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1. Introduction

The overall goal of the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), established in 2004, is to facilitate the
development of effective treatments for Alzheimer’s disease
(AD) by validating biomarkers for AD clinical trials.
Although no treatment has yet been shown to slow the pro-
gression of AD, the many accomplishments of ADNI have
served as a model for other initiatives and programs.

A framework for pathophysiological changes occurring
during disease progression was developed in the 1990s
which centered on the accumulation of amyloid as a central
pathogenic event [1]. However, at the turn of the century, de-
tails of the timing of the cascade of antecedent events lead-
ing to neurodegeneration and their relationship to clinical
phenotypes were lacking [2]. The clinical diagnosis of AD
was almost exclusively based on clinical assessment, the
apolipoprotein E (APOE) ε4 allele was the primary known
genetic AD risk factor, and mild cognitive impairment
(MCI) had been recently recognized as a prodromal state
of the disease [3,4]. The pharmaceutical industry was
developing disease-modifying treatments to be tested, but
clinical trials of these treatments were limited because clin-
ical and cognitive outcome measures were the only ways to
detect treatment effects. Patient functioning and cognition,
especially memory, are extremely important, but brain func-
tion is affected by many factors other than AD pathology.
Therefore, clinical and cognitive measurements may not
be sufficiently powerful to detect the effects of treatments
to slow AD progression within time and size constraints of
clinical trials. Magnetic resonance imaging (MRI) and posi-
tron emission tomography (PET) biomarkers offered more
precise alternatives to cognitive tests to assess disease pro-
gression, especially early in the disease. If such biomarkers
were validated, the cost and length of drug trials could be
reduced. Furthermore, the AD field would greatly benefit
from surrogate outcome measures, that is, biomarkers of dis-
ease progression with greater statistical power than clinical
or cognitive measurements used alone. Alternatively,
improvement of the ability of cognitive tests to assess dis-
ease progression would also benefit clinical trials. The effi-
cacy of these biomarkers could be accurately assessed
using a standardized cohort using standardized methods
[5,6] and ADNI was established primarily to fill this need.

Designed as a multisite, longitudinal study of normal
cognitive aging, MCI, and early AD, the primary goal of
ADNI was to develop imaging and other biomarkers for
REV 5.2.0 DTD � JALZ1985_proof
clinical trials [5,6]. To achieve this, ADNI enrolled a large
cohort (.800) of participants across the spectrum of the
disease [7] and developed optimized and standardized
methods for use in a multisite setting to characterize the
cohort with clinical, cognitive, MRI, PET, biofluid, and ge-
netics measurements. One aim was to develop biomarkers
that could consistently identify the disease with high sensi-
tivity and specificity at an earlier stage and to better monitor
disease progression and treatment effects. As the need for
effective AD treatments was so pressing and the task of
developing them was too great for any one public agency
or private company, funding was secured from both the pub-
lic and private sector, establishing ADNI as a model for
public-private partnerships. Initial funding for a 5-year study
came from the National Institute on Aging ($40 million), 13
pharmaceutical companies, and 2 not-for-profit foundations
($20 million). After the initial funding of ADNI-1 in 2004,
further Foundation and Industry funding allowed the
addition of PET amyloid imaging using the radiotracer
11C-PiB Q, genome-wide association studies (GWAS), and
additional cerebrospinal fluid (CSF) analysis [8]. A unique
feature of the original ADNI grant (now called ADNI-1)
was that all clinical, cognitive, imaging, and biomarker
data collected by the ADNI database would be immediately
available to all scientists in the world who requested it, with
no embargo. ADNI-1 was then extended by a Grand Oppor-
tunities grant (ADNI-GO). In 2010, ADNI was competi-
tively renewed (termed ADNI-2) with funding through
mid-2016. Each study used ongoing advances in imaging
and genetics technologies, and ADNI-GO and ADNI-2
included an additional cohort of early MCI patients to study
the earlier stages of the disease. Subjects enrolled in ADNI-2
and those continuing from ADNI-1 and ADNI-GO have had
amyloid PET scanning with florbetapir, lumbar puncture for
CSF analysis, and FDG Q-PET, MRI, and an extensive clinical
and cognitive battery.

ADNI is conducted at 57 academic sites across the United
States and Canada and comprises eight cores (clinical, MRI,
PET, biomarker, neuropathology, genetics, biostatistics, and
informatics) under supervision of the Administrative Core,
led by Dr Michael W. Weiner [5]. ADNI is governed by
Steering Committee including representatives from all fund-
ing sources and the principal investigators of ADNI sites.
The Industry Scientific Advisory Board provides input
from pharmaceutical stakeholders. The structure of the
study, detailed in ref. [5], has been integral to the success
� 25 May 2015 � 12:27 pm � ce
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of this multicenter study, and has served as a model for other
similar initiatives.

In 2011, ADNI was identified by the U.S. government in
2011 as a key player in achieving goals of accelerating the
development of treatments that would prevent, halt, or
reverse the course of AD and improving early diagnosis in
the National Plan to Address Alzheimer’s Disease (U.S.
Department of Health and Human Services) developed in
response to the National Alzheimer’s Project Act. What spe-
cific impacts has ADNImade over the last decade? The phar-
maceutical industry has benefitted from the development of
standardized biomarkers, the establishment of amyloid phe-
notyping as a method for selection of subjects for AD trials,
and the generation of data to guide trial design. Various com-
panies have benefitted from the use of ADNI data to help
validate their products and methods. Investigators world-
wide have benefitted from access to ADNI data and samples,
resulting in progress often far beyond the original ADNI
mandate. ADNI genetics data are now being used in a
whole-genome sequencing project in a “big data” approach
to finding AD treatments. Our understanding of AD patho-
physiology and genetics has benefitted from over 600 publi-
cations using ADNI data. In particular, the AD model
reported by Jack et al. [9] has provided the field an overall
conceptual model that stimulated hypothesis testing and
other studies, and ADNI research has contributed to a broad-
ening of the cognitive spectrum to include early MCI and
subjective complaint cohorts. The research community has
benefitted from the development of a plethora of methods us-
ing ADNI data, often applicable to areas outside AD
research. ADNI structure and methods are now also being
used in studies of the role of depression in AD and of special
risk factors for AD in veterans. In addition, the ADNI model
has fostered similar projects worldwide and inspired initia-
tives in other diseases such as Parkinson’s disease and mul-
tiple sclerosis (MS).

Three sequential, comprehensive reviews of all studies
using ADNI data have been published since 2012
[8,10,11]. In addition to highlighting key ADNI
publications, this review details the methodological
organizational, and funding achievements of ADNI in its
first decade from 2004 to 2014, and how these have
improved clinical trial efficiency and inspired similar
initiatives worldwide.
341
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2. Impacts of ADNI

2.1. ADNI has improved clinical trials for AD modifying
and preventative treatments

ADNI has provided an important venue for precompeti-
tive public-private interaction around biomarkers and clin-
ical trial methodologies for AD. It has improved clinical
trial efficiency by contributing to a better understanding of
the pathophysiology of the disease, providing data to guide
REV 5.2.0 DTD � JALZ1985_proof
trial design, and by developing standardized biomarkers
and methodologies.

Companies that provide imaging services for clinical tri-
als, such as Bioclinica [12–15] (recently merged with
SYNARC [16–19]), IXICO, and Lilly [20] have used
ADNI data to develop and validate their image quantifica-
tion methods. For example, the learning embeddings for
atlas propagation technology for repeated automated hippo-
campal volumetry was developed by ADNI researchers at
Imperial College, London, based in part on de novo analyses
of ADNI data [21,22], before being licensed to IXICO [23].
This technology was used in the qualification of hippocam-
pal volume for the enrichment of amnestic MCI clinical trial
populations by the European Medicines Agency, which was
coordinated in a precompetitive fashion by the Coalition
Against Major Diseases [24].

Both hippocampal volume and CSF biomarkers remain
the focus of ongoing qualification efforts with the Food
and Drug Administration (FDA) [24]. Amyloid biomarkers
are actively used for subject selection in clinical trials of
candidate therapeutics. Amyloid biomarker substudies in
the recent bapineuzumab phase III program revealed that
even in AD dementia populations, more than 20% of
enrolled mild and moderate AD subjects were amyloid nega-
tive by CSF amyloid beta (Ab) or amyloid PET [25]. Subse-
quent trials of antiamyloid therapeutic candidates are
requiring amyloid biomarkers at screening and amyloid pos-
itivity as an inclusion criterion. Longitudinal measures of
amyloid are also being increasingly used later in the drug
development process to assess potential disease-modifying
effects.

To date, there have been no successful clinical trials for
AD preventive treatments. However, it is now widely
believed, in part due to ADNI research, that successful ther-
apies will result from intervention at the very early stages of
the disease. Accordingly, investigators have proposed new
trial designs for intervention at the prodromal [26] and pre-
clinical [27] stages of disease that have been adopted by ac-
ademic and industry investigators, contributing to the
development of new regulatory guidance [28]. In particular,
the A4 trial [29] launched in 2014 as an industry-academia
collaboration, represents the first therapeutic trial in preclin-
ical sporadic AD.
2.2. Standardization of methods

At the outset of ADNI, a major obstacle to producing
meaningful data for analysis was the development of stan-
dardized methods. A major collaborative effort has resulted
in a set of protocols (available at http://adni.loni.usc.edu/
methods/) that allow the direct comparison of results world-
wide [5]. As a result of ADNI’s contributions, pharmaceu-
tical companies developing disease-modifying treatments
for AD and studies funded by the National Institutes of
Health and private foundations have used ADNI methods
in virtually all their clinical trials.
� 25 May 2015 � 12:27 pm � ce

http://adni.loni.usc.edu/methods/
http://adni.loni.usc.edu/methods/
Original text:
Inserted Text
Please check if abbreviation MS is correct.

dallas
Sticky Note
This abbreviation is correct

dallas
Cross-Out

dallas
Inserted Text

dallas
Inserted Text
,



6

M.W. Weiner et al. / Alzheimer’s & Dementia - (2015) 1-204

354
355
356

357
358
359

360
361
362
363

364
365
366

367
368
369

370
371
372
373

374
375
376

377
378
379

380
381
382

383
384
385
386

387
388
389

390
391
392

393
394
395
396

397
398
399

400
401
402

403
404
405

406
407
408
409

410
411
412

413
414

415
416
417

418
419
420

421
422
423
424

425
426
427

428
429
430

431
432
433
434

435
436
437

438
439
440

441
442
443

444
445
446
447

448
449
450

451
452
453

454
455
456
457

458
459
460

461
462
463

464
465
466

467
468
469
470

471
472
473

474
475
2.2.1. Positron emission tomography
Acquisition methods, quality control standards, and

methods for preparing data for FDG-PET and amyloid im-
aging using Pittsburgh’s Compound and florbetapir were
developed by the ADNI PET core [30]. The standardized
protocols were designed to be compatible with multiple
commercially available scanner hardware and software
combinations, which can result in a twofold difference in
intrinsic resolution. Raw PET images from all sites un-
dergo quality control processes at the ADNI PET site at
the University of Michigan. The gold standard digital Hoff-
man Phantom is used as a comparison to correct image res-
olution, and to enhance image uniformity, producing a
variety of sets of images such as images that are registered
to one another or oriented to a standardized grid. Different
ADNI sites are then responsible for a variety of image
analysis processes such as SPM5 to examine correlations
between changes in glucose metabolism and cognition
and to map cross-sectional differences between patient
groups, and the determination of the standardized uptake
value ratio (SUVR) in multiple regions of interest. These
protocols are detailed at http://adni.loni.usc.edu/methods/
pet-analysis/ and result in a set of images available at Lab-
oratory of Neuroimaging (LONI) (http://adni.loni.usc.edu),
a form that can be readily analyzed by investigators. The
development of standardized methods has clearly demon-
strated that multicenter PET amyloid imaging is feasible
and can produce data sets of great value to investigators.

2.2.2. Magnetic resonance imaging
The development of standardized MRI procedures by the

ADNI MRI core for use in the multiple ADNI centers is a
major contribution of the initiative to the scientific commu-
nity. Protocols needed to be compatible with three different
vendors of scanners (GE, Siemens, and Philips), a variety of
hardware/software configurations within each vendor prod-
uct line, and two MRI field strengths. Methods were initially
developed using technology widely available at the begin-
ning of ADNI with the philosophy that the protocol must
maximize scientific utility while minimizing the scan time
burden on participants [31]. Pulse sequences were optimized
for longitudinal scans to ensure stability and reproducibility
[32]. The final protocol could be run in less than 30 minutes,
capturing both structural information and detected relevant
brain pathologies, and using a phantom to monitor scanner
performance. The protocol also included quality control
for all images acquired and postacquisition corrections to
correct scaling changes and image artifacts such as intensity
nonuniformity, and warping because of gradient nonlinearity
[33–35]. A total of 38 different vendor- and platform-
specific protocols were required to run ADNI MRI se-
quences at 59 sites with 89 MRI scanners. The final protocol
achieved consistent acquisitions across this broad distribu-
tion of sites and technologies [33]. After the initial protocols
were developed, it became apparent that MRI scans in ADNI
also needed to image white-matter disease and so a FLAIR
REV 5.2.0 DTD � JALZ1985_proof
sequence Qto detect cerebrovascular disease was added to
the core sequence for ADNI-GO and ADNI-2. In addition
three emerging MRI applications—functional MRI, Arterial
Spin Labeling Perfusion Imaging, and Diffusion Tensor Im-
aging—were added in ADNI-GO and ADNI-2 as vendor-
specific protocols to pilot their potential use in multicenter
clinical trials [33]. A comparison of sequences used in
ADNI-1, ADNI-GO, and ADNI-2 may be found at: http://
adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/.

A key factor in the success of ADNI MRI protocols was
the use of a high-resolution geometric phantom to assess the
reliability of scanner hardware across longitudinal scans.
Consisting of polycarbonate spheres filled with water and
copper sulfate in a precise geometrical pattern, the ADNI
phantom is scanned after each patient to detect linear and
nonlinear spatial distortion, signal-to-noise ratio, and image
contrast, allowing these artifacts and problems to be identi-
fied and subsequently corrected. The ADNI phantom helped
correct scanner scaling errors or miscalibrations [36] and to
reduce between scanner imaging artifacts in longitudinal
studies [37].Without the monitoring of scanner performance
using the ADNI phantom, around 20% of all scans would
have been affected by these types of errors [36]. This phan-
tom has been so successful that it has been used in numerous
phase 2 and phase 3 treatment trials [5].

With the increasing number of studies published using
ADNI data came the realization that the direct comparison
of results was hampered by the lack of standardized data
sets. To address this, theMRI core developed a series of stan-
dardized data sets that have met rigorous quality control
standards [38]. Although it is too early to assess the impact
of the standardized data sets on the analysis of MRI data, this
strategy should facilitate the direct and meaningful compar-
ison and replication of different algorithms and promote
consistency in data analysis.

Beyond the standardization ofmethods and data sets,MRI
studies carried out with the ADNI cohort have impacted
clinical trials in a number of ways. Fox and coworkers devel-
oped improved methods for measuring the rate of atrophy
across multiple sites and for reducing required sample sizes
[39–41], and also developed automated methods to
measure brain and hippocampal volume and rates of
atrophy [39,42,43]. These have been incorporated into
large commercial clinical trials and submitted to the
European Medicines Agency, leading to guidance on
hippocampal volume measurement in trials [24].

One challenge in the selection of clinical trial populations
is the heterogeneity of individual responses to treatment due
to differing underlying pathologies such as vascular brain
injury. Effects of white matter hyperintensities on cognition,
brain atrophy, and cerebral metabolism are dissociable from
the effects of amyloid [44–46] and they likely contribute to
the heterogeneity of individual responses to treatment
[47,48]. Clinical trials may therefore benefit from reducing
heterogeneity by excluding or stratifying individuals with
vascular brain injury as measured by MRI.
� 25 May 2015 � 12:27 pm � ce

http://adni.loni.usc.edu/methods/pet-analysis/
http://adni.loni.usc.edu/methods/pet-analysis/
http://adni.loni.usc.edu
http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/
http://adni.loni.usc.edu/methods/mri-analysis/mri-acquisition/
Original text:
Inserted Text
Please spell out FLAIR.

dallas
Cross-Out

dallas
Inserted Text
fluid-attenuated inversion recovery



Q7

Q8

M.W. Weiner et al. / Alzheimer’s & Dementia - (2015) 1-20 5

476
477
478

479
480
481

482
483
484
485

486
487
488

489
490
491

492
493
494
495

496
497
498

499
500
501

502
503
504

505
506
507
508

509
510
511

512
513
514

515
516
517
518

519
520
521

522
523
524

525
526
527

528
529
530
531

532
533
534

535
536

537
538
539

540
541
542

543
544
545
546

547
548
549

550
551
552

553
554
555
556

557
558
559

560
561
562

563
564
565

566
567
568
569

570
2.2.3. CSF biomarkers
The ADNI Biomarker Core has developed and improved

methods to analyze of CSF biomarkers, initially establish-
ing a flow-cytometry based assay using xMAP technology
[49,50] and assessing its within-site and intersite reliability.
Best performancewas assured by strict attention to standard
operating procedures and including appropriate quality
control specimens [51]. Their establishment of the predic-
tive ability of the CSF biomarker signature provided sup-
port for the lumbar puncture procedure and hastened its
acceptance as a valid tool in the AD diagnosis arsenal.
More recently, this core has developed an alternative assay
to measure CSF Ab42 using two-dimensional UPLC-MS-
MS, characterized the diagnostic ability of this assay using
receiver operator curves and correlation analyses, and
developed a surrogate matrix for calibration purposes
[52]. The inclusion of CSF biomarkers in the newly revised
NIA-AA criteria for the diagnosis of AD in research set-
tings [53,54] has led to the use of these assays to help
select AD patients at the predementia stage, and to
improve the statistical power of clinical trial design.
Ongoing standardization efforts by the Biomarker Core
are aimed at minimizing sources of analytical variability
and developing reference methods and standardized
reference materials. Assessment of the NIA-AA criteria
in the ADNI cohort provided support for their utility and
also highlighted possible weaknesses in their classification
scheme such as the categorization of patients as “unde-
fined” or “uninformative”. The Biomarker Core has sug-
gested improvements to these criteria to better stratify
patients across the AD spectrum [55].
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2.3. ADNI has been a model for data sharing without
embargo

In recent years, the potential of big data that integrates
clinical, scientific, and population level information for
use in developing therapies for AD has been increasingly
recognized. Databases such as the Global Alzheimer Associ-
ation Interactive Network (www.gaain.org) seek to organize
such information globally and the integration of disparate
databases to leverage resources around the world holds
much promise. However, when ADNI was established in
2004, the concept that data generated by the initiative would
be shared openly and without embargo to all qualified re-
searchers worldwide was a relatively new and radical one.
Research data were generally considered to be owned by in-
vestigators who guarded it to avoid competition, the possi-
bility of their results of not being duplicated, or from
misuse by unqualified persons. The sharing of all data asso-
ciated with an experiment does allow the external duplica-
tion of findings and meta-analyses by combining data from
multiple experiments, and new experiments to be performed
using the same data [56]. The quantity of imaging, clinical,
cognitive, biochemical, and genetic data generated
throughout ADNI by geographically distributed investiga-
REV 5.2.0 DTD � JALZ1985_proof
tors has required powerful informatics systems and mecha-
nisms of processing, integrating, and disseminating these
data. With these goals in mind, the Bioinformatics Core of
ADNI, led by Dr Arthur Toga, developed a sophisticated
informatics infrastructure based at to the LONI currently
at the University of Southern California. This well-curated
scientific data repository, owned collectively by ADNI
rather than any participating entity, facilitates data integra-
tion, access, and sharing of data in a standardized manner
with individuals with research credentials [57]. Also
included in LONI are data generated by the Australian Imag-
ing Biomarkers and Lifestyle (AIBL) Flagship Study of
Ageing, and from new analyses by researchers accessing
data.

ADNI is recognized by the medical research community
as a leading example of how timely and extensive sharing of
well-characterized data can promote further research,
improve drug development, and therefore benefit public
health [56]. As of July 15, 2014, there have been over 5.6
million downloads of image data, 322,940 downloads of
clinical data, and 5867 downloads of genetic data by 3234
separate downloaders (personal communication, Dr Arthur
Toga).

The ADNI database also serves as a model for other pro-
jects such as the Parkinson’s Progression Markers Initiative
(PPMI) and, very recently, the North American Registry for
Care and Research in Multiple Sclerosis (NARCRMS).
PPMI aims to identify biomarkers for Parkinson’s Disease
progression [58] and shares the LONI informatics data re-
pository. NARCRMS, a database to collect MRI and other
biomarker information data from patients with MS in the
United States, is modeled specifically on ADNI’s database
and will provide freely available data on MS patients to
clinicians, patients, and pharmaceutical companies [59].

ADNI shared data have also been used in studies beyond
the original project mandate, playing a critical role in iden-
tifying novel AD genetic risk factors, and contributing to
research sometimes completely unrelated to AD for which
data from a well-characterized cohort is desirable. These
include investigations of stroke, hypertension, depression,
and even mapping skull shape gradients in historical popula-
tion movements [11].

In the mid-2013, whole-genome sequencing data for the
entireADNI cohortwere added to the LONI database. Funded
by the Alzheimer’s Association and the Brin Wojcicki Foun-
dation, this project added around 165 terabytes of data to the
repository and signaled the entry of ADNI into the world of
big data. The full impact of this project has yet to be realized,
but the combination ofwhole-genome sequenceswith existing
longitudinal assessments of neuropsychological, imaging, and
biological measures will allow investigators worldwide to
discover new associations between rare genetic variants and
these disease features and to develop novel targets for new
disease-modifying or preventative therapies (http://alzforum.
org/news/research-news/adni-full-genetic-sequences-now-
available-download).
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The sum of the ADNI data repository is now being lever-
aged in a computational challenge jointly run by the Global
CEO Initiative for Alzheimer’s Disease, DREAM, and Sage
Bionetworks. The Alzheimer’s Disease Big Data DREAM
Challenge #1 (https://www.synapse.org/#!Synapse:syn22
90704) challenges bioinformatics experts worldwide to pre-
dict the best biomarkers for early AD-related cognitive
decline and for discordance between high amyloid levels
and cognitive decline. Over 200 teams in both the public
and private sector accepted the challenge, which are also us-
ing data provided by Rush University Medical Center, and
the AddNeuroMed Study. The best-performing predictive
models will be tested in a similar independent data set, with
results expected in early 2015. In a sense, this challenge rep-
resents the ultimate in data-sharing in which “crowd-sourc-
ing” of data analysis in a competitive manner is expected to
greatly accelerate research in this area for the public good.
678

679
680
681

682
683
684

685
686
687

688
689
690
691

692
693
694

695
696
697

698
699
700
701

702
703
704

705
706
707

708
709
710

711
712
713
714

715
716
717

718
719
2.4. ADNI data have been used in over 600 publications

One measure of the impact of ADNI is more than 600 sci-
entific publications (as of February 2015) that have used data
generated by the initiative. ADNI Data and Publications Pol-
icy require authors to submit manuscripts using ADNI data
to the Data and Publications Committee (DPC) for adminis-
trative review before submitting them for peer review and
publication. We used lists provided by the DPC in addition
to PubMed for searches of the terms “ADNI” and “Alz-
heimer’s Disease Neuroimaging Initiative” to generate a
list of over 600 publications (as of February 2015).

Around a third describe methods ranging from the stan-
dardization of methods for use in a multicenter setting, to
improvements in neuroimaging techniques, to new ap-
proaches to classifying patients and predicting their likeli-
hood of future decline, and to methods to improve genetic
and statistical analyses. Around a quarter of papers describe
disease progression and associations between ADNI mea-
sures; many articles relate imaging, genetic and CSF
biomarkers, and cognitive measures. Approximately 15%
of papers have primarily focused on improving clinical trial
efficiency by selecting subpopulations more likely to prog-
ress within the time frame of a trial and by developing
more sensitive outcome measures, both imaging and clin-
ical. The ADNI data set has been used in another 15% of
publications that have identified around 20 AD genetic risk
factors beyond the APOE ε4 genotype. A smaller number
focus on cognitively normal participants, worldwide ADNI
(WW-ADNI) and finally, the total includes a number of
reviews and perspectives.

Ultimately, the most significant contributions of ADNI
data to the scientific community can be distilled to a select
group of high impact publications. We chose the following
publications based on our assessment of novelty of the
concept and the influence of the work on AD research, and
were partially guided by number of times the article was
cited and the impact rating of the journal of publication.
REV 5.2.0 DTD � JALZ1985_proof
The intent of this section is not to extensively review
ADNI literature (this can be found in [8]), but rather to high-
light some of the landmark findings of ADNI researchers.
Table 1 summarizes significant ADNI findings. Establishing
relationships between biomarkers, memory, and APOE
genotype. Two early landmark papers examined the relation-
ships between CSF biomarkers, hippocampal atrophy and
memory, and the effect of the APOE ε4 genotype on these
measures. In cognitively normal healthy elderly subjects,
Mormino et al. [60] found an inverse relationship between
Ab deposition (as measured by 11C-PiB uptake) and hippo-
campal volume; episodic memory loss was predicted by hip-
pocampal volume, but not by 11C-PiB uptake. This study
suggested that the accumulation of amyloid may reflect the
early stages of AD pathogenesis and may subsequently
mediate declines in episodic memory and therefore demen-
tia through an effect on hippocampal volume. Likewise, hip-
pocampal atrophy was associated with increased deposition
of Ab in MCI patients by Schuff et al. [66] who also reported
that the APOE ε4 allele exacerbated hippocampal loss in AD
patients. Together, these studies have been cited more than
500 times and provided evidence that led to the development
of a model for how these crucial biomarkers change over the
process of AD pathogenesis [61].

As AD biomarkers were being developed, it was sus-
pected that patients could be cognitively normal but
biomarker positive, thereby harboring an increased risk for
developing the disease. The question of the level at which
CSF biomarkers could be considered abnormal—the cut-
point defining this change in risk—was therefore a pressing
one. Shaw et al. [49] defined specific cut points for a CSF
signature for AD based on an ADNI-independent cohort of
autopsy-confirmed AD and cognitively normal patients.
This AD signature, which combined low Ab42 and high
t-tau or p-tau181 concentrations, was then applied to the
ADNI cohort. De Meyer et al. [137] focused their study of
CSF biomarkers on cognitively normal elderly and formu-
lated a CSF biomarker signature almost identical to that
of Shaw et al.—for example, their Ab42 cut-off was 188
pg/mL compared with 192 pg/mL in the former. Unexpect-
edly, a third of patients possessed the signature which sug-
gested that AD pathology develops at a much earlier stage
than previously envisioned (Fig. 2). This discovery would
lead eventually to the finding that abnormal changes in
some markers can be detected up to 10 years in advance of
clinical symptoms and is in accordance with the more recent
view of AD being a continuum of disease ending in dementia
[138,139]. Ab cut-offs are robust and show high agreement
independently of the platform used to establish the presence
of brain amyloid deposition (CSF or amyloid PET scans) or
the pipelines and references used to calculate PET summary
SUVRs, although biomarker dynamic ranges differ in the
extremes of the normal and pathological range [140].

The AD CSF biomarker signature has proved remarkably
accurate in diagnosing AD, reaching a sensitivity of 90% to
95% and a specificity of around 90% [141]. Diagnostic
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Table 1

Major findings using ADNI data

Area of research Major findings using ADNI data References

Relationships between biomarkers Biomarker “signature” for AD based on levels of Ab42 and tau found in

cognitively normal patients, suggesting AD pathology develops years

before manifestation of clinical symptoms

[49,60]

Model for temporal ordering of biomarkers in AD pathogenesis largely

supported. Biomarkers predicted to become abnormal in following

order:

CSF Ab/amyloid PET . CSF tau/FDG-PET glucose

metabolism . structural MRI

Ab deposition neuronal damage atrophy

[9,61–65]

CSF Ab42, or amyloid PET associated with earlier stage

neurodegeneration, but less with cognitive decline

[66–71]

Abnormal tau associated with later-stage neurodegeneration, cognitive

decline

[68,70,71]

Abnormal glucose (FDG-PET) metabolism develops from parietal and

temporal lobes in MCI to frontal and orbitofrontal lobes on AD, is

associated with measures of cognitive decline.

[72–76]

Hippocampal atrophy and ventricular expansion associated with decline

in cognitive measures, rates of atrophy associated with rates of

cognitive decline.

[60,66,69,77]

Patterns of neurodegeneration in disease progression Neurodegeneration generally occurs in following order:

Temporal (hippocampus . entorhinal cortex/[lateral ventricle]

.other).parietal/posterior cingulate . frontal/occipital . anterior

cingulate

Early MCI late MCI early AD advanced AD

[78–81]

Rate of neurodegeneration increases from cognitively normal to MCI to

AD patients, with highest rates at each diagnostic stage in the specific

areas outlined previously (e.g., hippocampus in MCI, frontal/

occipital in late-AD)

[79,82–85]

Development of summary scores to represent level of AD-like

neurodegeneration: STAND, SPARE-AD Q20.

[86,87]

Neuropathological findings High percentage of coincident pathologies, including dementia with

Lewy bodies, medial temporal lobe pathology, vascular pathology,

found in demented patients at autopsy.

[88]

Development of novel biomarkers a-Synuclein strongly correlated with p-tau181, MMSE scores, patient

status

[89,90]

Blood-based biomarkers show diagnostic potential [91–94]

White matter changes Recognition of importance of white matter abnormalities in cognitive

decline in AD, independent of amyloid deposition

[95–99]

Amyloid imaging 11C-PiB-PET in agreement with CSF Ab42, as measure of amyloid

deposition

[100,101]

18F-florbetapir PET in agreement with CSF Ab42, as measure of

amyloid deposition

[102,103]

Diagnosis Optimum diagnostic accuracy from selection of maximally

discriminative multimodal features (typically longitudinal MRI,

APOE and amyloid status, age) combined with dimensionality

reduction: accuracies .95%, and .75% for CN versus AD and CN

versus MCI, respectively.

[104–106]

Improvement of clinical trial efficiency Best predictors of MCI to AD conversion combine maximally

discriminative multimodal features (typically temporal lobe/

entorhinal cortex/hippocampal MRI 1 t-tau/Ab). PredictAD

software combines modalities in weighted manner. Accuracies over

3 years up to 77%.

[107,108]

Lowest N80s with subject selection using baseline MRI atrophy, Ab and

t-tau, and MRI outcome measures (hippocampal or entorhinal cortex

atrophy). For example, N80s for MCI (CN) for 24-month trial 5 60

(499).

[109–111]

Cognitive Memory composite score, ADNI-Mem, predicted changes in

neuroimaging parameters associated with memory changes.

[112]

ADAS-cog improved for increased sensitivity at earlier stages of clinical

decline.

[113–115]

(Continued )
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Table 1

Major findings using ADNI data (Continued )

Area of research Major findings using ADNI data References

Genetics and Genomics APOE ε4 allele associated with faster hippocampal atrophy [22,86,116–121]

APOE ε4 allele modulates amyloid deposition [49,86,102,121,122]

Discovery/replication of confirmed AD risk loci: CLU, ABCA7, CR1,

PICALM, MS4A6A, CD33, MS4A4E, CD2AP, and the identification

of novel risk variants such as TREM2, SPON1.

[123–127]

First uses of quantitative phenotypes in GWAS: CSF Ab and tau,

florbetapir amyloid PET, whole-brain ROIs, longitudinal

hippocampal change, memory

[128–131]

Novel approaches as copy number variation, gene pathway analysis,

whole-exome sequencing, analysis of transcriptional networks, role

of genetic variation in blood biomarker levels

[132–135]

First voxel-wise and gene-wise GWAS, GWAS of structural connectome [125,136]

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; Ab, amyloid beta; APOE, apolipoprotein E; CSF, cerebrospinal fluid; PET, positron

emission tomography; MRI, magnetic resonance imaging; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; PiB, Pittsburgh Compound

B; CN, cognitively normal; MCI, mild cognitive impairment; GWAS, genome-wide association studies; ROI, region of interest.
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accuracy has been further enhanced by the addition of other
neuroimaging and clinical measures [11]. These cut point
values have become widely accepted as the research stan-
dard with these two articles together cited more than 900
times.

2.4.1. A model for biomarker dynamics in AD pathogenesis
Perhaps the most influential of the ADNI articles was the

work of Jack et al. [9] who presented a hypothetical model
for biomarker dynamics in AD pathogenesis. The basic tenet
of the model was that biomarkers become abnormal in a tem-
poral order, beginning with markers of brain amyloid depo-
sition (CSFAb and amyloid PET), progressing to markers of
neuronal damage (CSF-tau and FDG-PET), and ending with
structural MRI which detects atrophy in certain areas typical
of AD (Fig. 1). The model proposed that biomarkers become
abnormal in a staged but overlapping manner and each fol-
lows a sigmoidal shape over time. Critical aspects of the
model were based on prior work by the same group. After
investigating the relationship between rates of amyloid
deposition and ventricular expansion in the ADNI cohort
by examining serial 11C-PiB PET and MRI scans [142]
and examining relationships between the risk of progression
9

Fig. 1. A model for biomarker dynamics in Alzheimer’s disease (AD) path-

ogenesis. From Jack et al. [9].

REV 5.2.0 DTD � JALZ1985_proof

948

949
950
951

952
953
954

955
956
957
958

959
960
961

962
963
from MCI to AD, and hippocampal atrophy and amyloid
load [67], Jack et al. concluded that the deposition of Ab
is decoupled from cognitive decline, whereas neurodegener-
ation is closely associated with clinical symptoms of the dis-
ease. The deposition of Ab into plaques was proposed to be
necessary but not sufficient for clinical manifestation of the
disease. Finally, the model suggested that the time frame of
disease progression differed between individuals, and that
differences in individual cognitive reserve and comorbid
non-Alzheimer’s pathologies, in particular, could alter the
lag between the appearance of abnormal biomarkers and
cognitive decline.

The fundamental principles of this model have largely
stood the test of time and accumulated evidence. The tempo-
ral ordering of biomarkers is now well-established and sup-
ported by numerous studies. Studies of presymptomatic
patients largely support the order of the pathological changes
proposed by this model, for example, presymptomatic cere-
bral amyloid is associated with increased neurodegeneration
and may be a harbinger of cognitive decline [45,143,144].
Other studies have supported the acceleration of
neurodegeneration from control to MCI to AD patients
[78,82]. There is a strong evidence for the sigmoidal
trajectory of amyloid biomarkers and some evidence that
neurodegenerative biomarkers also follow the same pattern
as they rise to abnormal levels, although the steepness of
the curve appears to vary between biomarkers [61]. Results
from several studies of ADNI biomarkers have diverged in
part from the predictions of the model. Mouiha et al. [62] re-
ported nonsigmoidal biomarker trajectories, the work of
Yang et al. [145] suggested that Ab levels may plateau after
tau, Jedynak et al. [63] found that the AVLT Q-30 test of cogni-
tion was the first biomarker to become abnormal, and the
longitudinal study of Han et al. [146] found that Ab affected
brain structure and function independent of tau, and that tau
affected baseline cognition independent of neuroimaging
measures. Further longitudinal studies of these preclinical
subjects are required to determine whether biomarker
� 25 May 2015 � 12:27 pm � ce
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Fig. 2. A cerebrospinal fluid (CSF) biomarker signature for Alzheimer’s disease (AD). Signature 1 (red) is AD, signature 2 (green) is the healthy signature. From

De Meyer et al. [137].

M.W. Weiner et al. / Alzheimer’s & Dementia - (2015) 1-20 9

964
965
966

967
968
969

970
971
972
973

974
975
976

977
978
979

980
981
982
983

984
985
986

987
988
989

990
991
992

993
994
995
996

997
998
999

1000
1001
1002

1003
1004
1005
1006

1007
1008
1009

1010
1011
1012

1013
1014
1015

1016
1017
1018
1019

1020
1021
1022

1023
1024

1025
1026
1027

1028
1029
1030

1031
1032
1033
1034

1035
1036
1037

1038
1039
1040

1041
1042
1043
1044

1045
1046
1047

1048
1049
1050

1051
1052
1053

1054
1055
1056
1057

1058
1059
1060

1061
1062
1063

1064
1065
1066
1067

1068
1069
1070

1071
1072
1073

1074
1075
1076

1077
1078
1079
1080

1081
1082
1083

1084
1085
trajectories predicted by the model are correct. An updated
model by Jack et al. [61] retained the essential elements of
the original, primarily adjusting only the horizontal axis
from disease stage to years, recognizing the influence of
cognitive reserve and other factors on the clinical stage of
the disease while acknowledging that the time scale of this
axis will vary in every individual. The original model has
been cited more than 1200 times and has formed the basis
for numerous studies that have substantially deepened our
knowledge of AD pathophysiology. The revised model
may well prove to have an equal or greater impact.

2.4.2. Diagnosis and prediction of future decline
Diagnostic classification and the prediction of future

decline were not original goals of ADNI, but the initiative
has generated a rich data set with which to explore new ap-
proaches to these challenges. Initially, cross-sectional infor-
mation was targeted for both classification and prediction
and more recently, longitudinal data have been used in the
prediction of factors indicating clinical decline. In 2009,
twin papers by Vemuri et al. first reported the use of combi-
nations of MRI and CSF biomarkers for AD diagnosis [147]
and the prediction of future clinical change [148] in the
ADNI data set. The first article reported that although CSF
biomarkers were not correlated with cognitive measures in
any patient group, they acted to increase the diagnostic accu-
racy of MRI biomarkers. Likewise in the second article, CSF
biomarkers augmented the ability of MRI biomarkers to pre-
dict subsequent cognitive decline. Currently cited by over
400 papers, these studies formed the basis for many subse-
quent diagnosis and prediction papers and ultimately lead
to far more refined methods for selecting clinical trial popu-
lations likely to show measurable clinical decline within the
length of the trial.

As methods were developed for the automatic classifica-
tion of AD patients using anatomical MR data, the need
arose for a standardized side-by-side comparison of different
REV 5.2.0 DTD � JALZ1985_proof
preprocessing strategies on classification accuracy. Cuingnet
et al. [149] compared five voxel-based approaches, three
cortical approaches, and twomethods based on hippocampal
shape and volume using ADNI data. This thorough study al-
lowed researchers to directly compare methods that were
originally published using different data sets and parameters,
and consequently became an essential reference for devel-
oping automatic classification strategies.

The selection of AD-like features from imaging data
enabled multivariate classification by reducing the “curse
of dimensionality”. Likewise, the selection of features that
are most AD-like across multiple modalities was a critical
step in constructing an accurate classifier. Chen et al. [72]
developed a FDG-PET based hypometabolic convergence
index that was associated with the hazard for conversion to
probable AD. In combination with hippocampal volume
measurement, this selectedMCI patients with an even higher
likelihood of conversion. Zhang et al. [150] selected imaging
(MRI and FDG-PET) regions of interest using a linear sup-
port vector machine and combined them with levels of CSF
biomarkers according to the predefined cut points. This
multimodal classifier was highly accurate and marked the
beginning of a proliferation of ever more efficient methods
that used the full breadth of ADNI data for AD diagnosis
and to predict future decline. For instance, one article that
quickly followed [104] combined a multitask feature selec-
tion with a multimodal support vector machine to integrate
disparate imaging and biological data for the estimation of
continuous variables such as scores neuropsychological
tests. These approaches have produced accuracies in excess
of 95% and 75% for the classification of AD and MCI pa-
tients, respectively, from cognitively normal controls
[105,151]. Likewise, multimodal strategies which combine
maximally discriminative multimodal features (typically
temporal lobe/entorhinal cortex/hippocampal MRI and
t-tau/Ab) have predicted the conversion of MCI patients to
AD within 3 years with accuracies up to 77% [107].
� 25 May 2015 � 12:27 pm � ce
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2.4.3. Improvements to clinical trial design
The recognition that emblematic AD disease pathology is

present in a subset of cognitively normal patients [137,152],
years ahead of any manifestation of clinical symptoms has
led to a broadening of the cognitive spectrum of clinical
trials of AD therapies to include early MCI and subjective
complaint cohorts. The development of subject selection
strategies and outcome measures which together reduce
N80s to practicable sizes has therefore been an important
focus of ADNI. Although several studies have shown
CDR-SB to be a better outcome measure than ADAS-cog
[109,153,154], others have focused on improving the
commonly used later test to be more sensitive to cognitive
changes earlier in the disease process [113–115]. APOE ε4
status, baseline MRI atrophy, and abnormal tau and Ab42
have been used as successful stratification strategies [8].
Grill et al. [154] estimated N80s of 258 for MCI patients
with enrichment using t-tau and Ab42 and CDR-SB as an
outcome measure. However, in a systematic study, Holland
et al. [110] reported that the optimum combination of subject
selection strategies and outcome measures was the selection
of MCI patients with abnormal MRI, p-tau, and Ab42, and
the use of entorhinal cortex atrophy as an outcome measure.
The estimated N80 using this combination was 60 (95% CI:
42 100) compared with 294 (204 456) using no subject selec-
tion, 234 (151 455) using CDR-SB as an outcome measure,
and 583 (416 894) using no subject selection and CDR-SB as
an outcome measure. In cognitively normal ADNI partici-
pants, Grill et al. [154] estimated an N80 of 499 (243
1659) using enrichment with APOE ε4 and the AVLT as an
outcome measure. Their N80 estimates using other cognitive
endpoints had prohibitively high end-points, suggesting that
in order for clinical trials in presymptomatic cohorts to be
feasible, a biomarker-based outcome measure should be
considered.

2.4.4. Genetics and genomics
After a decade, ADNI has made contributions to AD

genetics far beyond the original mandate of the initiative.
Because the first ADNI genome-wide association study in
2009 [155], over 200 publications using ADNI data alone
or in combination with other cohorts have been reported.
Genetic variance accounts for approximately 30% of pheno-
typic variance in AD [156]. ADNI data have repeatedly
confirmed the importance of APOE as the largest genetic
risk factor in AD [123], accounting for about 6% of this vari-
ance, and a number of ADNI studies have investigated the
mechanisms by which the APOE ε4 allele increases AD sus-
ceptibility. These have shown that theAPOE ε4 increases Ab
deposition [86,102], even in presymptomatic patients [122],
and that it is associated with increased hippocampal atrophy
[116–118,122].

The ADNI Genetics core has been instrumental in pio-
neering GWAS which leverage the rich array of quantitative
phenotypes from multiple imaging and biomarker modal-
ities available in the ADNI data set. Significantly, these
REV 5.2.0 DTD � JALZ1985_proof
have most recently moved toward longitudinal frameworks.
ADNI data have also played a vital role in the search for the
“missing heritability” of AD by comprising subsets of the
very large data sets required to gain sufficient statistical po-
wer to identify novel risk variants in these meta-analytic
case-control GWAS. Together, these uses of ADNI genetics
data are leading to a deeper understanding of the biological
pathways involved in disease trajectory and cognitive
decline. Selected highlights of ADNI GWAS and related
studies in MCI and AD patients are presented later.

In 2009, the publication of the first GWAS of MRI hippo-
campal volume in AD [155] represented the first of many
“firsts” for the ADNI Genetics Core; ADNI data was later
used in a hippocampal volume analysis by the ENIGMA
Consortium—analyzing over 30,000 people with MRI and
GWAS—which discovered common variants that affect hip-
pocampal volume. In the following 2 years, ADNI reported
the first GWAS of CSF amyloid and tau markers [157], the
first whole-brain ROI-based [128] and voxel-based GWAS
[136], the first GWAS of longitudinal hippocampal MRI
change [129] and one of the first studies of mitochondrial
DNA variations in AD [158]. In 2012, ADNI studies were
among the first to report copy number variation in AD or
MCI patients [132], and gene pathway analyses of memory
impairment in older adults [133]. In 2013, the first MRI
study of the recently discovered TREM2 variant [124] re-
ported that carriers of variants in the TREM2 gene showed
faster atrophy than noncarriers, and the first GWAS of the
healthy human structural connectome implicated the
SPON1 gene [125]. ADNI investigators also reported the
first whole-exome sequencing study in MCI that identified
functional variants for the rate of change in hippocampal
volume in MCI [134], and investigated the role of APOE ge-
notype in early MCI [122].

ADNI genetics data continue to enhance the biological
understanding of underlying disease mechanisms. Kim
et al. [159] examined the influence of genetic variation on
plasma protein levels in older adults using a multianalyte
panel, and confirmed previously identified gene-protein as-
sociations for the interleukin-6 receptor, chemokine CC-4,
angiotensin-converting enzyme, and angiotensinogen. In
2014, Ramanan et al. [130] performed the first GWAS of am-
yloid PETusing ADNI florbetapir scans and reported that the
APOE and BCHE genes were modulators of cerebral amy-
loid deposition together accounting for nearly 15% of the
variance in amyloid deposition. Swaminathan et al. (2014)
reported that the association between plasma Ab and cortical
amyloid deposition is modulated by APOE ε4 status.

Two landmark case-control GWAS of AD, published as
companion reports in Nature Genetics [126,127], included
the ADNI-1 data in their replication data sets. Hollingworth
et al. [126] reported five novel risk variants for AD: ABCA7,
MS4A6A/MS4A4E, EPHA1, CD33, and CD2AP, whereas
Naj et al. [127] independently reported CD2AP, EPHA1,
and CD33 in addition to confirming the previously identified
risk variants, in CR1, CLU, BIN1, and PICALM. All variants
� 25 May 2015 � 12:27 pm � ce
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identified in these reports have now been confirmed and
make up a substantial proportion of the over 20 risk variants
now identified for the disease [160]. The ADNI cohort was
also included in studies of over 30,000 individuals with
MRI scans by the ENIGMA and CHARGE consortia
([161,162] Hibar et al. 2014, Nature [under revision]).
These studies found common variants influencing
hippocampal volume, brain volume, and numerous other
subcortical volumes, measured from MRI; carriers and
noncarriers of specific SNPs differed in hippocampal
volume, on average, by an amount equivalent to about
3 years of normal aging. Rhinn et al. [135] used an integra-
tive genomic approach based on the analysis of transcrip-
tional networks in the human brain to identify candidate
genes predicted to mediate transcriptional changes in car-
riers of the APOE ε4 allele. Two genes of interest that affect
amyloid deposition and the age of onset in APOE ε4 carriers,
FYN, and RNF2 19, were subsequently confirmed using a
meta-analytic GWAS using ADNI data. Lambert et al.
[163] performed a meta-analysis of 74,046 individuals
including the ADNI cohort, and identified 11 new suscepti-
bility loci for AD. ADNI also played a prominent role in the
largest GWAS of human memory to date including the NIA
Health and Retirement Study cohort plus ADNI, ROS/MAP,
and other samples (Ramanan et al., in press). This GWAS
implicated the FASTKD2 gene for both episodic memory
and hippocampal structure on MRI and nominated this
gene as a potential neuroprotective target.

Numerous discovery, replication, and methods publica-
tions using ADNI genetics data continue to appear from
groups around the world at an accelerating pace (Shen,
2014 #931). Overall, the articles outlined previously along
with dozens of other reports using multidimensional pheno-
types from several ADNI data sets have confirmed key find-
ings in the genetics of AD and also identified a number of
novel candidate genes warranting further investigation in in-
dependent cohorts.

2.4.5. ADNI review
The proliferation of articles published using ADNI data is

undoubtedly a measure of the success of the initiative. How-
ever, these studies represent a sometimes overwhelming vol-
ume of information to the average researcher. The review of
ADNI papers by Weiner et al. [10] and its update [11] sum-
marized this research and enabled researchers to avoid the
unnecessary duplication of efforts and to determine where
future directions might lie.
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2.5. ADNI is a model for similar neuroimaging projects
around the world

ADNI has provided a model for neuroimaging initiatives
worldwide run under the direction of the umbrella organiza-
tion, Worldwide ADNI (WW-ADNI), sponsored by the Alz-
heimer’s Association. Programs using ADNI methods have
been established in Japan, Australia, Argentina, Taiwan,
REV 5.2.0 DTD � JALZ1985_proof
China, Korea, Europe, and Italy [164] with the common goals
of harmonizing protocols and results internationally and
sharing standardized data across the international research
community. It is hoped thatWW-ADNIapproacheswill estab-
lish internationally recognized standards to identify and diag-
nose AD and document cognitive and physical changes
throughout disease progression in diverse ethnic groups.

WW-ADNI initiatives share the use of established ADNI
protocols for structural MRI, PET, and the collection of
cognitive, blood, and genomic data but differ in cohort size
and composition, and in the emphasis of some studies. Three
international initiatives were established shortly after the
North American ADNI. European ADNI (E-ADNI) began
as a pilot study and has now expanded to a network of 50 sites
across Europewith a particular focus on standardizing proto-
cols for measuring hippocampal volume [165–167]. In
conjunction with E-ADNI, the European Union funded the
informatics infrastructure, neuGRID and its successor,
neuGRID for You (N4U), which have been designed to be
interoperable with the LONI data repository. Neuroimaging
data from Australian ADNI, also known as the AIBL,
established in 2006, is also available through LONI. AIBL
is a long-term longitudinal investigation sharing many of
the same goals as ADNI but with a particular emphasis on
examining various health and lifestyle factors and their effect
on cognitive decline [168]. AIBL data have resulted in over
80 publications including a recent work that described a
panel of blood-based biomarkers able to accurately predict
the conversion of MCI patients to AD [91]. Japan ADNI
was established in 2007 enrolling 600 participants and using
a research protocol designed to maximize compatibility with
North American ADNI [169]. Conclusions reached from
cognitive, structural MRI, FDG, and amyloid PET data
from J-ADNI are largely in agreement with those fromNorth
American ADNI. However, J-ADNI has reported a rate of
MCI to AD progression nearly double that observed in the
North American initiative [164].

Since 2010, four additional initiatives have been estab-
lished in Taiwan, Korea, China, and Argentina. These pro-
jects are in various initial stages of establishing
infrastructure and enrolling participants and are modeled
largely on the North American initiative. One significant dif-
ference in Korean ADNI is the focus on vascular risk factors
for AD progression as Subcortical Vascular Dementia is
more prevalent in Asian dementia patients [164].

Results from AIBL, E-ADNI, and J-ADNI prove that the
ADNI model is highly effective and can be transposed to
many settings around the world. It is expected that the ini-
tiatives in Korea, Taiwan, China, and Argentina should
also make important contributions to painting a global pic-
ture of AD disease progression. WW-ADNI is the result of
an unprecedented degree of international cooperation. The
willingness of scientists worldwide to participate in open
data sharing will play a key role in the identification and
development of disease-modifying and preventive treat-
ments for AD.
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2.6. ADNI has inspired other projects to investigate AD
risk factors

The development of ADNI infrastructure, methods, and
data collection techniques has facilitated the establishment
of additional projects investigating specific risk factors in
different populations.

2.6.1. Department of Defense Alzheimer’s Disease
Neuroimaging Initiative

Traumatic brain injury (TBI) and post-traumatic stress
disorder (PTSD) are well-known risk factors for AD (Yaffe,
2010 #168; Fleminger, 2003 #73; Qureshi, 2010 #232; Kha-
chaturian, 2014 #895). Military veterans in particular have
elevated risks of both TBI and PTSD over the course of their
service due to combat and other exposures. Funded by the
Department of Defense, a new study termed DOD-ADNI
is investigating whether TBI and/or PTSD in veterans in-
creases the risk for AD and decreases cognitive reserve
[170]. This longitudinal study uses ADNI methods to obtain
baseline and 1-year measurements of AD pathophysiolog-
ical markers, medial temporal brain atrophy, and cognitive
function in three groups of veterans: those with a history
of TBI (with or without PTSD), those with ongoing PTSD
(without TBI), and control subjects comparable in age,
sex, and education [170]. DOD-ADNI is being conducted
across a number of established ADNI sites. A future study
will examine the same questions in veterans with MCI and
TBI/PTSD.

2.6.2. ADNI depression study
One of the most debilitating aspects of Late Life Depres-

sion (LLD) is the cognitive impairment suffered by up to
60% of individuals. Accelerated cognitive decline in LLD
is likely the result of multiple factors including hypoperfu-
sion, amyloid deposition, cortical atrophy, white matter
signal hyperintensities, and genetic susceptibility. In the
past, determining specific mechanisms contributing to
cognitive impairment in LLD has been challenging due to
the co-occurrence of neurodegenerative disease and method-
ological limitations related to small sample sizes. The ADNI
Depression Study (ADNI-D) aims to clarify the degree to
which these distinct mechanisms are associated with the
accelerated rate of cognitive decline in LLD. This longitudi-
nal study will use standardized ADNI methods and data-
sharing protocols, enroll participants who meet the criteria
for LLD or Major Depression at two established ADNI sites,
and compare these participants to ADNI-2 control subjects.
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2.7. ADNI has inspired other initiatives unrelated to AD

As an example of an extremely successful precompetitive
public-private partnership in the neurosciences, ADNI has
served as an impetus for a coordinated and focused process
of biomarker development across multiple therapeutic areas.
By proving the feasibility of a multisite study aimed at
REV 5.2.0 DTD � JALZ1985_proof
developing biomarkers to track disease pathophysiology
for subsequent use in clinical trials, ADNI has inspired other
initiatives focusing on different neurodegenerative diseases.

2.7.1. Parkinson’s Progressive Markers Initiative
The Parkinson’s Progressive Markers Initiative (PPMI)

was launched in 2010 to identify biomarkers for Parkinson
disease (PD) progression to improve the understanding of
disease pathophysiology and to facilitate more efficient
PD-modifying therapeutic trials [58]. This observational, in-
ternational, multicenter study was based largely on ADNI,
using a largely similar structure, organization, and funding
as a public-private partnership initiated by the Michael J
Fox Foundation for Parkinson’s Research. PPMI and ADNI
share the same LONIData Informatics core headed byArthur
Toga, and Fluid Biomarker core headed by John Trojanowski
and Leslie Shaw. In addition, ADNI has contributed many of
its standardized methods to PPMI, especially for the analysis
of certain CSF biomarkers. Like ADNI, PPMI’s data and
samples are freely available to qualified researchers. PPMI
data are already being downloaded extensively with
192,458, 57,024, and 561 downloads of image, clinical, and
genetic data, respectively, by 645 distinct downloaders as
of July 2014 (Arthur Toga, personal communication).
PPMI has quickly generated significant results with an initial
biomarker article reporting the prognostic and diagnostic po-
tential of CSF biomarkers in early stage PD [171].

2.7.2. Frontotemporal Lobar Degeneration Neuroimaging
Initiative

ADNI infrastructure forms the basis of the recently estab-
lished Frontotemporal Lobar Degeneration Neuroimaging
Initiative, which aims to determine the optimum methods
(MRI, FDG-PET, and biomarker measures) for following
the progression of FTLD Q. This longitudinal study hopes to
identify brain regions in which changes in metabolism and
structure occur in this common cause of dementia.

2.7.3. North American Registry for Care and Research in
MS

ADNI is also the prototype for the NARCRMS,
announced in May 2014 and slated to be launched in 2015.
This public-private partnership aims to track disease pro-
gression in MS, identify new biomarkers, and compare ther-
apeutic outcomes. Participating doctors will use
standardized methods to collect and report information on
their MS patients including biomarker levels, demographic
and clinical data, and imaging test results. Like the ADNI
database, the NARCRMS database will offer open access
for patients, physicians, and industry [59].

2.7.4. Down Syndrome Biomarker Initiative
Another recent study structured largely on ADNI is the

Down Syndrome Biomarker Initiative (Ness, 2012, #256 Q),
which aims to investigate the link between Down Syndrome
and AD. This 3-year pilot study is currently being run at UC
� 25 May 2015 � 12:27 pm � ce
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San Diego under the auspices of the Alzheimer’s Disease
Cooperative Study with pharmaceutical funding. Twelve
participants are undergoing specialized cognitive testing,
retinal amyloid imaging, brain PET amyloid imaging, struc-
tural MRI, and screening for promising blood biomarkers. It
is hoped that this initial investigation, launched in March
2013, will pave the way for a much more extensive study us-
ing many of the hallmarks of ADNI structure and standard-
ized methods.
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3. Future directions

Future planning for the next decade of ADNI is currently
focused on a competitive renewal of the ADNI-2 grant,
termed ADNI-3. ADNI-3 would continue to improve clinical
trial design by developing strategies for subject selection and
validating more sensitive outcome measures. Accordingly,
one major focus of ADNI-3 would be the development of
fluid, imaging, and genetic biomarkers that effectively iden-
tify AD in its earliest stages. These may include biomarkers
that reflect the heterogeneity of underlying pathologies
evident in AD [88] such as total a-synuclein and phospho-
a-synuclein to investigate the role of comorbidities in AD.

A second major focus of ADNI-3 would be the develop-
ment of surrogate outcome measures. Numerous clinico-
pathological studies have established that the amount and
distribution of tau tangles correlate with cognitive impair-
ment and severity of dementia [172–176]. Several PET
ligands have recently been developed that have reasonable
sensitivity and specificity to detect tau tangles in the living
human brain [177–184]. Preliminary reports with tau PET
appear to confirm the view that the extent and location of
tau correlates with severity of cognitive impairment
[181,185,186]. This suggests that tau PET has the potential
to become a “surrogate outcome measure” for AD clinical
trials, which would greatly facilitate and accelerate all
such trials. A large scale longitudinal observational study
of tau PET would be the next step toward the development
of a surrogate outcome measure, which could ultimately
be approved by the FDA and other regulatory agencies.
ADNI has been granted funding from the Department of
Defense to conduct tau PET studies at baseline and after 1
year in DOD ADNI subjects in addition to a subset of
cognitively normal, MCI, and AD ADNI-2 subjects.

If funded, ADNI-3 would run for 5 years (2016–2021). It
would follow subjects currently enrolled in ADNI-2 and
enroll additional cohorts with an emphasis on cognitively
normal and MCI patients reflective of a change in focus to
earlier stages of AD. Subjects would be studied using exist-
ing methods and novel additions such as computerized
cognitive testing, analysis using advanced MRI techniques
(including structural, perfusion, resting state functional
magnetic resonance imaging, and diffusion tensor imaging),
and tau-PET imaging.

Another promising direction for ADNI is its emerging
collaborationwith the Dominantly InheritedAlzheimer’s Dis-
REV 5.2.0 DTD � JALZ1985_proof
ease Network (DIAN), which has a great potential for high
impact results. ADNI and DIAN investigators have met and
developed a plan for data exchange and analysis. It is hoped
that this collaboration will lead to more information concern-
ing the similarities and differences in biomarker changes be-
tween early onset dominantly inheritedADand late-onsetAD.
4. Limitations of ADNI

One limitation of ADNI is that our population represents
a primarily amnestic clinical population and not an epidemi-
ologically selected real life population. Our subjects have
limited comorbidities, as those with cortical strokes, heart
failure, substance abuse, cancer, and other preexisting condi-
tions are excluded from the study. Therefore, it remains to be
determined how relevant ADNI findings are to the greater
population. The use of ADNI methods in population-based
studies such as the Mayo Clinic Study of Aging may help
to address this question. A second limitation is the age range
of ADNI participants (55–90 years), which may be too old to
detect the earliest stages of disease in many subjects. The en-
rolment of a higher proportion of cognitively normal sub-
jects in ADNI-3 than in ADNI-1- or ADNI-2 is proposed
in part to address this issue. However, longitudinal studies
of subjects beginning at a young age will be required to
gain a full understanding of the pathophysiological sequence
of events occurring in AD.
5. Conclusions

The original and continuing goal of ADNI has been to
validate biomarkers for AD clinical trials. By all accounts
ADNI has accomplished this goal, and helped to establish
the critical diagnostic role of amyloid phenotyping. ADNI
demonstrates the feasibility and impact of large scale data
sharing without embargo and it now serves as the model
for other programs wishing to openly share data. ADNI is
a model of a successful public-private partnership and this
structure combined with ADNI’s development of standard-
ized protocols for use in multicenter settings has inspired
other initiatives aimed at evaluating additional AD risk fac-
tors, and at developing biomarkers for other diseases. ADNI
has also helped to establish a worldwide network of AD clin-
ical trial sites. The economic impact of ADNI, although not
quantified, is substantial. Research using ADNI data has
generated over 600 publications in a decade and has signif-
icantly advanced our knowledge of the progression of AD
pathology and of genetic risk factors for the disease. The
recent piloting of tau imaging technologies augurs well for
a second outstanding decade of innovation and progress.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources (e.g., PubMed), ac-
cessed information from websites of relevant
initiatives, which have not yet reached publication
stage, and solicited data by personal communication.

2. Interpretation: Our findings indicate that the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI)
has had wide-ranging and profound impacts on
many areas including basic research into Alz-
heimer’s disease (AD) and other diseases, clinical
trials, and data sharing.

3. Future directions: Imaging studies using tau positron
emission tomography (PET) ligands will bring a new
dimension to clinicopathological studies of AD and
may become a “surrogate outcome measure” for
AD clinical trials. The extension of current longitudi-
nal studies will continue to add to the body of data on
AD progression. It is likely that ADNI will inspire
further initiatives based on its private-public part-
nership funding structure and model for data sharing.
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