria in MCI patients in two cohorts
including ADNI. Similar trends were observed in both co-
horts regarding progression to AD, namely, a similar per-
centage of subjects progressed within 12 to 15 months,
and of these, the highest proportion were positive for both
neurodegeneration (MRI, FDG-PET) and amyloid (CSF
Ab42 and PiB-PET) biomarkers. Progressors also included
a smaller proportion of patients who tested positive for neu-
rodegeneration biomarkers only, but nonewhowere amyloid
positive and neurodegeneration negative. The MCI group
displayed expected heterogeneity: 55% had evidence for
both neurodegeneration and amyloid deposition, 12% were
amyloid positive but neurodegeneration negative, 17%
were neurodegeneration positive but amyloid negative, and
16% were biomarker negative. This last group may include
patients with cognitive impairment unrelated to AD. The re-
sults suggest that neurodegeneration is of primary impor-
tance in progression to AD and support the use of
biomarkers as an adjunct to the clinical diagnosis of AD.
In the ADNI cohort alone, Guo et al [352] examined disease
progression over 6 to 60 months in MCI patients classified
by these criteria. The MCI-high subgroup was 2.3 times
more likely to progress than MCI core (95% CI: 1.36–
3.89, P ¼ .002), and no patients in MCI-low group pro-
gressed within the time frame. The authors concluded that
the NIA-AA criteria are a useful set of diagnostic guidelines
for stratification of MCI patients in terms of risk of progres-
sion to AD but that binary nature of biomarker cutoff points
and also division of biomarkers into only two categories may
miss opportunity for a more nuanced interpretation of the
data. As only 48% of ADNI MCI patients were found to
have consistent AD-like patterns across all biomarkers and
could be classified as high probability for AD using the
NIA-AA criteria, Lowe et al [354] proposed modifications
to these guidelines (Fig. 38). Using these adjustments,
when abnormal amyloid markers were prioritized over
neuronal markers, only a positive amyloid biomarker and a
single neuronal injury marker were required for diagnosis
of an AD pattern. Eighty seven percent of subjects were
then classified as having a high probability for AD, and
1% of subjects lacking abnormal amyloid and neuronal
markers were categorized as having a “high probability of
non-AD,” avoiding some of the NIA-AA categorizations
of patients as “undefined” and “uninformative.” Clearly, op-
erationalizing these criteria is a current priority to ensure the
optimal stratification of patients across the AD spectrum.

4.5.8. Summary and conclusions of diagnostic classification
papers

A variety of approaches have been used to diagnose MCI
and AD, some based on single measures, others on composite
scores of a singlemodality, and still others on a combination of
factors fromdifferentmodalities. It should be emphasized that
ADNI was not designed as a diagnostic classification study;
none of the imaging methods used in ADNI is as accurate as
a clinical diagnosis, and the enrolled cohort represents typical
cases rather than the types of difficult diagnostic problems that
clinicians often confront. However, a number of conclusions
can be drawn from the results of these studies. Single features,
such as hippocampal volume, are not as accurate as multiple
features, such as whole brain or cortical thickness measure-
ments. The best classifiers combine optimum features from
different modalities, including CSF biomarkers, MRI, FDG-
PET, and cognitive measures, as well as factors such as age
and APOE 34 allele status. The most discriminative measures
include hippocampal volume, entorhinal cortical thickness,
entorhinal metabolism, the t-tau/Ab-42 ratio, and ADAS-
cog scores. In some of these models, FDG-PET measures
appear to lose significance to cognitive and MRI measures;
however, glucose hypometabolism alone has been shown to
have high classification accuracy. ADAS-cog scores, either
useddirectlyor in amodel usingweighted components, appear
to be an excellent diagnostic tool, although the highest accu-
racies were found with the addition of MRI measures.
Although most classifiers used baseline measurements, there
is some evidence to suggest that longitudinal datamay provide
even more accurate diagnoses, but it remains to be seen
whether this approach is more generally applicable to other
modalities. Currently, the best classifiers are able to discrimi-
nate between control and AD subjects with accuracies in the
mid-90% range, but have considerably lower accuracies
when discriminating between control andMCI subjects or be-
tweenMCI-nc andMCI-c subjects, although data for the latter
diagnoses, arguably the more important distinction to make,
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are far less reported. It is as yet unknown whether the applica-
tion of some of the promising classifiers to these problemswill
result in increased diagnostic accuracy. Another key question
is how methods that perform well in ADNI, with its sharply
delineated diagnostic groups and exclusion of mixed demen-
tias and borderline cases, will translate to the community or
general clinic setting for wider diagnostic use. Validation
studies in population-based samples will be required to
address this issue.

Studies published in 2011-2012 continued to seek ways to
improve classification accuracy within the ADNI cohort.
Someworks detailed approaches to leveragingmore informa-
tion from the hippocampus, from cortical thickness and topol-
ogy and from maximally discriminative volumes by deriving
statistical indicators. Others dealt with improving classifica-
tion through methodological improvements such as registra-
tion to multiple templates and by accounting for age-related
cognitive decline in control groups. While 2011-2012 studies
did not improve on the best classification accuracies of previ-
ous studies, they became consistently more accurate, and
were able to discriminate between controls and MCI or AD
patients with accuracies in the mid-90s and mid-80s, respec-
tively. Classification of MCI converters and non-converters
reached accuracies in the low 80s. The most accurate classifi-
cation methods were generally longitudinal and combined
multiple modalities and multiple features within each modal-
ity. The first reports of blood based biomarkers appeared and,
despite being exploratory and preliminary, showed great
promise for future clinical diagnosis. Classification methods
developed in ADNI still remain to be validated in indepen-
dent, population based cohorts. Burgeoning research in
numerous fields led to many exciting developments in classi-
fication during 2012 and 2013. Thewidespread use of dimen-
sionality reduction and feature selection techniques improved
classifier performance over many SVMs. Shapes of subcor-
tical structures and changes in structural and functional con-
nectivities during disease progression were used to improve
classification. New potential biomarkers such as WMHs and
a-syn showed promise in distinguishing between patient
groups, and the continued development of blood-based bio-
markers led to their incorporation into classifiers for the first
time. The nature of the classification problems targeted by
research groups transitioned from primarily distinguishing
AD patients from controls to the far more challenging prob-
lem of distinguishing MCI converters from nonconverters.
However, there was increasing recognition of the difficulties
in comparing results from studies using nonstandardized
data sets and/or methodologies. Finally, introduction of new
NIA-AA criteria for classifying MCI patients underscored
the importance of assessing these criteria and operationaliz-
ing them for future ADNI studies.
4.6. Improvement of clinical trial efficiency

One of the primary goals of ADNI is to improve the effi-
ciency of clinical trials of AD-modifying treatments. Selec-
tion of the study population and development of more
sensitive outcome measures are two approaches to
increasing the power of clinical trials and therefore reducing
the number of participants required, the length of time
required before a disease-modifying effect is observed,
and therefore the overall cost. With the advent of early inter-
vention trials, the prediction challenge has shifted toward
detecting persons with normal cognition who are likely to
progress to MCI or even AD within the time frame of the
clinical trial. This involves the selection of a subset of those
subjects who harbor AD pathology but to present no clinical
manifestation of the disease. This section details the results
of studies examining the use of structural, fluid, and genetic
biomarkers in the improvement of clinical trial efficiency.

4.6.1. Prediction of cognitive decline
Beyond the simple classification of clinical trial partici-

pants, an important strategy for increasing clinical trial effi-
ciency is the enrichment of clinical trial populations,
normally MCI patients, with participants who are likely to
progress to AD within a short time frame. In particular, the
early and reliable detection of MCI subjects who convert
early to AD could support clinical decisions for or against
therapy with disease-modifying drugs. Many studies have
therefore focused on identifying baseline predictors of future
decline, with “future decline” meaning both decline in clin-
ical measures such as the MMSE, ADAS-cog, and CDR-SB,
and conversion of MCI to AD status. However it is
measured, it is desirable for appreciable decline to occur
over a relatively short time frame, typically 12 months. Im-
aging measures, CSF biomarkers, and APOE 34 allele status,
in combination or alone, have been identified as baseline
future predictors, and several studies have focused on deter-
mining the optimum combination of all modalities that re-
sults in the most power for clinical trials.

4.6.1.1. Magnetic resonance imaging

4.6.1.1.1. Temporal lobe
Hua et al [112] used TBM to create Jacobian maps of tem-

poral lobe atrophy at baseline and examined the relationship
between the maps and cognitive decline over the following
year, as assessed by both the CDR-SB and the MMSE.
They found that baseline temporal lobe atrophy predicted
decline in the MMSE in AD patients and also predicted the
conversion of MCI to AD over 12 months (Fig. 19;
Table 9). Baseline atrophy of MTL structures was also found
to best predict the progression of MCI patients to AD in a
study by Desikan et al [163]. These measures, including
the volumes of the hippocampus and amygdala and the thick-
ness of the entorhinal cortex, temporal lobe, and parahippo-
campal gyrus, were found to be better predictors of clinical
decline than levels of CSF Ab-42 or FDG-PET ROIs. The
combination of CSF biomarkers and FDG-PET ROIs pre-
dicted time to progression of MCI to AD with an AUC of
0.70, a sensitivity of 93%, and a specificity of 48% compared
withMRI temporal lobe factors, which had anAUC of 0.83, a



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e68
sensitivity of 87%, and a specificity of 66%. The addition of
CSF or FDG-PET measures to the combined Cox propor-
tional hazards model did not significantly increase prediction
accuracy, with the combined model predicting conversion
with an AUC of 0.83, a sensitivity of 90%, and a specificity
of 69% (Table 9). Similar structures were found to predict
future decline in cognitive status by Kovacevic et al [164],
who used high-throughput volumetry to segment ROIs in
control, MCI, and AD subjects. They found that after adjust-
ing for age, education, and APOE genotype, smaller baseline
volumes of the hippocampus and the amygdala and larger
temporal horn volume predicted 6-month decline in both
the MMSE (b [P] ¼ 0.14 [.04], 0.18 [.004], and 20.2
[.003], respectively) and CDR-SB (b [P] ¼ 20.19 [.005],
20.12 [.06], and 0.2 [.005], respectively) in all groups
(Table 9). Risacher et al [114] also found atrophy of struc-
tures within the MTL to be the best antecedent of imminent
conversion of MCI to AD. The largest effect sizes were for
hippocampal and amygdalar volume and cortical thickness
of the entorhinal cortex and inferior, middle, and superior
gyri (Fig. 20; Table 9).

A major challenge for the selection of clinical trial
populations is the heterogeneity of the amnestic MCI pop-
ulation as only 60% to 70% of these patients harbor AD
pathology. Hippocampal volume has been shown to be
effective in identifying subjects more likely to progress
to dementia, but its use as a practical tool in subject selec-
tion has not been addressed. A systematic study by Yu
et al [498] characterized hippocampal volume as an
enrichment biomarker, investigating the selection of an
appropriate cut point, the effect of outcome measures,
and the performance of different hippocampal volume al-
gorithms that generate different absolute hippocampal
volumes. The study developed cut points based on percen-
tiles of distribution of hippocampal volumes from a
normal control cohort. At more stringent cut points of
less than 25% of normal, effect sizes were maximized
and sample sizes minimized, but trial costs were increased
because of higher screen failure rates. Investigator costs
were minimized with cut points in the range of 10% to
25% of normal, which corresponded to an approximate
30% to 40% saving. In general, the estimated trial time
was unchanged. All four hippocampal volume algorithms
tested had similar sample sizes, trial costs and trial dura-
tion, and effects of cut points on effect sizes. The authors
hoped that the study would allow informed choice of hip-
pocampal volume cut point, leading to the operationaliza-
tion of hippocampal volume in clinical trials.

If hippocampal atrophy is predictive of future cognitive
decline, what biomarkers are then predictive of hippocampal
atrophy itself? Answering this question has clear implica-
tions for powering early intervention CTs for AD in which
the ability to predict cognitive decline from an even earlier
time point in the disease is crucial. Desikan et al [163] exam-
ined whether factors such as CSF biomarkers and measures
of cortical thinning were able to predict hippocampal atro-
phy. They found that hippocampal atrophy was significantly
predicted by decreased levels of Ab and increased levels of
tau in MCI and AD patients and by the baseline thickness of
the entorhinal cortex and inferior temporal gyrus Ab and tau
positive individuals.

4.6.1.1.2. Ventricles
Baseline ventricular morphology has been shown to pre-

dict future clinical decline in studies of the ADNI cohort.
Chou et al [126] found that this measure predicted decline
in MMSE, global CDR, and CDR-SB over 12 months
(Fig. 21; Table 9). These findings were confirmed in a subse-
quent larger study by the same group [127], and further
extended by examining additional cognitive criteria. Only
right ventricular baseline anatomy was correlated with
future decline in DR memory scores, but there was no corre-
lation between ventricular anatomy and changes in depres-
sion scores, despite a baseline association between these
measures (Table 9). Yang et al [487] reported that hippocam-
pal and ventricular shapes outperformed corresponding
volumetric measures, predicting MCI conversion within 2
years with an accuracy of 66.7%, a sensitivity of 82%, and
a specificity of 51.4%.

4.6.1.1.3. Other regions
Targeting the caudate, a region not traditionally associ-

ated with AD,Madsen et al [130] found that baseline atrophy
in the right caudate predicted both the conversion ofMCI pa-
tients to AD and cognitive decline of this group, as assessed
by the MMSE (Fig. 22; Table 9). The predictive ability of at-
rophy in the posterior regions (posterior cingulate gyrus, pre-
cuneus, and parietal lobe) compared with MTL regions was
investigated by Lehman et al [499]. MTL atrophy was
strongly associated with MCI to AD conversion and with
decreased Ab, whereas posterior atrophy was more weakly
associated with conversion but more strongly associated
with levels of tau. This differential association with bio-
markers may be indicative of widespread neuronal loss in
posterior regions at latter stages of disease. These results
suggest that in late-onset MCI patients without MTL atro-
phy, posterior atrophy may predict conversion.

Querbes et al [165] created a normalized thickness in-
dex, which was derived from the cortical thicknesses of re-
gions most likely to show atrophy in AD and to distinguish
between MCI-c and MCI-nc patients, primarily the left
lateral temporal, right medial temporal, and right posterior
cingulate. They found that the normalized thickness index
predicted conversion of MCI patients to AD with 76% ac-
curacy compared with accuracies ranging from 63% to
72% by cognitive scores (Table 9). The additional dimen-
sion of time increased the ability of cortical thickness mea-
surements to predict the conversion of MCI to AD in a
study by Li et al [157]. By incorporating both static base-
line and follow-up measures, dynamic measures of thin-
ning speed, the ratio of follow-up to baseline thicknesses
in ROIs, and a network feature that examined correlations



Table 9

Predictors of future decline

Predictor Measurement of decline Statistical measurement Pa nt group Cross-validated? Reference

Baseline temporal lobe measures MMSE P , .05 M [112]

MCI to AD conversion P , .05 M

CDR-SB P , .05 CN MCI, AD

Baseline temporal lobe measures CDR-SB AUC ¼ 0.83, SEN ¼ 87%, SPE ¼ 66% M Yes [163]

CSF biomarkers 1 FDG-PET ROIs AUC ¼ 0.70, SEN ¼ 93%, SPE ¼ 48%

TL measures 1 CSF 1 FDG-PET ROIs AUC ¼ 0.83, SEN ¼ 90%, SPE ¼ 69%

Baseline hippocampal, amygdala, temporal horn

volume

MMSE b (P) ¼ 0.14 (.04), 0.18 (.004), 20.2 (.003) Po d sample [164]

CDR-SB b (P) ¼ 20.19 (.005), 20.12 (.06), 0.2 (.005)

Baseline hippocampal volume MCI to AD conversion Cohen d ¼ 0.603 M nc vs MCI-c [114]

Baseline inferior temporal gyrus volume Cohen d ¼ 0.535

Baseline middle temporal gyrus volume Cohen d ¼ 0.529

Baseline entorhinal cortical volume Cohen d ¼ 0.493

Baseline ventricular expansion MMSE, global CDR, CDR-SB P , .05 Po d sample [126]

Baseline ventricular expansion MMSE, global CDR, CDR-SB P , .05 Po d sample [127]

Baseline right caudate volume MMSE P , .05 Po d sample [130]

MCI to AD conversion P , .05

Baseline cortical thickness in ROIs MCI to AD conversion Accuracy ¼ 76% M Yes [165]

Baseline cortical thickness in ROIs [147]

Longitudinal cortical thickness MCI to AD conversion Accuracy ¼ 81.7% M Yes [157]

Baseline white matter hyperintensity volume ADAS-cog b (P) ¼ 0.34 (.05) Po d sample [166]

MMSE b (P) ¼ 20.096 (,.001)

Multiple ROI atrophy score MMSE r (P) ¼ 0.39 (,.001) M [117]

Structural phenotypic score MCI to AD conversion AUC ¼ 0.77 M Yes [118]

STAND score CDR-SB M AD [167]

MCI to AD conversion Cox proportional hazards ratio ¼ 2.6 M

Log (t-tau/Ab242) MCI to AD conversion Cox proportional hazards ratio ¼ 2.0

SPARE-AD score MCI to AD conversion AUC ¼ 0.734, SEN ¼ 94.7%, SPE ¼ 37.8% M Yes [119]

MMSE P , .05

FDG-PET hypermetabolic convergence index MCI to AD conversion Cox proportional hazards ratio ¼ 7.38 M [85]

FDG-PET HCI 1 hippocampal volume Cox proportional hazards ratio ¼ 36.72

FDG-PET sco MCI to AD conversion AUC ¼ 0.75, sens – 57%, spe ¼ 67% M [291]

Ab load MCI to AD conversion 75th vs 25th percentile Cox HR ¼ 2.6 (P , .001) M [152]

Baseline hippocampal volume 25th vs 75th percentile Cox HR ¼ 2.6 (P, .001)

Baseline ADAS-cog (from meta-analysis) ADAS-cog Slope of disease progression ¼ 5.49 points/yr,

baseline five point increase in ADAS-cog effect

on slope ¼ 0.669/yr

M AD [171]

Baseline ADAS.Tree MCI to AD conversion P ¼ 6.23E-10, AUC ¼ 0.746 M Yes [96]

Baseline MMSE P ¼ .0188, AUC ¼ 0.589

Baseline hippocampal volume CDR-SB, MMSE, LM delayed

change

r ¼ 20.29, 0.29, 0.41 M [155]

Baseline entorhinal volume r ¼ 20.17, 0.23, 0.34

Baseline retrosplenial volume r ¼ 20.43, 0.42, 0.35

Baseline entorhinal metabolism r ¼ 20.30, 0.38, 0.28

Baseline retrosplenial volume r ¼ 20.22, 0.47, 0.11

t-tau/Ab242 r ¼ 0.02, 0.08, 20.23

(Continued )
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Table 9

Predictors of future decline (Continued )

Predictor Measurement of decline Statistical measurement Patient group Cross-validated? Reference

APOE 341 Hippocampal volume change

(P, .05). Multivariate model

Coefficient of effect on annual change ¼ 20.36 MCI [154]

FDG-PET ROI-avg Coefficient of effect on annual change ¼ 9.3

CSF tau Coefficient of effect on annual change ¼ 28.7 AD

FDG-PET ROIs MCI to AD conversion b (SE) ¼ 1.00 (0.51), Cox HR ¼ 2.72 MCI [173]

AVLT b (SE) ¼ 1.46 (0.64), Cox HR ¼ 4.30

FDG-PET ROIs ADAS-cog b (SE) ¼ 1.26 (0.43)

p-tau181/Ab242 b (SE) ¼ 1.10 (0.53)

Right entorhinal cortical volume MCI to AD conversion Prediction accuracy (95% CI) ¼ 68.5% (59.5, 77.4) MCI Yes [161]

TMT-B test Prediction accuracy ¼ 64.6% (55.5, 73.4)

p-tau181/Ab242, hippocampalvolume, TMT2B, age Prediction accuracy ¼ 76.3 (68.4, 84.2)

AVLT-delayed, LM-delayed, left middle temporal lobe

thickness

MCI to AD conversion AUC ¼ 0.80 MCI Yes [294]

Baseline multi-modal multi-task learning: MR, FDG-

PET CSF

MMSE r ¼ 0.511 MCI Yes [239]

ADAS-cog r ¼ 0.531 MCI

Multi-modality disease marker MCI to AD conversion MCI Yes [247]

Biological (baseline) AUC ¼ 0.5292

Imaging (baseline) AUC ¼ 0.7378

Imaging (longitudinal) AUC ¼ 0.7911

Neuropsych (baseline) AUC ¼ 0.6693

Neuropsych (longitudinal) AUC ¼ 0.7385

Combined modalities AUC ¼ 0.7667

Disease state index MCI to AD conversion AUC ¼ 0.752 MCI [252]

Disease state index MCI to AD conversion Prediction accuracy ¼ 68.6% All MCI [253]

Prediction accuracy ¼ 84.4% MCI – strong evidence

of AD pathology

Prediction accuracy ¼ 93.7% MCI – very strong

evidence of AD

pathology

Baseline and longitudinal multimodal data MCI to AD conversion AUC ¼ 0.768, ACC ¼ 78.4%, SEN ¼ 79%, SPE ¼
78%

MCI Yes [239]
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between longitudinal thickness change in different ROIs,
Li et al constructed a classifier that correctly identified
81.7% of MCI-c patients 6 months ahead of their conver-
sion (Table 9).

White matter hyperintensities (WMH) may represent an
accrual of nonspecific neuronal injury over a lifetime. Car-
michael et al [166] investigated the relationship between
WM disease and cognition over a year, and found that
both baseline and longitudinal change in WMH were asso-
ciated with worsening of ADAS-cog and MMSE scores
over 12 months (Table 5), raising the possibility of the
use of WMH as a biomarker and highlighting its ability
to predict future clinical decline (Table 9). When the
MCI group was divided according to the level of baseline
WMH and amyloid burden (PiB uptake), Provenzano
et al [441] found a monotonic increase in proportion of in-
dividuals converting to AD within the follow-up visit time
frame from amyloid negative/low WMH to amyloid nega-
tive/high WMH to amyloid positive/low WMH to amyloid
positive/high WMH (Fig. 39). The amyloid positive/high
WMH group was strongly associated with future conver-
sion to AD, providing further support for involvement of
vascular factors in the pathogenesis of AD.

A number of studies have leveraged information on atro-
phy frommultiple brain regions to distill a number or a score
that is more predictive of future clinical decline than single
regions alone. McEvoy et al [117] found that an atrophy
score derived from mesial and lateral temporal, isthmus
cingulate, and orbitofrontal areas was predictive of 1-year
decline in MMSE scores and progression of MCI patients
to AD. They found that the atrophy scorewas a better predic-
tor than right or left hippocampal volume or the thickness of
the left or right entorhinal cortex (Table 9). Similarly, a
structural abnormality score extracted from baseline MRI
data by Misra et al [118] was higher in MCI patients who
converted to AD over the following year than stable MCI pa-
tients, and an SPS derived by Fan et al [83] from a complex
pattern of spatial atrophy predicted decline in MMSE scores
within a year from baseline (Table 9). Vemuri et al [167]
found that STAND scores that reflected greater baseline at-
rophy in regions associated with AD predicted greater sub-
sequent decline on the CDR-SB and also a shorter time to
conversion for MCI patients than CSF analytes (Table 9).
Davatzikos et al [119] focused on structural changes occur-
ring at the early stages of AD and derived SPARE-AD scores
(Spatial Pattern of Abnormalities for Recognition of Early
AD) largely from changes in the temporal regions, posterior
cingulate cortex, precuneus, and orbitofrontal cortex. They
found that higher SPARE-AD scores predicted conversion
of MCI to AD (Table 9). In a follow-up study, Da et al
[500] found that the inclusion of neither APOE status nor
CSF biomarkers significantly improved the prediction,
although ADAS-cog was equally effective as SPARE-AD
alone in predicting time to conversion. Intriguingly, when
the MCI patients were stratified by amyloid status,
SPARE-AD remained highly predictive in the amyloid nega-
tive group, contrary to the model of disease progression put
forward by the amyloid hypothesis. Zhang et al [501]
compared the ability of two further summary scores of
medial temporal lobe and whole brain atrophy, Medial Tem-
poral Lobe Atrophy Score (MTAS) and Brain and Lesion In-
dex (BALI), to predict MCI to AD conversion over 2 years.
MTAS was a stronger predictor than common changes in the
aging brain represented by BALI. However, BALI scores
increased prediction accuracy when combined with MTAS
(Table 9), suggesting that structural brain changes outside
and within theMTL have an additive effect. The OLPS score
of Spulber et al [382] distinguished between MCIc and
MCInc patients, with an accuracy of 67.6%, a sensitivity
of 69.6%, a specificity of 66.8%, and an AUC of 0.675.
Moreover, the distribution of scores in MCI patients who
did not convert during the course of the 3-year study was
broad, and higher scores were associated with greater age
and a higher likelihood of an APOE 34 allele. These results
support the idea of the MCI nonconverter group being highly
heterogeneous and consisting of a subgroup displaying
structural hallmarks of AD likely to progress in the near
future.

Longitudinal data are increasingly being leveraged for
the prediction of future decline. Macdonald et al [502]
compared the ability of hippocampal and temporal horn
baseline volumes and 12-month volumetric rates of change
to predict conversion in MCI patients over the subsequent
12 months. All measures were predictive of future decline,
but rates of volumetric change were better predictors than
baseline volumetric measures. In addition, they found
some evidence that temporal horn expansion is more predic-
tive than hippocampal atrophy. The longitudinal stability se-
lection technique of Zhou et al [407] revealed MRI regions
predictive of decline in ADAS-cog and MMSE scores at
different stages of disease progression. Strikingly different
patterns were observed for ADAS-cog and MMSE. No re-
gions were strongly predictive of MMSE scores for more
than 2 years, whereas a number of medial temporal regions
were predictive of ADAS-cog decline for as long as 3 years
(Fig. 40).

Similarly, disease state–specific neurodegenerative
changes were found by Eskildsen et al [386], who divided
the ADNI cohort into groups determined by their time to
conversion: 6, 12, 24, and 36 months. In each group, ROIs
representing differential patterns of cortical thinning were
identified. MTL regions predominated. Initially, the parahip-
pocampal gyrus was selected in the 36-month group fol-
lowed by the hippocampus in the 24-month group. The
amygdala and occipital areas were selected in groups closer
to conversion, implying a progression of the disease through
these areas. Selected regions were applied to a linear
discriminant analysis classifier, and the authors found that
prediction of conversion improved in groups closer to con-
version, with an accuracy of 74.6% obtained in the 6-
month group compared with 67.8% in the whole MCI cohort
(Table 9).
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Prediction of future cognitive decline in cognitively
normal individuals has been an increasingly important focus
in ADNI studies in 2011-2012. Dickerson et al[289] used a
predefined cortical thickness measure as an MRI biomarker
suggestive of early AD neurodegeneration to examine this
group over 3 years. They found that cognitively normal indi-
viduals with the low cortical thickness signature were at
increased risk of cognitive decline (CDR-SB, AVLT and
TMT) and were more likely to have Ab42 levels below the
192 pg/ml cut-point designating AD-like higher risk
(Fig. 30). Chiang et al[290] identified 8 baseline MRI
ROIs from predominantly the temporal lobe that predicted
12 month cognitive decline of greater than one standard de-
viation from the mean with an accuracy of 79% in cogni-
tively normal individuals. These results suggest that these
MRI biomarkers may have utility in identifying individuals
harboring AD pathology with a greater likelihood of immi-
nent cognitive decline emblematic of AD.

McEvoy et al [168] also investigated enrichment strate-
gies for constraining recruitment into clinical trials by se-
lecting MCI patients most likely to progress. Their first
strategy, which selected MCI patients with an APOE 34
allele, reduced sample sizes by an estimated 10% to 40%,
but this was discounted because of the possibility that re-
stricting patient genotype may invalidate trial findings. Their
second strategy, based on baseline MRI atrophy in regions
previously shown to be predictive of disease progression, re-
sulted in an estimated sample size reduction of 43% to 60%
(Table 11).

4.6.1.2. [18F]-fluorodeoxyglucose-positron emission
tomography

Chen et al [85] reported that their HCI outperformed other
measures such as hippocampal volume, cognitive scores,
APOE genotype, and CSF biomarkers in the prediction of
conversion of MCI patients to AD. In a univariate model, pa-
tients with an HCI above a predefined cutoff had an average
Cox proportional hazards ratio for the estimated risk of con-
version to probable AD within 18 months of 7.38 compared
Fig. 30. (A) Expression of cortical signature of Alzheimer’s disease is associated

heimer’s disease is associated with AD-like spinal fluid. Reproduced with permis
with 6.34 for hippocampal volume, 4.94 for p-tau181p, and
3.91 for ADAS-cog, themost significant of the othermeasures
tested. Moreover, patients with a combination of both high
HCI score and hippocampal volume below a similarly defined
threshold value had a Cox proportional hazards ratio of 36.72
(Table 9). This study suggests that data from FDG-PET ana-
lyses represent a powerful tool for the prediction of future
decline in AD that is complementary to MRI data. Herholz
et al [291] assessed the utility of an alternative composite
score in predicting MCI to AD conversion within 24 months
from baseline data and found that their PET score predicted
disease progression with a sensitivity of 57%, a specificity
of 67% and a AUC of 0.75, compared to AUCs of 0.68 and
0.66 for ADAS-cog and MMSE scores, respectively
(Table 9). The PET score appeared to be reflective of AD pa-
thology and highlighted the heterogeneous nature of both
MCI and control groups, especially evident after 24 months
(Fig. 31). When an alternative composite, the AD-conv score
of Arbizu et al [397] was used to divide MCI patients into
groups with different probabilities of converting to ADwithin
18 months, the overall AUC for conversion within this time
frame was 0.804. While the overall conversion rate was
29.7% for the pooled group, it ranged from 75% in the
high-probability group to 7.5% in the very low probability
group (Fig. 41). This approach differs from conventional ap-
proaches that interpret a biomarker as being positive or nega-
tive by using the AD-conv score to render probabilities of
conversion that may more accurately reflect the slow progres-
sive nature of the disease.

The ability of FDG-PET and Florbetapir imaging to pre-
dict future cognitive decline and conversion from normal
cognition to LMCI and from LMCI to AD was compared
by Landau et al [481]. In normal subjects, Florbetapir status
but not FDG uptake was associated with ADAS-cog change.
However, LMCI patients who were positive for both FDG
uptake and Florbetapir had greater change in ADAS-cog
scores. FDG positive status was associated with an OR of
10.9 of conversion from LMCI to AD compared with an
OR of 3.0 for Florbetapir positive status, underscoring the
with future cogntive decline. (B) Expression of cortical signature of Alz-

sion from Ref [139].



Table 10

Comparison of methods for increasing power in clinical trials: sample sizes per arm required to detect a 25% reduction in atrophy with 80% power, 5%

significance

Strategy

Outcome measure: MCI (AD)

ADAS-cog

CDR-

SB

Whole

brain

Ventricular

expansion

Hippocampal

volume

Entorhinal

complex Reference

Subject selection by multiple

biomarker

classifier

,40

(,40)

[86]

No baseline adjustments, no aging 149 (81) 234 (118) 201 (88) [174]

Best baseline adjustments, no aging 122 (68) 167 (84) 178 (74)

No baseline adjustments, with aging 739 (235) 944 (254) 648 (179)

Best baseline adjustments, with aging 605 (197) 675 (181) 573 (150)

Ab242 ,192 pg/mL 141 225 467 [160]

Normal elderly

APOE 34 carrier 224 222 703

Normal elderly

All MCI 834 674 [172]

Screening in, best enrichment 260* 191y
Screening out, best enrichment 517* 351z
All MCI 978 437 181 161 186 140 [168]

APOE 34 enrichment 774 397 135 129 133 100

Atrophy enrichment 458 191 141 121 107 67

All MCI 375 [154]

Enrichment with Ab242 225

QUARC entorhinal volume vs baseline 131 (44) [297]

QUARC entorhinal volume vs Ab

negative controls

293 (74)

*FDG-PET.
yHippocampal volume.
z11C-PiB-PET.
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differential temporal involvement of amyloid deposition and
glucose metabolism in disease progression.

4.6.1.3. CSF and blood biomarkers
Vemuri et al [167] examined the ability of CSF bio-

markers to predict decline in CDR-SB and MMSE scores
over 2 years and the time to conversion from MCI to AD.
Although all CSF biomarkers were predictive of future
decline, the best predictor was log (t-tau/Ab-42), which
was comparable with the MRI-derived STAND scores.
In contrast, Ab-42 alone was only weakly predictive of
conversion to AD, reflecting its status as a marker of
early AD pathology. Used in combination with STAND
scores, only log (t-tau/Ab-42) improved the predictive
ability of the MRI measure (Table 9). Jack et al [152]
compared the ability of amyloid load, measured either
by levels of CSF Ab-42 or by 11C-PiB PET imaging,
and hippocampal volume to predict MCI to AD progres-
sion. Using a new method to pool CSF and 11C-PiB PET
data [169] and to extract a score representative of Ab
load from the pooled information, they found that the
group of MCI patients classified as being Ab positive
had higher frequencies of the APOE 34 allele and smaller
baseline hippocampal volumes and a threefold higher
chance of progressing to AD within 3 years than the
Ab-negative group (Fig. 23; Table 9). Thus, both baseline
hippocampal atrophy and Ab load were significant pre-
dictors of future decline. Interestingly, when risk profiles
were constructed from the log relative hazard of pro-
gressing and degree of hippocampal atrophy or Ab
load, the relationship was linear for hippocampal atrophy,
but plateaued at higher Ab loads, consistent with a model
in which Ab deposition is an early event in AD progres-
sion, whereas neurodegeneration, as evidenced by hippo-
campal atrophy, occurs later and is thus a better indicator
of progression toward dementia.

Using the ADNI database, Schneider et al [170] empiri-
cally tested the recommendation that low Ab-42 and a
high t-tau/Ab-42 ratio can help select those MCI patients
most likely to progress to AD throughout the course of a
clinical trial. After statistically simulating a number of
different clinical trial scenarios with MCI patients with or
without biomarker enrichment, they found that selection
with either of the biomarker criteria resulted in only minor
increases in power for the trial, and concluded that the use
of these criteria would likely not result in more efficient clin-
ical trials. In contrast, Beckett et al [154] calculated that re-
stricting a trial population to MCI subjects with CSFAb-42
levels of,192 pg/mLwould reduce the sample size required
from 375 to 226 subjects per arm to detect a 25% change us-
ing ADAS-cog as an outcome measure, demonstrating a
clear beneficial use of CSF biomarkers in clinical trial pop-
ulation selection (Table 10). Schott et al [160] tested the use
of the same cutoff point of CSF Ab-42 levels in cognitively



Table 11

Comparison of outcome measure methods in clinical trials: sample size estimates per arm required to detect a 25% reduction in atrophy with 80% power, 5%

significance

Outcome measure Method tested Sample size AD Sample size MCI Reference

Hippocampus Two scans, 0–6 months 462 949 [121]

Three scans, 0–6–12 months 255 673

Three scans 1 Markov Chain 1 APOE 34 86 341

Clinical ADAS-cog two tests, 0–6 months 745 4663

ADAS-cog three tests, 0–6–12 months 569 8354

MMSE two tests, 0–6 months 1280 6300

MMSE three tests, 0–6–12 months 780 3353

Hippocampal atrophy 12-(24)-month 67 (46) 206 (121) [64]

Hippocampal atrophy 12-month 78 285 [59]

Ventricular expansion 6-month change 342 1180 [175]

Clinical MMSE 7056 7712

ADAS-cog 1607 .20,000

MRI (Model T/Model D) Entorhinal 45/65 135/241 [176]

Inferior temporal 79/117 199/449

Fusiform 72/114 185/485

Mid temporal 83/122 229/501

Hippocampus 67/118 179/510

Inferior lateral ventricle 76/157 160/550

Whole brain 101/189 158/541

Ventricles 86/240 189/1141

Clinical (Model T/Model D) CDR-SB 226/236 490/551

ADAS-cog 324/283 1232/804

MMSE 482/494 1214/1304

Whole brain atrophy KN-BSI 81 NA [51]

Classic-BSI 120 NA

TBM 1.5-T MRI/3.0-T MRI 37/48 107/159 [47]

SIENA* 1.5-T MRI/3.0-T MRI 116/92 207/265

TBM sKL-MI S6L8y 48 88 [177]

Clinical ADAS-cog 619 6797

MMSE 1078 3275

CDR-SB 408 796

TBM Gray matter atrophy 43 86 [120]

Temporal lobe atrophy 43 82

CSF biomarkers Ab242 5,721,531 75,816

t-tau 81,292 19,098

t-tau/Ab242 66,293 533,091

PET ROI-avgz 4605 [154]

logSumZ2PNSx 2176

logSumZ2PRx 1629

DD-fROI{ 249

MRI VBSI** 284

Ventriclesyy 277

Hippocampusyy 202

BSIzz 177

DD-ROIy 73

*Structural Image Evaluation, using Normalization, of Atrophy (SIENA). See text for more details.
yA nonlinear registration algorithm driven by mutual information cost function and with a regularizing term based on the symmetric Kullback–Leibler (sKL)

distance.
zJagust laboratory method.
xFoster laboratory method, measures of glucose hypometabolism, log transformed.
{Reiman laboratory method, data-driven summaries applied to independent test set.

**Fox laboratory method, ventricular boundary shift interval as a percentage of baseline brain volume.
yySchuff laboratory method (FreeSurfer).
zzFox laboratory method, brain shift interval.
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normal elderly subjects as a selection tool for presymptom-
atic treatment studies in AD. Those participants with CSF
Ab-42 levels of ,192 pg/mL had higher levels of t-tau
and p-tau and higher ratios of tau/CSF Ab-42 and p-tau/
CSF Ab-42, were more likely to be carriers of the APOE
34 allele, and had significantly higher whole brain atrophy,
ventricular expansion, and hippocampal atrophy over 1
year than participants with higher CSF Ab-42 levels. Of
the six participants who later converted to MCI or AD,
five had low or borderline baseline CSF Ab-42 levels,



Fig. 31. Box plot of baseline PET AD scores for diagnostic groups. AD pa-

tients and MCI patients progressing to AD have significantly higher scores

than stable subjects (arrows in top insert, P , .05 in Tukeymultiple compar-

isons). Abbreviation: C, control. Reproduced with permission from Ref [291].
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suggesting that the roughly one-third of healthy elderly sub-
jects with a CSF profile consistent with AD were at greater
risk for development of the disease. When sample sizes for
clinical trials were calculated for both CSF Ab-42 levels
and APOE 34 genotype as selection criteria and using whole
brain atrophy, ventricular expansion, or hippocampal atro-
phy as the outcome measure, the smallest size per arm
[140] was calculated using selection by CSF Ab-42 levels
Fig. 32. A probabilistic hypercube. This can be interpreted as a geometrical represe

types of data. The set of AD-PS scores corresponding to a given individual define a

From Casanova et al [411]. Abbreviations: ADNI, Alzheimer’s Disease Neuroimag

matter; WM, white matter.
and whole brain atrophy as an outcome measure
(Table 10). Samtani et al [503] studied the relationships be-
tween CSF biomarkers and disease progression measured by
ADAS-cog scores in MCI patients. Baseline Ab42, p-tau181,
and ptau181/Ab42, but not t-tau levels, had a bimodal distri-
bution, supporting the idea of the state of prodromal disease
being a heterogeneous population of those likely and un-
likely to progress. Baseline levels of these biomarkers had
good negative predictive value. Eighty-four percent of sub-
jects below the cutoff did not convert to AD within 3 years.
In contrast, the positive predictive value of this measure was
lower as only 67% of those above the cutoff converted within
this time frame. The study suggests that in clinical trials,
CSF biomarkers may play a more important role in the
exclusion of MCI candidates unlikely to progress than in
the selection of candidates likely to progress.

Llano et al [422] reported that they were unable to derive
a proteomic signature derived from plasma analytes that was
able to predict MCI to AD conversion over 12 to 24 months
with an accuracy greater than 55% to 60%. However, more
promising results were reported for the prediction of amy-
loid burden rather than disease progression. A panel of 13
plasma analytes developed by Kiddle et al [423] predicted
PiB positivity with a sensitivity of 0.918 and a specificity
of 0.545. The combination of five analytes, APOE status,
age, and CDR-SB scores predicted abnormal neocortical
amyloid burden in all AD patients, 69% of MCI patients,
and 34% of cognitively normal controls with a sensitivity
of 79% and a specificity of 76%. These studies suggest
that while blood-based biomarkers do not yet predict disease
ntation of the output of a seat of classifiers, each one estimated with different

position inside the hypercube. The position of three individuals is illustrated.

ing Initiative; AD, Alzheimer’s Disease; CN, cognitively normal; GM, gray



Fig. 33. Estimated trajectories of Ab-42 (A) and p-tau181 (B) based on ADNI longitudinal data. The estimated time to reach the AD cut point threshold is indi-

cated based on a model that includes all subjects (blue) or subjects with abnormal baseline values or changes during follow-up (red). From Toledo et al [434].
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progression sufficiently accurately to be clinically relevant,
they represent a promising approach that warrants further
development.

4.6.1.4. Cognitive
Ito et al [171] evaluated disease progression in clinical

studies and drug trials performed between 1990 and 2008
by using a model to assess the effect of cholinesterase in-
hibitors and placebos on longitudinal ADAS-cog scores in
mild-to-moderate AD patients. They found no significant
differences in the rate of disease progression between pa-
tients taking the placebo versus patients receiving cholines-
terase treatment. The only significant covariate in disease
progression was baseline ADAS-cog score, suggesting
that those patients with a higher (worse) ADAS-cog score
at baseline had a significantly worse prognosis and higher
rates of cognitive deterioration than those with lower (bet-
ter) baseline scores (Table 9). In a further work by the same
group [44], longitudinal ADAS-cog data from ADNI was
used to construct a model that included baseline severity,
APOE status, age and gender identified as covariates to
predict a curvilinear rate of disease progression. Samtani
et al[262] also used longitudinal changes in ADAS-cog
Fig. 34. Suboptimal targeting of ADAS-cog. The distribution of person measurem

ADAS-cog components (lower blue histogram) are presented. From Hobart et al
scores and developed a non-linear mixed effects model
for disease progression in AD. They found that years since
disease onset and hippocampal and ventricular volume
were the primary covariates affecting baseline disease sta-
tus, whereas age, total cholesterol, APOE status, and cogni-
tive scores (TMT-B and ADAS-cog) most influenced the
rate of disease progression in the model. The time of entry
into the study may not be equivalent to disease onset time.
Delor et al [504] developed a natural history population
disease progression model based on CDR-SB scores that
allows biomarker profiles to be synchronized at disease
onset rather than at study entry. This approach virtually
expanded the observation period of the population from 3
to 8 years (Fig. 42).

Llano et al [96] used a new Random Forests tree-based
multivariate model of ADAS-cog in which the subscores
had been weighted according to their contribution to patient
discrimination. This model, ADAS.Tree, predicted conver-
sion of MCI to AD more accurately than baseline MMSE
or ADAS-cog and, in addition, was a better predictor of con-
version than the best single imaging (left inferior temporal
cortex), metabolism (left precuneus), or CSF (p-tau181p/
Ab-42) biomarkers. The significance of association varied
ents (upper pink histogram) and the distribution of item locations of the 11

[474].



Fig. 35. The effect ofAPOE 34 status on the b-amyloid PET standard uptake value ratio (SUVR) in four cortical regions across diagnostic categories. (-)APOE

34 negative; ( 1 ) APOE 34 positive. FromMurphy et al [482]. Abbreviations: EMCI, early mild cognitive impairment; LMCI, late mild cognitive impair-

ment; AD, Alzheimer’s disease.
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by several orders of magnitude, with the ADAS.Tree four or-
ders of magnitude higher than the next MRI marker, and
FDG-PET and CSF biomarkers several orders of magnitude
lower than the MRI marker. Moreover, the addition of these
Fig. 36. (A) Estimated biomarker dynamics as a function of the ADPS score. (B)

Jedynak et al [484]. Abbreviations: MMSE,Mini-Mental State Examination; CDR-

AD, Alzheimer’s disease.
markers to the ADAS.Tree model did not result in substan-
tial improvement, providing support for this modified form
of ADAS-cog as a useful and effective predictor of future
decline (Table 9).
90% Confidence intervals for the inflection point of each biomarker. From

SB, clinical dementia rating-sum of boxes; MCI, mild cognitive impairment;



Fig. 37. The effect of accounting missing data on classification. In addition

to the feature selection of an incomplete Multi-Source Feature (iMSF)

learning method, the incomplete Source Feature Section (iSFS) model ac-

counts for missing data. From Xiang et al [416]. Abbreviations: AUC,

area under the curve; AD, Alzheimer’s disease; NC, normal control; MCI,

mild cognitive impairment.
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The analysis of neuropsychiatric tests using poset models
by Tatsuoka et al [425] allowed correlations to be made be-
tween specific cognitive domains andMCI to AD conversion
within 2 years. While the overall conversion rate for all MCI
subjects was 37.7%, the rate for subjects with a high level of
Fig. 38. Flow charts showing the categorization of ADNI subjects with AD using t

breviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimagin

NIA-AA-C, National Institute on Aging-Alzheimer’s Association clinical diagnos
episodic memory impairment at baseline was 61.2%. Those
subjects who additionally possessed an APOE 34 allele had
a conversion rate of 84.2%. In contrast, subjects who were
APOE 34 negative and whose episodic memory functioned
relatively higher had less than a 10% chance of conversion in
2 years. Lower scores in cognitive flexibility and perceptual
motor speed were also associated with greater rates of con-
version. This preliminary study suggests that poset modeling
may be an extremely useful tool in the selection of clinical
trial populations.

As depression is a recognized risk factor for AD, there has
been some interest in depression as a symptom of prodromal
AD and therefore as a surrogate clinical marker. Mackin et al
[292] investigated whether subsyndromal symptoms of
depression (SSD), with a prevalence of up to 70% inMCI pa-
tients may be associated with conversion to AD and thus
may predict future cognitive decline. They found that
increased endorsement of only one symptom – memory
problems – longitudinally, predicted MCI to AD conversion.
Lee et al [293] used TBM to compare patterns of brain atro-
phy over 2 years in MCI patients with or without depressive
symptoms. They detected greater frontal (P ¼ .024),
he strict NIA-AA criteria (A) and Mayo-modified NIA-AA criteria (B). Ab-

g Initiative; FDG, fluorodeoxyglucose; MRI, magnetic resonance imaging;

tic guidelines. From Lowe et al [354].



Fig. 39. Contribution of white matter hyperintensities (WMHs) to AD. Pro-

portion of subjects with MCI who converted to Alzheimer’s disease (AD)

during the follow-up period as a function of b-amyloid deposition (PiB)

and WMHs. From Provenzano et al [441].
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parietal (P ¼ .030) and temporal (P ¼ .038)WM atrophy,
and larger cognitive deficits in a range of neuropsychologi-
cal tests in subjects with depression and found that 62% of
those with stable depressive symptoms converted to AD
Fig. 40. The stability of different MRI features in predicting (A) ADAS-cog and (

accurately predict cognitive scores. Several regions (e.g., cortical thickness average

volume) predict ADAS-cog over 3 years, whereas most regions predict MMSE sc

magnetic resonance imaging; MMSE, Mini-Mental State Examination.
within the time of the study compared to 27% of asymptom-
atic individuals. These studies suggest that depression and its
related syndromes may have potential as clinical markers for
the identification of patients likely to progress.

4.6.1.5. Combined modalities
As in diagnostic classification, combinations of different

modalities are proving to be powerful tools in the prediction
of future cognitive decline [239,247,251,252]. Lorenzi et al
[172] tested two strategies for the enrichment ofMCI patients
in clinical trials using changes in brain structure or meta-
bolism, or changes in CSF biomarkers well known to herald
future disease progression. They used hippocampal atrophy
(MRI); temporoparietal hypometabolism (FDG-PET); CSF
Ab-42, t-tau, and p-tau; and cortical amyloid deposition
(11C-PiB PET) as biomarkers to either screen in MCI-c or
screen out MCI-nc. Although both strategies substantially
reduced the estimated sample sizes required, the authors
found that there was a trade-off between the high proportion
of converters screened out in the first strategy and the
decreased power and increased estimated sample sizes using
the second strategy (Table 10). Kohannim et al [86] investi-
gated the utility of their machine learning classifier, based
B) MMSE scores. MRI regions aligning with red in the stability vector most

s of the left and right entorhinal, and left middle temporal, and hippocampal

ores only over 6 to 12 months. From Zhou et al [407]. Abbreviations: MRI,



Fig. 41. Application of the AD-conv score in the ADNI population. (A) Box plot of MCI converters and nonconverters; (B) ROC curves for MCIc versus

MCInc; (C) distribution of probabilities among the stratified groups according to the AD-conv score. From Arbizu et al [397].
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on MRI hippocampal and ventricular summaries, APOE ge-
notype, and age as features, in subject stratification and found
that it reduced the numbers of AD andMCI patients required
to detect a 25% slowing of temporal lobe atrophy with 80%
power to fewer than 40, a substantial reduction over other
methods (Table 10). Walhovd et al [155] examined baseline
MRI, FDG-PET, and CSF biomarker data to determine the
optimum combination of these biomarkers for the prediction
of decline over 2 years. They found that in MCI patients, ret-
rosplenial and cortical thickness predicted decline on the
Fig. 42. The effect of modeling disease onset time on hippocampal volume-time p

ease onset times are shown with hippocampal volume (B) centered to the median of

et al [504]. Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s dis
CDR-SB, retrosplenial and entorhinal metabolism predicted
decline on the MMSE, and hippocampal volume predicted
decline in delayed logical memory. The tau/Ab-42 ratio
also predicted decline in the CDR-SB and MMSE, but less
significantly than the MRI and FDG-PET measures
(Table 9). Beckett et al [154] found that in MCI and AD pa-
tients, baseline glucose metabolism in a range of ROIs pre-
dicted cognitive decline, as measured by ADAS-cog in a
multivariate model. In univariate models, hippocampal and
ventricular volume, Ab-42, and tau also predicted cognitive
rofiles. (A) Evolution of hippocampal volumes for each disease status. Dis-

the normal population and (C) normalized for age and head size. FromDelor

ease.



Fig. 43. Prediction accuracies, sensitivities, and specificities for individual and combined neuroimaging modalities. From Trzepacz et al [510]. Abbreviations:

MRI, magnetic resonance imaging; FDG, fluorodeoxyglucose; SUVR, standard uptake value ratio; PET, positron emission tomography.
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decline in MCI patients (Table 9). Both papers support the
idea that reduced metabolism and greater brain atrophy at
baseline are associated with more rapid cognitive decline,
and that CSF biomarkers are less useful indicators of future
change. Shaffer et al [505] reported that while the addition
of MRI or FDG PET ROIs, or CSF biomarkers to clinical co-
variates (age, APOE status, ADAS-cog, education) improved
both prediction accuracy and reduced the percentage of
misclassification, the effect of MRI and CSF biomarkers
Fig. 44. Enrichment strategies for the selection ofMCI participants for clin-

ical trials. Estimated N80s are indicated assuming a 24-month trial with

scans every 6 months. From Holland et al [516]. Abbreviations: MCI,

mild cognitive impairment; MRI, magnetic resonance imaging; CDR-SB,

clinical dementia rating-sum of boxes.
wasminimal and FDGPET data added the greatest gains (Ta-
ble 9). This may be due to a shared variance between the
APOE 34 allele and Ab and also between the APOE 34
allele and hippocampal volume; FDG-PET is a modality
that provides truly novel data that are not related to other co-
variates. A degree of agreement with these results was found
by Landau et al [173], who studied a range of predictors of
conversion to AD and cognitive decline, including FDG-
PET measures, CSF biomarkers, APOE 34 status, and hip-
pocampal atrophy, that were defined dichotomously accord-
ing to their ability to separate AD and control subjects.
Although all biomarkers were predictive of decline in univar-
iate models, only reduced glucose metabolism and episodic
memory (measured by the AVLT) predicted conversion to
AD and, in contrast to the studies by Beckett et al [154]
and Walhovd et al [155], only p-tau181p/Ab-42 predicted
decline in ADAS-cog scores in multivariate models
(Table 9). Ewers et al [161] compared the effectiveness of
single variables and multiple variables in predicting the con-
version of MCI to AD. They found that these best single pre-
dictors (right entorhinal cortex and the TMT-B) were
comparable in accuracy with the best multiple predictor
models, which included right hippocampal volume, CSF p-
tau181p/Ab-42, TMT-B, and age (Table 9). In ADNI and an
additional cohort, Prestia et al [506] reported that the optimal
combination of biomarkers for identifying prodromal AD
was hippocampal volume and CSF Ab. Examining MR,
CSF, cognitive and demographic data, Gomar et al [294]
found that their most predictive model included 2 measures
of episodic memory (AVLT-delayed memory and Logical



Fig. 45. Genetic approaches used with ADNI data. From Shen et al [428]. Abbreviation: ROI, region of interest.
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memory delayed total) and one MR measure (left middle
temporal lobe thickness) (Table 9).

In 2011-2012, the emphasis of these studies has shifted
toward using methods that automatically combine and
leverage the most pertinent information from a range of mo-
dalities and away from the construction and comparison of
individual linear regression models. The multi-modal
multi-task learning method of Zhang et al [239] was able
to combine most predictive features from MRI, FDG-PET
and CSF data and predict 2 year changes in both MMSE (r
¼ 0.511) and ADAS-cog (r ¼ 0.511) scores in MCI pa-
tients (Table 9). A subsequent paper by Zhang et al [239]
used both baseline and longitudinal data to achieve even
higher prediction accuracies. Their best predictions of 2
year changes in both MMSE (r ¼ 0.786) and ADAS-cog
(r ¼ 0.777) scores used baseline, 6, 12 and 18 month
data. The conversion to AD from MCI within the same
time frame was predicted with accuracy of 78.4%, a sensi-
tivity of 79%, a specificity of 78% and an AUC of 0.768
(Table 9). Similarly, the Multi-Modality Disease marker
developed by Hinrichs et al [118] used longitudinal data to
predict conversion more accurately than baseline data alone
and found that combined biological, imaging and neuropsy-
chological data outperformed single modalities (Table 9).
Another method recently developed by Wang et al [251],
SMART, which takes into account the interconnectedness
of brain structures and other measures, consistently resulted
in better prediction of AVLT scores in control, MCI and AD
patients. An approach using theweighted fusion of data from
both high- and low-dimensional modalities [406] found that
MCI to AD conversion was optimally predicted with an ac-
curacy of 68% by a combination of FDG PET, MRI shape
information (ventricular expansion and cortical thinning in
specific regions), and CSF biomarkers, although CSF bio-
markers added only minor improvement. Integration of
multimodal data in a probabilistic manner using a Gaussian
process classification approach [408] predicted conversion
of MCI to AD over 3 years with an accuracy of 72.2%
compared with 69.4% using the multimodal method of
Zhang et al [249]. The disease state index of Mattila et al
[252], which included demographic and genetic information
as well as imaging data and cognitive scores, was able to pre-
dict the conversion of MCI to AD with an AUC of 0.752
(Table 9). Soininen et al [253] used the same tool and found
that it could discriminate betweenMCI converters and stable
MCI patients with an accuracy of 68.6%, but that when pa-
tients were assigned to categories of risk for AD based on
threshold values, the prediction accuracy increased to
84.4% for those having strong evidence and to 93.7% for
those with very strong evidence of AD pathology
(Table 9). The PredictAD software developed by this group
significantly outperformed currently recommended criteria



Fig. 46. Gene-gene interaction networks for (A) entorhinal atrophy and (B) hippocampal atrophy. Each circle is a gene that participated in a significant SNP-

SNP interaction model. Circles colored orange are genes previously identified as a possible AD risk gene. From Meda et al [528].
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Fig. 47. Involvement of genes of interest identified from pathways enriched

in memory impairment in a transcriptional regulation network centered on

SP1. From Ramanan et al [471].
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for prodromal AD in predicting conversion within 3 years.
Liu et al [418] found that, with the aid of a clinician, this
tool had an accuracy of 72%, a sensitivity of 75%, and a
specificity of 68%, supporting the utility of software that
can integrate heterogeneous data and provide objective and
evidence-based information about the state of the patient
that is not limited to yes/no answers and that places patients
on a disease spectrum on the basis of this information.

While the above papers developed a range of automatic
multi-modal methods of the prediction of disease progression,
Heister et al [295] asked whether MCI to AD conversion can
be predicted using clinically available biomarker systems
(commercially available software for fully automated volu-
metric MRI and commercial CSF analysis). They stratified
the MCI cohort by degree of MR atrophy, CSF biomarker
levels or the degree of learning impairment on AVLT. Cox
proportional hazard models were used to assess the contribu-
tion of each factor to MCI to AD conversion. They found that
a single risk factor resulted in a 1.8 to 4.1 fold risk of convert-
ing to AD within 3 years and that more than one risk factor
was associated with a greater risk of conversion. Patients
with both learning impairment and increased MR atrophy
were at the highest risk with a HR of 29.0 for conversion.
This study supports the use of commercially available CSF
andMRI biomarkers in combination with neuropsychological
tests in predicting the risk of MCI to AD conversion.

The degree to which prediction models developed in one
cohort are generalizable to different settings was investi-
gated by Devanand et al [296]. They developed a variety
of models that included different combinations of imaging,
cognitive and demographic data in the Questionable Demen-
tia study and tested these in the ADNI cohort. Prediction ac-
curacy of the MCI to AD conversion was consistently lower
by a similar degree in the ADNI setting, suggesting that
these models are portable and robust in clinical settings.
Gross et al [466] combined cortical thickness and cognitive
data to predict MCI to AD conversion. They used regres-
sion analysis to develop cortical signatures of cognition
specific to memory, executive function, language, and vi-
suospatial processing domains, empirically defined by their
correlation with domain-specific cognitive factor scores
derived from new ADNI neuropsychological battery scores
[112]. The combination of the baseline thickness of these
cortical signatures of cognition for memory and language
and the corresponding neuropsychological factor scores
predicted future clinical decline. One standard deviation
decrease in the combined memory cortical signature and
memory factor score corresponded to a 2.3-fold increase
in hazard of conversion. Casanova et al [411] developed
AD-PS scores that, when combined structural MRI and
cognitive scores, were able to detect AD-like patterns of at-
rophy and cognitive decline across clinical groups and were
strongly associated with MCI to AD conversion times.

What role does age play in the prediction of future decline
in MCI patients? The logistic regression analyses conducted
by Schmand et al [507] revealed that some biomarkers had
differential predictive abilities depending on the age of the
participants. Whereas MRI and neuropsychological tests
were relatively stable predictors regardless of age, CSF bio-
markers were only effective in patients younger than 75
years and FDG-PET did not significantly currently predict
conversion at any age. None of the measures predicted
MCI to AD conversion with an AUC of greater than 0.73
at any age, although combined markers had improved pre-
dictive abilities (AUCs of 0.79 and 0.74 in participants
younger and older than 75 years, respectively). The study
supports the idea that age is an important characteristic of
the observed heterogeneity in MCI patients.

Does the predictive ability of biomarkers change over
different lengths of time? Dickerson et al [508] examined
how a structural MRI measure of neurodegeneration, the
AD signature, and hippocampal volume compared with a
measure of amyloid deposition (CSFAb) in predicting con-
version of MCI patients over both 1- and 3-year periods. The
AD signature biomarker outperformed CSFAb at predicting
dementia within 1 year, whereas both biomarkers had similar
prognostic abilities over 3 years. In addition, 1-year conver-
sion to AD in MCI subjects with normal CSFAb levels was
best predicted by the AD signature biomarker, suggesting
that evidence of neurodegeneration is prognostically useful
in these individuals. These results are consistent with the
model of development of AD pathophysiology by Jack
et al [14] in that the deposition of Ab is an earlier event
and therefore should predict conversion over a longer period
than the later-occurring neurodegeneration.

The need to select clinical trial participants who are
cognitively normal but who are likely to progress to MCI
or AD has driven research into predicting clinical progres-
sion in the elderly healthy subjects. Ewers et al [509] exam-
ined 54 healthy control subjects from ADNI and tested the
ability of MRI regional GM volume, FDG-PET a priori–
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defined ROIs, and executive function measures to predict
clinical change over 3 to 4 years. The combination of
FDG-PET measures in the medial temporal and parietal re-
gions combined with TMT-B scores proved to be the most
accurate predictor of clinical progression with an accuracy
of 93.4%, a sensitivity of 82%, and a specificity of 93%.
Of the 54 subjects, 11 converted to MCI or AD over the
course of study.

4.6.1.6. Comparison of modalities
The trend toward a multimodal approach to prediction is

fueled by studies reporting improved accuracy with the use
of more than one modality. Most studies report that optimum
combinations of modalities for prediction include MRI mea-
sures of the temporal lobe, hippocampus and entorhinal cor-
tex, and another imaging modality, perhaps with the addition
of CSF biomarkers, genetic, or clinical information. Howev-
er, for the first time, the effectiveness of three different im-
aging modalities (MRI, PiB-PET, and FDG-PET) in the
prediction of conversion of MCI patients to AD was directly
compared by Trzepacz et al [510] in ADNI MCI patients
who converted within 2 years. Eliminating genetic or clin-
ical data from their models, they found that the best single
predictors were MRI measures of temporal lobe, hippocam-
pal and entorhinal cortex volume, along with amyloid depo-
sition in the temporal cortex measured by PiB-PET. MRI
was the single modality with the highest predictive accuracy
(67%) followed by PiB-PET (66%) and FDG-PET (62%). In
combination, MRI increased the accuracy and sensitivity,
but not specificity of both PiB-PET and FDG-PET measures
(Fig. 43). MRI in combination with PiB-PET increased ac-
curacy to 76% with a sensitivity of 53% and a specificity
of 90%. This systematic review confirms results from a va-
riety of previous studies.
4.6.2. Adjustments for normal aging and baseline
characteristics

McEvoy et al [168] also examined the effect of normal
aging on the detection of longitudinal change and found
that although this did not affect clinical outcome measures
such as ADAS-cog and CDR-SB, neuroimaging outcome
measures were far more sensitive to atrophy associated
with normal aging. They suggested that larger sample sizes
are required in clinical trials to account for this effect, and
that clinical trials run the risk of being severely underpow-
ered if normal aging is not taken into account. Schott et al
[174] proposed an alternative method for increasing the sta-
tistical power of clinical trials without resorting to subject
selection procedures that can potentially limit the applica-
bility of studies. They found that by statistically adjusting
for a range of baseline characteristics that might account
for interindividual differences, and also for normal aging,
sample sizes were reduced by 15% to 30% in AD subjects
and by 10% to 30% in MCI subjects (Table 10). The impor-
tance of appropriate controls in AD disease-modifying clin-
ical trials was studied by Holland et al [297] who estimated
required sample sizes using either absolute change relative
to baseline, change relative to controls or change relative
to healthy controls who tested negative for Ab. While their
calculations suggested that larger sample sizes were required
for measures relative to Ab negative controls, the authors felt
that this approach would most accurately reflect the actual
effect of a drug on AD pathology. The study compared 5
publically available methododologies to measure structural
changes in neuroanatomical subregions and smallest sample
sizes were calculated using the QUARC approach to quan-
tify the entorhinal cortex (Table 10).

4.6.3. Development of outcome measures
A number of studies have focused on determining the

effectiveness of different biomarkers as outcomes in clin-
ical trials by calculating sample size estimates for a hypo-
thetical clinical trial, per arm at either 90% (N90) or 80%
(N80) power to detect a 25% improvement in annual rate
of decline. Schuff et al [121] used hippocampal volume
loss over time, assessed by MRI, as an outcome measure
and found that the greatest reductions in sample size
were achieved when three serial scans (0, 6, and 12
months) were combined with APOE 34 data using Markov
chain analysis to exploit correlations between observations
(Table 11). The inclusion of Ab-42 level data did not
further reduce sample size. All MRI hippocampal mea-
sures were substantially better than cognitive measures
(ADAS-cog and MMSE) as outcome measures. Wolz
et al [64] used a 4-D graph cut method to segment the hip-
pocampus and subsequently calculated N80s in the same
range as the best combinations of Schuff et al [121]
(Table 11). Nestor et al [175] investigated the use of ven-
tricular expansion as an outcome measure and found that
ventricular expansion over 6 months was sufficiently sen-
sitive to produce N80s for a hypothetical trial at least an
order of magnitude lower than clinical scores (MMSE
and ADAS-cog). Moreover, sample sizes were further
reduced when the trial population of AD subjects was
restricted to carriers of the APOE 34 allele (Table 11).
Holland et al [176] examined the utility of longitudinal
volumetric change in a variety of ROIs as an outcome
measure with which to measure putative disease-
modifying medications for AD and MCI. ROIs, including
temporal lobe structures and ventricles, and whole brain
atrophy were compared with clinical measures in two
separate models, one in which the putative drug was pre-
sumed to affect both disease and aging-related changes
(model T for “total”), and one in which the drug putatively
affected only disease-specific changes (model D for “dis-
ease-specific”). They found that although imaging mea-
sures generally resulted in smaller sample sizes than
cognitive measures in both models, model T was the
more conservative model for cognitive measures, whereas
model D was more conservative for imaging measures.
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The authors emphasized the importance of comparing both
models when comparing across imaging and cognitive
outcome measures (Table 11).

Hua et al [177] compared a variety of nonlinear registra-
tion methods used in TBM with standard clinical outcome
measures and found that a substantial reduction in sample
size at 80% power (N80s) was achieved over clinical mea-
sures using all TBM methods, with the best TBM measure
presenting an eightfold improvement over the best clinical
measure (CDR-SB) (Table 11). The same group [120] subse-
quently compared the use of TBM to measure GM of the
entire brain and WM atrophy in the temporal lobe with 1-
year changes in CSF biomarkers as outcome measures in a
hypothetical clinical trial. The N80s for CSF biomarkers
were much larger than those from neuroimaging measures,
reflecting their poorer reproducibility, especially in later
stages of the disease process (Table 11). Ho et al [47]
compared 3.0-Tand 1.5-T MRI for tracking disease progres-
sion using TBM and an alternative method for measuring the
overall percentage brain volume change, Structural Image
Evaluation, using Normalization, of Atrophy. The lowest
calculated N80 resulted from using TBM on a 1.5-T MRI
scanner to detect changes in brain atrophy as an outcome
measure (Table 11). Leung et al [51] estimated N80s for
both the classic brain BSI MRI technique and their improve-
ment on this, the KN-BSI method, and found that the
improved method resulted in lower N80s (Table 11). More
recently, using a newly revised TBM method that enforces
inverse consistency, Hua et al [178] reported that to demon-
strate a 25% slowing of atrophic rates with 80% power, 62
AD and 129 MCI subjects would be required for a 2-year
trial and 91 AD and 192 MCI subjects for a 1-year trial. A
longitudinally unbiased method that uses machine learning
techniques to maximize the ability to track three-
dimensional change in lateral ventricles over time was
described by Gutman et al [511]. Using linear discriminant
analysis on the generated data, they estimated N80s over 1
year to be 104 for MCI patients and 75 for AD patients,
compared with estimates of 165 and 94 for MCI and AD pa-
tients, respectively, using the statistical ROI method. Pardoe
et al [512] derived a model using a genetic programming
approach that takes into account study-specific parameters
such as the type I error rate, the level of smoothing applied,
and the thickness difference to be detected in clinical trials
measuring cortical thickness. Sample size estimates were
heterogeneous over the cortical surface, with lobe-specific
N80s for the detection of a 0.25-mm thickness change
ranging from approximately 25 to 30 to 50 in the occipital
lobe, frontal and parietal lobes, and the temporal lobe,
respectively. Thus, accounting for cortical thickness spatial
variability may be critical when designing clinical trials.

Beckett et al [154] compared a number of promising MRI
and FDG-PET outcome measures. They calculated the sam-
ple size that would be required in a two-arm, 1-year clinical
trial with 80% power to detect a 25% effect, and found that
MRI measures of overall brain change, using either ROIs or
BSI techniques, or hippocampal volume required fewest
subjects. Brain metabolism measures were generally less
effective, requiring substantially larger sample sizes,
although the best FDG-PET measure, a data-driven func-
tional ROI, was comparable with many of the MRI measures
(Table 11). In contrast, Herholz et al [291] found their com-
posite PET score, based on FDG-PET data, to be a better
outcome measure than ADAS-cog scores due mostly to its
higher test-retest reliability which resulted in smaller
required sample sizes. Relative to a sample size of 100
required at 12 months with ADAS-cog as an outcome mea-
sure, the PET score outcome measure required a sample size
of 28. At 6 and 24 months, the PET and ADAS-cog sample
sizes were 120 and 397, and 13 and 35, respectively. The
PET score was linearly associated with ADAS-cog scores,
emphasizing its validity as a measure of cognitive impair-
ment.

The accepted standard outcome measure in AD disease
modifying clinical trials is the ADAS-cog. Schrag et al
[298] empirically determined the minimum clinically rele-
vant change in ADAS-cog and compared it to the current
standard of expert consensus. Using MMSE, CDR and
FAQ scores, they ascertained that a 3 point decline in
ADAS-cog over 6 months was clinically relevant, a point
less than the consensus FDA recommendation, suggesting
that the FDA standard may be too stringent and may conse-
quently miss an important drug effect.

4.6.4. Genetic risk factors in subject selection
The addition of APOE status has consistently been shown

to improve the accuracy of predictive models. Kohannim et al
[513] examines the utility of the recently identified AD ge-
netic risk alleles, CR1, CLU, and PICALM, in selecting co-
horts for clinical trials. Control and MCI subjects from
ADNI were ranked depending on the relative risk from these
four genes, and N80s were obtained using an MRI-derived 2-
year atrophy rate as an outcome measure. They found a statis-
tically significant reduction in sample size of approximately
50% in the combined control and MCI group beyond the ef-
fect of the APOE 34 allele alonewhen these three risk alleles
were included in the model. In a mixture of MCI and control
APOE 34 carriers, the N80 was reduced from 94 to 69 using
selection with these three genetic risk factors. The results sug-
gest that genetic profiling with additional risk genes may be
an effective strategy in reducing sample sizes in clinical trials
of early intervention therapies.

4.6.5. Combining enrichment and stratification strategies
Increasing attention has been given to optimizing

enrichment and stratification strategies to select the small
cohorts of cognitively asymptomatic and MCI subjects
required for viable clinical trials. Using the full standard-
ized ADNI data set [514], Hua et al [515] calculated sample
size estimates using temporal lobe atrophy measured by
TBM as an outcome measure combined with stratification
based on APOE 34 status. For a 2-year trial, N80s of 73



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e87
(95% CI: 57–94) and 122 (95%CI: 80–229) were estimated
for MCI and cognitively normal patients, respectively. In
MCI patients, Holland et al [516] found that stratification
with p-tau181 combined with the use of entorhinal cortex at-
rophy as an outcome measure produced the smallest esti-
mated sample sizes. All MRI atrophy outcome measures
outperformed the best clinical measure, CDR-SB
(Fig. 44). However, as the FDA has not yet accepted bio-
markers as outcome measures, Grill et al [517] tested com-
bination of enrichment strategies and clinical outcome
measures. In MCI subjects, the CDR-SB as an outcome
measure consistently produced lowest sample sizes over
virtually all enrichment strategies in agreement with Ce-
darbaum et al [518]. Estimates for N80s with this outcome
measure ranged from 258 with enrichment using the t-tau/
Ab to 458 with no enrichment. In contrast, the lowest sam-
ple size in the cognitively normal group (499) was obtained
using enrichment with APOE 34 status and AVLT-total as
an outcome measure. The studies support the use of
biomarker inclusion criteria for predementia and early de-
mentia clinical trials and suggest that the CDR-SBmay be a
more sensitive clinical outcome measure of these trials.
However, both studies using cognitive tests as outcome
measures reported that in contrast to biomarker outcome
measures, sample size estimates for cognitively normal
populations had prohibitively high upper bounds. This sug-
gests that in order for clinical trials in presymptomatic co-
horts to be feasible, a biomarker-based outcome measure
should be considered.

4.6.6. Other improvements to clinical trials
Clinical trials for AD modifying treatments require spe-

cial considerations due to the advanced age of the partici-
pants and their high rates of medical co-morbidities.
Hendley et al [299] studied patients taking placebo in recent
AD clinical trials and ADNI control participants to deter-
mine the rates of adverse events, serious adverse events,
discontinuation from trials and frequencies of death. The au-
thors hoped that the accumulated reference data would aid in
the design of future long term AD studies. Thompson et al
[300] reviewedmethodologies for characterizing disease tra-
jectories over a lifespan using ADNI as an illustration of a
longitudinal unstructured multi-cohort study. They reported
that, while this study design is superior to a cross-sectional
design in terms of eliminating a number of confounding fac-
tors, it is still susceptible to age cohort effects due to the
randomness of participant ages (ranging from 55 to 90).
They suggest an improved structured longitudinal model in
which age cohorts would be tiered but overlapping. As
ADNI is a convenience sample and not population based,
the ADNI cohort may select people more predisposed to
cognitive decline. Therefore, sample sizes based on hippo-
campal atrophy may result in trials underpowered to detect
treatment effects in the general population [519]. Hua et al
[515] tested the effect of selective data exclusion, that is,
the removal of apparent outliers, and found that this practice
resulted in the underestimation of N80s and therefore consti-
tutes a major source of bias in ADNI experiments. The use of
the standardized ADNI data set [514] will hopefully circum-
vent this issue.

The clearance of Ab by immunotherapy approaches un-
der study in some clinical trials may increase the risk of mi-
crohemorrhage and siderosis. Kantarci et al [520]
investigated the prevalence of these conditions in the
ADNI cohort and their association with amyloid load. Focal
hemosiderin deposits indicating microhemorrhages
occurred in 25% of the cohort. Their prevalence increased
with age and Ab deposition, and the risk of subsequent mi-
crohemorrhage increased with increasing baseline occur-
rence. The study suggests that microhemorrhages are a
common imaging finding that should be taken into consider-
ation in the planning of clinical trials of amyloid-modifying
agents for disease prevention and treatment.

4.6.7. Summary and conclusions of papers focused on the
improvement of clinical trial efficiency

Strategies for the reduction of sample sizes in clinical tri-
als by the selection of subjects with a significantly worse
prognosis and through the use of more effective outcome
measures have been developed over the course of ADNI.
Studies have found that baseline MRI measures, particularly
of hippocampal volume and of whole brain atrophy, outper-
form measures of glucose hypometabolism or CSF bio-
markers in the prediction of future decline. In one
instance, a score derived from AD-like patterns of hypome-
tabolism outperformed other single MRI, cognitive, or CSF
biomarker measures, but this too was enhanced by the addi-
tion of MRI measures. Of the CSF biomarkers, the t-tau/Ab-
42 ratio and the use of a cutoff value of approximately 192
pg/mL Ab-42 have been shown to best predict future
decline. In a manner similar to classification of AD subjects,
the use of multiple modalities appears to enhance the predic-
tion of future decline. Interestingly, a weighted version of the
ADAS-cog [96] has been shown to outperform any single
MRI measure tested as a predictor of future change and
was not improved by the addition of any MRI measure
tested. In contrast, MRI and FDG-PET, which have strik-
ingly better signal-to-noise ratios, clearly outperformed
cognitive tests as outcome measures of rates of change.
Calculated sample sizes for clinical trials required to see a
25% effect at 80% power were lowest for MRI measures
of overall morphometric change or of hippocampal volume,
followed by those for hypometabolism ROIs and cognitive
scores. CSF biomarkers were the least effective outcome
measures by several orders of magnitude. Finally, it also
will be necessary to study the comparative effectiveness
and cost-effectiveness of the AD biomarkers studied in
ADNI to determine the optimal way to make use of these
biomarkers in the diverse applications needed in AD
research. For example, based on the recent studies of Wie-
gand et al [169], it is possible to impute Ab measures deter-
mined by Ab imaging using far less expensive measures of
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CSF Ab-42 levels. Additional similar studies as well as
others focused on the economics of the use of biomarkers
in clinical trials and clinical practice are needed.

Amajor emphasis in papers published in 2011-2012 is the
prediction of future decline at an even earlier stage, with
someworks focusing on identifying cognitively normal indi-
viduals at high risk of disease development. Both levels of
CSF biomarkers and volumetric MRI were successfully
used in this application, in agreement with the Jack model
for disease progression [14]. As in classification, the predic-
tion of MCI to AD conversion was most accurate when lon-
gitudinal data and/or combined modalities were used, and a
number of papers focused on the use of automated methods
to select themost pertinent information frommultiplemodal-
ities. Depression was identified as a novel predictor. From a
methodological standpoint, the use of an Ab negative control
group in clinical trials was recommended to reflect the largest
drug effect, and the minimum significant change in ADAS-
cog scores was calculated to be lower than the FDA-
recommended change. Both methods reduced sample sizes.

Approaches for the prediction of future decline continued
to be developed in 2012 and 2013. In particular, studies of
longitudinal data found that the predictive ability of bio-
markers is dynamic in relation to the time to conversion,
with modalities reflecting amyloid deposition having a
greater predictive ability at time points further from conver-
sion and glucose metabolism being more predictive closer to
conversion. The predictive ability of brain atrophy also pro-
gressed from temporal to frontal lobes with time to conver-
sion. There was a focus on distilling a single composite score
of brain atrophy to predict decline, as structural changes ap-
peared more useful over a longer period of time, reflecting
the ongoing nature of atrophy in disease progression.
Blood-based biomarkers were not reported to be effective
predictors, but their development is ongoing, and they do
hold some promise as a cost-effective alternative to imaging
techniques. For the first time, the genetic risk alleles other
than APOE 34 were shown to enhance prediction accuracy,
and these may be a useful addition to the clinical trial subject
selection process. Other studies suggested that hippocampal
volume was an effective enrichment biomarker but that CSF
biomarkers may function better to exclude participants.
Although MRI measures were shown to be superior as
outcome measures, a lack of FDA approval turned the focus
to evaluating and improving existing cognitive tests. CDR-
SB was shown to outperform ADAS-cog in more than one
study. Together, these studies suggest that sample sizes of
MCI patients will soon be sufficiently small and have a
high enough probability of progressing to make clinical tri-
als of disease-preventing or altering therapies viable.
5. Identification of genetic risk factors for AD

The influence of genetics on the dynamic trajectory of
brain development and aging is well established, if not
well understood. Studies of twins have estimated the her-
itability of AD to be between approximately 60% and
80% [179], and until recently the only established genetic
risk factor for AD was the APOE 34 allele, which ac-
counts for approximately 50% of AD heritability [180].
The question of accounting for the up to 30% of heritabil-
ity remaining has only begun to be addressed, and
although there have been a number of candidate genes
proposed, the majority of them await independent confir-
mation. ADNI is in the unique position of providing a
large cohort with genotype information in addition to im-
aging and biochemical data that can be leveraged as QTs
in uncovering new genetic associations, and as such plays
an increasingly important role in the discovery and confir-
mation of novel genetic risk alleles. As of the end of 2014,
there were 2065 distinct APOE genotype data results
available, and GWAS data were available for 1252 partic-
ipants within ADNI.

Three main approaches have been taken to investigating
the genetic basis of AD. Case–control studies that search
for loci with differential frequency between patient groups
have identified a number of candidate genes. Typically,
markers are used to tag susceptibility loci, usually in 10-kb
to 20-kb regions in the genome, that are rarely found to be
causal. Using this method, the association of APOE 34 allele
with AD has been confirmed, and three new risk loci, CLU,
PICALM, and CR1, have been identified and confirmed
[181–183]. Further studies have focused on examining
relationships between SNPs in a limited number of genes
of interest and quantifiable phenotypic characteristics or
QTs, such as imaging data or levels of CSF biomarkers.
GWAS evaluate a large and dense set of SNP markers
distributed throughout the genome, providing an unbiased
search for the discovery of new candidate genes. With
more than 500,000 markers typically included in a GWAS,
a stringent correction for multiple testing is required with
typical thresholds of P , 1028 used to reduce false
detections. These stringent corrections also greatly reduce
power and require extremely large sample sizes to achieve
significance in case–control designs. However, the use of
quantitative phenotypes such as cognitive, imaging, and
fluid biomarker measures can greatly increase the power to
detect associations. Where a binary case–control design
might require many thousands of samples to detect a gene
effect, samples on the scale of ADNI are sufficient for
detecting associations with quantitative phenotypes [184].
Structural neuroimaging data have been most commonly
used as a quantitative phenotype as the whole brain, brain
circuits involving multiple regions of interest, or individual
regions of interest [428]. The emerging field of imaging ge-
netics, which uses imaging data as QTs in GWAS, promises
the power to reveal patterns of genetic associations
throughout the brain, but is hampered by the computational
load required for such high-dimensional studies. Further
development of this field, including improvement of existing
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GWAS methods, is a major goal of the Genetics Core of
ADNI [6].

The rich multimodal ADNI data set also offers the pos-
sibility of discovering novel susceptibility loci associated
with risk for AD or for the disease itself [428]. By the
end of 2013, APOE and nine other risk genes had been
identified and confirmed. However, together they account
for only about 50% of the estimated 80% of AD heritability,
indicating that other genes must be involved. The hunt for
the missing heritability continues, even as newly discov-
ered susceptibility loci are examined for their potential as
targets for the development of disease-modifying agents.
5.1. Case–control studies

Jun et al [185] conducted a meta-analysis case–control
study of AD patients and healthy elderly control subjects
from 12 different studies, including ADNI, to examine the
association of APOE 34, CLU, PICALM, and CR1 with
AD. They found that CLU, PICALM, and CR1 were signif-
icantly associated with AD only in Caucasian populations.
In contrast, APOE 34 was significantly associated with AD
in all ethnic groups and with PICALM in white populations,
suggesting that APOE 34 and PICALM act synergistically
and may participate in a common pathological pathway
(Table 12). Two of the largest case–control GWAS studies
of AD were recently published as companion reports in Na-
ture Genetics [186,187]. Both reports included the ADNI-1
data in their analyses (Table 12). These multistage meta-
analytic reports included discovery and replication data
sets and confirmed each other. These new results bring the
total set of confirmed and replicated candidate genes to 10
(APOE/TOMM40, ABCA7, BIN1, CD2AP, CD33, CLU,
CR1, EPHA1, MS4A4/MS4A6A, PICALM).

Mitochondrial genes are also of great interest in AD,
and Lakatos et al [188] studied the incidence of AD in pa-
tients belonging to different subgroups (HV, JT, UK, and
IWX) of mitochondrial haplogroup N in the ADNI cohort.
They found that haplogroup UK had the strongest associa-
tion with AD, and that this relationship remained signifi-
cant after adjusting for APOE 34 allele dose.
Additionally, they identified five mitochondrial SNPs that
were associated with increased risk of AD and suggested
that, given the vital role of mitochondria in maintaining
cellular energy balance, dysfunctional mitochondria may
contribute to AD by causing neuronal oxidative damage.
In another case–control design, Kauwe et al. [189] attemp-
ted to replicate a study that found that epistatic linkage be-
tween two SNPs in the transferrin and hemochromatosis
genes was associated with AD risk, suggesting a role for
iron in AD pathology. Using synergy factor analysis, they
found significant association between bicarriers of the mi-
nor alleles of both SNPs and risk for AD in several U.S.
and European study populations, including ADNI,
providing support for the iron hypothesis (Table 12).
Erten-Lyons et al [301] investigated the association be-
tween microencephaly genes, responsible for regulating
brain growth in utero, and AD in two cohorts including
ADNI, but were unable to detect any increase risk associ-
ated with common variants of these genes.
5.2. Studies of limited loci using quantitative phenotypes

Several studies have used knowledge of the model for AD
progression by testing the associations between genes poten-
tially involved in AD pathology and CSF biomarkers. Cru-
chaga et al [190] examined associations between SNPs in
35 genes putatively involved in tau posttranslational modifi-
cation and CSF levels of p-tau181p. They found that SNPs in
the gene for protein phosphatase B were associated with
higher levels of p-tau181p, and that an SNP in the regulatory
subunit of protein phosphatase B was more highly expressed
in AD patients compared with control subjects (Table 12).
These results suggest that genetic variants that alter the ac-
tivity of protein phosphatase B could contribute to AD pa-
thology by affecting tau phosphorylation. A further study
by the same group [191] found that the SNP in the regulatory
subunit of protein phosphatase B was associated with the
rate of disease progression, and not with the age of onset
or risk of AD. In contrast, APOE 34 was associated with
lower levels of CSFAb-42, increased disease risk, and lower
age of onset, providing support for a model in which amyloid
deposition is an early event in disease progression and accu-
mulation of hyperphosphorylated tau occurs at a later stage
(Table 12). Kauwe et al [192] also used levels of CSF bio-
markers as a QT to investigate the predicted biological ef-
fects of SNPs in three genes associated with AD. They
found that a nonsynonymous coding substitution in the
gene for calcium homeostasis modulator 1 (CAHLM1), pro-
posed to affect levels of Ab by modulating intracellular cal-
cium levels, was associated with increased CSF levels of
Ab-42 (Table 12). Associations between levels of CSF bio-
markers and SNPs in the two other genes for growth factor
receptor-bound protein-associated binding protein 2
(GAB2; proposed to influence tau phosphorylation) and
sortilin-related receptor (SORL1; an apoE receptor proposed
to bind Ab) were not found, perhaps because of power lim-
itations of the study.

Using six imaging measures reflective of AD pathology
as QTs, Biffi et al [193] searched for associations between
these and SNPs in a range of established and candidate genes
for AD risk. They first sought to confirm associations of
APOE, PICALM, CLU, and CR1 with AD, and found that
although APOE had a strong association with diagnosis, of
the remaining identified risk alleles, only CR1 was associ-
ated with AD in the ADNI cohort, possibly reflecting sample
size limitations for case–control studies. Two novel loci,
CNTN5 and BIN1, were also found to have significant asso-
ciation with AD (Table 12). When the relationship of APOE
34, CR1, CNTN5, and BIN1 with imaging measures was
examined, it appeared that APOE 34 was associated with
virtually all brain regions, whereas the other loci had a



Table 12

AD susceptibility and quantitative trait loci identified by genetic studies of ADNI cohort

Confirmed AD risk loci identified using ADNI data

Gene Protein Putative protein function Reference

TOMM40 Translocase of outer mitochondrial membrane Protein transport across mitochondrial membrane [184] [199]

[194] [149] [152] [313]

CLU Clusterin Clearance of A? [185]

CR1 Complement component[3b/4b] receptor Clearance of A? [185] [193]

PICALM Phosphatidylinositol-binding clathrin assembly

protein

Synaptic vesicle cycling and/or affects APP

processing via endocytic pathways

[185] [193] [197]

BIN1 Myc box-dependent-interacting protein 1 Synaptic vesicle endocytosis [193]

CD2AP CD2-associated protein Regulation of receptor-mediated endocytosis [186]

CD33 Siglec-3 Clathrin-independent endocytosis [186]

MSA4 Membrane Spanning 4 Domains Subfamily A gene

cluster

Cell surface protein – receptor? [187] [186]

ABCA7 ATP-binding cassette sub-family A member 7 Membrane transporter highly expressed in brain [187]

EFHA1 EF-hand domain family member A1 Regulation of cell morphology and motility in

epithelial tissues

[181]

Candidate AD risk loci identified using ADNI data

ARSB Arylsulfatase b Oxidative necrosis, dementia [184]

ATXN1 Ataxin-1 Upregulates A?

CADPS2 Calcium-dependent secretion activator 2 Synaptic vesicle priming [195]

CAND1 Cullin-associated and neddylation-associated 1 Ubiquination, apoptosis [184]

CDH8 cadherin 8, type 2 calcium-dependent cell adhesion protein implicated

in synaptic adhesion; interacts with presenilin

[6]

CHRFAM7ACholinergic receptor, nicotinic, alpha7/FAM 7A unknown [317]

CNTN5 Contactin-5 Neurite growth [301]

CSMD1 CUB and sushi domain-containing protein 1 Central nervous system regulator [314]

CSMD2 CUB and sushi domain-containing protein 2 Oligodendroglioma suppressor ? [195]

CYP19A1 Cytochrome P450, family 19, subunit a, polypeptide 1Conversion of androgens to estrogens [199]

DOPEY Dopey family member 2 Down syndrome candidate gene

EFNA5 Ephrin-A5 Hippocampal development [184]

EPC2 Enhancer of polycomb homolog 2 Formation of heterochromatin [149]

EPHA4 EPH receptor A4 Synapse morphology [194]

ERBB4 v-erb-a erythroblastic leukemia viral oncogene

homolog 4

Brain tyrosine kinase

GRINB N-methyl-D-aspartate glutamate receptor Learning, memory,excitotoxic cell death [196]

GSTT1 Glutathione S-synthetase Oxidative stress

HFE Hemochromatosis Increases redox-active iron and oxidative stress [189]

HLA-DPB1 Major histocompatibility complex, class II Immune system

LOC10012 Unknown function, overlaps with APOE Unknown [149]

IMMPL2 Inner mitochondrial protein peptidase-like Mitochondrial function 2 oxidative stress

MAGI2 Membrane associated guanylate kinase Ubiquination, dementia [184]

NCAM2 Neural cell adhesion molecule 2 Neural adhesion, fasciculation of neurons [199]

NRXN1 Neurexin 1 Synaptic contacts

NXPH1 Neurexophilin 1 Dendrite-axon adhesion [194]

PPP3CA Protein phosphatase B Affects tau phosphorylation [190]

PPP3R1 Protein phosphatase B Affects tau phosphorylation [190]

PPP3R1 Protein phosphatase B Affects tau phosphorylation [191]

PRUNE2 Prune homolog 2 Apoptosis [184]

RELN Reelin Neuronal migration

TF Transferrin Increased redox-active iron 1 oxidative stress [189]

TP63 Tumor protein 63 Unknown [194]

ZNF292 zinc finger protein 292 Expressed in brain [197]
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more limited pattern of association, consistent with APOE 34
being the primary AD genetic risk factor and other loci mak-
ing more modest contributions to the disease.

While theAPOE 34 allele remains themajor risk allele for
AD, the question of its influence on other alleles remains to be
clarified. Murphy et al [302] investigated the effect of APOE
status on 2 alleles of the cholesteryl ester transfer protein
(CETP) and their relationship with brain atrophy in the
ADNI control, MCI and AD patients. Using atrophy of the
hippocampus, entorhinal cortex and parahippocampal gyrus
as a QT, they found that the V and A alleles of I405V and
C629A, which decrease CETP activity and therefore increase
high density lipoproteins, had differential effects depending
on APOE status. In carriers of the APOE 34 allele, the V
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andAalleleswere associatedwith less atrophywhereas results
were reversed in non-carriers, suggesting that CETP polymor-
phisms may influence neurodegenerative disease susceptibil-
ity in an APOE-dependent manner.

Given that glucose metabolism reflects cognition, the ef-
fect of genetic risk factors for AD that influence brain atro-
phy and subsequently cognition may be reflected in altered
cerebral metabolism. Xu et al [303] investigated the influ-
ence of one genetic factor, the V66M polymorphism of
brain-derived neurotrophic factor (BDNF), essential for
neuron survival, on brain glucose metabolism and identified
patterns of changed metabolism in carriers of the V66M
polymorphism compared to non-carriers in the ADNI
cohort. The regions affected by this polymorphism changed
with disease severity, with MCI carriers exhibiting alter-
ations in regions affected in both cognitively normal carriers
(parahippocampal gyrus and temporal cortex) and those with
AD (bilateral insula), providing further support for polymor-
phisms in BDNF as a genetic risk factor for AD. In a further
study, Honea et al [521] tested associations between SNPs in
the BNDFI gene and established cognitive and imaging AD
phenotypes. In a pooled sample of 645 ADNI participants,
no SNPs in this gene were associated with AD diagnosis.
However, additional SNPs, other than the SNP containing
the V66M polymorphism, were associated with baseline
ADAS-cog scores and with hippocampal atrophy over 2
years. Additional SNPs were also associated with cognitive
decline and whole brain atrophy over 2 years in cognitively
normal patients. These results suggest that while BDNF ge-
netic variation is not specifically associated with AD, it does
play a role in memory-related performance and brain
morphometry in aging individuals.

The fat mass and obesity associated (FTO) gene, an
obesity genetic risk factor, has been associated with AD. Re-
itz et al [522] identified SNPs within introns 1 and 2 and
within exon 2 of the FTO gene that were significantly asso-
ciated with AD in several data sets including ADNI. More-
over, the expression of FTO was lower in AD cases
compared with that in controls.

Delta opioid receptors have been implicated in neurode-
generation. Roussotte et al [523] investigated associations
between a common variant of the opioid receptor gene
(OPRD1), rs 678849, and regional brain volumes in the
ADNI cohort. The minor C allele at this locus (which alters
Ab processing by changing receptor structure) was associ-
ated with smaller volumes in frontal, temporal, and occipital
brain regions and had a trend toward association with CSF
biomarkers in the healthy elderly.
5.3. GWAS of quantitative phenotypes

In the first ADNI GWAS using the ADNI AD cases and
control subjects, Potkin et al [184] confirmed the association
of APOE with AD and identified a novel AD risk gene,
TOMM40, encoding a regulatory subunit of a protein
translocase in the outer mitochondrial membrane, as being
significantly associated with AD. A further GWAS using
VBM-derived estimates of hippocampal volume as a QT
identified 21 loci with significant association with hippo-
campal volume including, in addition to APOE 34, genes
involved in hippocampal development (EFNA5), ubiquina-
tion (MAGI2, CAND1), apoptosis (PRUNE2, CAND1), ne-
crosis (ARSB), and dementia (MAGI2, ARBS) (Table 12).
The involvement of TOMM40 in numerous brain regions
of AD patients was confirmed by Shen et al [194]. This study
used a novel whole brain set of ROIs from both VBM and
FreeSurfer parcellation as QTs in a GWAS. Of the three
SNPs additionally identified as significantly associated
with brain volumetric changes, only one, proximal to the
NXPH1 gene encoding neurexophilin (known to promote
adhesion between dendrites and axons), had a bilateral
pattern of association and was chosen for further study
(Table 12). AD patients homozygous for the T allele at this
locus displayed reduced GM most significantly in hallmark
regions of AD atrophy, such as the hippocampus. This study
illustrates the potential power of imaging genetics to identify
novel candidate genes that warrant further investigation as
AD candidates.

While Shen et al [194] used ROIs covering the brain,
Stein et al [195] further extended the dimensionality of im-
aging genetics studies by carrying out a voxelwise GWAS,
which explored associations between hundreds of thousands
of SNPs and each of the nearly 32,000 voxels of the entire
brain. Although no SNP was found significant at the strin-
gent criteria used in the study, a number of SNPs of interest
were identified in or near genes known to have functions
relating to brain structure, such as monoamine uptake in neu-
rons (CAPDS2), psychiatric illness (CSMD2 and CAPDS2),
and neurite growth (SHB and ARP1) (Table 12). In a second
GWAS of a targeted region of TBM-derived structural brain
degeneration on MRI, Stein et al [196] identified an SNP
located in the gene encoding N-methyl-D-aspartate receptor
NR2B subunit (GRIN2B) that was significantly associated
with lower volumes in the temporal lobe bilaterally. Risk al-
leles at this locus were more prevalent in AD patients of the
AD cohort than in healthy elderly control subjects and were
additionally associated with decreased MMSE scores
(Table 12).

Furney et al [197] also used targeted imaging measures
(entorhinal cortex thickness and volume, hippocampal vol-
ume, whole brain volume, and ventricular volume) as QTs
in a large GWAS involving two cohorts (AddNeuroMed
and ADNI). In addition to confirming a role of PICALM as
a susceptibility gene for AD and as related to entorhinal
thickness, they identified two other loci, ZNF292 and
ARPP-21, as potential candidate genes based on associations
of flanking SNPs with entorhinal cortex thickness and vol-
ume (Table 12). Kohannim et al [427] used the Lasso method
of reducing dimensionality of multivariate GWAS to iden-
tify 22 genes associated with temporal lobe volumes in
ADNI cohort. These included the previously identified
GRIN2B andNRXN3 and a number of novel candidate genes.
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Of these, the greatest effect size was reported with MAC-
ROD2 (macro-domain-containing 2), a gene expressed in
the brain, which has been previously associated with schizo-
phrenia and MRI-defined brain infarcts.

Most imaging GWAS reports have addressed baseline
ADNI data; however, genetic variants predicting rate of pro-
gression are of great interest. Saykin et al [6] reported an
initial longitudinal analysis of hippocampal volume and
GM density using baseline and 12-month scans. In a candi-
date gene analysis [198], five AD genes from the AlzGene
database (alzgene.org) were found to have significant
SNPs associated with hippocampal volume or GM density
changes, after accounting for APOE, baseline diagnosis,
and other factors (NEDD9, SORL1, DAPK1, IL1B, and
SORCS1). Next, a longitudinal GWAS was performed on
hippocampal volume and GM density, using the MRI mea-
sures reported in the paper by Risacher et al [115]. A number
of interesting potential candidate genes were identified by
this GWAS. In addition to APOE and TOMM40, an SNP
(rs12449237) located at 16q22.1 between CDH8 (cadherin
8, type II) and LOC390735 was strongly associated with
change in hippocampal volume. CDH8 codes for a
calcium-dependent cell adhesion protein related to synaptic
integrity (neuronal adhesion and axonal growth and guid-
ance). Although the cadherin protein has been implicated
in AD and is known to interact with presenilin, this was
the first indication that genetic variation in CDH8 may be
associated with rate of neurodegenerative changes in the hip-
pocampus. Several other markers did not reach genomewide
significance but also showed association signals worthy of
follow-up (for volume change: SLC6A13; for GM density
change: MAD2L2, LOC728574, QPCT, and GRB2).

In a QT GWAS of CSF biomarker levels instead of imag-
ing variables, Kim et al [149] examined levels of Ab-42,
t-tau, and p-tau181p and the ratios of p-tau181p/Ab-42 and t-
tau/Ab-42 in the ADNI cohort. They found five SNPs that
reached genomewide significance for associations with one
or more biomarkers, including the known candidates
(APOE and TOMM40) as well as one hypothetical gene
(LOC10012950) that partially overlaps APOE. Most inter-
estingly, several SNPs in the vicinity of the novel gene
EPC2 (enhancer of polycomb homolog 2) were associated
with t-tau levels. EPC2 is involved in chromatin remodeling
and has not been previously associated with AD, yet this
gene may be causally associated with mental retardation in
a microdeletion syndrome. Along with EPC2, SNPs near
CCDC134, ABCG2, SREBF2, and NFATC4 approached sig-
nificance (P, 105) in their association with CSF biomarkers
and can be considered potential candidate genes for future
studies (Table 12). Han et al [199] also used levels of CSF
biomarkers as QTs in a GWAS of the ADNI cohort. They
found that increasing APOE 34 allele dose was associated
with lowered Ab-42 and elevated t-tau and p-tau181p levels.
After adjusting for age and APOE genotype, several SNPs
were found to be significantly associated with increased
Ab-42 levels in normal subjects, the most strongly associ-
ated being within or proximal to the TOMM40, NCAM2,
and CYP19A1 genes (Table 12). NCAM2 encodes neural
adhesion molecule 2, a poorly characterized protein impli-
cated in neuronal adhesion and fasciculation of neurons,
whereas CYP19A1 encodes cytochrome P450 aromatase,
an enzyme that catalyzes the conversion of androgens to es-
trogens.

Cruchaga et al [524] used t-tau and p-tau181 as quantita-
tive phenotypes in a large GWAS (n ¼ 1269 from four co-
horts including ADNI) and identified three novel loci, one
between GEMC1 and OSTN, one within GLIS4, and one
within the TREM gene cluster. In an independent data set,
the SNP between GEMC1 and OSTN was associated with
CSF tau/ptau181 levels as well as tangle pathology and the
rate of cognitive decline. The introduction of Florbetapir
amyloid imaging in ADNI-GO and ADNI-2 has provided
another quantitative phenotype for GWAS studies. Using
these data, Ramanan et al [525] conducted a GWAS that
identified, in addition to APOE, an SNP upstream of
BCHE that was independently associated with Ab levels.
Together, the two loci accounted for 15% of the variance
in cortical Ab levels (APOE, 10.7% and BCHE, 4.3%).
BCHE (butyrylcholinesterase) is an AD risk gene that has
been found in senile plaques. Genetic variation at this locus
may increase enzymatic activity, decreasing acetylcholine
levels and disrupting synaptic functioning. This result is of
particular interest as acetylcholinesterase inhibitors are
currently first-line symptomatic therapies for AD.

In addition to risk for AD itself, age at onset (AAO) of the
disease has an estimated heritability of 42%, some of it ac-
counted for by APOE. Kamboh et al [307] conducted a
GWAS of AAO data from 3 cohorts including ADNI to iden-
tify additional loci involved in AAO. They confirmed the
involvement of APOE and neighboring loci (TOMM40 and
APOC1) but no other SNPs reached significance. However,
SNPs in 11 loci approached significance and as they lie in
or near genes expressed in the brain, the authors suggested
that they may be worthy candidates for further investigation.

GWAS appear to be a powerful tool for detecting associ-
ations between genes and phenotypes, but they are limited
by the large sample sizes (typically thousands) required to
gain sufficient statistical power to find these links and may
also fail to detect connectivities between genetic loci by
considering all SNPs separately. Imaging GWAS are also
particularly extremely computationally intensive. In 2011-
2012, various studies have focused on approaches to over-
come these difficulties [305]. Schott et al [306] reported a
method to increase the power of GWAS by defining cases
and controls more accurately to reflect the presence of AD
pathology rather than on the basis of clinical diagnosis. To
this end, they divided the ADNI cohort into CSF positive
and CSF negative groups based on previously established
cut-points for Ab42 and ptau181 and examined minor allele
frequencies for 7 SNPs in previously identified AD risk
genes. They found significant associations between the
CSF negative group and SNPs in CR1, PICALM,

http://alzgene.org
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TOMM40 and APOE using only slightly more than 300 sub-
jects, an order of magnitude fewer than generally required to
detect associations in GWAS. An alternative approach to
reducing sample sizes and to leveraging information from
potentially linked genes, was taken by Swaminathan et al
[307] who used SNPs in 15 amyloid pathway associated
genes and PiB uptake in 4 regions affected by AD to study
genetic associations in 103 ADNI AD patients. This
approach identified a minor allele (A) of an SNP in the
DHCR24 gene that confers a protective effect and in a sub-
sequent whole brain analysis, they found they found a higher
mean PiB uptake for the major allele in frontal regions. Hu
et al [308] also used a pathway approach, investigating mul-
tiple SNPs in canonical AD pathways, and identified SNPs in
the Gleevec pathway, a cancer drug shown to modulate APP
cleavage by g-secretase, as being involved in AD. This tar-
geted pathway-based approach may be more effective in
identifying genes involved in AD pathology than traditional
GWAS. The issue of reducing dimensionality was tackled by
Hibar et al [305], who proposed that condensing the number
of SNPs (around 400,000) to genes (slightly over 18,000)
would avoid having to restrict phenotypes to a priori defined
ROIs to enable a practical computational burden. They used
principal components regression to test for gene association
at each voxel and identify the most significant gene on a
voxel basis. Although no genes identified remained signifi-
cant after correction for multiple comparisons, many top
genes, including GAB2, an established AD risk gene, had
been previously identified as being associated with brain dis-
eases, suggesting that this multivariate gene-based approach
holds promise for future investigations.

The vGeneWAS approach of Hibar et al [526] refined
the “brute force” approach of voxelwise GWAS by oper-
ating at the gene level. In 2012-2013, the GWAS SNP
approach has been further refined to reduce computational
burden and the high rate of false positives in the search for
the full complement of genetic susceptibility genes for AD.
Pathway and network analyses have been used to narrow
the selection of variants to be tested to a biologically rele-
vant pathway. Thus, a biochemical understanding of path-
ologic mechanisms in combination with genetic
approaches may together discover functional relationships
that cannot be seen at the level of individual SNPs or
genes. Similarly, pathways of interest have been selected
that constrain the search space for such computationally
demanding approaches as gene-gene or SNP-SNP interac-
tions. A summary of brain-genome association strategies
is shown in Fig. 45. Interaction analyses have been used
to help identify epistatic relationships that may explain
some of the “missing heritability” of AD. Next generation
sequencing (whole genome or whole exome sequencing)
and the combined use of proteomics data and genetics
data represent further significant developments.

Several studies have used different quantitative traits to
target a particular set of biochemical pathways putatively
involved in AD pathogenesis. Koran et al [527] examined in-
teractions of SNPs within genes identified as being on the
AD pathway by the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG). Using a discovery set and two independent
validation data sets from the ADNI cohort and amyloid
deposition measured by Florbetapir uptake as a variable
phenotype, they identified an interaction between the
RYR3 and CACNA1C genes in which a minor allele in genes
corresponded to a higher amyloid load than one or no minor
alleles. Both genes are involved in calcium homeostasis, a
process that is recognized as important in amyloid formation
and deposition. RYR3 encodes ryanodine receptor-3, which
regulates intracellular calcium homeostasis, while CAC-
NA1C encodes a calcium channel subunit. Together, they ac-
counted for between 4% and 9% of variance in amyloid load
in the three data sets. In a similar approach, Meda et al [528]
used 12-month hippocampal and entorhinal cortex atrophy
rates as quantitative traits and used a priori knowledge to
target biological pathways known to be associated with atro-
phy in these regions. They identified 109 SNP-SNP interac-
tions in 78 genes that were significantly associated with right
hippocampal atrophy and 125 SNP-SNP interactions in 102
genes significantly associated with right entorhinal cortex at-
rophy (Fig. 46). These were located in three KEGG path-
ways for hippocampal interactions including calcium
signaling, axon guidance, and ErbB signaling, and 14 path-
ways for entorhinal cortex atrophy including calcium
signaling, axon guidance, long-term depression and potenti-
ation, and neuroactive ligand-receptor interaction. The anal-
ysis confirmed the involvement of some genes as well as
identifying novel candidate genes for further investigation
and suggested that different biogenetic mechanisms may
mediate atrophy in different brain regions. A psychometri-
cally determined memory score was used as a phenotype
to enrich pathways involved in memory impairment in a
study by Ramanan et al [428]. Using GWA data from
ADNI participants, they enriched 27 pathways that included
not only processes well understood to be involved in mem-
ory such as long-term potentiation and neurotransmitter
receptor-mediated calcium signaling but also pathways
involved in cell adhesion and differentiation. Expression in
some of these identified pathways was coordinated; a large
gene set was regulated by the SP1 transcription factor
(Fig. 47). The newly identified enriched pathways may pro-
vide targets future studies of memory impairment. These
studies demonstrate that a pathway-based approach to
analyzing GWA data has great promise in untangling the re-
lationships between genes in these complex phenotypes.

Recent technological advances in proteomics have made
it feasible to use protein analytes as diagnostic, prognostic,
or treatment biomarkers for disease. The identification of
important functional genetic variants that affect levels of
protein analytes known to be associated with disease is an
important step in the development of these biomarkers.
Thus, Kim et al [529] integrated ADNI GWAS array data
with baseline multiplex panel proteomics data to investigate
the effects of SNPs within genes on the corresponding
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plasma protein level for 140 gene-protein association pairs.
They detected 112 significant associations within this
cohort, of which 50 were replicated in an independent
cohort. The top replicated associations included two SNPs
in CHFH1 (complement factor H-related protein 1), along
with gene-protein associations for interleukin-6 receptor,
pulmonary and activation-regulated chemokine, chemokine
CC-4, and apolipoprotein A4. Each SNP accounted for be-
tween 14% and 16% of the total variation in plasma protein
levels, emphasizing the large role of genetic variation in pro-
teomics.

An alternative to a pathway approach was reported by Be-
nitez et al [530] who restricted their search for new risk loci
to the known risk genes, APP, PSEN1, PSEN2,GRN, APOE,
andMAPT. Using extreme levels of CSFAb, t-tau, and p-tau
as quantitative traits, they confirmed one known pathogenic
mutation in PSEN1 (p.A426P) and found a number of high-
risk and novel variants in these genes. A new PSEN1 variant,
p.E318G, was associated with high levels of CSF t-tau and p-
tau and carriers of this variant who were also carriers of
APOE 34 had a twofold increased risk of AD over APOE
34 carriers alone. Moreover, in APOE 34 carriers, the

p.E318G variant was associated with more Ab plaques and
faster cognitive decline. These results suggest that
p.E314G in PSEN1 interacts with the APOE 34 allele to
raise the risk of AD via increased amyloid deposition.

AlthoughGWAS have been successful in identifying novel
risk variants for AD, the observed effects of these are rela-
tively small and substantial heritability has yet to be ac-
counted for. One explanation for this is that the genetic
makeup of AD is complex and involves epistatic relationships
that go beyond single genes. Hohman et al [531] examined
epistatic relationships between four top candidates SNPs:
PICALM, BIN1, CR1, and CLU, using amyloid burden
measured by Florbetapir uptake as a quantitative endopheno-
type. They reported a novel interaction between PICALM and
BIN1 in that the minor allele of BIN1 was associated with
higher levels of amyloid deposition but only in noncarriers
of the protective minor allele of PICALM. The interaction
suggests that variation in the genes may together modulate
amyloid deposition by as yet unknown mechanisms.
Glycogen synthase kinase 3 (GSK-3) has been posited to
regulate both tau-phosphorylation and Ab production, and
overactivity of this kinase influences cognitive impairment,
neuroinflammatory response, and the pathologic cascade of
AD. Hohman et al [532] again searched for epistatic relation-
ships, this time between GSK-3 and kinases involved in Ab
pathology using Florbetapir binding as a quantitative trait.
They found three interactions involving a GSK-3b SNP and
SNPs within APP and APBB2, each accounting for over 1%
of the variance in amyloid deposition. GSK3b may therefore
modify risk for amyloid deposition and increase amyloid
burden together with APP-related genes. Clearly, the exami-
nation of epistatic relationships between carefully selected
gene pairs is a promising approach that leverages both genetic
and biochemical knowledge to fit more pieces into the com-
plex puzzles of AD pathology and genetics.

Brain phenotypic measures are only partially explained
by genetic variation as represented by SNPs identified in
GWAS studies. Bryant et al [533] mapped the proportion
of phenotypic variance of multiple regions throughout the
brain that are caused by genetic variation using genome-
wide complex trait analysis. They reported that 85% vari-
ability in intracranial volume and 57% of the variability in
cerebrospinal fluid volume was explained by considering
the complete set of SNPs (512,905). In contrast, genetic vari-
ability for white and gray matter was close to zero. Within
regional volumes, high genetic variability was found in
several medial cortical regions, subcortical nuclei, and
perceptual cortical pathways including the entorhinal cortex,
caudate, and insula.

Next generation sequencing of either the whole genome
or, more feasibly, the whole exome, is a logical next step
in genetic analysis. Nho et al [534] reported the first applica-
tion of whole exome sequencing to identification of risk al-
leles for LOAD. They selected MCI participants who were
also APOE 33/ 33 homozygotes with an extreme change
in hippocampal volume over 2 years. Two single nucleotide
variants in CARD10 and PARP1 accounted for the greatest
group difference. Further quantitative trait analysis in the re-
maining ADNI 33/ 33 group revealed that genetic varia-
tion in both CARD10 and PARP1 was associated with
greater hippocampal atrophy. PARP1 was further found to
be associated with baseline hippocampal volume in a
meta-analysis of 33/ 33 subjects from five studies.
CARD10 (caspase recruitment domain family, member 10)
had not been previously associated with AD but is known
to activate NFkB which is activated in the disease. PARP1
(poly (ADP-ribose) polymerase-1) is involved in many
cellular genetic processes, expressed in many regions of
the brain, and has important role in long-term memory for-
mation.

Shen et al (2012) [428] analyzed ADNI genetic associa-
tions using pathway and network enrichment and identified
a number of pathways involved in cell adhesion, neurophys-
iological processes, immune response, and development in
addition to neurogenesis, synaptic contact, angiogenesis,
cell adhesion, and synaptogenesis process networks. This
work highlighted pathways already identified in AD patho-
genesis and also identified novel targets for future investiga-
tion.
5.4. Replication studies and meta-analyses

In 2011-2012, genetic data from the ADNI cohort have
been used in a number of studies both confirming candidate
AD risk genes, by attempting to replicate results in different
cohorts, or by conducting meta-analyses of previously pub-
lished work, and providing more detailed mapping of candi-
date genes. An independent confirmation of the involvement
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of CR1 in AD was reported by Antunez et al [309], who
found a trend supporting association in a Spanish cohort of
approximately 3500 and a stronger association in a meta-
analysis of over 30,000 individuals. Further confirmation
for CR1 as an AD risk gene came from Hu et al [308] who
conducted a GWAS on combined cohorts including ADNI.
They also replicated the BIN locus by testing top SNPs
from the GWAS in an independent cohort, and used haplo-
type conditional analysis to show that multiple variants at
the BIN locus had conditionally independent associations
with AD. PICALM variants were also replicated, but their as-
sociation with ADwas attenuated by APOE status. Cruchaga
et al [310] focused on replicating the association between
APOE3-TOMM40 haplotypes and AD as well as age of onset
of the disease. They found it difficult to identify the genetic
variant driving the association of the genes because of exten-
sive linkage disequilibrium around TOMM40 and APOE and
possibly an insufficient sample size. Consequently, they
were not able to replicate results, identifying instead a poly-
morphism of TOMM40 associated with decreased risk of
AD. An additional study by Antunez et al [311] indepen-
dently identified theMSA4A gene cluster as being associated
with AD after a meta-analysis of 4 public GWAS sets
including ADNI, and a new Spanish cohort. This gene clus-
ter was previously identified by Naj et al [186], and the use of
a combined total of over 10,000 cases and over 14,000 con-
trols in this study underscores the importance of combining
cohorts to increase power to detect genetic associations that
may have small effect sizes. Kauwe et al[312] investigated
whether common variants of BIN1, CLU, CR1 and PICALM
were associated with Ab42 and p-tau181. No associations be-
tween these SNPs and CSF biomarkers were found in two
cohorts including ADNI, suggesting that these candidate
genes may affect risk for AD via other mechanisms than a
direct effect on AD pathology. CSF biomarkers were also
used as a QT in a study by Alexopoulos et al [313], who
investigated the association between SORL1 (neuronal
sortilin-related receptor with A-type repeats), likely
involved in sorting of APP in the Golgi, and levels of
Ab42, ptau181 and t-tau. They found that Ab42 was signifi-
cantly associated with the A allele for SORL1 SNP233 in the
AD group and marginally associated with Tallele of SNP24.
Levels of some SNPs in SORL1 were modulated by the
APOE 34 allele.

ADNI data continue to play a vital role as a subset of
meta-analyses of GWAS results which have been necessary
to gain sufficient statistical power to identify risk variants.
For example, Rhinn et al [535] investigated regulatory
mechanisms affecting AD and AD risk using differential
co-expression analysis and identified candidate genes pre-
dicted to mediate transcriptional changes in APOE 34 car-
riers including modifiers of APP processing and endocytic
trafficking. A meta-analysis of GWAS including ADNI
data was then used to confirm that common genetic variants
in two genes of interest, FYN and RNF219, affected amyloid
deposition and age of disease onset in APOE 34 carriers.
Likewise, five of nine previously identified AD risk loci
(PICALM, BIN1, ABAC7, MS4A4/MS4A6E, and EPHA1)
were confirmed in a GWAS by Kamboh et al [536] using a
University of Pittsburgh cohort. When the top 1% most sig-
nificant SNPs from this GWAS were then analyzed in a
meta-analysis including the ADNI cohort, the authors found
that the most significant SNP, located in PPP1R3B (protein
phosphatase 1, regulatory subunit 1B), carried an OR for AD
risk of 2.43. A replication study by Peterson et al [537]
confirmed the association of another protein phosphatase
gene, PPP3R1, as well as MAPT with CSF tau levels. The
high-risk allele in MAPT was also associated with a 30%
faster change in CDR-SB scores, and patients with the
high-risk alleles at both loci progressed to AD six times
faster than those with the low-risk alleles. A meta-analysis
of five GWAS studies and subsequent replication of results
in an independent sample by Martinez-Murcia et al [398]
identified a marker in the NRXN3 gene with a consistent pro-
tective effect in men. These results support a role for neurex-
ins, synaptic cell adhesion molecules processed by
presenilin, in LOAD.
5.5. Genomic copy number analysis

One method of genetic analysis not extensively used in the
field of AD research is that of copy number variation analysis.
Copy number variants (CNVs) are sequence alterations
involving differences in gene copy numbers usually cause
by deletions or duplications of genomic sequences. Swamina-
than et al [314] used this technique to analyze the ADNI
cohort and compared CNV calls generated in AD and MCI
cases to those in controls using whole genome and candidate
gene association approaches. While no excess CNV burden
was observed in cases versus controls, a number of genes
already implicated in AD were identified (CHRFAM7A,
NRXN1), in addition to some novel loci (CSMD1,
HNRNPCL1, SLC35F2, ERBB4) (Table 12). Of these candi-
date genes, three (CHRFAM7A, NRXN1, ERBB4) were repli-
cated in an analysis of a different cohort by the same group
[315]. This analysis also identified other loci previously iden-
tified as possible AD candidate genes (ATXN1, HLA-DPB1,
RELN, DOPEY2, GSTT1) in addition to a novel candidate
gene, IMMP2L which codes for a mitochondrial enzyme
and may play a role in AD susceptibility through influencing
oxidative damage (Table 12). A follow-up paper by the same
group [538] confirmed in a separate cohort that the
CHRFAM7A, RELN, and DOPEY2 genes were associated
with AD and identified a novel gene, HLA-DRA (major histo-
compatibility complex, class II DR alpha). A subsequent
meta-analysis that included the ADNI cohort found that the
CHRFAM7A gene was significantly associated with MCI/
AD risk (OR ¼ 3.986; 95% CI: 1.490–10.667). The gene
has a putative function in synaptic transmission and cholin-
ergic anti-inflammatory response.

Guffanti et al [539] used intensity variation in SNPmicro-
arrays to study differences in CNVs between control and
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AD/MCI patients and identified a number of CNV regions
that included heterozygous deletions over-represented in
MCI and AD patients. Genome resequencing identified
genes putatively affected by these deletions, and functional
pathway analysis revealed that these genes were involved
in processes such as cell-cell adhesion, axon guidance, dif-
ferentiation, and neuronal morphogenesis. The authors hy-
pothesized that, although rare, these CNV regions may
confer an increased susceptibility to cognitive decline by
acting in combination with additional genetic or epigenetic
mechanisms.
5.6. Other genetic studies using ADNI data

Like other fields discussed in this review, studies have
recently emerged that utilize ADNI genetic and/or imaging
data for uses not directly related to AD research. Stein
et al [316] conducted a GWAS investigating genetic influ-
ences in caudate volume, a structure involved in many disor-
ders including depression and schizophrenia as well as in
AD. While no SNPs reached genome-wide significance,
loci involved in dopaminergic neuron development and
with links to schizophrenia were identified suggesting that
MRI phenotypes may be powerful phenotypes when search-
ing for genetic associations. The ADNI cohort was also used
in 2 GWAS, one identifying SNPs associated with variability
in the surface of the visual cortex [317] and the other deter-
mining that circadian clock SNPs are not associated with the
breakdown of sleep-wake consolidation observed in AD
[318]. Hibar et al [540] used ADNI genetic data to perform
a GWAS to discover common genetic variants associated
with lentiform nucleus volume, implicated in disorders
such as Parkinson’s disease, ADHD, and schizophrenia.
They identified variants within the flavin-containing mono-
oxygenase gene cluster.
5.7. Summary and conclusions of genetic risk factor
studies

Genetic studies of the ADNI cohort have confirmed that
the APOE 34 allele is the major genetic risk factor for late-
onset AD and that it is associated with atrophy in widespread
areas of the brain. Case–control GWAS that have included
ADNI data have also confirmed CLU, CRI, and PICALM
as AD risk loci and identified a number of other candidate
genes. QT GWAS using ADNI phenotypes such as Ab-42
and tau or imaging measures of brain atrophy have detected
genes implicated in the modification or modulation of Ab or
tau proteins, mitochondrial oxidative pathways, iron meta-
bolism, neural adhesion and growth, synaptic plasticity,
epigenetic processes, and memory function. A particular
contribution of ADNI imaging genetic studies has been to
develop methods to expand the dimensionality of GWAS
studies to include all regions or voxels of an imaging scan,
significantly expanding the potential of the field of imaging
genetics to pinpoint specific brain regions influenced by
different loci. Although candidate genes await confirmation
by independent studies, they promise to unveil biological
mechanisms underlying AD pathology.

Publications of genetic findings using ADNI data have
continued to increase in 2011 and 2012. From only 1 paper
published in 2009 [184] and 19 in 2010
[6,103,128,141,146,184,188,189,191–193,303,194–196,199,
208–210], 2011 saw 20 new publications
[105,139,149,186,187,194,197,305,308–311,314,316,318–
323] and the first three-quarters of 2012 saw 32 new publica-
tions [262–264,302,304,306,307,315,317,324–346]. This
significant expansion in number has been matched by an
equally impressive expansion in scope. While new
candidate risk loci continue to be reported, the focus of
many studies has been to replicate previous work,
sometimes using meta-analysis of combined cohorts, to
independently confirm candidate genes. These studies have
demonstrated that the increased power resulting from the
larger sample sizes is critical to success in this endeavor.
Other approaches to increasing power to identify candidate
genetic loci have been reported, such as targeting SNPs in
selected pathways rather than using a genome-wide
approach or using genes instead of SNPs in a genome
wide search, and defining controls and cases on the basis
of pathological rather than clinical criteria. The analysis of
copy number variations in AD has been reported and appears
to be an important additional tool for untangling the contri-
butions of AD susceptibility loci to the disease. Finally,
ADNI genetics data have been used in fields outside of Alz-
heimer’s research, demonstrating a pleasing contribution of
the project to the greater scientific community. The ultimate
goal of genetics research in AD is to identify novel candi-
dates as targets for the development of disease-modifying
agents. ADNI genetics data have now been used in the iden-
tification of 13 novel AD susceptibility genes in addition to
APOE, 10 of which are not in linkage disequilibrium with
APOE: BIN1, CD2AP, CLU, CR1, EPHA1, FTO, GRIN2B,
MAGI2, MS4A4A, and PICALM. In 2012-2013, rapid prog-
ress toward this goal has been made notably by the use of
more targeted approaches that reflect an increasing under-
standing of the biochemistry of AD. The selection of sus-
pected pathologic pathways or a particular set of genes has
helped to narrow the search for risk alleles. Interaction
studies of epistatic relationships have revealed additional
heritability factors, and the first studies using ADNI whole
exome sequencing and proteomics data have been reported.
Through these and other approaches, ADNI has continued to
make substantial contributions to untangling the genetic ba-
sis of AD and has thereby deepened our understanding of the
biological pathways involved in pathogenesis.
6. Studies of normal control subjects

With the realization that AD pathologymost likely begins
to accumulate years in advance of any detectable cognitive
effect, a major issue has been determining the proportion
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of apparently normal control subjects who harbor preclinical
AD. As more sensitive biomarkers have been developed,
studies have emerged with the goals of ascertaining the util-
ity of these biomarkers in healthy elderly subjects and deter-
mining the earliest stage at which incipient AD pathology
can be detected. This clearly has implications for develop-
ment of AD therapies: if AD pathology can be reliably de-
tected at such an early stage, then would existing or novel
AD-modifying treatments be more effective when used
before clinical symptoms become evident? In tandem with
these studies, ADNI’s cohort of well-characterized normal
control subjects has been used to investigate processes
occurring in the brain during healthy aging when there are
no clinically detectable underlying pathologies. These two
thrusts are often interwoven within the same study, as it be-
comes more obvious that healthy elderly subjects, although
cognitively normal, are in fact a heterogeneous group when
examined by other means.
6.1. MRI studies

The effect of developmental brain changes on neurocog-
nitive late-life functions was investigated by Tamnes et al
[541] who compared longitudinal volume changes in a
developing cohort (8–22 years) with cognitively normal
ADNI participants. Developmental reductions in GM vol-
ume proceeded in a generally posterior to anterior gradient
and were generally greater than the cortex then subcortical
structures. Late developing cortices were more vulnerable
to atrophy in aging, with the exception of the medial tempo-
ral lobe. This study provides new insights into the relation-
ships between brain changes during development and in
normal aging. Insights into normal aging and into strategies
for preventing age- or disease-related cognitive decline were
gained by Harrison et al [542] who studied a group of “super-
agers”: people over 80 years who perform at a level equiva-
lent to 20 to 30 years younger in tests of episodic memory
and at age level for other cognitive tests. Cortical volume
and thickness in super-agers with superior memory function
were greater than those of their age-matched peers and
equivalent to those of middle-aged controls. This is contrary
to the dictum of normal cognitive aging involving slow
global atrophy, and future studies may identify other factors
that may contribute to unusually successful cognitive aging.

The question of whether atrophy observed in normal ag-
ing is due primarily to normal aging processes or to the
development of underlying pathologies is the subject of
much debate. Fjell et al [200] presented the first detailed
longitudinal study of brain atrophy in healthy elderly sub-
jects aimed at understanding age-related changes in cogni-
tive function. When volume changes in multiple ROIs and
across the entire cortex were compared in healthy elderly
subjects and AD patients, these authors found that the
healthy elderly subjects had an atrophy rate of about
0.5% per year and that volume loss was widely distributed
across the brain and included both regions typical of AD-
associated atrophy and areas not typically associated with
AD, such as the inferior, superior, and middle frontal
cortices. The rate of change accelerated with age, espe-
cially in those regions associated with AD, possibly
because of the existence of preclinical AD pathology super-
imposed on normal aging processes. The authors believe,
however, that the majority of volumetric changes observed
in healthy aging are not related to those caused by degener-
ative diseases. Davatzikos et al [119] used the SPARE-AD
index (see section 4.4.2.1. for further description) to
examine the degree of AD pathology in healthy elderly sub-
jects and its association with cognitive decline in ADNI and
another cohort with longitudinal data available. They found
that SPARE-AD scores increased with age, as did the rate
of change of the SPARE-AD score. When healthy elderly
subjects were divided into groups of high versus low
SPARE-AD score, the majority had negative scores. How-
ever, a small group with positive scores had significantly
lower MMSE scores at baseline, suggesting that a subset
of cognitively normal elderly subjects harbored underlying
AD preclinical pathology.

In response to a paper by Burgmans et al [201] suggesting
that underlying preclinical disorders may lead to the overes-
timation of GM atrophy in normal aging studies, Fjell et al
[202] conducted a meta-analysis of a number of cross-
sectional studies. They found that atrophy correlated with
age in virtually all ROIs studied, even at younger ages, sug-
gesting a linear trajectory of brain atrophy over time. When
2-year follow-up cognitive data of healthy elderly subjects
from the ADNI cohort were used to exclude participants
with any indication of cognitive decline, significant atrophy
in all ROIs was still found in the remaining “super-stable”
cohort. These results support the view that brain atrophy is
part of normal aging and not necessarily caused by underly-
ing neuropathological processes. To detect unusually fast at-
rophy in cognitively normal healthy elderly subjects, Franke
et al [92] developed a model of healthy aging by estimating
age from MRI scans of normal brain anatomy. Their method
(described in more detail in section 3.7) accurately estimated
the age of healthy subjects (r¼ 0.92 between real and calcu-
lated ages). Using the samemethod, they also estimated ages
of patients with early AD and found that the predicted ages
were an average of 10 years higher than the actual ages,
implying that the pattern of AD atrophy does accelerate rela-
tive to healthy elderly control subjects.

Murphy et al [203] used an automated method to examine
volume changes in 14 cortical and subcortical regions over 6
months in an effort to determinewhether atrophy was detect-
able over the short period in healthy elderly subjects and
whether this atrophy was related to 2-year declines in
memory-specific neuropsychological tests. They found that
volume changes in these regions could be measured and
that they were predictive of future clinical decline. The
most significant associations were found in the MTL,
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suggesting that this atrophy could represent the earliest
stages of AD and that MRI may be a useful tool in comple-
menting neuropsychological tests in the early detection of
those at risk for subsequent cognitive decline.

Furthermore, cognitively normal individuals who were
amyloid positive had greater thinning of the medial portion
of the orbital frontal cortex than amyloid negative patients,
and those who were tau-positive were distinguished from
tau-negative individuals by greater thinning of the entorhinal
cortex. These results suggest that in asymptomatic individ-
uals, Ab and tau pathology affects GM thinning in select
neocortical regions that potentially influence hippocampal
atrophy at a later stage of the disease [163].

6.2. Studies of CSF biomarkers and amyloid deposition
(11C-PiB PET)

In a manner similar to the examination of MRI markers
of AD pathology, there has been interest in assessing the
utility of CSF biomarkers in healthy elderly subjects on
the basis that an “earlier biomarker horizon” [204] would
have great clinical significance. Nettiksimmons et al
[204] examined healthy elderly subjects in the ADNI
cohort and found three clusters of participants when 11
biomarker and imaging measures were subjected to unsu-
pervised cluster analysis. The first, compact cluster had
the most “normal” CSF and MRI measures, whereas the
measures of the third, more dispersed group more closely
resembled those of MCI patients included in the study for
comparison (the second cluster was placed in an intermedi-
ate position). The third cluster had a significantly higher
proportion of APOE 34 carriers and scored worse on tests
of cognition (ADAS-cog, AVLT), suggesting that this
group may harbor the earliest manifestations of AD symp-
toms. These results provide support for the notion that
cognitively normal elderly subjects are in fact a heteroge-
neous group, a portion of which may progress to MCI in
the future. The second cluster of normal controls found
by Nettiksimmons et al [204] lacked the CSF biomarker
signature for AD but had atrophy in multiple brain regions,
approaching levels observed in MCI patients. A further
study by the same group [543] examined whether vascular
damage could account for these differences. They found
that this subgroup had a higher mean frequency of
WMHs in the periventricular area and higher BMI, triglyc-
erides, blood glucose, and Haschinki scores. There was no
difference in the APOE 34 allele frequency of this cluster
compared with the first “normal” cluster, but it had a worse
trajectory in longitudinal cognitive tests (AVLT, FAQ). The
results support the involvement of a vascular component in
cerebral atrophy observed in a subset of normal controls.

In a study of the relationship between levels of CSF bio-
markers and 1-year atrophy in 15 subcortical and 33
cortical ROIs in healthy elderly subjects, Fjell et al [205]
reached similar conclusions. They found that levels of
CSF biomarkers, especially Ab-42, correlated with atrophy
in many of the regions tested and that atrophy was not
restricted to regions most typically associated with AD.
When Ab-42 concentration was plotted against the percent-
age of annual change in ROIs, there was an inflection point
at approximately 175 pg/mL, below which participants had
larger brain volume changes over a year, suggesting that
Ab-42 may play a role in changes in brain volume
observed in healthy elderly subjects below a certain
threshold level. De Meyer et al [159] found that when a
biomarker “signature” for AD using levels of Ab-42, t-
tau, and p-tau181p was tested in healthy elderly subjects,
there was a bimodal distribution of Ab-42 levels with a
separation point at 188 pg/mL. Although it was unknown
whether those participants with low levels of Ab-42 in
these two studies would develop AD pathology, they
once again highlighted the heterogeneity of the cognitively
normal healthy elderly group.

In the current model of AD pathogenesis, it is well estab-
lished that deposition of amyloid plaques is an early event
that, in conjunction with subsequent tau pathology, causes
neuronal damage typically beginning in the hippocampus
and resulting in the first clinical manifestations of the disease
in the form of episodic memory deficits. Mormino et al [206]
investigated the relationship between Ab deposition, as
measured by 11C-PiB PET uptake, hippocampal atrophy,
and episodic memory loss in cognitively normal healthy
elderly subjects. They found an inverse relationship between
11C-PiB uptake and hippocampal volume and that episodic
memory loss was predicted by hippocampal volume, but
not by 11C-PiB uptake. The results suggest that low levels
of CSFAb-42 (high levels of brain accumulation) in healthy
elderly subjects may reflect early stages of AD pathogenesis
and may subsequently mediate dementia through an effect
on hippocampal volume and the resulting declines in
episodic memory. These findings warrant further investiga-
tion. Ab deposition may require abnormal p-tau181 to induce
neuronal and synaptic damage. Desikan et al [544] found
that CSFAb-42 was significantly associated with longitudi-
nal change in cognition (CDR-SB, ADAS-cog) only in the
presence of elevated p-tau181 in cognitively normal subjects.
There was no significant association between abnormal
levels of Ab-42 alone and cognitive decline over 3 years. Re-
sults suggest that early intervention trials should take into
account both increased p-tau181 and decreased Ab-42 as in-
dividuals with this profile are likely to have a different rate of
clinical progression from that of individuals with decreased
Ab-42 alone.

6.3. Genetic studies of normal control subjects

Although the APOE 34 allele has been clearly identified
as an AD risk allele, the question of whether a second
variant in the APOE gene, the 32 allele, confers a protective
effect has been less well studied. Evidence for the protec-
tive effect of the APOE 32 allele came from a study by
Hua et al [120], who found reduced CSF volume in the
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ventricular system of healthy elderly subjects who had the
highest frequency of this allele compared with MCI and
AD patients. Chiang et al [207] sought to determine the ef-
fect of APOE 32 allele on hippocampal volume and levels
of CSF biomarkers in healthy elderly subjects. They found
that carriers of the APOE 32 genotype, constituting approx-
imately 5% of the population, had lower rates of hippocam-
pal atrophy and higher Ab-42 and lower t-tau and p-tau181p
levels compared with the more common (w70% of popula-
tion) APOE 33/ 33 homozygotes, suggesting that lower rates
of atrophy could be related to decreased underlying AD pa-
thology and may explain the lower rates of AD among car-
riers of this allele. A similar finding was reported by Fan
et al [208], who examined the relationship between cortical
thickness at multiple regions across the brain and APOE ge-
notype in healthy elderly subjects who were grouped as 32
carriers, 33 homozygotes, and 34 carriers. After adjusting
for multiple comparisons, they found greater thickness in
the superior temporal cortex in 32 carriers compared with
33 homozygotes, and in the dorsolateral prefrontal cortex
in 32 compared with 34 carriers. Moreover, CSF concentra-
tions of Ab-42, t-tau, and p-tau181p were significantly
different in all groups (Fig. 24), although no differences
were found in the MMSE between groups. The results of
these two studies provided support for the differential ef-
fect of APOE alleles on brain structure and on CSF bio-
markers.

In addition to risk factors like age and APOE genotype,
increased BMI has been associated with frontal, temporal,
and subcortical atrophy and may increase susceptibility to
AD. Recent studies identified a novel obesity genetic risk
factor, a variant of the fat mass and obesity associated
(FTO) gene, carried by almost one-half of Western Euro-
peans. Ho et al [209] examined the effect of the FTO risk
allele on brain volumes in healthy elderly subjects and
compared its effects on brain structure with that of
increased BMI. They found that carriers of the FTO risk
allele had an 8% to 12% deficit in a subset of areas
affected by BMI, predominantly in the frontal and occip-
ital lobes, compared with noncarriers, suggesting that the
FTO risk allele contributes to, but does not fully account
for, the effect of increasing BMI on brain atrophy. Bertam
and Heekeren [198] discussed the findings of the study
and the need for corroborating the results to determine
the influence of genetics on normal brain structure and
function.

The idea that common variance in brain structure may be
primarily controlled not by polymorphisms resulting in
altered protein structure, but by changes in regulatory ele-
ments found support in a study by Rimol et al [210]. Using
the ADNI cohort, they found that two SNPs located in non-
exonic regions of genes for primary microencephaly were
correlated with reduced cortical surface in males only,
regardless of disease status, and suggested that these poly-
morphismsmay affect gene regulation and result in gross ab-
normalities in brain structure observed in this disease. More
data on the role of common genetic sequence variations in
accounting for commonly occurring brain structure varia-
tions came from a study by the same group [211] on associ-
ations between a common haplotype of theMECP2 gene and
brain structure. Mutations inMECP2, encoding methyl-CpG
binding protein 2, cause microencephalopathy and are asso-
ciated with other severe neurodevelopmental disorders, but
Joyner et al [211] found that common sequence variations
in this region correlated with reduced cortical surface area
in males only of the ADNI cohort. As MECP2 is thought
to transcriptionally activate or repress thousands of genes,
studies of the influence of such common sequence variations
may reveal profound insights into brain structure and devel-
opment.

Hypothesizing that multiple brain pathologies may share
common pathways such as inflammation, protein misfolding
and mitochondrial dynamics, De Jager et al [326] searched
for genetic variants affected the rate of age-related cognitive
decline. In addition to identifying the APOE locus, they
found an SNP close to PDE7A and MTFR1, genes poten-
tially involved in inflammation and oxidative injury, respec-
tively.
6.4. Summary and conclusions of papers focusing on
normal control subjects

Heterogeneity of cognitively normal healthy elderly sub-
jects seems to be well supported by these studies, with a
number suggesting the existence of a subset of cognitively
normal elderly subjects that bears the hallmarks of early
AD pathogenesis in terms of changes in brain volume and
levels of CSF biomarkers. The extent to which these changes
are separate from those of normal aging remains to be fully
elucidated. Fjell et al [202] concluded, “We need more
knowledge about which factors mediate brain atrophy in
healthy elderly and what consequences the changes have
for cognitive function.” Likewise, several intriguing studies
have pointed to the role of genetics in healthy aging, and sug-
gest a protective effect of the APOE 32 allele and increased
susceptibility to brain atrophy and perhaps AD conferred by
a risk allele at the novel FTO locus. Clearly, studies of the
healthy elderly control subjects are revealing information
not only about the processes of healthy aging but also the
initial development of preclinical AD pathology. In 2011-
2012 there has been a further shift toward considering cogni-
tively normal elders as a heterogeneous population, some of
whom harbor the earliest pathological manifestations of AD
and are therefore part of the disease continuum.Many papers
studying this group have therefore been included in other
more relevant sections of this review.
7. Worldwide ADNI

Since the inception of ADNI in North America in 2004,
there has been worldwide interest in creating programs
that are at least partially modeled on the ADNI platform,
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and that use protocols developed by ADNI for at least part of
their studies. Combined, the initiatives represent a concerted
effort toward globalization of this concept. Society may well
reap the rewards of having not just a well-characterized
North American cohort for the development of AD bio-
markers but also similarly characterized cohorts globally
that may represent diverse ethnic groups, important for
determining the applicability of ADNI findings to the world
population. Like ADNI, these initiatives from Europe,
Japan, and Australia are predicated on the sharing of data,
and infrastructure is beginning to be developed to allow
full transparency of global results. Future ADNIs are ex-
pected to begin in Argentina and China and have recently
begun in Korea and Taiwan. All worldwide ADNIs share
common goals of increasing understanding of AD onset
and progression, both cognitively and physically, establish-
ing globally recognized standards for diagnosis, and ulti-
mately developing methods to allow more efficient clinical
trials.
7.1. European ADNI

Frisoni [212] provides an overview of all programs, either
completed or underway, in Europe that are in some way
related to ADNI. The ADNI platform was first introduced
into Europe in the form of a small cross-sectional pilot study,
E-ADNI, which aimed to assess the feasibility of importing
ADNI procedures to a European multicenter multicountry
setting [213]. E-ADNI was initiated under the auspices of
the Alzheimer’s Association through the generosity of the
HEDCO Foundation and enrolled 49 control, MCI, and
AD participants over seven sites in seven countries. The pilot
study used all ADNI protocols, with the exception of PET
imaging, the feasibility of which had been previously
demonstrated, and MRI sequences for the detection of cere-
bral small vessel damage, a slightly different emphasis of the
study. Buerger et al [214] conducted a multicenter feasibility
study within E-ADNI and found that the use of fresh, rather
than frozen, biological samples increased diagnostic accu-
racy. Overall, the study demonstrated that apart from age
and education, the enrolled cohort was similar to the
ADNI cohort in MRI and CSF measures and that implemen-
tation of the ADNI platform in Europe was feasible [213].

Other data collection programs in Europe include (1)
AddNeuroMed, a public–private initiative with a cohort of
700 control, MCI, and AD subjects across Europe that
used ADNI protocols for structural MRI; (2) Pharma-cog,
which overlaps to the greatest extent with ADNI and which
aims to predict cognitive properties of new drug candidates
for neurodegenerative diseases; (3) Swedish ADNI, a small-
scale initiative funded by the Alzheimer’s Association that
used ADNI protocol and which has merged into the larger
Swedish BrainPower initiative; and (4) Italian ADNI, a
larger project with 480 patients enrolled. These initiatives
vary in the size and composition of enrolled cohorts, the
length of study, and the frequency and type of data collec-
tion. However, they all have the use of standardized ADNI
protocols in common for at least some of their data collec-
tion [212].

Two additional European programs funded by the Alz-
heimer’s Association focused on harmonization of measure-
ments of both CSF biomarkers [215] and hippocampal
volume [216], aiming to create worldwide protocols for stan-
dardized hippocampal segmentation and measurement of
CSF biomarker concentrations to allow the direct compari-
son of results generated globally. Westman et al [347] inves-
tigated whether, based on shared MRI data acquisition
methodologies, it was possible to combine data from Add-
NeuroNet and ADNI to produce a combined cohort more
representative of the general public that could be analyzed
for classification and disease prediction purposes. They
demonstrated that the 2 cohorts showed similar patterns of
atrophy and that data from the 2 programs produced similar
classification accuracies and concluded that the combination
of large data sets such as these was feasible and could
improve overall knowledge of the disease.

Finally, initiatives inspired by ADNI to build infrastruc-
ture including a central repository of all data, like that devel-
oped at LONI, have been implemented in Europe. NeuGRID
is being developed at the European equivalent of LONI, and
outGRID aims to synergize neuGRID, LONI, and the Cana-
dian repository CBRAIN and to develop full interopera-
bility. CATI (Centre pour l’Acquisition et le Traitement de
l’Image) is the French repository for data sets within that
country.

ADNI-related programs and initiatives in Europe are
summarized in Table 13.
7.2. AIBL study: The Australian ADNI

Often termed the “Australian ADNI,” the AIBL has
similar goals to ADNI, namely, to better understand disease
pathogenesis and to develop tests for an earlier diagnosis of
AD, and, to this end, uses ADNI protocols for its imaging
studies [217]. Some methodological differences between
the two studies include the omission of FDG-PET metabolic
investigations and the comparison of amyloid pathology us-
ing 11C-PiB PET and Ab-42 levels in blood plasma instead
of from CSF on the basis that obtaining blood plasma is
both less expensive and less invasive than lumbar punctures.
Perhaps the greatest difference between AIBL and ADNI
lies in the approach AIBL is taking to investigating lifestyle
factors involved in AD. By collecting extensive neuropsy-
chological and lifestyle data, the study aims to understand
which health and lifestyle factors protect or contribute to
AD. Like ADNI, however, all data are made available
through LONI and are funded by the Alzheimer’s Associa-
tion. Ellis et al [217] reported that one recent finding from
the study found that hippocampal atrophy was regionally
associated with 11C-PiB retention only in the inferior lobe,
leading to a new hypothesis of how Ab accumulation could
disrupt connections between the hippocampus through



Table 13

European initiatives related to ADNI

Purpose Program name Funding agency Time frame Countries

Data collection Pilot E-ADNI Alzheimer’s Association 2006–2007 IT, FR, GE, NL, SW, DE

AddNeuroMed EC Ongoing, 40 months FI, PL, UK, IT, GR, FR

Pharma-Cog WorkPackage

5 (E-ADNI)

EC IMI Ongoing 5 years SP, IT, GE, FR

Swedish ADNI Alzheimer’s Association 2007–2009 SW

Italian ADNI NHS 2009–2011 IT

SOP development International harmonization of

CSF Ab42, t-tau, and p-tau

Alzheimer’s Association 2009–2013 40 laboratories (EU, US, Japan,

Australia, Brazil)

EADC-ADNI harmonization of

hippocampal volume

Alzheimer’s Association

Lily-Wyeth

2010–2012 24 centers in EU, US, Canada,

Australia

Infrastructure development NeuGRID FP7 2008–2011 IT, FR, SP, CH, UK, SW

OutGRID FP7 2009–2011 IT, FR, UK, US, CD

Centre pour l’Acquisition et le

Traitement de l’Image (CATI)

French National Foundation

on AD and RD

2010–2013 FR

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; EC, European Commission; IMI, Innovative Medicines Initiatives; NHS, National

Health System; EADC, European Alzheimer’s Disease Consortium; FP7, 7th Framework Programme; AD and RD, Alzheimer’s disease and related diseases;

DE, Denmark; CD, Canada; CH, Switzerland; FI, Finland; FR, France; GE, Germany; GR, Greece; IT, Italy; NL, Netherlands; PL, Poland; SP, Spain; SW,

Sweden; UK, United Kingdom; US, United States.NOTE. Reproduced with permission from Ref [212].
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accumulation in this area (Bourgeat et al., Beta-amyloid
burden in the temporal neocortex is related to elderly sub-
jects without dementia. Neurology 2010:74:121–7; see Ap-
pendix).

Rowe et al [218] reported on the progress of the neuroi-
maging arm of the AIBL in characterizing a cohort of 177
healthy elderly subjects, 57 MCI patients, and 53 AD pa-
tients. The patient groups had increasing numbers of
APOE 34 carriers, increased hippocampal atrophy, and
increased cognitive impairment with disease progression.
The distribution of 11C-PiB binding in control subjects did
not follow a normal distribution, and cluster analysis deter-
mined a separation point between low and high 11C-PiB
binding groups at a neocortical standardized uptake value
threshold of 1.5. This bimodal distribution in normal healthy
elderly subjects again echoes the idea of heterogeneity
within this group and the existence of a subset of patients
with the first manifestations of AD pathogenesis well in
advance of any effects on cognition. 11C-PiB binding may
therefore play a role in populating and monitoring clinical
trials of antiamyloid therapies. Rowe et al [218] also used
11C-PiB PET imaging for diagnosis and found that 11C-
PiB scans discriminated between AD and control subjects
with an accuracy of 73%, a sensitivity of 98%, and a speci-
ficity of 63%, comparable with results obtained using hippo-
campal volume (accuracy ¼ 73%, specificity ¼ 80%,
sensitivity ¼ 78%).
7.3. Japanese ADNI

The need for a Japanese ADNI (J-ADNI) was realized in
2006 when ADNI was beginning in North America and at
the end of the Japanese study J-COSMIC (Japan Cooperative
SPECT Study on Assessment of Mild Impairment of Cogni-
tive Function) [219,221]. Iwatsubo [220] reported that J-
ADNI was needed not only to meet requirements for global
clinical trials of AD drugs about to begin in Japan and to
develop the necessary infrastructure for these trials, but
was also motivated by the desire of Japanese researchers
to improve their clinical science through international
collaboration. A special issue of Rinsho Shinkeigaku near
the inception of J-ADNI in 2007 reported on ADNI and
the need for the establishment of a Japanese version [221],
the goals of early detection of AD and biomarker develop-
ment [222], the methods used by ADNI and adopted by J-
ADNI for achieving these goals [219], and the use of
ADNI approaches for detecting MCI in neuropathological
studies [223]. Funding for J-ADNI was sought and received
from both the public and private sector, including Japanese
and international companies, to a total of approximately
U300 million per year [220]. The study began in 2008 and
aimed to recruit 300 amnestic MCI patients, 150 patients
with early AD, and 150 healthy elderly control subjects
from 30 centers across Japan by the end of 2010; participants
would then be followed until 2013 using a research protocol
designed to maximize compatibility with ADNI [220,224].
Compatibility with ADNI protocols was designed to allow
sharing and direct comparison of data and as a way to
contribute to global standardization of protocols. Arai et al
[224] reported that initial results from ADNI supporting
the use of biomarkers in clinical trials contributed to a para-
digm shift in Japanese geriatric medicine from defining AD
solely by cognitive measures to considering the information
available from biomarkers.
7.4. Worldwide ADNI future directions

The establishment of Worldwide ADNI, an umbrella or-
ganization of global ADNI efforts, is coordinated by the Alz-
heimer’s Association and is a direct result of ADNI.
Information on the countries that have established or plan
to establish ADNI sties in their countries can be found at



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e102
http://www.alz.org/research/funding/partnerships/
WW-ADNI_overview.asp. (Fig. 25). Information on the
countries that have established or plan to establish ADNI
sties in their countries can be found at http://www.alz.org/
research/funding/partnerships/WW-ADNI_overview.asp.
Using standardized protocols developed by ADNI, these
programs collectively aim to help define the rate of progres-
sion of MCI and AD, and to develop improved methods for
identifying the appropriate patient populations to participate
in clinical trials. It is anticipated that data generated by these
global initiatives will ultimately be shared through a com-
mon infrastructure with international researchers. It is clear
that ADNI has had and will continue to have a profound and
far-reaching impact on the development of methods for the
prediction and monitoring of the onset and progression of
AD and in gaining a worldwide picture of the physical
changes that lead to AD.
8. Other papers using ADNI data

In addition to generating numerous papers related to its
primary goals, ADNI is becoming a source of data for other
fields of study in which a well-characterized cohort is desir-
able. Papers published from these studies may have some
connection to AD, or may be completely unrelated.

Cuingnet et al [348] presented an improved method for
the detection of regional changes in apparent diffusion coef-
ficients (ADCs) that are indicative of irreversible ischemic
damage in stroke victims. MR images of ADNI participants
were used to test the method, based on a SVM in which
spatial consistency is enforced by Laplacian regularization
and then followed by statistical analysis to detect group dif-
ferences in brain images, they found that the method was
able to detect ADC changes that were not detected by stan-
dard univariate approaches.

Hypertension is a risk factor for AD and is associated
with brain atrophy. Jennings et al[349] used longitudinal
MR scans of ADNI controls as a normotensive control group
in an investigation of whether hypertensive medication re-
mediated the reduction in grey matter volume observed in
hypertensive individuals over a year. They found that suc-
cessful treatment of hypertension did not prevent brain atro-
phy in regions especially vulnerable to negative
modification by hypertension. Another risk factor for AD
is depression. Arnold et al [545] used the plasma sample
collection of ADNI to identify a number of biochemical
markers from a multianalyte biochemical panel that were
associated with the number of depressive symptoms
endorsed by participants.

Bakken et al [319] used ADNI MRI and genetic data to
investigate the relationship between skull and brain
morphology and European geography. They found a signifi-
cant gradient of skull shape, predominantly in the frontotem-
poral cortical areas that extends across Europe in a NW-SE
direction, supporting previous studies of European gene
flow. This represents an intriguing contribution of ADNI to
unlocking the mysteries of historical population movements.
9. Disclosures

Michael W. Weiner has served on the scientific advisory
boards for Lilly, Araclon and Institut Catala de Neurociencies
Aplicades, Gulf War Veterans Illnesses Advisory Committee,
VACO, Biogen Idec, and Pfizer; has served as a consultant
for Astra Zeneca, Araclon, Medivation/Pfizer, Ipsen, TauRx
Therapeutics LTD, Bayer Healthcare, Biogen Idec, Exonhit
Therapeutics, SA, Servier, Synarc, Pfizer, and Janssen; has
received funding for travel from NeuroVigil, Inc., CHRU-
Hopital Roger Salengro, Siemens, AstraZeneca, Geneva Uni-
versity Hospitals, Lilly, University of California, San Diego –
ADNI, Paris University, Institut Catala de Neurociencies Apli-
cades, University of New Mexico School of Medicine, Ipsen,
CTAD (Clinical Trials on Alzheimer’s Disease), Pfizer, AD
PD meeting, Paul Sabatier University, Novartis, Tohoku Uni-
versity; has served on the editorial advisory boards for Alz-
heimer’s & Dementia and MRI; has received honoraria from
NeuroVigil, Inc., Insitut Catala de Neurociencies Aplicades,
PMDA /Japanese Ministry of Health, Labour, and Welfare,
and TohokuUniversity; has received commercial research sup-
port from Merck and Avid; has received government research
support from DOD and VA; has stock options in Synarc and
Elan; and declares the following organizations as contributors
to the Foundation for NIH and thus to the NIA funded Alz-
heimer’s Disease Neuroimaging Initiative: Abbott, Alz-
heimer’s Association, Alzheimer’s Drug Discovery
Foundation, Anonymous Foundation, AstraZeneca, Bayer
Healthcare, BioClinica, Inc. (ADNI 2), Bristol-Myers Squibb,
Cure Alzheimer’s Fund, Eisai, Elan, Gene Network Sciences,
Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics,
Johnson & Johnson, Eli Lilly & Company, Medpace, Merck,
Novartis, Pfizer Inc., Roche, Schering Plough, Synarc, and
Wyeth.

Dallas P. Veitch has no conflicts to report.
Paul S. Aisen serves on a scientific advisory board for

NeuroPhage; serves as a consultant to Elan Corporation,
Wyeth, Eisai Inc., Bristol-Myers Squibb, Eli Lilly and Com-
pany, NeuroPhage, Merck & Co., Roche, Amgen, Abbott,
Pfizer Inc, Novartis, Bayer, Astellas, Dainippon, Biomarin,
Solvay, Otsuka, Daiichi, AstraZeneca, Janssen, Medivation,
Inc., Theravance, Cardeus, and Anavex; receives research
support from Pfizer Inc, and Baxter International Inc., and
the NIH [NIA U01-AG10483 (PI), NIA U01-AG024904
(Coordinating Center Director), NIA R01-AG030048 (PI),
and R01-AG16381 (Co-I)]; and has received stock options
from Medivation, Inc.

Laurel A. Beckett receives funding from the following
NIH grants: 2P30CA093373-09 (deVere White, Ralph),
2P30AG010129-21 (deCarli, Charles), 5U01AG024904-07
(Weiner), 5RC2AG036535-02 (Weiner), 3UL1RR024146-
06S2 (Berglund), 5R01GM088336-03 (Villablanca),
5R01AG012975-14 (Haan), 5R25RR026008-03

http://www.alz.org/research/funding/partnerships/WW-ADNI_overview.asp
http://www.alz.org/research/funding/partnerships/WW-ADNI_overview.asp
http://www.alz.org/research/funding/partnerships/WW-ADNI_overview.asp
http://www.alz.org/research/funding/partnerships/WW-ADNI_overview.asp


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e103
(Molinaro). In addition, she has received funding from the
following California Breast Cancer Research Program grant:
CBCRP # 16BB-1600 (von Friederichs-Fitzwater). She
also has received funding from the nonprofit Critical Path
Institute (Arizona) for consultation on analysis of potential
biomarkers for Alzheimer’s disease clinical trials. She
has served as a speaker and consultant on biomarkers for
Roche.

Nigel J. Cairns has been supported by grants P50-
AG05681 and P01-AG03991 from the National Institute
on Aging and, National Institutes of Health, Bethesda,
MD, and by the Charles and Joanne Knight Alzheimer’s
Research Initiative, Washington, and the ADNI (National
Institute of Health Grant U01 AG024904) which is funded
by the National Institute on Aging.

Robert C. Green has no conflicts of interest to report.
Danielle Harvey has no conflicts of interest to report.
Clifford R. Jack serves as a consultant for Janssen,

Bristol-Meyer-Squibb, General Electric, Johnson and John-
son, and Lilly, and is involved in clinical trials sponsored by
Allon and Baxter, Inc.

William Jagust is a consultant for Genentech, Bayer
Healthcare, GE Healthcare, Synarc, Janssen Alzheimer
Immunotherapy, Elan, and TauRx.

Enchi Liu is an employee of Janssen Alzheimer Immuno-
therapy, R&D, and was the 2011 Chair for the Private Partner
Scientific Board for ADNI.

John C. Morris has participated in clinical trials of antide-
mentia drugs sponsored by Janssen Immunotherapy, Eli
Lilly and Company, and Pfizer, and has served as a consul-
tant or has received speaking honoraria for Eisai, Janssen
Alzheimer Immunotherapy Program/Elan, Glaxo-Smith-
Kline, Novartis, Otsuka Pharmaceuticals, and Pfizer/Wyeth.
Neither Dr. Morris nor his family owns stock or has equity
interest (outside of mutual funds or other externally directed
accounts) in any pharmaceutical or biotechnology company.

Ronald C. Petersen is a Chair, Data Monitoring Commit-
tee, for Pfizer, Inc. and Janssen Alzheimer Immunotherapy;
is a consultant for Elan Pharmaceuticals; and has a CME pre-
sentation for Novartis.

Andrew J. Saykin has received support from NIA R01
AG19771 and P30 AG10133, as well as investigator initiated
research support fromWelch Allyn and Siemens Healthcare.

Mark E. Schmidt is a full-time employee of Janssen Phar-
maceutica, NV.

Leslie Shaw has received grant support from ADNI 1,
ADNI GO, ADNI 2, NIH/NIA, and Pfizer/UPenn rbm
studies, and is a consultant for Innogenetics/Fujirebio, Jans-
sen Research & Development, Bristol-Meyers Squibb, and
Saladax Biomedical, Inc.

Judith A. Siuciak has no conflicts of interest to report.
Holly Soares is a full-time employee of Bristol-Myers

Squibb and a BMS shareholder.
Arthur W. Toga has no conflicts of interest to report.
John Q. Trojanowski has received funding for travel and

honoraria from Takeda Pharmaceutical Company Ltd.; has
received speaker honoraria from Pfizer Inc.; serves as an
associate Editor of Alzheimer’s & Dementia; may accrue
revenue on patents re: Modified avidin-biotin technique,
Method of stabilizing microtubules to treat Alzheimer’s dis-
ease, Method of detecting abnormally phosphorylated tau,
Method of screening for Alzheimer’s disease or disease
associated with the accumulation of paired helical filaments,
Compositions and methods for producing and using homo-
geneous neuronal cell transplants, Rat comprising straight
filaments in its brain, Compositions and methods for produc-
ing and using homogeneous neuronal cell transplants to treat
neurodegenerative disorders and brain and spinal cord in-
juries, Diagnostic methods for Alzheimer’s disease by detec-
tion of multiple MRNAs, Methods and compositions for
determining lipid peroxidation levels in oxidant stress syn-
dromes and diseases, Compositions and methods for produc-
ing and using homogenous neuronal cell transplants, Method
of identifying, diagnosing and treating alpha-synuclein pos-
itive neurodegenerative disorders, Mutation-specific func-
tional impairments in distinct tau isoforms of hereditary
frontotemporal dementia and parkinsonism linked to
chromosome-17: genotype predicts phenotype, Microtubule
stabilizing therapies for neurodegenerative disorders, and
Treatment of Alzheimer’s and related diseases with an anti-
body; and receives research support from the NIH (NIA P01
AG 09215-20 [PI], NIA P30 AG 10124-18 [PI], NIA PO1
AG 17586-10 [Project 4 Leader], NIA 1PO1 AG-19724-07
[Core C Leader], NIA 1 U01 AG 024904-05 [Co-PI
Biomarker Core Laboratory], NINDS P50 NS053488-02
[PI], NIA UO1 AG029213-01 [Co-I]; RC2NS069368 [PI],
RC1AG035427 [PI], and NIA P30AG036468 [PI]), and
from the Marian S. Ware Alzheimer Program.
References

[1] Hardy J. Alzheimer’s disease: the amyloid cascade hypothesis: an up-

date and reappraisal. J Alzheimers Dis 2006;9(Suppl 3):151–3.

[2] Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W,

et al. The Alzheimer’s disease neuroimaging initiative,. Neuroimag-

ing Clin N Am 2005;15:869–77. xi–xii.

[3] Weiner MW, Aisen PS, Jack CR Jr, Jagust WJ, Trojanowski JQ,

Shaw L, et al. The Alzheimer’s Disease Neuroimaging Initiative:

progress report and future plans. Alzheimers Dement 2010;6.

202.e7–11.e7.

[4] Frisoni GB, Weiner MW. Alzheimer’s disease neuroimaging initia-

tive special issue. Neurobiol Aging 2010;31:1259–62.

[5] Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE,

Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neu-

rol 2009;66:1447–55.

[6] Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S,

et al. Alzheimer’s Disease Neuroimaging Initiative biomarkers as

quantitative phenotypes: genetics core aims, progress, and plans. Alz-

heimers Dement 2010;6:265–73.

[7] Hampel H, Shen Y, Walsh DM, Aisen P, Shaw LM, Zetterberg H,

et al. Biological markers of amyloid beta-related mechanisms in Alz-

heimer’s disease. Exp Neurol 2010;223:334–46.

[8] Clark CM, Davatzikos C, Borthakur A, Newberg A, Leight S,

Lee VM, et al. Biomarkers for early detection of Alzheimer pathol-

ogy. Neurosignals 2008;16:11–8.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref1
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref1
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref2
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref2
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref2
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref3
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref3
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref3
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref3
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref4
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref4
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref5
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref5
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref5
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref6
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref6
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref6
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref6
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref7
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref7
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref7
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref8
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref8
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref8


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e104
[9] Fleisher AS, Donohue M, Chen K, Brewer JB, Aisen PS. Applica-

tions of neuroimaging to disease-modification trials in Alzheimer’s

disease. Behav Neurol 2009;21:129–36.

[10] Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ. Bio-

markers of neurodegeneration for diagnosis and monitoring thera-

peutics. Nat Rev Drug Discov 2007;6:295–303.

[11] Petersen RC, Jack CR Jr. Imaging and biomarkers in early Alz-

heimer’s disease and mild cognitive impairment. Clin Pharmacol

Ther 2009;86:438–41.

[12] Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM,

Aisen PS, Petersen RC, et al. Update on the biomarker core of the

Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers

Dement 2010;6:230–8.

[13] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease:

progress and problems on the road to therapeutics,. Science 2002;

297:353–6.

[14] Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS,

Weiner MW, et al. Hypothetical model of dynamic biomarkers of

the Alzheimer’s pathological cascade. Lancet Neurol 2010;

9:119–28.

[15] Shaw LM. PENN biomarker core of the Alzheimer’s disease Neuro-

imaging Initiative. Neurosignals 2008;16:19–23.

[16] Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML,

Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive

impairment and Alzheimer’s disease: implications for sequence of

pathological events in Alzheimer’s disease. Brain 132 (Pt 5)

2009;:1355–65.

[17] Braak H, Del Tredici K. The pathological process underlying Alz-

heimer’s disease in individuals under thirty,. Acta Neuropathol

2011;121:171–81.

[18] Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Bar-

berger-Gateau P, et al. Revising the definition of Alzheimer’s disease:

a new lexicon. Lancet Neurol 2010;9:1118–27.

[19] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM,

et al. Toward defining the preclinical stages of Alzheimer’s disease:

recommendations from the National Institute on Aging-Alzheimer’s

Association workgroups on diagnostic guidelines for Alzheimer’s

disease. Alzheimers Dement 2011;7:280–92.

[20] Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS,

Boeve BF, et al. The Mayo Clinic Study of Aging: design and sam-

pling, participation, baseline measures and sample characteristics,.

Neuroepidemiology 2008;30:58–69.

[21] Petersen RC, Roberts RO, Knopman DS, Geda YE, Cha RH,

Pankratz VS, et al. Prevalence of mild cognitive impairment is higher

in men. The Mayo Clinic Study of Aging,. Neurology 2010;

75:889–97.

[22] Games D, Adams D, Alessandrini R, Barbour R, Berthelette P,

Blackwell C, et al. Alzheimer-type neuropathology in transgenic

mice overexpressing V717F beta-amyloid precursor protein. Nature

1995;373:523–7.

[23] Frank RA, Galasko D, Hampel H, Hardy J, de Leon MJ, Mehta PD,

et al. Biological markers for therapeutic trials in Alzheimer’s disease.

Proceedings of the biological markers working group; NIA initiative

on neuroimaging in Alzheimer’s disease. Neurobiol Aging 2003;

24:521–36.

[24] Trojanowski J. Searching for the biomarkers of Alzheimer’s. Pract

Neurol 2004;3:30–4.

[25] Mueller SG,WeinerMW, Thal LJ, Petersen RC, Jack C, JagustW, et al.

Ways toward an early diagnosis inAlzheimer’s disease: theAlzheimer’s

Disease Neuroimaging Initiative. Cogn Dement 2006;5:56–62.

[26] Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H,

Blennow K. Core candidate neurochemical and imaging biomarkers

of Alzheimer’s disease. Alzheimers Dement 2008;4:38–48.

[27] Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP,

et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh

Compound-B. Ann Neurol 2004;55:306–19.
[28] KlunkWE, Mathis CA. The future of amyloid-beta imaging: a tale of

radionuclides and tracer proliferation,. Curr Opin Neurol 2008;

21:683–7.

[29] Kung MP, Hou C, Zhuang ZP, Skovronsky D, Kung HF. Binding of

two potential imaging agents targeting amyloid plaques in postmor-

tem brain tissues of patients with Alzheimer’s disease. Brain Res

2004;1025:98–105.

[30] SchmidtME, Siemers E, Snyder PJ, PotterWZ, Cole P, Soares H. The

Alzheimer’s Disease Neuroimaging Initiative: perspectives of the In-

dustry Scientific Advisory Board,. Alzheimers Dement 2010;

6:286–90.

[31] Carrillo MC, Sanders CA, Katz RG. Maximizing the Alzheimer’s

Disease Neuroimaging Initiative II. Alzheimers Dement 2009;

5:271–5.

[32] Toga AW, Crawford KL. The informatics core of the Alzheimer’s

Disease Neuroimaging Initiative,. Alzheimers Dement 2010;

6:247–56.

[33] Jack CR Jr, Bernstein MA, Borowski BJ, Gunter JL, Fox NC,

Thompson PM, et al. Update on the magnetic resonance imaging

core of the Alzheimer’s disease neuroimaging initiative. Alzheimers

Dement 2010;6:212–20.

[34] Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA,

et al. The Alzheimer’s Disease Neuroimaging Initiative positron

emission tomography core,. Alzheimers Dement 2010;6:221–9.

[35] Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R,

ThomasRG, et al. Clinical coreof theAlzheimer’sDiseaseNeuroimag-

ing Initiative: progress and plans. Alzheimers Dement 2010;6:239–46.

[36] Cairns NJ, Taylor-Reinwald L, Morris JC. Autopsy consent, brain

collection, and standardized neuropathologic assessment of ADNI

participants: the essential role of the neuropathology core. Alz-

heimers Dement 2010;6:274–9.

[37] Cummings JL. Integrating ADNI results into Alzheimer’s disease

drug development programs. Neurobiol Aging 2010;31:1481–92.

[38] Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W,

et al. Ways toward an early diagnosis in Alzheimer’s disease: the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers De-

ment 2005;1:55–66.

[39] Petersen RC, Trojanowski JQ. Use of Alzheimer disease biomarkers:

potentially yes for clinical trials but not yet for clinical practice.

JAMA 2009;302:436–7.

[40] Petersen RC. Early diagnosis of Alzheimer’s disease: isMCI too late?

Curr Alzheimer Res 2009;6:324–30.

[41] Hill D. Neuroimaging to assess safety and efficacy of AD therapies.

Expert Opin Investig Drugs 2010;19:23–6.

[42] Becker RE, Greig NH. Alzheimer’s disease drug development: old

problems require new priorities. CNS Neurol Disord Drug Targets

2008;7:499–511.

[43] Weiner MW. Editorial: imaging and biomarkers will be used for

detection and monitoring progression of early Alzheimer’s disease.

J Nutr Health Aging 2009;13:332.

[44] Ito K, Corrigan B, Zhao Q, French J, Miller R, Soares H, et al. Dis-

ease progression model for cognitive deterioration from Alzheimer’s

Disease Neuroimaging Initiative database. Alzheimers Dement 2011;

7:151–60.

[45] Gunter JL, Bernstein MA, Borowski BJ, Ward CP, Britson PJ,

Felmlee JP, et al. Measurement of MRI scanner performance with

the ADNI phantom. Med Phys 2009;36:2193–205.

[46] Kruggel F, Turner J, Muftuler LT. Impact of scanner hardware and

imaging protocol on image quality and compartment volume preci-

sion in the ADNI cohort. Neuroimage 2010;49:2123–33.

[47] Ho AJ, Hua X, Lee S, Leow AD, Yanovsky I, Gutman B, et al.

Comparing 3 T and 1.5 T MRI for tracking Alzheimer’s disease pro-

gression with tensor-based morphometry. Hum Brain Mapp 2010;

31:499–514.

[48] Mortamet B, Bernstein MA, Jack CR Jr, Gunter JL, Ward C,

Britson PJ, et al. Automatic quality assessment in structural

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref9
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref9
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref9
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref10
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref10
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref10
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref11
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref11
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref11
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref12
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref12
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref12
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref12
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref13
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref13
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref13
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref14
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref14
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref14
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref14
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref15
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref15
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref16
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref16
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref16
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref16
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref16
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref17
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref17
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref17
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref18
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref18
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref18
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref19
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref19
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref19
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref19
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref19
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref20
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref20
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref20
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref20
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref21
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref21
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref21
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref21
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref22
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref22
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref22
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref22
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref23
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref23
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref23
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref23
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref23
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref24
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref24
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref25
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref25
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref25
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref26
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref26
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref26
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref27
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref27
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref27
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref28
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref28
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref28
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref29
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref29
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref29
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref29
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref30
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref30
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref30
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref30
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref31
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref31
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref31
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref32
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref32
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref32
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref33
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref33
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref33
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref33
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref34
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref34
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref34
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref35
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref35
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref35
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref36
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref36
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref36
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref36
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref37
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref37
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref38
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref38
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref38
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref38
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref39
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref39
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref39
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref40
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref40
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref41
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref41
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref42
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref42
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref42
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref43
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref43
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref43
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref44
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref44
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref44
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref44
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref45
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref45
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref45
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref46
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref46
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref46
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref47
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref47
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref47
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref47
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref48
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref48


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e105
brain magnetic resonance imaging. Magn Reson Med 2009;

62:365–72.

[49] Clarkson MJ, Ourselin S, Nielsen C, Leung KK, Barnes J,

Whitwell JL, et al. Comparison of phantom and registration scaling

corrections using the ADNI cohort. Neuroimage 2009;47:1506–13.

[50] Bauer CM, Jara H, Killiany R. Whole brain quantitative T2 MRI

across multiple scanners with dual echo FSE: applications to AD,

MCI, and normal aging. Neuroimage 2010;52:508–14.

[51] Leung KK, Clarkson MJ, Bartlett JW, Clegg S, Jack CR Jr,

Weiner MW, et al. Robust atrophy rate measurement in Alzheimer’s

disease using multi-site serial MRI: tissue-specific intensity normal-

ization and parameter selection. Neuroimage 2010;50:516–23.

[52] Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G,

Harvey D, et al. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI): MRI methods,. J Magn Reson Imaging 2008;27:685–91.

[53] Boyes RG, Gunter JL, Frost C, Janke AL, Yeatman T, Hill DL, et al.

Intensity non-uniformity correction using N3 on 3-T scanners with

multichannel phased array coils. Neuroimage 2008;39:1752–62.

[54] Leow AD, Klunder AD, Jack CR Jr, Toga AW, Dale AM,

Bernstein MA, et al. Longitudinal stability of MRI for mapping brain

change using tensor-based morphometry. Neuroimage 2006;

31:627–40.

[55] Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differ-

ences in multi-center PET studies. Neuroimage 2009;46:154–9.

[56] Shaw LM, Vanderstichele H, Knapik-CzajkaM, Figurski M, Coart E,

Blennow K, et al. Qualification of the analytical and clinical perfor-

mance of CSF biomarker analyses in ADNI. Acta Neuropathol 2011;

121:597–609.

[57] ShawLM,Vanderstichele H, Knapik-CzajkaM, Clark CM, Aisen PS,

Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alz-

heimer’s disease neuroimaging initiative subjects. Ann Neurol

2009;65:403–13.

[58] Leung KK, Barnes J, Modat M, Ridgway GR, Bartlett JW, Fox NC,

et al. Brain MAPS: an automated, accurate and robust brain extrac-

tion technique using a template library. Neuroimage 2011;

55:1091–108.

[59] Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ,

Macdonald K, et al. Automated cross-sectional and longitudinal hip-

pocampal volume measurement in mild cognitive impairment and

Alzheimer’s disease. Neuroimage 2010;51:1345–59.

[60] Wolz R, Aljabar P, Hajnal JV, Hammers A, Rueckert D. LEAP:

learning embeddings for atlas propagation. Neuroimage 2010;

49:1316–25.

[61] Lotjonen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G,

Soininen H, et al. Fast and robust multi-atlas segmentation of brain

magnetic resonance images. Neuroimage 2010;49:2352–65.

[62] Heckemann RA, Keihaninejad S, Aljabar P, Rueckert D,

Hajnal JV, Hammers A. Improving intersubject image registration

using tissue-class information benefits robustness and accuracy of

multi-atlas based anatomical segmentation. Neuroimage 2010;

51:221–7.

[63] Morra JH, Tu Z,Apostolova LG,GreenAE,Avedissian C,Madsen SK,

et al. Validation of a fully automated 3D hippocampal segmentation

method using subjects with Alzheimer’s disease mild cognitive impair-

ment, and elderly controls. Neuroimage 2008;43:59–68.

[64] Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A,

Lotjonen J, et al. Measurement of hippocampal atrophy using 4D

graph-cut segmentation: application to ADNI. Neuroimage 2010;

52:109–18.

[65] Huang S, Li J, Sun L, Ye J, Fleisher A, Wu T, et al. Learning brain

connectivity of Alzheimer’s disease by sparse inverse covariance

estimation. Neuroimage 2010;50:935–49.

[66] Calvini P, Chincarini A, Gemme G, Penco MA, Squarcia S, Nobili F,

et al. Automatic analysis of medial temporal lobe atrophy from struc-

tural MRIs for the early assessment of Alzheimer disease. Med Phys

2009;36:3737–47.
[67] Holland D, Dale AM. Nonlinear registration of longitudinal images

and measurement of change in regions of interest. Med Image Anal

2011;15:489–97.

[68] Chupin M, Gerardin E, Cuingnet R, Boutet C, Lemieux L,

Lehericy S, et al. Fully automatic hippocampus segmentation and

classification in Alzheimer’s disease and mild cognitive impairment

applied on data from ADNI. Hippocampus 2009;19:579–87.

[69] Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C,

Madsen SK, et al. Automated 3D mapping of hippocampal atrophy

and its clinical correlates in 400 subjects with Alzheimer’s disease,

mild cognitive impairment, and elderly controls. Hum Brain Mapp

2009;30:2766–88.

[70] Wang H, Das S, Pluta J, Craige C, Altinay M, Avants B, et al. Stand-

ing on the shoulders of giants: improving medical image segmenta-

tion via bias correction. Med Image Comput Comput Assist Interv

2010;13(Pt 3):105–12.

[71] BossaM, Zacur E, Olmos S. Statistical analysis of relative pose infor-

mation of subcortical nuclei: application on ADNI data. Neuroimage

2011;55:999–1008.

[72] BossaM, Zacur E, Olmos S. Tensor-basedmorphometry with station-

ary velocity field diffeomorphic registration: application to ADNI.

Neuroimage 2010;51:956–69.

[73] Hua X, Leow AD, Lee S, Klunder AD, Toga AW, Lepore N, et al. 3D

characterization of brain atrophy in Alzheimer’s disease and mild

cognitive impairment using tensor-based morphometry. Neuroimage

2008;41:19–34.

[74] Yushkevich PA, Avants BB, Das SR, Pluta J, Altinay M, Craige C.

Bias in estimation of hippocampal atrophy using deformation-

based morphometry arises from asymmetric global normalization:

an illustration in ADNI 3 T MRI data. Neuroimage 2010;

50:434–45.

[75] Park H, Seo J. Application of multidimensional scaling to quantify

shape in Alzheimer’s disease and its correlation with Mini Mental

State Examination: a feasibility study. J Neurosci Methods 2011;

194:380–5.

[76] ChenW, SongX, ZhangY, Darvesh S, ZhangN, D’ArcyRC, et al. An

MRI-based semiquantitative index for the evaluation of brain atrophy

and lesions in Alzheimer’s disease, mild cognitive impairment and

normal aging. Dement Geriatr Cogn Disord 2010;30:121–30.

[77] Acosta O, Bourgeat P, Zuluaga MA, Fripp J, Salvado O, Ourselin S.

Automated voxel-based 3D cortical thickness measurement in a com-

bined Lagrangian-Eulerian PDE approach using partial volume

maps. Med Image Anal 2009;13:730–43.

[78] King RD, George AT, Jeon T, Hynan LS, Youn TS, Kennedy DN, et al.

Characterization of atrophic changes in the cerebral cortex using

fractal dimensional analysis. Brain Imaging Behav 2009;3:154–66.

[79] King RD, Brown B, HwangM, Jeon T, George AT. Fractal dimension

analysis of the cortical ribbon in mild Alzheimer’s disease. Neuro-

image 2010;53:471–9.

[80] Li Y, Wang Y, Xue Z, Shi F, Lin W, Shen D. Consistent 4D cortical

thickness measurement for longitudinal neuroimaging study. Med

Image Comput Comput Assist Interv 2010;13(Pt 2):133–42.

[81] Risser L, Vialard FX, Wolz R, Holm DD, Rueckert D. Simultaneous

fine and coarse diffeomorphic registration: application to atrophy

measurement in Alzheimer’s disease. Med Image Comput Comput

Assist Interv 2010;13(Pt 2):610–7.

[82] Zhang T, Davatzikos C. ODVBA: Optimally-Discriminative Voxel-

Based Analysis. IEEE Trans Med Imaging 2011;30:1441–54.

[83] Fan Y, BatmanghelichN, Clark CM,Davatzikos C. Spatial patterns of

brain atrophy in MCI patients, identified via high-dimensional

pattern classification, predict subsequent cognitive decline. Neuro-

image 2008;39:1731–43.

[84] Haense C, Herholz K, Jagust WJ, Heiss WD. Performance of FDG

PET for detection of Alzheimer’s disease in two independent multi-

centre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord

2009;28:259–66.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref48
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref48
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref49
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref49
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref49
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref50
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref50
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref50
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref51
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref51
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref51
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref51
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref52
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref52
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref52
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref53
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref53
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref53
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref54
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref54
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref54
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref54
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref55
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref55
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref56
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref56
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref56
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref56
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref57
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref57
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref57
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref57
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref58
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref58
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref58
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref58
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref59
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref59
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref59
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref59
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref60
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref60
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref60
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref61
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref61
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref61
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref62
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref62
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref62
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref62
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref62
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref63
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref63
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref63
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref63
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref64
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref64
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref64
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref64
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref65
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref65
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref65
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref66
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref66
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref66
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref66
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref67
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref67
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref67
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref68
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref68
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref68
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref68
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref69
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref69
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref69
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref69
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref69
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref70
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref70
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref70
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref70
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref71
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref71
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref71
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref72
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref72
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref72
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref73
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref73
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref73
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref73
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref74
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref74
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref74
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref74
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref74
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref75
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref75
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref75
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref75
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref76
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref76
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref76
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref76
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref77
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref77
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref77
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref77
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref78
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref78
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref78
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref79
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref79
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref79
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref80
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref80
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref80
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref81
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref81
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref81
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref81
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref82
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref82
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref83
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref83
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref83
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref83
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref84
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref84
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref84
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref84


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e106
[85] Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C,

Lee W, et al. Characterizing Alzheimer’s disease using a hypometa-

bolic convergence index. Neuroimage 2011;56:52–60.

[86] Kohannim O, Hua X, Hibar DP, Lee S, Chou YY, Toga AW, et al.

Boosting power for clinical trials using classifiers based on multiple

biomarkers. Neurobiol Aging 2010;31:1429–42.

[87] Lemoine B, Rayburn S, Benton R. Data fusion and feature

selection for Alzheimer’s disease. Lect Notes Comput Sci 2010;

6334:320–7.

[88] Hinrichs C, Singh V, Mukherjee L, Xu G, Chung MK, Johnson SC.

Spatially augmented LPboosting for AD classification with evalua-

tions on the ADNI dataset. Neuroimage 2009;48:138–49.

[89] Shen L, Qi Y, Kim S, Nho K, Wan J, Risacher SL, et al. Sparse

bayesian learning for identifying imaging biomarkers in AD predic-

tion. Med Image Comput Comput Assist Interv 2010;13(Pt 3):611–8.

[90] Salas-Gonzalez D, Gorriz JM, Ramirez J, Illan IA, Lopez M,

Segovia F, et al. Feature selection using factor analysis for Alz-

heimer’s diagnosis using 18F-FDG PET images. Med Phys 2010;

37:6084–95.

[91] Stonnington CM, Chu C, Kloppel S, Jack CR Jr, Ashburner J,

Frackowiak RS. Predicting clinical scores from magnetic resonance

scans in Alzheimer’s disease. Neuroimage 2010;51:511–7.

[92] Franke K, Ziegler G, Kloppel S, Gaser C. Estimating the age of

healthy subjects from T1-weighted MRI scans using kernel methods:

exploring the influence of various parameters. Neuroimage 2010;

50:883–92.

[93] Filipovych R, Davatzikos C. Semi-supervised pattern classification

of medical images: application to mild cognitive impairment

(MCI). Neuroimage 2011;55:1109–19.

[94] YangW, Hong CX, Xie H, Huang X. ICA-based automatic classifica-

tion of magnetic resonance images from ADNI data. Lect Notes

Comput Sci 2010;6330:340–7.

[95] Pelaez-Coca M, Bossa M, Olmos S. Discrimination of AD and

normal subjects from MRI: anatomical versus statistical regions.

Neurosci Lett 2011;487:113–7.

[96] Llano DA, Laforet G, Devanarayan V. Derivation of a new ADAS-

cog composite using tree-based multivariate analysis: prediction of

conversion from mild cognitive impairment to Alzheimer disease.

Alzheimer Dis Assoc Disord 2010;25:73–84.

[97] Rousseau F. A non-local approach for image super-resolution using

intermodality priors,. Med Image Anal 2010;14:594–605.

[98] Gerber S, Tasdizen T, Thomas Fletcher P, Joshi S, Whitaker R. Mani-

fold modeling for brain population analysis. Med Image Anal 2010;

14:643–53.

[99] Habeck C, Stern Y. Multivariate data analysis for neuroimaging data:

overview and application to Alzheimer’s disease. Cell Biochem Bio-

phys 2010;58:53–67.

[100] Habeck CG. Basics of multivariate analysis in neuroimaging data. J

Vis Exp 2010;:41. pii: 1988.

[101] WuX, Chen K, Yao L, Ayutyanont N, Langbaum JB, Fleisher A, et al.

Assessing the reliability to detect cerebral hypometabolism in prob-

able Alzheimer’s disease and amnestic mild cognitive impairment. J

Neurosci Methods 2010;192:277–85.

[102] Singh N, Fletcher PT, Preston JS, Ha L, King R, Marron JS, et al.

Multivariate statistical analysis of deformation momenta relating

anatomical shape to neuropsychological measures. Med Image Com-

put Comput Assist Interv 2010;13(Pt 3):529–37.

[103] Vounou M, Nichols TE, Montana G. Discovering genetic associa-

tions with high-dimensional neuroimaging phenotypes: a sparse

reduced-rank regression approach. Neuroimage 2010;53:1147–59.

[104] Chen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C,

Lee W, et al. Twelve-month metabolic declines in probable Alz-

heimer’s disease and amnestic mild cognitive impairment assessed

using an empirically pre-defined statistical region-of-interest: find-

ings from the Alzheimer’s Disease Neuroimaging Initiative. Neuro-

image 2010;51:654–64.
[105] Silver M, Montana G, Nichols TE. False positives in neuroimaging

genetics using voxel-based morphometry data. Neuroimage 2011;

54:992–1000.

[106] Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC,

Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative

(ADNI): clinical characterization. Neurology 2010;74:201–9.

[107] Epstein NU, Saykin AJ, Risacher SL, Gao S, FarlowMR. Differences

in medication use in the Alzheimer’s disease neuroimaging initiative:

analysis of baseline characteristics. Drugs Aging 2010;27:677–86.

[108] Schneider LS, Insel PS, Weiner MW. Treatment with cholinesterase

inhibitors andmemantine of patients in the Alzheimer’s Disease Neu-

roimaging Initiative. Arch Neurol 2011;68:58–66.

[109] Fennema-Notestine C, Hagler DJ Jr, McEvoy LK, Fleisher AS,

Wu EH, Karow DS, et al. Structural MRI biomarkers for preclinical

and mild Alzheimer’s disease. Hum Brain Mapp 2009;30:3238–53.

[110] Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr,

Jennings RG, Brewer JB, et al. Relative capability of MR imaging

and FDG PET to depict changes associated with prodromal and early

Alzheimer disease. Radiology 2010;256:932–42.

[111] McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C,

Hagler DJ Jr, Holland D, et al. Regional rates of neocortical atrophy

from normal aging to early Alzheimer disease. Neurology 2009;

73:457–65.

[112] Hua X, Leow AD, Parikshak N, Lee S, Chiang MC, Toga AW, et al.

Tensor-based morphometry as a neuroimaging biomarker for Alz-

heimer’s disease: an MRI study of 676 AD, MCI, and normal sub-

jects. Neuroimage 2008;43:458–69.

[113] Leow AD, Yanovsky I, Parikshak N, Hua X, Lee S, Toga AW, et al.

Alzheimer’s disease neuroimaging initiative: a one-year follow up

study using tensor-based morphometry correlating degenerative

rates, biomarkers and cognition. Neuroimage 2009;45:645–55.

[114] Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC.

Baseline MRI predictors of conversion from MCI to probable AD in

the ADNI cohort. Curr Alzheimer Res 2009;6:347–61.

[115] Risacher SL, Shen L, West JD, Kim S, McDonald BC,

Beckett LA, et al. Longitudinal MRI atrophy biomarkers: relation-

ship to conversion in the ADNI cohort. Neurobiol Aging 2010;

31:1401–18.

[116] Schuff N, Tosun D, Insel PS, Chiang GC, Truran D, Aisen PS, et al.

Nonlinear time course of brain volume loss in cognitively normal and

impaired elders. Neurobiol Aging (in press).

[117] McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ Jr,

Holland D, Karow DS, et al. Alzheimer disease: quantitative structural

neuroimaging for detection and prediction of clinical and structural

changes in mild cognitive impairment. Radiology 2009;251:195–205.

[118] Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of

brain atrophy in MCI patients, and their use in prediction of short-

term conversion to AD: results from ADNI. Neuroimage 2009;

44:1415–22.

[119] Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski

JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers,

and pattern classification. Neurobiol Aging (in press).

[120] Hua X, Hibar DP, Lee S, Toga AW, Jack CR Jr,WeinerMW, et al. Sex

and age differences in atrophic rates: an ADNI study with n¼1368

MRI scans. Neurobiol Aging 2010;31:1463–80.

[121] Schuff N, Woerner N, Boreta L, Kornfield T, Shaw LM,

Trojanowski JQ, et al. MRI of hippocampal volume loss in early Alz-

heimer’s disease in relation to ApoE genotype and biomarkers. Brain

132 (Pt 4) 2009;:1067–77.

[122] Qiu A, Fennema-Notestine C, Dale AM, Miller MI. Regional shape

abnormalities in mild cognitive impairment and Alzheimer’s disease.

Neuroimage 2009;45:656–61.

[123] Apostolova LG, Morra JH, Green AE, Hwang KS, Avedissian C,

Woo E, et al. Automated 3D mapping of baseline and 12-month as-

sociations between three verbal memory measures and hippocampal

atrophy in 490 ADNI subjects. Neuroimage 2010;51:488–99.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref85
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref85
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref85
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref86
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref86
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref86
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref87
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref87
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref87
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref88
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref88
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref88
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref89
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref89
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref89
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref90
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref90
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref90
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref90
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref91
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref91
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref91
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref92
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref92
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref92
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref92
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref93
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref93
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref93
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref94
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref94
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref94
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref95
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref95
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref95
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref96
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref96
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref96
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref96
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref97
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref97
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref98
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref98
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref98
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref99
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref99
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref99
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref100
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref100
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref101
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref101
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref101
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref101
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref102
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref102
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref102
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref102
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref103
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref103
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref103
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref104
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref104
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref104
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref104
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref104
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref104
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref105
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref105
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref105
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref106
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref106
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref106
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref107
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref107
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref107
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref108
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref108
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref108
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref109
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref109
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref109
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref110
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref110
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref110
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref110
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref111
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref111
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref111
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref111
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref112
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref112
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref112
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref112
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref113
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref113
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref113
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref113
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref114
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref114
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref114
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref115
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref115
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref115
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref115
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref116
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref116
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref116
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref116
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref117
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref117
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref117
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref117
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref118
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref118
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref118
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref118
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref119
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref119
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref119
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref119
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref120
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref120
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref120
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref121
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref121
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref121
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref121


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e107
[124] Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C,

Madsen SK, et al. Automated mapping of hippocampal atrophy in

1-year repeat MRI data from 490 subjects with Alzheimer’s disease,

mild cognitive impairment, and elderly controls. Neuroimage 2009;

45(Suppl 1):S3–15.

[125] Evans MC, Barnes J, Nielsen C, Kim LG, Clegg SL, Blair M, et al.

Volume changes in Alzheimer’s disease and mild cognitive impair-

ment: cognitive associations. Eur Radiol 2010;20:674–82.

[126] Chou YY, Lepore N, Avedissian C, Madsen SK, Parikshak N, Hua X,

et al. Mapping correlations between ventricular expansion and CSF

amyloid and tau biomarkers in 240 subjects with Alzheimer’s dis-

ease, mild cognitive impairment and elderly controls. Neuroimage

2009;46:394–410.

[127] Chou YY, Lepore N, Saharan P, Madsen SK, Hua X, Jack CR,

et al. Ventricular maps in 804 ADNI subjects: correlations with

CSF biomarkers and clinical decline. Neurobiol Aging 2010;

31:1386–400.

[128] Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Shaw LM,

Trojanowski JQ, et al. Effect of apolipoprotein E on biomarkers of

amyloid load and neuronal pathology in Alzheimer disease. Ann

Neurol 2010;67:308–16.

[129] Andrawis JP, Hwang KS, Green AE, Kotlerman J, Elashoff D, Morra

JH, et al. Effects of ApoE4 and maternal history of dementia on hip-

pocampal atrophy. Neurobiol Aging (in press).

[130] Madsen SK, Ho J, Hua X, Saharan PS, Toga AW, Jack CR Jr, et al. 3D

maps localize caudate nucleus atrophy in 400 Alzheimer’s disease,

mild cognitive impairment, and healthy elderly subjects. Neurobiol

Aging 2010;31:1312–25.

[131] Greene SJ, Killiany RJ. Subregions of the inferior parietal lobule are

affected in the progression to Alzheimer’s disease. Neurobiol Aging

2010;31:1304–11.

[132] Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ,

Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and

AD subjects: diagnostic discrimination and cognitive correlations.

Neurology 2009;73:287–93.

[133] Ho AJ, Raji CA, Becker JT, Lopez OL, Kuller LH, Hua X, et al.

Obesity is linked with lower brain volume in 700 AD and MCI pa-

tients. Neurobiol Aging 2010;31:1326–39.

[134] Langbaum JB, Chen K, Lee W, Reschke C, Bandy D, Fleisher AS,

et al. Categorical and correlational analyses of baseline fluorodeoxy-

glucose positron emission tomography images from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). Neuroimage 2009;

45:1107–16.

[135] Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM,

Foster NL, et al. Associations between cognitive, functional, and

FDG-PET measures of decline in AD and MCI. Neuro0biol Aging

2011;32:1207–18.

[136] Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J,

KarowDS, et al. Multi-modal imaging predicts memory performance

in normal aging and cognitive decline. Neurobiol Aging 2010;

31:1107–21.

[137] Wolk DA, Dickerson BC. Fractionating verbal episodic memory in

Alzheimer’s disease. Neuroimage 2011;54:1530–9.

[138] Chang YL, Bondi MW, Fennema-Notestine C, McEvoy LK,

Hagler DJ Jr, Jacobson MW, et al. Brain substrates of learning and

retention in mild cognitive impairment diagnosis and progression

to Alzheimer’s disease. Neuropsychologia 2010;48:1237–47.

[139] Dickerson BC, Wolk DA. Dysexecutive versus amnesic phenotypes

of very mild Alzheimer’s disease are associated with distinct clinical,

genetic and cortical thinning characteristics. J Neurol Neurosurg Psy-

chiatry 2011;82:45–51.

[140] Chang YL, Jacobson MW, Fennema-Notestine C, Hagler DJ Jr,

Jennings RG, Dale AM, et al. Level of executive function influences

verbal memory in amnestic mild cognitive impairment and predicts

prefrontal and posterior cingulate thickness. Cereb Cortex 2010;

20:1305–13.
[141] Wolk DA, Dickerson BC, Weiner M, Aiello M, Aisen P, Albert MS,

et al. Apolipoprotein E (APOE) genotype has dissociable effects on

memory and attentional-executive network function in Alzheimer’s

disease. Proc Natl Acad Sci USA 2010;107:10256–61.

[142] McDonald CR, Gharapetian L, McEvoy LK, Fennema-Notestine C,

Hagler DJ Jr, Holland D, et al. Relationship between regional atrophy

rates and cognitive decline in mild cognitive impairment. Neurobiol

Aging (in press).

[143] Okonkwo OC, Alosco ML, Jerskey BA, Sweet LH, Ott BR,

Tremont G. Cerebral atrophy, apolipoprotein E varepsilon4, and

rate of decline in everyday function among patients with amnestic

mild cognitive impairment. Alzheimers Dement 2010;6:404–11.

[144] Okonkwo OC, Alosco ML, Griffith HR, Mielke MM, Shaw LM,

Trojanowski JQ, et al. Cerebrospinal fluid abnormalities and rate of

decline in everyday function across the dementia spectrum: normal

aging, mild cognitive impairment, and Alzheimer disease. Arch Neu-

rol 2010;67:688–96.

[145] Cronk BB, Johnson DK, Burns JM. Body mass index and cognitive

decline in mild cognitive impairment. Alzheimer Dis Assoc Disord

2010;24:126–30.

[146] Tosun D, Schuff N, Truran-Sacrey D, Shaw LM, Trojanowski JQ,

Aisen P, et al. Relations between brain tissue loss, CSF biomarkers,

and the ApoE genetic profile: a longitudinal MRI study. Neurobiol

Aging 2010;31:1340–54.

[147] Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK,

Hagler DJ, Holland D, et al. CSF biomarkers in prediction of cerebral

and clinical change in mild cognitive impairment and Alzheimer’s

disease. J Neurosci 2010;30:2088–101.

[148] Ott BR, Cohen RA, Gongvatana A, Okonkwo OC, Johanson CE,

Stopa EG, et al. Brain ventricular volume and cerebrospinal fluid bio-

markers of Alzheimer’s disease. J Alzheimers Dis 2010;20:647–57.

[149] Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T, et al.

Genome-wide association study of CSF biomarkers Abeta1-42, t-tau,

and p-tau181p in the ADNI cohort. Neurology 2011;76:69–79.

[150] Jagust WJ, Landau SM, Shaw LM, Trojanowski JQ, Koeppe RA,

Reiman EM, et al. Relationships between biomarkers in aging and

dementia. Neurology 2009;73:1193–9.

[151] Apostolova LG, Hwang KS, Andrawis JP, Green AE,

Babakchanian S, Morra JH, et al. 3D PIB and CSF biomarker associ-

ations with hippocampal atrophy in ADNI subjects. Neurobiol Aging

2010;31:1284–303.

[152] Jack CR Jr, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G,

et al. Brain beta-amyloid measures and magnetic resonance imaging

atrophy both predict time-to-progression frommild cognitive impair-

ment to Alzheimer’s disease. Brain 2010;133:3336–48.

[153] Caroli A, Frisoni GB. The dynamics of Alzheimer’s disease bio-

markers in the Alzheimer’s Disease Neuroimaging Initiative cohort,.

Neurobiol Aging 2010;31:1263–74.

[154] Beckett LA, Harvey DJ, Gamst A, Donohue M, Kornak J, Zhang H,

et al. The Alzheimer’s Disease Neuroimaging Initiative: annual

change in biomarkers and clinical outcomes,. Alzheimers Dement

2010;6:257–64.

[155] Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-

Notestine C, Hagler DJ Jr, et al. Combining MR imaging, positron-

emission tomography, and CSF biomarkers in the diagnosis and

prognosis of Alzheimer disease. Am J Neuroradiol 2010;31:347–54.

[156] Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ,

Shaw LM, et al. Serial MRI and CSF biomarkers in normal aging,

MCI, and AD. Neurology 2010;75:143–51.

[157] Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, et al. Discriminant anal-

ysis of longitudinal cortical thickness changes in Alzheimer’s disease

using dynamic and network features. Neurobiol Aging (in press).

[158] Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S,

Habert MO, et al. Automatic classification of patients with Alz-

heimer’s disease from structural MRI: a comparison of ten methods

using the ADNI database. Neuroimage 2010;56:766–81.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref122
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref122
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref122
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref122
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref122
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref123
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref123
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref123
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref124
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref124
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref124
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref124
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref124
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref125
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref125
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref125
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref125
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref126
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref126
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref126
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref126
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref127
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref127
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref127
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref127
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref128
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref128
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref128
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref129
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref129
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref129
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref129
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref130
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref130
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref130
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref131
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref131
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref131
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref131
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref131
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref132
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref132
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref132
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref132
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref133
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref133
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref133
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref133
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref134
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref134
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref135
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref135
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref135
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref135
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref136
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref136
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref136
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref136
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref137
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref137
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref137
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref137
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref137
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref138
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref138
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref138
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref138
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref139
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref139
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref139
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref139
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref140
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref140
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref140
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref140
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref140
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref141
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref141
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref141
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref142
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref142
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref142
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref142
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref143
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref143
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref143
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref143
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref144
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref144
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref144
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref145
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref145
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref145
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref146
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref146
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref146
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref147
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref147
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref147
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref147
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref148
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref148
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref148
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref148
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref149
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref149
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref149
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref150
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref150
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref150
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref150
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref151
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref151
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref151
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref151
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref152
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref152
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref152
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref153
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref153
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref153
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref153


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e108
[159] De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E,

Engelborghs S, De Deyn PP, et al. Diagnosis-independent alzheimer

disease biomarker signature in cognitively normal elderly people.

Arch Neurol 2010;67:949–56.

[160] Schott JM, Bartlett JW, Fox NC, Barnes J. Increased brain atrophy

rates in cognitively normal older adults with low cerebrospinal fluid

Abeta1-42. Ann Neurol 2010;68:825–34.

[161] Ewers M, Walsh C, Trojanowski JQ, Shaw LM, Petersen RC, Jack

CR Jr, et al. Prediction of conversion frommild cognitive impairment

to Alzheimer’s disease dementia based upon biomarkers and neuro-

psychological test performance. Neurobiol Aging (in press).

[162] van Gils M, Koikkalainen J, Mattila J, Herukka S, Lotjonen J,

Soininen H. Discovery and use of efficient biomarkers for objective

disease state assessment in Alzheimer’s disease. Conf Proc IEEE

Eng Med Biol Soc 2010;2010:2886–9.

[163] Desikan RS, Cabral HJ, Settecase F, Hess CP, Dillon WP,

Glastonbury CM, et al. Automated MRI measures predict progres-

sion to Alzheimer’s disease. Neurobiol Aging 2010;31:1364–74.

[164] Kovacevic S, RafiiMS, Brewer JB. High-throughput, fully automated

volumetry for prediction of MMSE and CDR decline in mild cogni-

tive impairment. Alzheimer Dis Assoc Disord 2009;23:139–45.

[165] Querbes O, Aubry F, Pariente J, Lotterie JA, Demonet JF, Duret V,

et al. Early diagnosis of Alzheimer’s disease using cortical thickness:

impact of cognitive reserve. Brain 2009;132:2036–47.

[166] Carmichael O, Schwarz C, Drucker D, Fletcher E, Harvey D,

Beckett L, et al. Longitudinal changes in white matter disease and

cognition in the first year of the Alzheimer disease neuroimaging

initiative. Arch Neurol 2010;67:1370–8.

[167] Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ,

Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and

AD subjects: predicting future clinical change. Neurology 2009;

73:294–301.

[168] McEvoy LK, Edland SD, Holland D, Hagler DJ, Roddey JC, Fen-

nema-Notestine C, et al. Neuroimaging enrichment strategy for sec-

ondary prevention trials in Alzheimer disease. Alzheimer Dis Assoc

Disord 2010;24:269–77.

[169] Weigand SD, Vemuri P, Wiste HJ, Senjem ML, Pankratz VS,

Aisen PS, et al. Transforming cerebrospinal fluid Abeta42 measures

into calculated Pittsburgh Compound B units of brain Abeta amyloid.

Alzheimers Dement 2011;7:133–41.

[170] Schneider LS, Kennedy RE, Cutter GR. Requiring an amyloid-beta1-

42 biomarker for prodromal Alzheimer’s disease or mild cognitive

impairment does not lead to more efficient clinical trials. Alzheimers

Dement 2010;6:367–77.

[171] Ito K, Ahadieh S, Corrigan B, French J, Fullerton T, Tensfeldt T. Dis-

ease progression meta-analysis model in Alzheimer’s disease. Alz-

heimers Dement 2010;6:39–53.

[172] Lorenzi M, Donohue M, Paternico D, Scarpazza C, Ostrowitzki S,

Blin O, et al. Enrichment through biomarkers in clinical trials of Alz-

heimer’s drugs in patients with mild cognitive impairment. Neurobiol

Aging 2010;13. 1443.e1–51.e1.

[173] Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL,

Aisen PS, et al. Comparing predictors of conversion and decline in

mild cognitive impairment. Neurology 2010;75:230–8.

[174] Schott JM, Bartlett JW, Barnes J, Leung KK, Ourselin S, Fox NC.

Reduced sample sizes for atrophy outcomes in Alzheimer’s disease

trials: baseline adjustment. Neurobiol Aging 2010;31.

1452.e2–62.e2.

[175] Nestor SM, Rupsingh R, Borrie M, SmithM, Accomazzi V, Wells JL,

et al. Ventricular enlargement as a possible measure of Alzheimer’s

disease progression validated using the Alzheimer’s disease neuroi-

maging initiative database. Brain 131 (Pt 9) 2008;:2443–54.

[176] Holland D, Brewer JB, Hagler DJ, Fenema-Notestine C, Dale AM,

Weiner M, et al. Subregional neuroanatomical change as a biomarker

for Alzheimer’s disease. Proc Natl Acad Sci USA 2009;106:20954–9.

[177] Hua X, Lee S, Yanovsky I, Leow AD, Chou YY, Ho AJ, et al. Opti-

mizing power to track brain degeneration in Alzheimer’s disease and
mild cognitive impairment with tensor-based morphometry: an

ADNI study of 515 subjects. Neuroimage 2009;48:668–81.

[178] Hua X, Gutman B, Boyle CP, Rajagopalan P, Leow AD, Yanovsky I,

et al. Accurate measurement of brain changes in longitudinal MRI

scans using tensor-based morphometry. Neuroimage 2011;57:5–14.

[179] Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA,

Berg S, et al. Role of genes and environments for explaining Alz-

heimer disease. Arch Gen Psychiatry 2006;63:168–74.

[180] Ashford JW, Mortimer JA. Non-familial Alzheimer’s disease is

mainly due to genetic factors. J Alzheimers Dis 2002;4:169–77.

[181] Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M,

et al. Genome-wide association study identifies variants at CLU and

CR1 associated with Alzheimer’s disease. Nat Genet 2009;

41:1094–9.

[182] Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A,

Hamshere ML, et al. Genome-wide association study identifies vari-

ants at CLU and PICALM associated with Alzheimer’s disease. Nat

Genet 2009;41:1088–93.

[183] Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F,

et al. Replication of CLU, CR1, and PICALM associations with alz-

heimer disease. Arch Neurol 2010;67:961–4.

[184] Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH,

et al. Hippocampal atrophy as a quantitative trait in a genome-wide

association study identifying novel susceptibility genes for Alz-

heimer’s disease. PLoS One 2009;4. e6501.

[185] Jun G, Naj AC, Beecham GW, Wang LS, Buros J, Gallins PJ, et al.

Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer dis-

ease risk loci and reveals interactions with APOE genotypes. Arch

Neurol 2010;67:1473–84.

[186] Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J,

et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and

EPHA1 are associated with late-onset Alzheimer’s disease. Nat

Genet 2011;43:436–41.

[187] Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC,

Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/

MS4A4E, EPHA1, CD33 and CD2AP are associated with Alz-

heimer’s disease. Nat Genet 2011;43:429–35.

[188] Lakatos A, Derbeneva O, Younes D, Keator D, Bakken T, Lvova M,

et al. Association between mitochondrial DNA variations and Alz-

heimer’s disease in the ADNI cohort. Neurobiol Aging 2010;

31:1355–63.

[189] Kauwe JS, Bertelsen S, Mayo K, Cruchaga C, Abraham R,

Hollingworth P, et al. Suggestive synergy between genetic variants

in TF and HFE as risk factors for Alzheimer’s disease. Am J Med

Genet B Neuropsychiatr Genet 2010;153B:955–9.

[190] Cruchaga C, Bertelsen S, Kauwe JS, Nowotny P, Shah AR, et al.

SNPs in the regulatory subunit of calcineurin are associated with

CSF tau protein levels, brain mRNA levels. Alzheimers Dement

2009;5(Suppl 4):P471–2.

[191] Cruchaga C, Kauwe JS, Mayo K, Spiegel N, Bertelsen S, Nowotny P,

et al. SNPs associated with cerebrospinal fluid phospho-tau levels in-

fluence rate of decline in Alzheimer’s disease. PLoS Genet 2010;:6.

pii: e1001101.

[192] Kauwe JS, Cruchaga C, Bertelsen S, Mayo K, Latu W, Nowotny P,

et al. Validating predicted biological effects of Alzheimer’s disease

associated SNPs using CSF biomarker levels. J Alzheimers Dis

2010;21:833–42.

[193] Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L,

Schmansky N, et al. Genetic variation and neuroimaging measures

in Alzheimer disease. Arch Neurol 2010;67:677–85.

[194] Shen L, Kim S, Risacher SL, Nho K, Swaminathan S, West JD, et al.

Whole genome association study of brain-wide imaging phenotypes

for identifying quantitative trait loci in MCI and AD: a study of the

ADNI cohort. Neuroimage 2010;53:1051–63.

[195] Stein JL, Hua X, Lee S, Ho AJ, Leow AD, Toga AW, et al. Voxelwise

genome-wide association study (vGWAS). Neuroimage 2010;

53:1160–74.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref154
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref154
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref154
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref154
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref155
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref155
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref155
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref156
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref156
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref156
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref156
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref157
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref157
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref157
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref158
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref158
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref158
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref159
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref159
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref159
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref160
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref160
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref160
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref160
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref161
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref161
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref161
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref161
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref162
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref162
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref162
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref162
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref163
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref163
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref163
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref163
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref164
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref164
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref164
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref164
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref165
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref165
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref165
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref166
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref166
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref166
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref166
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref167
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref167
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref167
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref168
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref168
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref168
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref168
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref169
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref169
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref169
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref169
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref170
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref170
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref170
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref171
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref171
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref171
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref171
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref172
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref172
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref172
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref173
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref173
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref173
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref174
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref174
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref175
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref175
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref175
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref175
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref176
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref176
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref176
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref176
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref177
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref177
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref177
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref178
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref178
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref178
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref178
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref179
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref179
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref179
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref179
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref180
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref180
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref180
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref180
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref181
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref181
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref181
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref181
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref182
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref182
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref182
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref182
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref183
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref183
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref183
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref183
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref184
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref184
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref184
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref184
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref185
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref185
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref185
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref185
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref186
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref186
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref186
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref186
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref187
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref187
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref187
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref188
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref188
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref188
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref188
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref189
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref189
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref189


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e109
[196] Stein JL, Hua X, Morra JH, Lee S, Hibar DP, Ho AJ, et al. Genome-

wide analysis reveals novel genes influencing temporal lobe structure

with relevance to neurodegeneration in Alzheimer’s disease. Neuro-

image 2010;51:542–54.

[197] Furney SJ, SimmonsA, Breen G, Pedroso I, LunnonK, Proitsi P, et al.

Genome-wide association with MRI atrophy measures as a quantita-

tive trait locus for Alzheimer’s disease. Mol Psychiatry (in press).

[198] Bertram L, Heekeren H. Obesity and the brain: a possible genetic

link. Alzheimers Res Ther 2010;2:27.

[199] Han MR, Schellenberg GD, Wang LS. Genome-wide association re-

veals genetic effects on human Abeta42 and tau protein levels in ce-

rebrospinal fluids: a case control study. BMC Neurol 2010;10:90.

[200] Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK,

Hagler DJ, Holland D, et al. One-year brain atrophy evident in

healthy aging. J Neurosci 2009;29:15223–31.

[201] Burgmans S, van Boxtel MP, Vuurman EF, Smeets F,

Gronenschild EH, Uylings HB, et al. The prevalence of cortical

gray matter atrophymay be overestimated in the healthy aging brain,.

Neuropsychology 2009;23:541–50.

[202] Fjell AM, Westlye LT, Espeseth T, Reinvang I, Dale AM, Holland D,

et al. Cortical graymatter atrophy in healthy aging cannot be explained

by undetected incipient cognitive disorders: a comment on Burgmans,

et al. (2009). Neuropsychology 2010;24:258–63. discussion 264–6.

[203] Murphy EA, Holland D, Donohue M, McEvoy LK, Hagler DJ Jr,

Dale AM, et al. Six-month atrophy in MTL structures is associated

with subsequent memory decline in elderly controls. Neuroimage

2010;53:1310–7.

[204] Nettiksimmons J, Harvey D, Brewer J, Carmichael O, Decarli C,

Jack CR Jr, et al. Subtypes based on cerebrospinal fluid and magnetic

resonance imaging markers in normal elderly predict cognitive

decline. Neurobiol Aging 2010;31:1419–28.

[205] Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK,

Hagler DJ, Holland D, et al. Brain Atrophy in Healthy Aging Is

Related to CSF Levels of A{beta}1-42. Cereb Cortex 2010;

20:2069–79.

[206] Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL,

Miller BL, et al. Episodic memory loss is related to hippocampal-

mediated beta-amyloid deposition in elderly subjects. Brain 132 (Pt

5) 2009;:1310–23.

[207] Chiang GC, Insel PS, Tosun D, Schuff N, Truran-Sacrey D,

Raptentsetsang ST, et al. Hippocampal atrophy rates and CSF bio-

markers in elderly APOE2 normal subjects. Neurology 2010;

75:1976–81.

[208] Fan M, Liu B, Zhou Y, Zhen X, Xu C, Jiang T. Cortical thickness is

associated with different apolipoprotein E genotypes in healthy

elderly adults. Neurosci Lett 2010;479:332–6.

[209] Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, et al. A

commonly carried allele of the obesity-related FTO gene is associ-

ated with reduced brain volume in the healthy elderly. Proc Natl

Acad Sci USA 2010;107:8404–9.

[210] Rimol LM, Agartz I, Djurovic S, Brown AA, Roddey JC,

Kahler AK, et al. Sex-dependent association of common variants

of microcephaly genes with brain structure. Proc Natl Acad Sci

USA 2010;107:384–8.

[211] Joyner AH, Roddey JC, Bloss CS, Bakken TE, Rimol LM, Melle I,

et al. A common MECP2 haplotype associates with reduced cortical

surface area in humans in two independent populations. Proc Natl

Acad Sci USA 2009;106:15483–8.

[212] Frisoni GB. Alzheimer’s disease neuroimaging Initiative in Europe.

Alzheimers Dement 2010;6:280–5.

[213] Frisoni GB, Henneman WJ, Weiner MW, Scheltens P, Vellas B,

Reynish E, et al. The pilot European Alzheimer’s Disease Neuroi-

maging Initiative of the European Alzheimer’s Disease Consortium,.

Alzheimers Dement 2008;4:255–64.

[214] Buerger K, Frisoni G, Uspenskaya O, Ewers M, Zetterberg H,

Geroldi C, et al. Validation of Alzheimer’s disease CSF and plasma

biological markers: the multicentre reliability study of the pilot Euro-
pean Alzheimer’s Disease Neuroimaging Initiative (E-ADNI). Exp

Gerontol 2009;44:579–85.

[215] Mattsson N, Andreasson U, Persson S, Arai H, Batish SD,

Bernardini S, et al. The Alzheimer’s Association external quality

control program for cerebrospinal fluid biomarkers. Alzheimers De-

ment 2011;7:386–3956.

[216] Frisoni GB, Jack CR. Harmonization of magnetic resonance-based

manual hippocampal segmentation: a mandatory step for wide clin-

ical use. Alzheimers Dement 2011;7:171–4.

[217] Ellis KA, Rowe CC, Villemagne VL, Martins RN, Masters CL,

Salvado O, et al. Addressing population aging and Alzheimer’s dis-

ease through the Australian imaging biomarkers and lifestyle study:

collaboration with the Alzheimer’s Disease Neuroimaging Initiative.

Alzheimers Dement 2010;6:291–6.

[218] RoweCC, Ellis KA, RimajovaM, Bourgeat P, Pike KE, Jones G, et al.

Amyloid imaging results from the Australian Imaging, Biomarkers

and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010;

31:1275–83.

[219] Fukuyama H. Neuroimaging in mild cognitive impairment,. [in Jap-

anese] Rinsho Shinkeigaku 2006;46:791–4.

[220] Iwatsubo T. Japanese ADNI: present status and future. Alzheimers

Dement 2010;6:297–9.

[221] Arai H. Alzheimer’s disease neuroimaging initiative and mild cogni-

tive impairment,. [in Japanese] Rinsho Shinkeigaku 2007;47:905–7.

[222] Ihara Y. Overview on Alzheimer’s disease,. [in Japanese] Rinsho

Shinkeigaku 2007;47:902–4.

[223] Murayam S, Saito Y. Neuropathology of mild cognitive impairment

Alzheimer’s disease,. [in Japanese] Rinsho Shinkeigaku 2007;

47:912–4.

[224] Arai H, Okamura N, Furukawa K, Kudo Y. Geriatric medicine, Jap-

anese Alzheimer’s disease neuroimaging initiative and biomarker

development. Tohoku J Exp Med 2010;221:87–95.

[225] Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, et al. Discriminant anal-

ysis of longitudinal cortical thickness changes in Alzheimer’s disease

using dynamic and network features. Neurobiol Aging (in press).

[226] Heckemann RA, et al. Automatic morphometry in Alzheimer’s dis-

ease and mild cognitive impairment. Neuroimage 2011;56:2024–37.

[227] Romero K, Corrigan B, Neville J, Kopko S, CantillonM., Striving for

an integrated drug development process for neurodegeneration: The

Coalition Against Major Diseases. Neurodegen Dis Manage

2011;1:379–85.

[228] Kang JH, Vanderstichele H, Trojanowski JQ, Shaw LM. Simulta-

neous analysis of cerebrospinal fluid biomarkers using

microsphere-based xMAP multiplex technology for early detection

of Alzheimer’s disease. Methods 2012;56:484–93.

[229] Li X, Long X, Laurienti P, Wyatt C. Registration of images with vary-

ing topology using embedded maps. IEEE Trans Med Imaging

2012;31:749–65.

[230] LeungKK, RidgwayGR, Ourselin S, FoxNC. Consistent multi-time-

point brain atrophy estimation from the boundary shift integral. Neu-

roimage 2012;59:3995–4005.

[231] Lotjonen J, Wolz R, Koikkalainen J, Julkunen V, Thurfjell L,

Lundqvist R, et al. Fast and robust extraction of hippocampus from

MR images for diagnostics of Alzheimer’s disease. Neuroimage

2011;56:185–96.

[232] Pachauri D, Hinrichs C, ChungMK, Johnson SC, Singh V. Topology-

based kernels with application to inference problems in Alzheimer’s

disease. IEEE Trans Med Imaging 2011;30:1760–70.

[233] Cardoso MJ, Clarkson MJ, Ridgway GR, Modat M, Fox NC, Ourse-

lin S. LoAd: a locally adaptive cortical segmentation algorithm. Neu-

roimage 2011;56:1386–97.

[234] Koikkalainen J, Lotjonen J, Thurfjell L, Rueckert D, Waldemar G,

Soininen H. Multi-template tensor-based morphometry: applica-

tion to analysis of Alzheimer’s disease. Neuroimage

2011;56:1134–44.

[235] Cover KS, van Schijndel RA, van Dijk BW, Redolfi A, Knol DL, Fri-

soni GB, et al. Assessing the reproducibility of the SienaX and Siena

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref190
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref190
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref190
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref190
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref191
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref191
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref192
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref192
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref192
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref193
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref193
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref193
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref194
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref194
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref194
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref194
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref195
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref195
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref195
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref195
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref196
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref196
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref196
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref196
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref197
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref197
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref197
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref197
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref198
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref198
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref198
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref198
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref199
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref199
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref199
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref199
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref200
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref200
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref200
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref200
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref201
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref201
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref201
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref202
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref202
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref202
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref202
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref203
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref203
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref203
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref203
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref204
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref204
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref204
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref204
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref205
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref205
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref206
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref206
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref206
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref206
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref207
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref207
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref207
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref207
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref207
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref208
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref208
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref208
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref208
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref209
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref209
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref209
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref210
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref210
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref210
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref210
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref210
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref211
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref211
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref211
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref211
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref212
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref212
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref213
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref213
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref214
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref214
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref215
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref215
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref216
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref216
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref216
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref217
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref217
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref217


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e110
brain atrophy measures using the ADNI back-to-back MP-RAGE

MRI scans. Psychiatry Res 2011;193:182–90.

[236] Shen KK, Fripp J, Meriaudeau F, Chetelat G, Salvado O, Bourgeat P.

Detecting global and local hippocampal shape changes in Alz-

heimer’s disease using statistical shape models. Neuroimage

2012;59:2155–66.

[237] Cho Y, Seong JK, Jeong Y, Shin SY. Individual subject classification

for Alzheimer’s disease based on incremental learning using a spatial

frequency representation of cortical thickness data. Neuroimage

2012;59:2217–30.

[238] Abdulkadir A, Mortamet B, Vemuri P, Jack CR, Jr., Krueger G, Klop-

pel S. Effects of hardware heterogeneity on the performance of SVM

Alzheimer’s disease classifier. Neuroimage 2011;58:785–92.

[239] Zhang, D. and D. Shen, Predicting future clinical changes of MCI pa-

tients using longitudinal and multimodal biomarkers. PLoS One,

2012. 7: e33182.

[240] Aksu Y, Miller DJ, Kesidis G, Bigler DC, Yang QX. AnMRI-derived

definition of MCI-to-AD conversion for long-term, automatic prog-

nosis of MCI patients. PLoS One, 2011. 6: e25074.

[241] Casanova R, Whitlow CT, Wagner B, Williamson J, Shumaker SA,

Maldjian JA, et al. High dimensional classification of structural

MRI Alzheimer’s disease data based on large scale regularization.

Front Neuroinform, 2011. 5: p. 22.

[242] Clark DG, Residual vectors for Alzheimer disease diagnosis and

prognostication. Brain Behav 2011;1:142–52.

[243] Markiewicz PJ, Matthews JC, Declerck J, Herholz K. Robustness of

multivariate image analysis assessed by resampling techniques and

applied to FDG-PET scans of patients with Alzheimer’s disease.

Neuroimage 2009;46:472–85.

[244] Markiewicz PJ, Matthews JC, Declerck J, Herholz K. Verification of

predicted robustness and accuracy of multivariate analysis. Neuro-

image 2011;56:1382–85.

[245] Rasmussen JM, Lakatos A, van Erp TG, Kruggel F, Keator DB, Fal-

lon JT, et al. Empirical derivation of the reference region for

computing diagnostic sensitive (1)fluorodeoxyglucose ratios in Alz-

heimer’s disease based on the ADNI sample. Biochim Biophys Acta

2012;1822:457–66.

[246] Tractenberg RE and R.H. Pietrzak, Intra-individual variability in Alz-

heimer’s disease and cognitive aging: definitions, context, and effect

sizes. PLoS One, 2011. 6: e16973.

[247] Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in

a multi-modality framework: an analysis of MCI progression in the

ADNI population. Neuroimage 2011;55:574–89.

[248] Padilla P, Lopez M, Gorriz JM, Ramirez J, Salas-Gonzalez D, Al-

varez I. NMF-SVM based CAD tool applied to functional brain im-

ages for the diagnosis of Alzheimer’s disease. IEEE Trans Med

Imaging 2012;31:207–16.

[249] Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classifica-

tion of Alzheimer’s disease and mild cognitive impairment. Neuro-

image 2011;55:856–67.

[250] Zhang D. and D. Shen, Multi-modal multi-task learning for joint pre-

diction of multiple regression and classification variables in Alz-

heimer’s disease. Neuroimage 2012;59:895–907.

[251] Wang H, Nie F, Huang H, Risacher S, and Saykin A, Ding C, Shen L,

ADNI*, Sparse Multi-Task Regression and Feature Selection to Iden-

tify Brain Imaging Predictors for Memory Performance. IEEE Con-

ference on Computer Vision, 2011: 557–62.

[252] Mattila J, Koikkalainen J, Virkki A, Simonsen A, van Gils M, Walde-

mar G, et al. A disease state fingerprint for evaluation of Alzheimer’s

disease. J Alzheimers Dis 2011;27:163–76.

[253] Soininen H, Mattila J, Koikkalainen J, van Gils M, Hviid Simonsen

A, Waldemar G, et al. Software tool for improved prediction of Alz-

heimer’s disease. Neurodegener Dis 2012;10:149–52.

[254] Mayeux R. and N. Schupf, Blood-based biomarkers for Alzheimer’s

disease: plasma Abeta40 and Abeta42, and genetic variants. Neuro-

biol Aging, 2011. 32 Suppl 1: S10–9.
[255] O’Bryant SE, Xiao G, Barber R, Huebinger R, Wilhelmsen K, Ed-

wards M, et al. A blood-based screening tool for Alzheimer’s disease

that spans serum and plasma: findings from TARC and ADNI. PLoS

One, 2011. 6: e28092.

[256] Figurski MJ, Waligorska T, Toledo J, Vanderstichele H, Korecka M,

Lee VM, et al. Improved protocol for measurement of plasma beta-

amyloid in longitudinal evaluation of Alzheimer’s Disease Neuroi-

maging Initiative study patients. Alzheimers Dement, 2012. 8):

250–60.

[257] Toledo JB, Vanderstichele H, Figurski M, Aisen PS, Petersen RC,

Weiner MW, et al. Factors affecting Abeta plasma levels and their

utility as biomarkers in ADNI. Acta Neuropathol 2011;122:401–13.

[258] Rissman RA, Trojanowski JQ, Shaw LM, Aisen PS. Longitudinal

plasma amyloid beta as a biomarker of Alzheimer’s disease. J Neural

Transm 2012;119:843–50.

[259] Soares HD, PotterWZ, Pickering E, KuhnM, Immermann FW, Shera

DM, et al. Plasma Biomarkers AssociatedWith the Apolipoprotein E

Genotype and Alzheimer Disease. Arch Neurol, 2012: 1–8.

[260] Hu WT, Holtzman DM, Fagan AM, Shaw LM, Perrin R, Arnold SE,

et al. Plasma multianalyte profiling in mild cognitive impairment and

Alzheimer disease. Neurology, 2012.

[261] Dukart J., M.L. Schroeter, and K. Mueller, Age correction in demen-

tia–matching to a healthy brain. PLoS One, 2011. 6: e22193.

[262] Samtani MN, Farnum M, Lobanov V, Yang E, Raghavan N, Diber-

nardo A, et al. An improved model for disease progression in patients

from the Alzheimer’s disease neuroimaging initiative. J Clin Pharma-

col 2012;52:629–44.

[263] Meda SA, Narayanan B, Liu J, Perrone-Bizzozero NI, Stevens MC,

Calhoun VD, et al. A large scale multivariate parallel ICAmethod re-

veals novel imaging-genetic relationships for Alzheimer’s disease in

the ADNI cohort. Neuroimage 2012;60:1608–21.

[264] Wang H, Nie F, Huang H, Kim S, Nho K, Risacher SL, et al. Identi-

fying quantitative trait loci via group-sparse multitask regression and

feature selection: an imaging genetics study of the ADNI cohort. Bio-

informatics 2012;28:229–37.

[265] Spiegel R, Berres M, Miserez AR, Monsch AU. For debate: substitut-

ing placebo controls in long-term Alzheimer’s prevention trials. Alz-

heimers Res Ther, 2011. 3(): p. 9.

[266] Donohue MC, Gamst AC, Thomas RG, Xu R, Beckett L, Pe-

tersen RC, et al. The relative efficiency of time-to-threshold

and rate of change in longitudinal data. Contemp Clin Trials

2011;32:685–93.

[267] Greene SJ and R.J. Killiany, Hippocampal subregions are differen-

tially affected in the progression to Alzheimer’s disease. Anat Rec

(Hoboken) 2012;295:132–40.

[268] Spampinato MV, Rumboldt Z, Hosker RJ, Mintzer JE. Apolipopro-

tein E and gray matter volume loss in patients with mild cognitive

impairment and Alzheimer disease. Radiology 2011;258:843–52.

[269] Skup M, Zhu H, Wang Y, Giovanello KS, Lin JA, Shen D, et al. Sex

differences in grey matter atrophy patterns among AD and aMCI pa-

tients: results from ADNI. Neuroimage 2011;56:890–906.

[270] Stricker NH, Chang YL, Fennema-Notestine C, Delano-Wood L,

Salmon DP, Bondi MW, et al. Distinct profiles of brain and cognitive

changes in the very old with Alzheimer disease. Neurology

2011;77:713–21.

[271] Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC. Amyg-

dala atrophy is prominent in early Alzheimer’s disease and relates

to symptom severity. Psychiatry Res 2011;194:7–13.

[272] ZhangN, SongX, ZhangY, ChenW, D’Arcy RC, Darvesh S, et al. An

MRI brain atrophy and lesion index to assess the progression of struc-

tural changes in Alzheimer’s disease, mild cognitive impairment, and

normal aging: a follow-up study. JAlzheimers Dis, 2011. 26 Suppl 3:

359–67.

[273] Rajagopalan P, Hua X, Toga AW, Jack CR Jr,WeinerMW, Thompson

PM, Homocysteine effects on brain volumes mapped in 732 elderly

individuals. Neuroreport 2011;22:391–5.



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e111
[274] Brown PJ, Devanand DP, Liu X, Caccappolo E. Functional impair-

ment in elderly patients with mild cognitive impairment and mild

Alzheimer disease. Arch Gen Psychiatry 2011;68:617–26.

[275] Bonner-Jackson A., O. Okonkwo, and G. Tremont, Apolipoprotein E

epsilon2 and functional decline in amnestic mild cognitive impair-

ment and Alzheimer disease. Am J Geriatr Psychiatry

2012;20:584–93.

[276] Marshall GA, Olson LE, Frey MT, Maye J, Becker JA, Rentz DM.

Instrumental activities of daily living impairment is associated with

increased amyloid burden. Dement Geriatr Cogn Disord

2011;31:443–50.

[277] Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperl-

ing RA. Executive function and instrumental activities of daily living

in mild cognitive impairment and Alzheimer’s disease. Alzheimers

Dement 2011;7:300–8.

[278] Vemuri P, Weigand SD, Przybelski SA, Knopman DS, Smith GE,

Trojanowski JQ, et al. Cognitive reserve and Alzheimer’s disease bio-

markers are independent determinants of cognition. Brain, 2011.

134(Pt 5): 1479–92.

[279] Ewers M, Schmitz S, Hansson O, Walsh C, Fitzpatrick A, Bennett D,

et al. Body mass index is associated with biological CSF markers of

core brain pathology of Alzheimer’s disease. Neurobiol Aging

2012;33:1599–608.

[280] Vidoni ED, Townley RA, Honea RA, Burns JM. Alzheimer disease

biomarkers are associated with body mass index. Neurology

2011;77:1913–20.

[281] Lo RY, Hubbard AE, Shaw LM, Trojanowski JQ, Petersen RC, Aisen

PS, et al. Longitudinal change of biomarkers in cognitive decline.

Arch Neurol 2011;68:1257–66.

[282] Jack CR, Jr, Vemuri P,Wiste HJ,Weigand SD, Aisen PS, Trojanowski

JQ, et al. Evidence for ordering of Alzheimer disease biomarkers.

Arch Neurol 2011;68:1526–35.

[283] Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C,

et al. Local MRI analysis approach in the diagnosis of early and pro-

dromal Alzheimer’s disease. Neuroimage 2011;58:469–80.

[284] Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueck-

ert D, et al. Multi-method analysis ofMRI images in early diagnostics

of Alzheimer’s disease. PLoS One, 2011. 6: e25446.

[285] Gray KR, Wolz R, Heckemann RA, Aljabar P, Hammers A, Rueckert

D. Multi-region analysis of longitudinal FDG-PET for the classifica-

tion of Alzheimer’s disease. Neuroimage 2012;60:221–9.

[286] Johnstone D, Milward EA, Berretta R, Moscato P. Multivariate pro-

tein signatures of pre-clinical Alzheimer’s disease in the Alzheimer’s

disease neuroimaging initiative (ADNI) plasma proteome dataset.

PLoS One, 2012. 7: e34341.

[287] Cui Y, Liu B, Luo S, Zhen X, Fan M, Liu T, et al. Identification of

conversion from mild cognitive impairment to Alzheimer’s disease

using multivariate predictors. PLoS One, 2011. 6: e21896.

[288] Schmand B., P. Eikelenboom, andW.A. van Gool, Value of neuropsy-

chological tests, neuroimaging, and biomarkers for diagnosing Alz-

heimer’s disease in younger and older age cohorts. J Am Geriatr

Soc 2011;59:1705–10.

[289] Dickerson BC and D.A.Wolk, MRI cortical thickness biomarker pre-

dicts AD-like CSF and cognitive decline in normal adults. Neurology

2012;78:84–90.

[290] Chiang GC, Insel PS, Tosun D, Schuff N, Truran-Sacrey D, Raptent-

setsang S, et al. Identifying cognitively healthy elderly individuals

with subsequent memory decline by using automated MR temporo-

parietal volumes. Radiology 2011;259:844–51.

[291] Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a cali-

brated (18)F-FDG PET score as a biomarker for progression in Alz-

heimer disease and mild cognitive impairment. J Nucl Med

2011;52:1218–26.

[292] Mackin RS, Insel P, Aisen PS, Geda YE, Weiner MW. Longitudinal

stability of subsyndromal symptoms of depression in individuals with

mild cognitive impairment: relationship to conversion to dementia af-

ter 3 years. Int J Geriatr Psychiatry 2012;27:355–63.
[293] Lee GJ, Lu PH, Hua X, Lee S, Wu S, Nguyen K, et al. Depressive

symptoms inmild cognitive impairment predict greater atrophy inAlz-

heimer’s disease-related regions. Biol Psychiatry, 2012. 71(: 814–21.

[294] Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C, Davies P,

Goldberg TE. Utility of combinations of biomarkers, cognitive

markers, and risk factors to predict conversion from mild cognitive

impairment to Alzheimer disease in patients in the Alzheimer’s dis-

ease neuroimaging initiative. Arch Gen Psychiatry 2011;68:961–9.

[295] Heister D, Brewer JB, Magda S, Blennow K,McEvoy LK. Predicting

MCI outcome with clinically available MRI and CSF biomarkers.

Neurology 2011;77:1619–28.

[296] Devanand DP, Liu X, Brown PJ, Huey ED, Stern Y, Pelton GH. A

two-study comparison of clinical and MRI markers of transition

from mild cognitive impairment to Alzheimer’s disease. Int J Alz-

heimers Dis, 2012. 2012: p. 483469.

[297] Holland D., L.K. McEvoy, and A.M. Dale, Unbiased comparison of

sample size estimates from longitudinal structural measures in

ADNI. Hum Brain Mapp, 2012. 33(: 2586–602.

[298] Schrag A. and J.M. Schott, What is the clinically relevant change on

the ADAS-Cog? J Neurol Neurosurg Psychiatry 2012;83:171–3.

[299] Henley DB, Sundell KL, Sethuraman G, Siemers ER. Safety profile

of Alzheimer’s disease populations in Alzheimer’s Disease Neuroi-

maging Initiative and other 18-month studies. Alzheimers Dement

2012;8:407–16.

[300] Thompson WK, J. Hallmayer, and R. O’Hara, Design considerations

for characterizing psychiatric trajectories across the lifespan: appli-

cation to effects of APOE-epsilon4 on cerebral cortical thickness in

Alzheimer’s disease. Am J Psychiatry 2011;168:894–903.

[301] Erten-Lyons D, Wilmot B, Anur P, McWeeney S, Westaway SK, Sil-

bert L, et al.Microcephaly genes and risk of late-onset Alzheimer dis-

ease. Alzheimer Dis Assoc Disord 2011;25:276–82.

[302] Murphy EA, Roddey JC, McEvoy LK, Holland D, Hagler DJ, Jr.,

Dale AM, et al. CETP polymorphisms associate with brain structure,

atrophy rate, and Alzheimer’s disease risk in an APOE-dependent

manner. Brain Imaging Behav 2012;6:16–26.

[303] XuC,Wang Z, FanM, Liu B, SongM, ZhenX, et al. Effects of BDNF

Val66Met polymorphism on brain metabolism in Alzheimer’s dis-

ease. Neuroreport 2010;21:802–7.

[304] Kamboh MI, Barmada MM, Demirci FY, Minster RL, Carrasquillo

MM, Pankratz VS, et al. Genome-wide association analysis of age-

at-onset in Alzheimer’s disease. Mol Psychiatry 2012;17:1340–46.

[305] Hibar DP, Stein JL, Kohannim O, Jahanshad N, Saykin AJ, Shen L,

et al. Voxelwise gene-wide association study (vGeneWAS): multivar-

iate gene-based association testing in 731 elderly subjects. Neuro-

image 2011;56:1875–91.

[306] Schott JM, Using CSF biomarkers to replicate genetic associations in

Alzheimer’s disease. Neurobiol Aging, 2012. 33(7): 1486.e9-15.

[307] Swaminathan S, Shen L, Risacher SL, Yoder KK, West JD, Kim S,

et al. Amyloid pathway-based candidate gene analysis of [(11)C]

PiB-PET in the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) cohort. Brain Imaging Behav 2012;6:1–15.

[308] Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, et al. Meta-

analysis for genome-wide association study identifies multiple vari-

ants at the BIN1 locus associated with late-onset Alzheimer’s disease.

PLoS One, 2011. 6: e16616.

[309] Antunez C, BoadaM, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R,

Marin J, et al. Genetic association of complement receptor 1 poly-

morphism rs3818361 in Alzheimer’s disease. Alzheimers Dement,

2011. 7: e124-9.

[310] Cruchaga C, Nowotny P, Kauwe JS, Ridge PG, Mayo K, Bertelsen S,

et al. Association and expression analyses with single-nucleotide

polymorphisms in TOMM40 in Alzheimer disease. Arch Neurol

2011;68:1013–19.

[311] Antunez C, BoadaM, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R,

Marin J, et al. The membrane-spanning 4-domains, subfamily A

(MS4A) gene cluster contains a commonvariant associated with Alz-

heimer’s disease. Genome Med, 2011. 3: p. 33.



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e112
[312] Kauwe JS, Cruchaga C, Karch CM, Sadler B, Lee M, Mayo K, et al.

Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM

for association with cerebrospinal fluid biomarkers for Alzheimer’s

disease. PLoS One, 2011. 6: e15918.

[313] Alexopoulos P, Guo LH, Kratzer M, Westerteicher C, Kurz A, Per-

neczky R. Impact of SORL1 single nucleotide polymorphisms on

Alzheimer’s disease cerebrospinal fluid markers. Dement Geriatr

Cogn Disord 2011;32:164–70.

[314] Swaminathan S, Kim S, Shen L, Risacher SL, Foroud T, Pankratz N,

et al. Genomic Copy Number Analysis in Alzheimer’s Disease and

Mild Cognitive Impairment: An ADNI Study. Int J Alzheimers Dis,

2011. 2011: p. 729478.

[315] Swaminathan S, Shen L, Kim S, Inlow M, West JD, Faber KM,

et al. Analysis of copy number variation in Alzheimer’s disease:

the NIALOAD/ NCRAD Family Study. Curr Alzheimer Res

2012;9:801–14.

[316] Stein JL, Hibar DP, Madsen SK, Khamis M, McMahon KL, de Zubi-

caray GI, et al. Discovery and replication of dopamine-related gene ef-

fects on caudate volume in young and elderly populations (N¼1198)

using genome-wide search. Mol Psychiatry 2011;16:927–37, 881.

[317] Bakken TE, Roddey JC, Djurovic S, Akshoomoff N, Amaral DG,

Bloss CS, et al. Association of common genetic variants in GPCPD1

with scaling of visual cortical surface area in humans. Proc Natl Acad

Sci U S A, 2012. 109(: 3985–90.

[318] Yesavage JA, Noda A, Hernandez B, Friedman L, Cheng JJ, Tinklen-

berg JR, et al. Circadian clock gene polymorphisms and sleep-wake

disturbance in Alzheimer disease. Am J Geriatr Psychiatry

2011;19:635–43.

[319] Bakken TE, A.M. Dale, and N.J. Schork, A geographic cline of skull

and brain morphology among individuals of European Ancestry.

Hum Hered 2011;72:35–44.

[320] David R, Friedman L, Mulin E, Noda A, Le Duff F, Kennedy Q, et al.

Lack of Association Between COMT Polymorphisms and Apathy in

Alzheimer’s Disease. J Alzheimers Dis 2011;27:155–61.

[321] Hibar DP, KohannimO, Stein JL, ChiangMC, Thompson PM.Multi-

locus genetic analysis of brain images. Front Genet, 2011. 2: p. 73.

[322] Nho K, Shen L, Kim S, Swaminathan S, Risacher SL, Saykin AJ. The

effect of reference panels and software tools on genotype imputation.

AMIA Annu Symp Proc 2011;2011:1013–18.

[323] Wan J, Kim S, Inlow M, Nho K, Swaminathan S, Risacher SL, et al.

Hippocampal surface mapping of genetic risk factors in AD via

sparse learning models. Med Image Comput Comput Assist Interv,

2011. 14(Pt 2): 376–83.

[324] Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo

K, et al. Cerebrospinal fluid APOE levels: an endophenotype for

genetic studies for Alzheimer’s disease. Hum Mol Genet

2012;21:4558–71.

[325] Damoiseaux JS, Seeley WW, Zhou J, Shirer WR, Coppola G, Kary-

das A, et al. Gender modulates the APOE epsilon4 effect in healthy

older adults: convergent evidence from functional brain connectivity

and spinal fluid tau levels. J Neurosci 2012;32:8254–62.

[326] De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson

RS, et al. A genome-wide scan for common variants affecting the

rate of age-related cognitive decline. Neurobiol Aging

2012;33:1017.e1-15.

[327] Ge T, Feng J, Hibar DP, Thompson PM, Nichols TE. Increasing po-

wer for voxel-wise genome-wide association studies: the random

field theory, least square kernel machines and fast permutation proce-

dures. Neuroimage 2012;63:858–73.

[328] Hibar DP, Stein JL, Ryles AB, Kohannim O, Jahanshad N, Medland

SE, et al. Genome-wide association identifies genetic variants associ-

ated with lentiform nucleus volume in N ¼ 1345 young and elderly

subjects. Brain Imaging Behav, 2012..

[329] JahanshadN, KohannimO, Hibar DP, Stein JL,McMahonKL, de Zu-

bicaray GI, et al. Brain structure in healthy adults is related to serum

transferrin and the H63D polymorphism in the HFE gene. Proc Natl

Acad Sci U S A, 2012. 109: E851-9.
[330] Keenan BT, Shulman JM, Chibnik LB, Raj T, Tran D, Sabuncu MR,

et al. A coding variant in CR1 interacts with APOE-epsilon4 to influ-

ence cognitive decline. Hum Mol Genet 2012;21:2377–88.

[331] Kohannim O, Hibar DP, Jahanshad N, Stein JL, Hua X, Toga AW,

et al. Predicting Temporal Lobe Volume on Mri from Genotypes Us-

ing L(1)-L(2) Regularized Regression. Proc IEEE Int Symp Biomed

Imaging, 2012: 1160–63.

[332] Kohannim O, Hibar DP, Stein JL, Jahanshad N, Hua X, Rajagopalan

P, et al. Discovery and Replication of Gene Influences on Brain Struc-

ture Using LASSO Regression. Front Neurosci, 2012. 6: p. 115.

[333] LourdusamyA,Newhouse S, LunnonK, Proitsi P, Powell J, Hodges A,

et al. Identification of cis-regulatory variation influencing protein abun-

dance levels in human plasma. Hum Mol Genet 2012;21:3719–26.

[334] Mattila J, Koikkalainen J, Virkki A, van Gils M, Lotjonen J. Design

and application of a generic clinical decision support system for mul-

tiscale data. IEEE Trans Biomed Eng 2012;59:234–40.

[335] Melville SA, Buros J, Parrado AR, Vardarajan B, LogueMW, Shen L,

et al. Multiple loci influencing hippocampal degeneration identified

by genome scan. Ann Neurol 2012;72:65–75.

[336] Ramanan VK, Kim S, Holohan K, Shen L, Nho K, Risacher SL, et al.

Genome-wide pathway analysis of memory impairment in the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates

gene candidates, canonical pathways, and networks. Brain Imaging

Behav, 2012;6:634-48.

[337] Mukherjee S, Kim S, Gibbons LE, Nho K, Risacher SL, Glymour

MM, et al. Genetic architecture of resilience of executive func-

tioning. Brain Imaging Behav, 2012;6:621-33.

[338] Silver M, Janousova E, Hua X, Thompson PM, Montana G. Identifi-

cation of gene pathways implicated in Alzheimer’s disease using lon-

gitudinal imaging phenotypes with sparse regression. Neuroimage

2012;63:1681–94.

[339] Silver M. and G. Montana, Fast identification of biological pathways

associated with a quantitative trait using group lasso with overlaps.

Stat Appl Genet Mol Biol, 2012. 11: Article 7.

[340] Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler

AM, et al. Identification of common variants associated with human

hippocampal and intracranial volumes. Nat Genet 2012;44:552–61.

[341] Thambisetty M, An Y, Nalls M, Sojkova J, Swaminathan S, Zhou Y,

et al. Effect of Complement CR1 on Brain Amyloid Burden During

Aging and ItsModification byAPOEGenotype. Biol Psychiatry, 2012;

73:334-41.

[342] Vounou M, Janousova E, Wolz R, Stein JL, Thompson PM, Rueckert

D, et al. Sparse reduced-rank regression detects genetic associations

with voxel-wise longitudinal phenotypes in Alzheimer’s disease.

Neuroimage 2012;60:700–16.

[343] Wang H, Nie F, Huang H, Risacher SL, Saykin AJ, Shen L. Identifying

disease sensitive and quantitative trait-relevant biomarkers frommulti-

dimensional heterogeneous imaging genetics data via sparse multi-

modal multitask learning. Bioinformatics, 2012. 28: i127-36.

[344] Wang H, Nie F, Huang H, Yan J, Kim S, Nho K, et al. From phenotype

to genotype: an association study of longitudinal phenotypicmarkers to

Alzheimer’s disease relevant SNPs. Bioinformatics, 2012. 28i619-25.

[345] Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC,

et al. The Alzheimer’s Disease Neuroimaging Initiative: a review of

papers published since its inception. Alzheimers Dement, 2012. 8(1

Suppl): S1–68.

[346] Ye J, FarnumM, Yang E, Verbeeck R, Lobanov V, Raghavan N, et al.

Sparse learning and stability selection for predictingMCI to AD con-

version using baseline ADNI data. BMC Neurol, 2012. 12: p. 46.

[347] Westman E, Simmons A, Muehlboeck JS, Mecocci P, Vellas B, Tso-

laki M, et al. AddNeuroMed and ADNI: similar patterns of Alz-

heimer’s atrophy and automated MRI classification accuracy in

Europe and North America. Neuroimage 2011;58:818–28.

[348] Cuingnet R, Rosso C, Chupin M, Lehericy S, Dormont D, Benali H,

et al. Spatial regularization of SVM for the detection of diffusion al-

terations associated with stroke outcome. Med Image Anal

2011;15:729–37.



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e113
[349] Jennings JR, Mendelson DN, Muldoon MF, Ryan CM, Gianaros PJ,

Raz N, et al. Regional grey matter shrinks in hypertensive individuals

despite successful lowering of blood pressure. J Hum Hypertens

2012;26:295–305.

[350] Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC,

et al. The Alzheimer’s Disease Neuroimaging Initiative: a review of

papers published since its inception. Alzheimers Dement 2012;8(1

Suppl):S1–68.

[351] Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC,

et al., Alzheimer’s Disease Neuroimaging. The Alzheimer’s Disease

Neuroimaging Initiative: a review of papers published since its incep-

tion. Alzheimers Dement 2013;9:e111–94.

[352] Guo LH, Alexopoulos P, Eisele T, Wagenpfeil S, Kurz A,

Perneczky R. The National Institute on Aging-Alzheimer’s Associa-

tion research criteria for mild cognitive impairment due to Alz-

heimer’s disease: predicting the outcome. Eur Arch Psychiatry Clin

Neurosci 2012;263:325–33.

[353] Petersen RC, Aisen P, Boeve BF, Geda YE, Ivnik RJ, Knopman DS,

et al. Mild cognitive impairment due to Alzheimer’s disease in the

community. Ann Neurol 2013;74:199–208.

[354] Lowe VJ, Peller PJ, Weigand SD, Montoya Quintero C,

Tosakulwong N, Vemuri P, et al. Application of the National Institute

on Aging-Alzheimer’s Association AD criteria to ADNI. Neurology

2013;80:2130–7.

[355] Wilhelm EE, Oster E, Shoulson I. Approaches and costs for sharing

clinical research data. JAMA 2014;311:1201–2.

[356] Shulman MB, Harkins K, Green RC, Karlawish J. Using AD

biomarker research results for clinical care: a survey of ADNI inves-

tigators. Neurology 2013;81:1114–21.

[357] Hill DL, Schwarz AJ, Isaac M, Pani L, Vamvakas S, Hemmings R,

et al. Coalition Against Major Diseases/European Medicines Agency

biomarker qualification of hippocampal volume for enrichment of

clinical trials in predementia stages of Alzheimer’s disease. Alz-

heimers Dement 2014;10:421–4293.

[358] Khan AF, Drozd JJ, Moreland RK, Ta RM, Borrie MJ, Bartha R. A

novel MRI-compatible brain ventricle phantom for validation of seg-

mentation and volumetry methods. J Magn Reson Imaging 2012;

36:476–82.

[359] Marchewka A, Kherif F, Krueger G, Grabowska A, Frackowiak R,

Draganski B, et al. Disease Neuroimaging, Influence of magnetic

field strength and image registration strategy on voxel-based

morphometry in a study of Alzheimer’s disease. Hum Brain Mapp

2013;35:1865–74.

[360] Vuong P, Drucker D, Schwarz C, Fletcher E, Decarli C,

Carmichael O. Effects of T2-weighted MRI based cranial volume

measurements on studies of the aging brain. Proc Soc Photo Opt Ins-

trum Eng 2013:8669.

[361] Boccardi M, BocchettaM, Apostolova LG, Preboske G, Robitaille N,

Pasqualetti P, et al., Alzheimer’s Disease Neuroimaging. Establishing

magnetic resonance images orientation for the EADC-ADNI manual

hippocampal segmentation protocol. J Neuroimaging 2014.

[362] Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE, Alzheimer’s Dis-

ease Neuroimaging. A direct morphometric comparison of five label-

ing protocols for multi-atlas driven automatic segmentation of the

hippocampus in Alzheimer’s disease. Neuroimage 2012;66C:50–70.

[363] Rasmussen JM, Lakatos A, van Erp TG, Kruggel F, Keator DB,

Fallon JT, et al., Alzheimer’s Disease Neuroimaging. Empirical deri-

vation of the reference region for computing diagnostic sensitive

(1)(8)fluorodeoxyglucose ratios in Alzheimer’s disease based on

the ADNI sample. Biochim Biophys Acta 2012;1822:457–66.

[364] Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA,

Jagust WJ, et al., Alzheimer’s Disease Neuroimaging. Amyloid-

beta imaging with Pittsburgh compoundB and florbetapir: comparing

radiotracers and quantification methods. J Nucl Med 2013;54:70–7.

[365] Korecka M, Waligorska T, Figurski M, Toledo JB, Arnold SE,

GrossmanM, et al. Qualification of a surrogate matrix-based absolute

quantification method for amyloid-beta(4)(2) in human cerebrospinal
fluid using 2D UPLC-tandem mass spectrometry. J Alzheimers Dis

2014;41:441–51.

[366] Kang JH, KoreckaM, Toledo JB, Trojanowski JQ, ShawLM. Clinical

utility and analytical challenges in measurement of cerebrospinal

fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease bio-

markers. Clin Chem 2013;59:903–16.

[367] Hoang Duc AK, Modat M, Leung KK, Cardoso MJ, Barnes J,

Kadir T, et al., Alzheimer’s Disease Neuroimaging. Using manifold

learning for atlas selection in multi-atlas segmentation. PLoS One

2013;8:e70059.

[368] Ribbens A, Hermans J, Maes F, Vandermeulen D, Suetens P. Unsu-

pervised segmentation, clustering and groupwise registration of het-

erogeneous populations of brain MR images. IEEE Trans Med

Imaging 2014;33:201–24.

[369] Cataldo R, Agrusti A, De Nunzio G, Carla A, De Mitri I,

Favetta M, et al. Generating a minimal set of templates for the

hippocampal region in MR neuroimages. J Neuroimaging 2013;

23:473–83.

[370] Lorenzi M, Ayache N, Frisoni GB, Pennec X, Alzheimer’s Disease

Neuroimaging. LCC-Demons: a robust and accurate symmetric dif-

feomorphic registration algorithm. Neuroimage 2013;81:470–83.

[371] Robitaille N, Mouiha A, Crepeault B, Valdivia F, Duchesne S, Alz-

heimer’s Disease Neuroimaging. Tissue-based MRI intensity stan-

dardization: application to multicentric datasets. Int J Biomed

Imaging 2012;2012:347120.

[372] Tong T, Wolz R, Coupe P, Hajnal JV, Rueckert D, Alzheimer’s Dis-

ease Neuroimaging. Segmentation of MR images via discriminative

dictionary learning and sparse coding: application to hippocampus

labeling. Neuroimage 2013;76:11–23.

[373] Jorge Cardoso M, Leung K, Modat M, Keihaninejad S, Cash D,

Barnes J, et al., Alzheimer’s Disease Neuroimaging. STEPS: Similar-

ity and Truth Estimation for Propagated Segmentations and its appli-

cation to hippocampal segmentation and brain parcelation. Med

Image Anal 2013;17:671–84.

[374] Shi J, Thompson PM, Gutman B, Wang Y, Alzheimer’s Disease Neu-

roimaging. Surface fluid registration of conformal representation:

application to detect disease burden and genetic influence on hippo-

campus. Neuroimage 2013;78:111–34.

[375] Wang L, Shi F, Li G, Shen D. 4D segmentation of brain MR images

with constrained cortical thickness variation. PLoS One 2013;

8:e64207.

[376] Li G, Nie J, Wu G, Wang Y, Shen D, Alzheimer’s Disease Neuroi-

maging. Consistent reconstruction of cortical surfaces from longitu-

dinal brain MR images. Neuroimage 2012;59:3805–20.

[377] Augustinack JC, Huber KE, Stevens AA, Roy M, Frosch MP, van

der Kouwe AJ, et al. Predicting the location of human perirhinal

cortex, Brodmann’s area 35, from MRI. Neuroimage 2013;

64:32–42.

[378] Shi Y, Lai R, Toga AW, Alzheimer’s Disease Neuroimaging. Cortical

surface reconstruction via unified Reeb analysis of geometric and to-

pological outliers in magnetic resonance images. IEEE Trans Med

Imaging 2013;32(3):511–30.

[379] Park H. ISOMAP induced manifold embedding and its application to

Alzheimer’s disease and mild cognitive impairment. Neurosci Lett

2012;513:141–5.

[380] Skup M, Zhu H, Zhang H. Multiscale adaptive marginal analysis of

longitudinal neuroimaging data with time-varying covariates. Bio-

metrics 2012;68:1083–92.

[381] Bernal-Rusiel JL, Reuter M, Greve DN, Fischl B, Sabuncu MR, Alz-

heimer’s Disease Neuroimaging. Spatiotemporal linear mixed effects

modeling for the mass-univariate analysis of longitudinal neuro-

image data. Neuroimage 2013;81:358–70.

[382] Spulber G, Simmons A, Muehlboeck JS, Mecocci P, Vellas B,

Tsolaki M, et al., Alzheimer Disease Neuroimaging. An MRI-

based index to measure the severity of Alzheimer’s disease-like struc-

tural pattern in subjects with mild cognitive impairment. J InternMed

2013;273:396–409.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref218
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref218
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref218
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref218
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref219
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref219
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref219
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref219
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref220
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref220
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref220
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref220
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref220
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref221
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref221
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref221
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref222
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref222
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref222
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref222
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref223
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref223
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref224
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref224
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref224
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref225
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref225
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref225
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref225
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref225
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref226
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref226
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref226
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref226
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref227
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref227
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref227
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref227
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref227
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref228
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref228
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref228
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref228
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref229
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref229
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref229
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref229
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref230
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref230
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref230
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref230
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref231
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref231
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref231
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref231
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref231
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref232
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref232
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref232
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref232
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref233
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref233
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref233
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref233
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref233
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref234
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref234
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref234
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref234
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref235
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref235
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref235
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref235
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref236
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref236
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref236
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref236
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref237
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref237
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref237
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref237
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref238
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref238
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref238
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref239
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref239
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref239
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref239
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref240
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref240
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref240
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref240
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref241
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref241
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref241
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref241
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref241
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref242
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref242
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref242
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref242
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref243
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref243
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref243
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref244
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref244
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref244
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref245
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref245
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref245
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref245
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref246
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref246
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref246
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref246
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref247
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref247
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref247
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref248
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref248
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref248
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref249
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref249
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref249
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref249
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref250
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref250
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref250
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref250
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref250


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e114
[383] Park H, Yang JJ, Seo J, Lee JM. Dimensionality reduced cortical fea-

tures and their use in predicting longitudinal changes in Alzheimer’s

disease. Neurosci Lett 2013;550:17–22.

[384] Wee CY, Yap PT, Shen D, Alzheimer Disease Neuroimaging. Predic-

tion of Alzheimer’s disease and mild cognitive impairment using

cortical morphological patterns. Hum Brain Mapp 2013;34:3411–25.

[385] Cash DM, Melbourne A, Modat M, Cardoso MJ, Clarkson MJ,

Fox NC, et al. Cortical folding analysis on patients with Alzheimer’s

disease and mild cognitive impairment. Med Image Comput Comput

Assist Interv 2012;15(Pt 3):289–96.

[386] Eskildsen SF, Coupe P, Garcia-Lorenzo D, Fonov V, Pruessner JC,

Collins DL, Alzheimer’s Disease Neuroimaging. Prediction of Alz-

heimer’s disease in subjects with mild cognitive impairment from

the ADNI cohort using patterns of cortical thinning. Neuroimage

2013;65:511–21.

[387] Suk HI, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging. Latent

feature representation with stacked auto-encoder for AD/MCI diag-

nosis. BrainStruct Funct 2013 [Epub ahead of print] PMID: 24363140.

[388] Liu M, Zhang D, Shen D, Alzheimer’s Disease Neuroimaging. Iden-

tifying informative imaging biomarkers via tree structured sparse

learning for AD diagnosis. Neuroinformatics 2014;12:381–94.

[389] Cuingnet R, Glaunes JA, Chupin M, Benali H, Colliot O. Spatial and

anatomical regularization of SVM: a general framework for neuroi-

maging data. IEEE Trans Pattern Anal Mach Intell 2012 [Epub ahead

of print] PMID: 22732664.

[390] Chu C, Hsu AL, Chou KH, Bandettini P, Lin C, Alzheimer’s Disease

Neuroimaging.Does feature selection improve classification accuracy?

Impact of sample size and feature selection on classification using

anatomical magnetic resonance images. Neuroimage 2012;60:59–70.

[391] Liu M, Zhang D, Yap PT, Shen D. Tree-guided sparse coding for

brain disease classification. Med Image Comput Comput Assist In-

terv 2012;15(Pt 3):239–47.

[392] Liu F, Zhou L, Shen C, Yin J. Multiple kernel learning in the primal

for multi-modal Alzheimer’s disease classification. IEEE J Biomed

Health Inform 2014;18:984–90.

[393] Cheng B, Zhang D, Chen S, Kaufer DI, Shen D, Alzheimer’s Disease

Neuroimaging. Semi-supervised multimodal relevance vector regres-

sion improves cognitive performance estimation from imaging and

biological biomarkers. Neuroinformatics 2013;11:339–53.

[394] Zhang D, Liu J, Shen D. Temporally-constrained group sparse

learning for longitudinal data analysis. Med Image Comput Comput

Assist Interv 2012;15(Pt 3):264–71.

[395] Casanova R, Hsu FC, Espeland MA, Alzheimer’s Disease Neuroi-

maging. Classification of structural MRI images in Alzheimer’s dis-

ease from the perspective of ill-posed problems. PLoS One 2012;

7:e44877.

[396] Liu X, Tosun D, Weiner MW, Schuff N, Alzheimer’s Disease Neuro-

imaging. Locally linear embedding (LLE) for MRI based Alz-

heimer’s disease classification. Neuroimage 2013;83C:148–57.

[397] Arbizu J, Prieto E, Martinez-Lage P, Marti-Climent JM, Garcia-

Granero M, Lamet I, et al., Alzheimer Disease Neuroimaging. Auto-

mated analysis of FDG PET as a tool for single-subject probabilistic

prediction and detection of Alzheimer’s disease dementia. Eur J Nucl

Med Mol Imaging 2013;40:1394–405.

[398] Martinez-Murcia FJ, Gorriz JM, Ramirez J, Puntonet CG, Illan IA,

Alzheimer’s Disease Neuroimaging. Functional activity maps based

on significancemeasures and independent component analysis. Com-

put Methods Programs Biomed 2013;111:255–68.

[399] Toussaint PJ, Perlbarg V, Bellec P, Desarnaud S, Lacomblez L,

Doyon J, et al. Resting state FDG-PET functional connectivity as

an early biomarker of Alzheimer’s disease using conjoint univariate

and independent component analyses. Neuroimage 2012;63:936–46.

[400] Derado G, Bowman FD, Zhang L, Alzheimer’s Disease Neuroimag-

ing. Initiative, Predicting brain activity using a Bayesian spatial

model. Stat Methods Med Res 2013;22:382–97.

[401] Keator DB, Fallon JH, Lakatos A, Fowlkes CC, Potkin SG, Ihler A.

Feed-forward hierarchical model of the ventral visual stream applied
to functional brain image classification. Hum Brain Mapp 2014;

35:38–52.

[402] Hinrichs C, Singh V, Mukherjee L, Xu G, Chung MK, Johnson SC.

Spatially augmented LP boosting for AD classification with evalua-

tions on the ADNI dataset. Neuroimage 2009;48:138–49.

[403] Gross AL, Inouye SK, Rebok GW, Brandt J, Crane PK, Parisi JM,

et al. Parallel but not equivalent: challenges and solutions for

repeated assessment of cognition over time. J Clin Exp Neuropsychol

2012;34:758–72.

[404] Liu F, Wee CY, Chen H, Shen D. Inter-modality relationship con-

strained multi-modality multi-task feature selection for Alzheimer’s

disease and mild cognitive impairment identification. Neuroimage

2014;84:466–75.

[405] Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D, Alz-

heimer’s Disease Neuroimaging. Random forest-based similarity

measures for multi-modal classification of Alzheimer’s disease. Neu-

roimage 2013;65:167–75.

[406] Singh N, Wang AY, Sankaranarayanan P, Fletcher PT, Joshi S, Alz-

heimer’s Disease Neuroimaging. Genetic, structural and functional

imaging biomarkers for early detection of conversion from MCI to

AD. Med Image Comput Comput Assist Interv 2012;15(Pt

1):132–40.

[407] Zhou J, Liu J, Narayan VA, Ye J, Alzheimer’s Disease Neuroimaging.

Modeling disease progression via multi-task learning. Neuroimage

2013;78:233–48.

[408] Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S,

Alzheimer’s Disease Neuroimaging. Accurate multimodal probabi-

listic prediction of conversion to Alzheimer’s disease in patients

with mild cognitive impairment. Neuroimage Clin 2013;2:735–45.

[409] Cheng B, Zhang D, Shen D. Domain transfer learning for MCI con-

version prediction. Med Image Comput Comput Assist Interv 2012;

15(Pt 1):82–90.

[410] Yu P, Dean RA, Hall SD, Qi Y, Sethuraman G, Willis BA, et al. En-

riching amnestic mild cognitive impairment populations for clinical

trials: optimal combination of biomarkers to predict conversion to de-

mentia. J Alzheimers Dis 2012;32:373–85.

[411] Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD,

Resnick SM, et al., Alzheimer’s Disease Neuroimaging. Alzheimer’s

disease risk assessment using large-scale machine learning methods.

PLoS One 2013;8:e77949.

[412] Wu X, Li J, Ayutyanont N, Protas H, Jagust W, Fleisher A, et al.

The receiver operational characteristic for binary classification

with multiple indices and its application to the neuroimaging study

of Alzheimer’s disease. IEEE/ACM Trans Comput Biol Bioinform

2013;10:173–80.

[413] Dubey R, Zhou J, Wang Y, Thompson PM, Ye J, Alzheimer Disease

Neuroimaging. Analysis of sampling techniques for imbalanced data:

an n ¼ 648 ADNI study. Neuroimage 2013;87C:220–41.

[414] Lo RY, Jagust WJ. Predicting missing biomarker data in a longitudi-

nal study of Alzheimer disease. Neurology 2012;78:1376–82.

[415] Yuan L,Wang Y, Thompson PM, Narayan VA, Ye J, Alzheimer’s Dis-

ease Neuroimaging. Multi-source feature learning for joint analysis

of incomplete multiple heterogeneous neuroimaging data. Neuro-

image 2012;61:622–32.

[416] Xiang S, Yuan L, Fan W, Wang Y, Thompson PM, Ye J, Alzheimer

Disease Neuroimaging. Bi-level multi-source learning for heteroge-

neous block-wise missing data. Neuroimage 2014;102P1:192–206.

[417] Simonsen AH, Mattila J, Hejl AM, Frederiksen KS, Herukka SK,

Hallikainen M, et al. Application of the PredictAD software tool to

predict progression in patients with mild cognitive impairment. De-

ment Geriatr Cogn Disord 2012;34:344–50.

[418] Liu Y, Mattila J, Ruiz MA, Paajanen T, Koikkalainen J, van Gils M,

Alzheimer’s Disease Neuroimaging. PredictingAD conversion: com-

parison between prodromal AD guidelines and computer assisted

PredictAD tool. PLoS One 2013;8:e55246.

[419] Escudero J, Ifeachor E, Zajicek JP, Alzheimer’s Disease Neuroimag-

ing. Bioprofile analysis: a new approach for the analysis of

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref251
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref251
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref251
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref252
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref252
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref252
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref253
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref253
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref253
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref253
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref254
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref254
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref254
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref254
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref254
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref255
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref255
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref255
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref256
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref256
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref256
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref257
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref257
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref257
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref257
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref258
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref258
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref258
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref258
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref259
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref259
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref259
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref260
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref260
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref260
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref261
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref261
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref261
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref261
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref262
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref262
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref262
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref263
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref263
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref263
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref263
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref264
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref264
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref264
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref265
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref265
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref265
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref265
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref265
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref266
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref266
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref266
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref266
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref267
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref267
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref267
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref267
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref268
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref268
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref268
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref269
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref269
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref269
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref269
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref270
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref270
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref270
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref271
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref271
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref271
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref271
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref272
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref272
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref272
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref272
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref273
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref273
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref273
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref273
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref274
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref274
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref274
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref274
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref274
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref275
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref275
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref275
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref276
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref276
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref276
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref276
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref277
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref277
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref277
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref278
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref278
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref278
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref278
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref279
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref279
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref279
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref279
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref280
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref280
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref280
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref280
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref280
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref281
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref281
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref281
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref281
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref282
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref282
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref283
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref283
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref283
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref283
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref284
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref284
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref284
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref285
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref285
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref285
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref285
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref286
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref286
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref286
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref286
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref287
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref287


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e115
biomedical data in Alzheimer’s disease. J Alzheimers Dis 2012;

32:997–1010.

[420] Escudero J, Ifeachor E, Zajicek JP, Green C, Shearer J, Pearson S,

Alzheimer’s Disease Neuroimaging.Machine learning-basedmethod

for personalized and cost-effective detection of Alzheimer’s disease.

IEEE Trans Biomed Eng 2013;60:164–8.

[421] Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP,

et al. Blood-based protein biomarkers for diagnosis of Alzheimer dis-

ease. Arch Neurol 2012;69:1318–25.

[422] Llano DA, Devanarayan V, Simon AJ, Alzheimer’s Disease Neuroi-

maging. Evaluation of plasma proteomic data for Alzheimer disease

state classification and for the prediction of progression from mild

cognitive impairment to Alzheimer disease. Alzheimer Dis Assoc

Disord 2013;27:233–43.

[423] Kiddle SJ, ThambisettyM, Simmons A, Riddoch-Contreras J, Hye A,

Westman E, et al., Alzheimers Disease Neuroimaging. Plasma based

markers of [11C] PiB-PET brain amyloid burden. PLoS One 2012;

7:e44260.

[424] Burnham SC, Faux NG, WilsonW, Laws SM, Ames D, Bedo J, et al.,

Alzheimer’s Disease Neuroimaging, and Lifestyle Study Research. A

blood-basedpredictor for neocorticalAbeta burden inAlzheimer’s dis-

ease: results from the AIBL study. Mol Psychiatry 2014;19:519–26.

[425] Tatsuoka C, Tseng H, Jaeger J, Varadi F, Smith MA, Yamada T, et al.,

Alzheimer’s Disease Neuroimaging. Modeling the heterogeneity in

risk of progression to Alzheimer’s disease across cognitive profiles

in mild cognitive impairment. Alzheimers Res Ther 2013;5:14.

[426] Ziegler G, Dahnke R, Gaser C, Alzheimer’s Disease Neuroimaging.

Models of the aging brain structure and individual decline. Front

Neuroinform 2012;6:3.

[427] KohannimO,HibarDP, Stein JL, JahanshadN,HuaX,Rajagopalan P,

et al. Discovery and replication of gene influences on brain structure

using LASSO regression. Front Neurosci 2012;6:115.

[428] Shen L, Thompson PM, Potkin SG, Bertram L, Farrer LA,

Foroud TM, et al. Genetic analysis of quantitative phenotypes in

AD and MCI: imaging, cognition and biomarkers. Brain Imaging

Behav 2014;8:183–207.

[429] Epstein NU, Guo R, Farlow MR, Singh JP, Fisher M. Medication for

Alzheimer’s disease and associated fall hazard: a retrospective cohort

study from the Alzheimer’s Disease Neuroimaging Initiative. Drugs

Aging 2013.

[430] Carmichael O, McLaren DG, Tommet D, Mungas D, Jones RN, Alz-

heimer Disease Neuroimaging. Coevolution of brain structures in

amnestic mild cognitive impairment. Neuroimage 2013;66C:449–56.

[431] Leung KK, Bartlett JW, Barnes J, Manning EN, Ourselin S, Fox NC,

Alzheimer’s Disease Neuroimaging. Cerebral atrophy in mild cogni-

tive impairment and Alzheimer disease: rates and acceleration.

Neurology 2013;80:648–54.

[432] Holland D, Desikan RS, Dale AM,McEvoy LK, Alzheimer’s Disease

Neuroimaging. Rates of decline in Alzheimer disease decrease with

age. PLoS One 2012;7:e42325.

[433] Song X, Mitnitski A, Zhang N, Chen W, Rockwood K, Alzheimer’s

Disease Neuroimaging. Dynamics of brain structure and cognitive

function in the Alzheimer’s Disease Neuroimaging Initiative. J Neu-

rol Neurosurg Psychiatry 2013;84:71–8.

[434] Toledo JB, Xie SX, Trojanowski JQ, Shaw LM. Longitudinal change

in CSF tau and Abeta biomarkers for up to 48 months in ADNI. Acta

Neuropathol 2013;126:659–70.

[435] Wu L, Rowley J,Mohades S, Leuzy A, DauarMT, ShinM, et al., Alz-

heimer’s Disease Neuroimaging. Dissociation between brain amyloid

deposition and metabolism in early mild cognitive impairment. PLoS

One 2012;7:e47905.

[436] Johnson JK, Gross AL, Pa J, McLaren DG, Park LQ, Manly JJ, Alz-

heimer’s Disease Neuroimaging. Longitudinal change in neuropsy-

chological performance using latent growth models: a study of

mild cognitive impairment. Brain Imaging Behav 2012;6:540–50.

[437] Carmichael O, Xie J, Fletcher E, Singh B, DeCarli C. Localized hip-

pocampus measures are associated with Alzheimer pathology and
cognition independent of total hippocampal volume. Neurobiol Ag-

ing 2012;33:1124.e31–41.

[438] Hostage CA, Roy Choudhury K, Doraiswamy PM, Petrella JR, Alz-

heimer’s Disease Neuroimaging. Dissecting the gene dose-effects of

the APOE epsilon4 and epsilon2 alleles on hippocampal volumes in

aging and Alzheimer’s disease. PLoS One 2013;8:e54483.

[439] Trzepacz PT, Yu P, Bhamidipati PK, Willis B, Forrester T, Tabas L,

et al. Frontolimbic atrophy is associated with agitation and aggres-

sion in mild cognitive impairment and Alzheimer’s disease. Alz-

heimers Dement 2013;9(5 Suppl):S95–S104e1.

[440] Zahodne LB, Gongvatana A, Cohen RA, Ott BR, Tremont G, Alz-

heimer’s Disease Neuroimaging. Are apathy and depression indepen-

dently associated with longitudinal trajectories of cortical atrophy in

mild cognitive impairment? Am J Geriatr Psychiatry 2013;

21:1098–106.

[441] Provenzano FA, Muraskin J, Tosto G, Narkhede A, Wasserman BT,

Griffith EY, et al. White matter hyperintensities and cerebral

amyloidosis: necessary and sufficient for clinical expression of Alz-

heimer disease? JAMA Neurol 2013;70:455–61.

[442] Guzman VA, Carmichael OT, Schwarz C, Tosto G, Zimmerman ME,

Brickman AM, Alzheimer’s Disease Neuroimaging. White matter

hyperintensities and amyloid are independently associated with ento-

rhinal cortex volume among individuals with mild cognitive impair-

ment. Alzheimers Dement 2013;9(5 Suppl):S124–31.

[443] Lo RY, Jagust WJ, Alzheimer’s Disease Neuroimaging. Vascular

burden and Alzheimer disease pathologic progression. Neurology

2012;79:1349–55.

[444] Epstein NU, Xie H, Ruland SD, PandeyDK. Vascular risk factors and

cardiovascular outcomes in the Alzheimer’s disease neuroimaging

initiative. Am J Alzheimers Dis Other Demen 2012;27:275–9.

[445] Nir T, Jahanshad N, Jack CR, Weiner MW, Toga AW, Thompson PM,

Alzheimer’s Disease Neuroimaging. Small world network measures

predict white matter degeneration in patients with early-stage mild

cognitive impairment. Proc IEEE Int Symp Biomed Imaging

2012:1405–8.

[446] Nir TM, Jahanshad N, Villalon-Reina JE, Toga AW, Jack CR,

Weiner MW, et al., Alzheimer’s Disease Neuroimaging. Effective-

ness of regional DTI measures in distinguishing Alzheimer’s disease,

MCI, and normal aging. Neuroimage Clin 2013;3:180–95.

[447] Rowley J, Fonov V,Wu O, Eskildsen SF, Schoemaker D,Wu L, et al.,

Alzheimer’s Disease Neuroimaging. White matter abnormalities and

structural hippocampal disconnections in amnestic mild cognitive

impairment and Alzheimer’s disease. PLoS One 2013;8:e74776.

[448] Habeck C, Risacher S, Lee GJ, Glymour MM, Mormino E,

Mukherjee S, et al., Alzheimer’s Disease Neuroimaging. Rela-

tionship between baseline brain metabolism measured using

[(1)(8)F]FDG PET and memory and executive function in prodro-

mal and early Alzheimer’s disease. Brain Imaging Behav 2012;

6:568–83.

[449] Crane PK, Carle A, Gibbons LE, Insel P, Mackin RS, Gross A, et al.

Development and assessment of a composite score for memory in the

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imag-

ing Behav 2012;6:502–16.

[450] Haight TJ, Jagust WJ, Alzheimer’s Disease Neuroimaging. Relative

contributions of biomarkers in Alzheimer’s disease. Ann Epidemiol

2012;22:868–75.

[451] Wang Z, Das SR, Xie SX, Arnold SE, Detre JA, Wolk DA, Alz-

heimer’s Disease Neuroimaging. Arterial spin labeled MRI in pro-

dromal Alzheimer’s disease: a multi-site study. Neuroimage Clin

2013;2:630–6.

[452] Domoto-Reilly K, Sapolsky D, Brickhouse M, Dickerson BC, Alz-

heimer’s Disease Neuroimaging. Naming impairment in Alzheimer’s

disease is associated with left anterior temporal lobe atrophy. Neuro-

image 2012;63:348–55.

[453] Nho K, Risacher SL, Crane PK, DeCarli C, GlymourMM, Habeck C,

, et alAlzheimer’s Disease A. Neuroimaging Initiative, Voxel and

surface-based topography of memory and executive deficits in mild

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref287
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref287
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref288
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref288
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref288
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref288
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref289
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref289
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref289
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref290
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref290
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref290
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref290
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref290
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref291
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref291
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref291
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref291
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref292
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref292
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref292
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref292
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref293
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref293
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref293
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref293
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref294
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref294
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref294
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref295
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref295
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref295
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref414
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref414
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref414
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref414
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref296
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref296
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref296
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref296
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref297
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref297
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref297
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref298
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref298
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref298
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref298
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref299
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref299
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref299
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref300
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref300
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref300
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref300
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref301
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref301
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref301
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref302
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref302
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref302
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref302
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref303
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref303
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref303
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref303
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref304
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref304
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref304
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref304
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref305
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref305
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref305
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref305
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref306
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref306
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref306
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref306
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref307
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref307
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref307
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref307
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref307
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref308
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref308
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref308
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref308
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref309
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref309
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref309
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref309
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref309
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref310
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref310
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref310
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref311
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref311
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref311
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref312
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref312
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref312
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref312
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref312
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref313
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref313
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref313
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref313
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref314
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref314
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref314
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref314
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref315
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref315
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref315
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref315
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref315
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref315
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref316
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref316
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref316
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref316
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref317
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref317
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref317
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref318
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref318
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref318
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref318
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref319
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref319
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref319
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref319
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref320
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref320
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref320


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e116
cognitive impairment and Alzheimer’s disease. Brain Imaging Behav

2012;6:551–67.

[454] Gibbons LE, Carle AC, Mackin RS, Harvey D, Mukherjee S, Insel P,

et al., Alzheimer’s Disease Neuroimaging. A composite score for ex-

ecutive functioning, validated in Alzheimer’s Disease Neuroimaging

Initiative (ADNI) participants with baseline mild cognitive impair-

ment. Brain Imaging Behav 2012;6:517–27.

[455] Mackin RS, Insel P, Tosun D, Mueller SG, Schuff N, Truran-

Sacrey D, et al., Alzheimer’s Disease Neuroimaging. The effect of

subsyndromal symptoms of depression and white matter lesions on

disability for individuals with mild cognitive impairment. Am J Ger-

iatr Psychiatry 2013;21:906–14.

[456] Wadsworth LP, Lorius N, Donovan NJ, Locascio JJ, Rentz DM,

Johnson KA, et al. Neuropsychiatric symptoms and global functional

impairment along the Alzheimer’s continuum. Dement Geriatr Cogn

Disord 2012;34:96–111.

[457] Ramakers IH, Verhey FR, Scheltens P, Hampel H, Soininen H,

Aalten P, et al. Anxiety is related to Alzheimer cerebrospinal fluid

markers in subjects with mild cognitive impairment. Psychol Med

2013;43:911–20.

[458] Richard E, Schmand B, Eikelenboom P, Yang SC, Ligthart SA, Moll

van Charante EP, et al., Alzheimer’s Disease Neuroimaging. Symp-

toms of apathy are associated with progression from mild cognitive

impairment to Alzheimer’s disease in non-depressed subjects. De-

ment Geriatr Cogn Disord 2012;33:204–9.

[459] Koppel J, Sunday S, Goldberg TE, Davies P, Christen E,

Greenwald BS, Alzheimer’s Disease Neuroimaging. Psychosis in

Alzheimer’s disease is associated with frontal metabolic impairment

and accelerated decline in working memory: findings from the Alz-

heimer’s Disease Neuroimaging Initiative. Am J Geriatr Psychiatry

2014;22(7):698–707.

[460] Ewers M, Insel PS, Stern Y, Weiner MW, Alzheimer’s Disease Neu-

roimaging. Cognitive reserve associated with FDG-PET in preclini-

cal Alzheimer disease. Neurology 2013;80:1194–201.

[461] Pillai JA, McEvoy LK, Hagler DJ Jr, Holland D, Dale AM,

SalmonDP, et al., Alzheimer’s Disease Neuroimaging. Higher educa-

tion is not associated with greater cortical thickness in brain areas

related to literacy or intelligence in normal aging or mild cognitive

impairment. J Clin Exp Neuropsychol 2012;34:925–35.

[462] Guo LH, Alexopoulos P, Wagenpfeil S, Kurz A, Perneczky R, Alz-

heimer’s Disease Neuroimaging. Brain size and the compensation

of Alzheimer’s disease symptoms: a longitudinal cohort study. Alz-

heimers Dement 2013;9:580–6.

[463] Mungas D, Crane PK, Gibbons LE, Manly JJ, Glymour MM,

Jones RN. Advanced psychometric analysis and the Alzheimer’s Dis-

ease Neuroimaging Initiative: reports from the 2011 Friday Harbor

conference. Brain Imaging Behav 2012;6:485–8.

[464] Skinner J, Carvalho JO, Potter GG, Thames A, Zelinski E, Crane PK,

et al., Alzheimer’s Disease Neuroimaging. The Alzheimer’s Disease

Assessment Scale-Cognitive-Plus (ADAS-Cog-Plus): an expansion

of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging

Behav 2012;6:489–501.

[465] Park LQ, Gross AL, McLaren DG, Pa J, Johnson JK, Mitchell M,

et al., Alzheimer’s Disease Neuroimaging. Confirmatory factor anal-

ysis of the ADNI neuropsychological battery. Brain Imaging Behav

2012;6:528–39.

[466] Gross AL, Manly JJ, Pa J, Johnson JK, Park LQ, Mitchell MB, et al.,

Alzheimer’s Disease Neuroimaging. Cortical signatures of cognition

and their relationship to Alzheimer’s disease. Brain Imaging Behav

2012;6:584–98.

[467] Stricker NH, Dodge HH, Dowling NM, Han SD, Erosheva EA,

JagustWJ, Alzheimer’s Disease Neuroimaging. CSF biomarker asso-

ciations with change in hippocampal volume and precuneus thick-

ness: implications for the Alzheimer’s pathological cascade. Brain

Imaging Behav 2012;6:599–609.

[468] Han SD, Gruhl J, Beckett L, Dodge HH, Stricker NH, Farias S, et al.

Beta amyloid, tau, neuroimaging, and cognition: sequence modeling
of biomarkers for Alzheimer’s disease. Brain Imaging Behav 2012;

6:610–20.

[469] Mukherjee S, Kim S, Gibbons LE, Nho K, Risacher SL,

GlymourMM, et al., Alzheimer’s Disease Neuroimaging. Genetic ar-

chitecture of resilience of executive functioning. Brain Imaging Be-

hav 2012;6:621–33.

[470] Mukherjee S, Trittschuh E, Gibbons LE, Mackin RS, Saykin A,

Crane PK, Azheimer’s Disease Neuroimaging. Dysexecutive and

amnesic AD subtypes defined by single indicator and modern psy-

chometric approaches: relationships with SNPs in ADNI. Brain Im-

aging Behav 2012;6:649–60.

[471] Ramanan VK, Kim S, Holohan K, Shen L, Nho K, Risacher SL, et al.

Genome-wide pathway analysis of memory impairment in the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) cohort implicates

gene candidates, canonical pathways, and networks. Brain Imaging

Behav 2012;6:634–48.

[472] Posner HB, Cano S, Carrillo MC, Selnes O, Stern Y, Thomas RG,

et al. Establishing the psychometric underpinning of cognition mea-

sures for clinical trials of Alzheimer’s disease and its precursors: a

new approach. Alzheimers Dement 2013;9(1 Suppl):S56–60.

[473] Hobart J, Cano S, Posner H, Selnes O, Stern Y, Thomas R, et al., Alz-

heimer’s Disease Neuroimaging. Putting the Alzheimer’s cognitive

test to the test I: traditional psychometric methods. Alzheimers De-

ment 2013;9(1 Suppl):S4–9.

[474] Hobart J, Cano S, Posner H, Selnes O, Stern Y, Thomas R, et al., Alz-

heimer’s Disease Neuroimaging. Putting the Alzheimer’s cognitive

test to the test II: Rasch measurement theory. Alzheimers Dement

2013;9(1 Suppl):S10–20.

[475] Trzepacz PT, Saykin A, Yu P, Bhamditipati P, Sun J, Dennehy EB,

et al., Alzheimer’s Disease Neuroimaging. Subscale validation of

the neuropsychiatric inventory questionnaire: comparison of Alz-

heimer’s Disease Neuroimaging Initiative and national Alzheimer’s

coordinating center cohorts. Am J Geriatr Psychiatry 2013;

21:607–22.

[476] Toledo JB, Da X, Weiner MW, Wolk DA, Xie SX, Arnold SE, et al.,

Alzheimer’s Disease Neuroimaging. CSFApo-E levels associate with

cognitive decline and MRI changes. Acta Neuropathol 2014;

127:621–32.

[477] Rajagopalan P, Toga AW, Jack CR, Weiner MW, Thompson PM, Alz-

heimer’s Disease Neuroimaging. Fat-mass-related hormone, plasma

leptin, predicts brain volumes in the elderly. Neuroreport 2013;

24:58–62.

[478] Toledo JB, Korff A, Shaw LM, Trojanowski JQ, Zhang J. CSF alpha-

synuclein improves diagnostic and prognostic performance of CSF

tau and Abeta in Alzheimer’s disease. Acta Neuropathol 2013;

126:683–97.

[479] Korff A, Liu C, Ginghina C, Shi M, Zhang J, Alzheimer’s Disease

Neuroimaging. Alpha-synuclein in cerebrospinal fluid of Alz-

heimer’s disease and mild cognitive impairment. J Alzheimers Dis

2013;36:679–88.

[480] Toledo JB, Cairns NJ, Da X, Chen K, Carter D, Fleisher A, et al., Alz-

heimer’s Disease Neuroimaging. Clinical and multimodal biomarker

correlates of ADNI neuropathological findings. Acta Neuropathol

Commun 2013;1:65.

[481] Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC,

Aisen PS, et al. Amyloid deposition, hypometabolism, and longitudi-

nal cognitive decline. Ann Neurol 2012;72:578–86.

[482] Murphy KR, Landau SM, Choudhury KR, Hostage CA,

Shpanskaya KS, Sair HI, et al., Alzheimer’s Disease Neuroimaging.

Mapping the effects of ApoE4, age and cognitive status on 18F-flor-

betapir PETmeasured regional cortical patterns of beta-amyloid den-

sity and growth. Neuroimage 2013;78:474–80.

[483] Landau SM, Lu M, Joshi AD, Pontecorvo M, Mintun MA,

Trojanowski JQ, et al., Alzheimer’s Disease Neuroimaging.

Comparing PET imaging and CSF measurements of and cerebrospi-

nal fluid measurements of b-amyloid. Ass. Ann Neurol 2013;

74:826–36.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref320
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref320
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref321
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref321
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref321
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref321
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref321
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref322
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref322
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref322
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref322
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref322
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref323
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref323
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref323
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref323
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref324
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref324
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref324
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref324
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref325
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref325
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref325
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref325
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref325
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref326
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref326
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref326
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref326
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref326
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref326
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref327
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref327
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref327
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref328
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref328
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref328
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref328
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref328
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref329
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref329
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref329
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref329
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref330
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref330
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref330
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref330
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref331
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref331
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref331
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref331
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref331
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref332
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref332
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref332
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref332
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref333
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref333
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref333
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref333
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref334
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref334
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref334
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref334
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref334
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref335
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref335
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref335
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref335
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref336
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref336
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref336
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref336
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref337
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref337
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref337
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref337
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref337
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref338
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref338
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref338
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref338
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref338
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref339
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref339
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref339
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref339
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref340
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref340
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref340
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref340
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref341
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref341
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref341
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref341
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref342
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref342
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref342
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref342
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref342
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref342
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref343
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref343
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref343
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref343
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref344
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref344
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref344
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref344
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref345
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref345
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref345
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref345
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref346
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref346
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref346
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref346
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref347
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref347
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref347
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref347
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref348
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref348
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref348
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref349
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref349
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref349
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref349
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref349
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref350
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref350
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref350
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref350
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref350


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e117
[484] Jedynak BM, Lang A, Liu B, Katz E, Zhang Y, Wyman BT, et al.,

Alzheimer’s Disease Neuroimaging. A computational neurodegener-

ative disease progression score: method and results with the Alz-

heimer’s Disease Neuroimaging Initiative cohort. Neuroimage

2012;63:1478–86.

[485] Risacher SL, Kim S, Shen L, Nho K, Foroud T, Green RC, et al., Alz-

heimer’s Disease Neuroimaging Initiative. The role of apolipoprotein

E (APOE) genotype in early mild cognitive impairment (E-MCI).

Front Aging Neurosci 2013;5:11.

[486] Mouiha A, Duchesne S, Alzheimer’s Disease Neuroimaging. Toward

a dynamic biomarker model in Alzheimer’s disease. JAlzheimers Dis

2012;30:91–100.

[487] Yang X, Tan MZ, Qiu A. CSF and brain structural imaging markers

of the Alzheimer’s pathological cascade. PLoS One 2012;

7:e47406.

[488] Thambisetty M, An Y, Nalls M, Sojkova J, Swaminathan S, Zhou Y,

et al. Effect of complement CR1 on brain amyloid burden during

aging and its modification by APOE genotype. Biol Psychiatry

2013;73:422–8.

[489] Sabuncu MR, Buckner RL, Smoller JW, Lee PH, Fischl B,

Sperling RA, Alzheimer’s Disease Neuroimaging. The association

between a polygenic Alzheimer score and cortical thickness in clin-

ically normal subjects. Cereb Cortex 2012;22:2653–61.

[490] Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Maternal family

history is associated with Alzheimer’s disease biomarkers. J Alz-

heimers Dis 2012;31:659–68.

[491] Westman E, Aguilar C, Muehlboeck JS, Simmons A. Regional mag-

netic resonance imaging measures for multivariate analysis in Alz-

heimer’s disease and mild cognitive impairment. Brain Topogr

2013;26(1):9–23.

[492] Caroli A, Prestia A, Chen K, Ayutyanont N, Landau SM,

Madison CM, et al. Summary metrics to assess Alzheimer disease-

related hypometabolic pattern with 18F-FDG PET: head-to-head

comparison. J Nucl Med 2012;53:592–600.

[493] Ito K, Hutmacher MM, Corrigan BW. Modeling of Functional

Assessment Questionnaire (FAQ) as continuous bounded data

from the ADNI database. J Pharmacokinet Pharmacodyn 2012;

39:601–18.

[494] O’Bryant SE. Using blood markers for Alzheimer disease in clinical

practice? Neurology 2012;79:846–7.

[495] Westman E, Muehlboeck JS, Simmons A. Combining MRI and CSF

measures for classification of Alzheimer’s disease and prediction of

mild cognitive impairment conversion. Neuroimage 2012;

62:229–38.

[496] Dukart J, Mueller K, Barthel H, Villringer A, Sabri O, Schroeter ML.

Meta-analysis based SVM classification enables accurate detection

of Alzheimer’s disease across different clinical centers using FDG-

PET and MRI. Psychiatry Res 2013;212:230–6.

[497] Albert MS, Dekosky ST, Dickson D, Dubois B, Feldman HH,

Fox NC, et al. The diagnosis of mild cognitive impairment due to

Alzheimer’s disease: recommendations from the National Institute

on Aging-Alzheimer’s Association workgroups on diagnostic guide-

lines for Alzheimer’s disease. Alzheimers Dement 2011;7:270–9.

[498] Yu P, Sun J, Wolz R, Stephenson D, Brewer J, Fox NC, et al., Coali-

tion Against Major, and Alzheimer’s Disease Neuroimaging. Opera-

tionalizing hippocampal volume as an enrichment biomarker for

amnestic mild cognitive impairment trials: effect of algorithm, test-

retest variability, and cut point on trial cost, duration, and sample

size. Neurobiol Aging 2014;35:808–18.

[499] Lehmann M, Koedam EL, Barnes J, Bartlett JW, Barkhof F,

WattjesMP, et al. Visual ratings of atrophy inMCI: prediction of con-

version and relationship with CSF biomarkers. Neurobiol Aging

2013;34:73–82.

[500] Da X, Toledo JB, Zee J, Wolk DA, Xie SX, Ou Y, et al., Alzheimer’s

Neuroimaging. Integration and relative value of biomarkers for pre-

diction of MCI to AD progression: spatial patterns of brain atrophy,
cognitive scores, APOE genotype and CSF biomarkers. Neuroimage

Clin 2013;4:164–73.

[501] Zhang N, Song X, Zhang Y, Alzheimer’s Disease Neuroimaging.

Combining structural brain changes improves the prediction of Alz-

heimer’s disease and mild cognitive impairment. Dement Geriatr

Cogn Disord 2012;33:318–26.

[502] Macdonald KE, Bartlett JW, Leung KK, Ourselin S, Barnes J. The

value of hippocampal and temporal horn volumes and rates of change

in predicting future conversion to AD. Alzheimer Dis Assoc Disord

2013;27:168–73.

[503] Samtani MN, Raghavan N, Shi Y, Novak G, Farnum M, Lobanov V,

et al. Disease progression model in subjects with mild cognitive

impairment from the Alzheimer’s disease neuroimaging initiative:

CSF biomarkers predict population subtypes. Br J Clin Pharmacol

2013;75:146–61.

[504] Delor I, Charoin JE, Gieschke R, Retout S, Jacqmin P. Modeling Alz-

heimer’s disease progression using disease onset time and disease tra-

jectory concepts applied to CDR-SOB scores from ADNI. CPT

Pharmacometrics Syst Pharmacol 2013;2:e78.

[505] Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD,

Coleman RE, et al., Alzheimer’s Disease Neuroimaging. Predicting

cognitive decline in subjects at risk for Alzheimer disease by using

combined cerebrospinal fluid, MR imaging, and PET biomarkers.

Radiology 2013;266:583–91.

[506] Prestia A, Caroli A, Herholz K, Reiman E, Chen K, Jagust WJ, et al.

Diagnostic accuracy of markers for prodromal Alzheimer’s disease in

independent clinical series. Alzheimers Dement 2013;9:677–86.

[507] Schmand B, Eikelenboom P, van Gool WA, Alzheimer’s Disease

Neuroimaging. Value of diagnostic tests to predict conversion to Alz-

heimer’s disease in young and old patients with amnestic mild cogni-

tive impairment. J Alzheimers Dis 2012;29:641–8.

[508] Dickerson BC, Wolk DA, Alzheimer’s Disease Neuroimaging.

Biomarker-based prediction of progression in MCI: comparison of

AD signature and hippocampal volume with spinal fluid amyloid-

beta and tau. Front Aging Neurosci 2013;5:55.

[509] Ewers M, Brendel M, Rizk-Jackson A, Rominger A, Bartenstein P,

Schuff N, et al., Alzheimer’s Disease Neuroimaging. Reduced

FDG-PET brain metabolism and executive function predict clinical

progression in elderly healthy subjects. Neuroimage Clin 2013;

4:45–52.

[510] Trzepacz PT, Yu P, Sun J, Schuh K, Case M, Witte MM, et al., Alz-

heimer’s Disease Neuroimaging. Comparison of neuroimaging mo-

dalities for the prediction of conversion from mild cognitive

impairment to Alzheimer’s dementia. Neurobiol Aging 2014;

35:143–51.

[511] Gutman BA, Hua X, Rajagopalan P, Chou YY, Wang Y, Yanovsky I,

et al., Alzheimer’s Disease Neuroimaging. Maximizing power to

track Alzheimer’s disease and MCI progression by LDA-based

weighting of longitudinal ventricular surface features. Neuroimage

2013;70:386–401.

[512] Pardoe HR, Abbott DF, Jackson GD, Alzheimer’s Disease Neuroi-

maging. Sample size estimates for well-powered cross-sectional

cortical thickness studies. Hum Brain Mapp 2013;34:3000–9.

[513] Hibar DP, KohannimO, Stein JL, ChiangMC, Thompson PM.Multi-

locus genetic analysis of brain images. Front Genet 2011;2:73.

[514] Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O,

Cole PE, et al., Alzheimer’s Disease Neuroimaging. Standardization

of analysis sets for reporting results from ADNI MRI data. Alz-

heimers Dement 2013;9:332–7.

[515] Hua X, Hibar DP, Ching CR, Boyle CP, Rajagopalan P, Gutman BA,

et al., Alzheimer’s Disease Neuroimaging. Unbiased tensor-based

morphometry: improved robustness and sample size estimates for

Alzheimer’s disease clinical trials. Neuroimage 2013;66:648–61.

[516] Holland D,McEvoy LK, Desikan RS, Dale AM, Alzheimer’s Disease

Neuroimaging. Enrichment and stratification for predementia Alz-

heimer disease clinical trials. PLoS One 2012;7:e47739.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref351
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref351
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref351
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref351
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref351
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref352
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref352
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref352
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref352
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref353
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref353
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref353
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref354
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref354
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref354
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref355
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref355
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref355
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref355
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref356
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref356
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref356
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref356
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref357
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref357
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref357
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref358
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref358
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref358
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref358
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref359
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref359
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref359
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref359
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref360
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref360
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref360
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref360
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref361
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref361
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref362
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref362
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref362
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref362
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref363
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref363
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref363
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref363
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref364
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref364
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref364
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref364
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref364
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref365
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref365
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref365
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref365
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref365
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref365
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref366
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref366
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref366
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref366
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref367
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref367
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref367
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref367
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref367
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref368
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref368
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref368
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref368
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref369
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref369
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref369
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref369
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref370
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref370
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref370
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref370
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref370
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref371
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref371
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref371
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref371
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref372
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref372
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref372
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref372
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref372
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref373
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref373
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref373
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref374
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref374
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref374
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref374
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref375
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref375
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref375
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref375
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref376
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref376
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref376
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref376
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref376
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref377
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref377
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref377
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref377
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref377
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref378
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref378
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref378
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref378
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref378
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref379
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref379
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref379
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref380
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref380
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref381
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref381
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref381
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref381
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref382
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref382
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref382
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref382
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref383
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref383
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref383


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e118
[517] Grill JD, Di L, Lu PH, Lee C, Ringman J, Apostolova LG, et al. Esti-

mating sample sizes for predementia Alzheimer’s trials based on the

Alzheimer’s Disease Neuroimaging Initiative. Neurobiol Aging

2013;34:62–72.

[518] Cedarbaum JM, Jaros M, Hernandez C, Coley N, Andrieu S,

GrundmanM, et al. Rationale for use of the Clinical Dementia Rating

Sum of Boxes as a primary outcome measure for Alzheimer’s disease

clinical trials. Alzheimers Dement 2013;9(1 Suppl):S45–55.

[519] Whitwell JL, Wiste HJ, Weigand SD, Rocca WA, Knopman DS,

Roberts RO, et al., Alzheimer Disease Neuroimaging. Comparison of

imaging biomarkers in the Alzheimer Disease Neuroimaging Initiative

and the Mayo Clinic Study of Aging. Arch Neurol 2012;69:614–22.

[520] Kantarci K, Gunter JL, Tosakulwong N, Weigand SD, Senjem MS,

Petersen RC, et al., Alzheimer’s Disease Neuroimaging. Focal hemo-

siderin deposits and beta-amyloid load in the ADNI cohort. Alz-

heimers Dement 2013;9(5 Suppl):S116–23.

[521] Honea RA, Cruchaga C, Perea RD, Saykin AJ, Burns JM,

Weinberger DR, et al., Alzheimer’s Disease Neuroimaging. Charac-

terizing the role of brain derived neurotrophic factor genetic variation

in Alzheimer’s disease neurodegeneration. PLoS One 2013;

8:e76001.

[522] Reitz C, Tosto G, Mayeux R, Luchsinger JA, N.-L.N.F.S. Group, and

Alzheimer’s Disease Neuroimaging. Genetic variants in the fat and

obesity associated (FTO) gene and risk of Alzheimer’s disease.

PLoS One 2012;7:e50354.

[523] Roussotte FF, Jahanshad N, Hibar DP, Sowell ER, Kohannim O,

Barysheva M, et al. A commonly carried genetic variant in the delta

opioid receptor gene, OPRD1, is associated with smaller regional

brain volumes: replication in elderly and young populations. Hum

Brain Mapp 2014;35:1226–36.

[524] Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM, et al., G.

Consortium, Alzheimer’s Disease Neuroimaging and Alzheimer Dis-

ease Genetic. GWAS of cerebrospinal fluid tau levels identifies risk

variants for Alzheimer’s disease. Neuron 2013;78:256–68.

[525] Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L,

et al. APOE andBCHE asmodulators of cerebral amyloid deposition:

a florbetapir PET genome-wide association study. Mol Psychiatry

2014;19:351–7.

[526] Hibar DP, Stein JL, Kohannim O, Jahanshad N, Saykin AJ, Shen L,

et al. Voxelwise gene-wide association study (vGeneWAS): multivar-

iate gene-based association testing in 731 elderly subjects. Neuro-

image 2011;56:1875–91.

[527] KoranME,HohmanTJ, Thornton-WellsTA.Genetic interactions found

between calcium channel genes modulate amyloid load measured by

positron emission tomography. Hum Genet 2014;133:85–93.

[528] Meda SA, Koran ME, Pryweller JR, Vega JN, Thornton-Wells TA,

Alzheimer’s Disease Neuroimaging. Genetic interactions associated

with 12-month atrophy in hippocampus and entorhinal cortex in Alz-

heimer’s Disease Neuroimaging Initiative. Neurobiol Aging 2013;

34:1518.e9–151818.

[529] Kim S, Swaminathan S, InlowM, Risacher SL, Nho K, Shen L, et al.,

Alzheimer’s Disease Neuroimaging. Influence of genetic variation on

plasma protein levels in older adults using a multi-analyte panel.

PLoS One 2013;8:e70269.

[530] Benitez BA, Karch CM, Cai Y, Jin SC, Cooper B, Carrell D, et al.,

Alzheimer’s Disease Neuroimaging and Genetic and Environmental

Risk for Alzheimer’s Disease. The PSEN1, p.E318G variant in-

creases the risk of Alzheimer’s disease in APOE-epsilon4 carriers.

PLoS Genet 2013;9:e1003685.
[531] Hohman TJ, Koran ME, Thornton-Wells T, Alzheimer’s Neuroimag-

ing. Epistatic Genetic Effects among Alzheimer’s Candidate Genes.

PLoS One 2013;8:e80839.

[532] Hohman TJ, Koran ME, Thornton-Wells TA, Alzheimer’s Neuroi-

maging. Interactions between GSK3beta and amyloid genes

explain variance in amyloid burden. Neurobiol Aging 2014;

35:460–5.

[533] Bryant C, Giovanello KS, Ibrahim JG, Chang J, Shen D, Peterson BS,

et al., Alzheimer’s Disease Neuroimaging. Mapping the genetic vari-

ation of regional brain volumes as explained by all common SNPs

from the ADNI study. PLoS One 2013;8:e71723.

[534] Nho K, Corneveaux JJ, Kim S, Lin H, Risacher SL, Shen L, et al.,

Multi-Institutional Research on Alzheimer Genetic Epidemiology,

AddNeuroMed, and Alzheimer’s Disease Neuroimaging. Whole-

exome sequencing and imaging genetics identify functional variants

for rate of change in hippocampal volume in mild cognitive impair-

ment. Mol Psychiatry 2013;18:781–7.

[535] Rhinn H, Fujita R, Qiang L, Cheng R, Lee JH, Abeliovich A. Integra-

tive genomics identifies APOE epsilon4 effectors in Alzheimer’s dis-

ease. Nature 2013;500:45–50.

[536] Kamboh MI, Demirci FY, Wang X, Minster RL, Carrasquillo MM,

Pankratz VS, et al., Alzheimer’s Disease Neuroimaging. Genome-

wide association study of Alzheimer’s disease. Transl Psychiatry

2012;2:e117.

[537] Peterson D, Munger C, Crowley J, Corcoran C, Cruchaga C,

Goate AM, et al., Alzheimer’s Disease Neuroimaging. Variants in

PPP3R1 andMAPTare associated with more rapid functional decline

in Alzheimer’s disease: The Cache County Dementia Progression

Study. Alzheimers Dement 2014;10:366–71.

[538] Swaminathan S, Shen L, Kim S, Inlow M, West JD, Faber KM,

et al., Alzheimer’s Disease Neuroimaging, and N.-L.N.F.S. Group.

Analysis of copy number variation in Alzheimer’s disease: the

NIALOAD/NCRAD Family Study. Curr Alzheimer Res 2012;

9:801–14.

[539] Guffanti G, Torri F, Rasmussen J, Clark AP, Lakatos A, Turner JA,

et al. Increased CNV-region deletions in mild cognitive impairment

(MCI) and Alzheimer’s disease (AD) subjects in the ADNI sample.

Genomics 2013;102:112–22.

[540] Hibar DP, Stein JL, Ryles AB, Kohannim O, Jahanshad N,

Medland SE, et al. Genome-wide association identifies genetic vari-

ants associated with lentiform nucleus volume in N ¼ 1345 young

and elderly subjects. Brain Imaging Behav 2013;7:102–15.

[541] Tamnes CK, Walhovd KB, Dale AM, Ostby Y, Grydeland H,

Richardson G, et al. Brain development and aging: overlapping and

unique patterns of change. Neuroimage 2013;68:63–74.

[542] Harrison TM, Weintraub S, Mesulam MM, Rogalski E. Superior

memory and higher cortical volumes in unusually successful cogni-

tive aging. J Int Neuropsychol Soc 2012;18:1081–5.

[543] Nettiksimmons J, Beckett L, Schwarz C, Carmichael O, Fletcher E,

Decarli C. Subgroup of ADNI normal controls characterized by atro-

phy and cognitive decline associated with vascular damage. Psychol

Aging 2013;28:191–201.

[544] Desikan RS, McEvoy LK, Thompson WK, Holland D, Brewer JB,

Aisen PS, et al., Alzheimer’s Disease Neuroimaging. Amyloid-

beta–associated clinical decline occurs only in the presence of

elevated P-tau. Arch Neurol 2012;69:709–13.

[545] Arnold SE, Xie SX, Leung YY, Wang LS, Kling MA, Han X, et al.

Plasma biomarkers of depressive symptoms in older adults. Transl

Psychiatry 2012;2:e65.

http://refhub.elsevier.com/S1552-5260(14)02865-9/sref384
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref384
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref384
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref384
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref385
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref385
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref385
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref385
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref386
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref386
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref386
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref386
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref387
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref387
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref387
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref387
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref389
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref389
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref389
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref389
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref389
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref390
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref390
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref390
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref390
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref391
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref391
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref391
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref391
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref391
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref392
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref392
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref392
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref392
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref393
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref393
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref393
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref393
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref394
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref394
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref394
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref394
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref395
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref395
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref395
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref396
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref396
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref396
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref396
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref396
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref397
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref397
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref397
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref397
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref398
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref398
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref398
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref398
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref398
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref399
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref399
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref399
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref400
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref400
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref400
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref400
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref401
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref401
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref401
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref401
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref402
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref402
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref402
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref402
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref402
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref402
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref403
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref403
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref403
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref404
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref404
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref404
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref404
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref405
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref405
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref405
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref405
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref405
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref406
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref406
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref406
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref406
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref406
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref407
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref407
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref407
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref407
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref408
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref408
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref408
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref408
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref408
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref409
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref409
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref409
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref410
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref410
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref410
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref411
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref411
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref411
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref411
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref412
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref412
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref412
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref412
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref413
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref413
http://refhub.elsevier.com/S1552-5260(14)02865-9/sref413


M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120 e119
Appendix

1 Publications arising from AIBL

1.1 AIBL Publication list, 2009–present

1.1.1 2009

[09.03] Bourgeat P, Chetelat G, Villemagne VL, Fripp J,
Raniga P, Acosta O, et al. B-amyloid burden in the tempo-
ral neocortex is related to hippocampal atrophy in elderly
subjects without dementia. Neurology 2010;74:121–7.
[09.04] Ellis KA, Bush AI, Darby D, De Fazio D, Foster J,
Hudson P, et al. The Australian Imaging, Biomarkers and
Lifestyle (AIBL) study of aging: methodology and base-
line characteristics of 1112 individuals recruited for a
longitudinal study of Alzheimer’s disease. Int Psychoger-
iatr 2009;21:672–87.
[09.05] Fodero-Tavoletti MT, Cappai R, McLean CA,
Pike KE, Adlard PA, Cowie T, et al. Amyloid imaging
in Alzheimer’s disease and other dementias. Brain Imag-
ing Behav 2009;3:246–61.
[09.06] Fodero-Tavoletti MT, Rowe CC, McLean CA,
Leone L, Li QX, Masters CL, Cappai R, Villemagne VL.
Characterization of PiB binding to white matter in AD
and other dementias. J Nucl Med 2009;50:198–204.
[09.07] Fodero-Tavoletti MT, Mulligan RS, Okamura N,
Furumoto S, Rowe CC, Kudo Y, et al. In vitro character-
isation of BF227 binding to a-synuclein/Lewy Bodies.
Eur J Pharmacol 2009;617:54–8.
[09.08] Villemagne VL, McLean CA, Reardon K, Boyd
A, Lewis V, Klug G, et al. 11C-PiB PET studies in typical
sporadic Creutzfeldt-Jakob disease. J Neurol Neurosurg
Psychiatr 2009;80:998–1001.
[09.09] Villemagne VL, Ataka S, Mizuno T, Brooks WS,
Wada Y, Kondo M, et al. High striatal amyloid b-peptide
deposition across different autosomal Alzheimer’s dis-
ease mutation types. Arch Neurol 2009;66:1537–44.
[09.10] Okamura N, Fodero-Tavoletti MT, Kudo Y, Rowe
CC, Furumoto S,AraiH,Masters CL,YanaiK,Villemagne
VL. Advances in molecular imaging for the diagnosis of
dementia. Expert Opin Med Diagn 2009;3:705–16.
[09.11] Acosta O, Bourgeat P, Fripp J, Zuluaga MA,
Fripp J, Salvado O, Ourselin S. Automated voxel-based
3D cortical thickness measurement in a combined
Lagrangian-Eulerian PDE approach using partial volume
maps. Med Image Anal 2009;13:730–43.

1.1.2 2010

[10.01] Bourgeat P, Ch�etelat G, Villemagne VL, Fripp J,
Raniga P, Pike K, et al. b-amyloid burden in the tempo-
ral neocortex is related to hippocampal atrophy in
elderly subjects without dementia. Neurology
2010;74:121–7.
[10.02] Ellis KA, Rowe CC, Villemagne VL,Martins RN,
Masters CL, Salvado O, Szoeke C, Ames D; the AIBL
Research Group. Addressing population aging and Alz-
heimer’s disease through the Australian imaging bio-
markers and lifestyle study: collaboration with the
Alzheimer’s Disease Neuroimaging Initiative. Alz-
heimers Dement 2010;6:291–6.
[10.03] Villemagne VL, Perez KA, Pike KE, Kok WM,
Rowe CC,White AR, et al. Blood borne amyloid-b dimer
correlates with clinical markers of Alzheimer’s disease. J
Neurosci 2010;30:6315–22.
[10.04] Ch�etelat G, Villemagne VL, Bourgeat P, Pike KE,
Jones G, Ames D, et al. Relationship between atrophy and
b-amyloid deposition in Alzheimer disease. Ann Neurol
2010;67:317–24. [See also editorial: Rabinovici GD, Ro-
berson ED. Beyond diagnosis: what biomarkers are
teaching us about the “bio”logy of Alzheimer disease.
Ann Neurol 2010;67:283–5.]
[10.05] Villemagne VL, Pike K, Pejoska S, Boyd A, Po-
wer M, Jones G, Masters CL, Rowe CC. 11C-PiB PET
ABri imaging in Worster-Drought syndrome (Familial
British Dementia): a case report. J Alzheimers Dis
2010;19:423–8.
[10.06] Lui JK, Laws SM, Li QX, Villemagne VL, Ames
D, Brown B, et al. Plasma amyloid-b as a biomarker in
Alzheimer’s disease: the AIBL Study of Aging. J Alz-
heimers Dis 2010;20;1233–42.
[10.07] Rowe CC, Ellis KA, RimajovaM,Bourgeat P, Pike
KE, Jones G, et al. Amyloid imaging results from the
Australian Imaging, Biomarkers and Lifestyle (AIBL)
study of aging. Neurobiol Aging 2010:31;1275–83.
[10.08] Ch�etelat G, Villemagne VL, Pike KE, Baron JC,
Bourgeat P, Jones G, et al. Larger temporal volume in
elderly with high versus low beta-amyloid deposition.
Brain 2010;133:3349–58.
[10.09] Rueda A, Acosta O, CouprieM, Bourgeat P, Fripp
J, Dowson N, Romero E, Salvado O. Topology-corrected
segmentation and local intensity estimates for improved
partial volume classification of brain cortex in MRI. J
Neurosci Methods 2010;188:305–15.

1.1.3 2011

1.1.3.1 Published

[11.01] Villemagne VL, Pike KE, Ch�etelat G, Ellis KA,
Mulligan R, Bourgeat P, et al. Longitudinal assessment
of Ab burden and cognition in aging and Alzheimer’s dis-
ease. Ann Neurol 2011;69:181–92.
[11.02] Ellis KA, Rowe CC, Szoeke C, Villemagne VL,
Ames D, Ch�etelat G, et al. Advances in structural and mo-
lecular neuroimaging in Alzheimer’s disease. Med JAust
2011;194:S20–3.
[11.03] Bahar-Fuchs A, Moss S, Pike KE, Villemagne
VL, Masters CL, Rowe C, Savage G. Olfactory deficits
and Ab burden in AD, MCI and healthy ageing: a PiB
PET Study. J Alzheimers Dis 2010;22:1081–7.
[11.04] Gupta VB, Laws SM, Villemagne VL, Ames D,
Bush AI, Ellis KA, et al. Plasma Apolipoprotein E and



M.W. Weiner et al. / Alzheimer’s & Dementia 11 (2015) e1–e120e120
Alzheimer’s disease risk: the AIBL study of ageing.
Neurology 2011;76:1091–8.
[11.05] Sittironnait G, Ames D, Bush AI, Faux N, Flicker
L, Foster J, et al. Effects of anticholinergic drugs on
cognitive function in older Australians: results from the
AIBL Study. Dement Geriatr Cogn Disord (Special
ASIA issue). 2011;31:173–8.
[11.06] McBride S, Good N, Szoeke C, Ames D, Martins
R, Masters C, et al. A web-based normative data tool for
assessing cognitive performance in healthy older Austra-
lians. Med J Aust 2011;194:S12–14.
[11.07] Ch�etelat G, Villemagne VL, Pike KE, Ellis KA,
Bourgeat P, Jones G, et al. Research Group. Independent
contribution of temporal Ab deposition to memory
decline in the predementia phase of Alzheimer’s disease.
Brain 2011;134(Pt 3):798–807
[11.08] Watt AD, Perez KA, Faux NG, Pike KE,
Rowe CC, Bourgeat P, et al. Increasing the predic-
tive accuracy of beta-amyloid blood-borne bio-
markers in Alzheimer’s disease. J Alzheimers Dis
2011;24:47–59.
[11.09] Villemagne VL, Okamura N, Pejoska S, Drago J,
Mulligan RS, Ch�etelat G, et al. In vivo assessment of ve-
sicular monoamine transporter type 2 in dementia with
Lewy bodies and Alzheimer’s disease. Arch Neurol
2011;68:905–12.


	2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception
	1. Introduction to Alzheimer's Disease Neuroimaging Initiative: Goals, history, and organization
	1.1. Background
	1.2. Disease model and progression
	1.3. Mild cognitive impairment
	1.4. History of biomarker development
	1.5. Goals of ADNI
	1.6. The evolution of an idea: ADNI-1, ADNI Grand Opportunities, and ADNI-2
	1.7. Structure and organization of ADNI
	1.8. Data sharing and informatics
	1.9. The ADNI special issue of Alzheimer's and Dementia

	2. Development and assessment of treatments for AD: Perspectives of academia and the pharmaceutical industry
	3. Methods papers
	3.1. Standardization of ADNI procedures
	3.1.1. Magnetic resonance imaging
	3.1.1.1. Assessment of scanner reliability
	3.1.1.2. Development of protocols
	3.1.1.3. Standardization of ADNI data sets

	3.1.2. Aβ- and FDG-PET
	3.1.3. Biomarkers

	3.2. Methods for MRI image preparation and processing
	3.2.1. Whole brain extraction
	3.2.2. Automated registration and segmentation
	3.2.2.1. Atlas-based registration
	3.2.2.2. Other registration methods

	3.2.3. Automated temporal lobe and hippocampal segmentation
	3.2.3.1. Temporal lobe and hippocampus
	3.2.3.2. Cortical thickness segmentation and estimation

	3.2.4. TBM and DBM
	3.2.5. Quantification of brain morphometric changes
	3.2.6. Fractal analysis
	3.2.7. Other MRI methods

	3.3. Methods for AD classification from imaging data
	3.3.1. Magnetic resonance imaging
	3.3.2. [18F]-fluorodeoxyglucose-positron emission tomography
	3.3.3. Cognitive methods
	3.3.4. Combined modalities
	3.5.5. Blood-based biomarkers

	3.4. Other imaging methods
	3.5. Statistical methods
	3.6. Genetics methods
	3.7. Methods for Clinical Trials
	3.8. Methods papers: Summary and conclusions

	4. Studies of the ADNI cohort
	4.1. Clinical characterization
	4.2. Medication use
	4.3. Baseline and longitudinal studies of biomarker changes during disease progression
	4.3.1. Magnetic resonance imaging
	4.3.2 CSF biomarkers
	4.3.3. PET
	4.3.4. Cognitive

	4.4. Associations between characteristics of the ADNI cohort
	4.4.1. Magnetic resonance imaging
	4.4.1.1. Temporal lobe
	4.4.1.2. Other ROIs
	4.4.1.3. Multiple ROIs and whole brain studies
	4.4.1.4. White matter changes

	4.4.2. Glucose metabolism
	4.4.2.1. [18F]-fluorodeoxyglucose-positron emission tomography
	4.4.2.2. Arterial spin labeling

	4.4.3. Cognitive
	4.4.3.1. Association with imaging or CSF biomarkers
	4.4.3.2. Neuroanatomic regions and cognition
	4.4.3.3. Functional decline
	4.4.3.4. Other neuropsychiatric symptoms
	4.4.3.5. Association of cognition with body mass index
	4.4.3.6. Cognitive reserve
	4.4.3.7. The ADNI special issue of Brain Imaging and Behavior, 2012
	4.4.3.8. Psychometric analysis of cognitive tests

	4.4.4. CSF biomarkers
	4.4.4.1. β-amyloid and tau
	4.4.4.2. α-Synuclein and dementias with Lewy bodies.

	4.4.5. Amyloid imaging
	4.4.6. Combined modalities
	4.4.7. Genetic associations
	4.4.8. Summary and conclusions of papers concerning associations of the ADNI cohort

	4.5. Diagnostic classification of study participants
	4.5.1. Magnetic resonance imaging
	4.5.1.1. Temporal lobe structures
	4.5.1.2. Multiple ROIs and whole brain
	4.5.1.3. White matter hyperintensities
	4.5.1.4. Comparison of MRI methods

	4.5.2. [18F]-fluorodeoxyglucose-positron emission tomography
	4.5.3. CSF biomarkers
	4.5.4. Clinical
	4.5.5. Blood based biomarkers
	4.5.6. Combined modalities
	4.5.6.1. Early approaches
	4.5.6.2. Multimodal classification
	4.5.6.3. Feature selection
	4.5.6.4. The effect of age on classification
	4.5.6.5. Missing data

	4.5.7. Diagnosis of MCI using National Institute on Aging-Alzheimer's Association criteria
	4.5.8. Summary and conclusions of diagnostic classification papers

	4.6. Improvement of clinical trial efficiency
	4.6.1. Prediction of cognitive decline
	4.6.1.1. Magnetic resonance imaging
	4.6.1.1.1. Temporal lobe
	4.6.1.1.2. Ventricles
	4.6.1.1.3. Other regions

	4.6.1.2. [18F]-fluorodeoxyglucose-positron emission tomography
	4.6.1.3. CSF and blood biomarkers
	4.6.1.4. Cognitive
	4.6.1.5. Combined modalities
	4.6.1.6. Comparison of modalities

	4.6.2. Adjustments for normal aging and baseline characteristics
	4.6.3. Development of outcome measures
	4.6.4. Genetic risk factors in subject selection
	4.6.5. Combining enrichment and stratification strategies
	4.6.6. Other improvements to clinical trials
	4.6.7. Summary and conclusions of papers focused on the improvement of clinical trial efficiency


	5. Identification of genetic risk factors for AD
	5.1. Case–control studies
	5.2. Studies of limited loci using quantitative phenotypes
	5.3. GWAS of quantitative phenotypes
	5.4. Replication studies and meta-analyses
	5.5. Genomic copy number analysis
	5.6. Other genetic studies using ADNI data
	5.7. Summary and conclusions of genetic risk factor studies

	6. Studies of normal control subjects
	6.1. MRI studies
	6.2. Studies of CSF biomarkers and amyloid deposition (11C-PiB PET)
	6.3. Genetic studies of normal control subjects
	6.4. Summary and conclusions of papers focusing on normal control subjects

	7. Worldwide ADNI
	7.1. European ADNI
	7.2. AIBL study: The Australian ADNI
	7.3. Japanese ADNI
	7.4. Worldwide ADNI future directions

	8. Other papers using ADNI data
	9. Disclosures
	References
	Appendix
	1 Publications arising from AIBL
	1.1 AIBL Publication list, 2009–present
	1.1.1 2009
	1.1.2 2010
	1.1.3 2011
	1.1.3.1 Published






