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Abstract

Identifying predictors of mild cognitive impairment (MCI) and Alzheimer's disease (AD) can lead 

to more accurate diagnosis and facilitate clinical trial participation. We identified 320 participants 

(93 cognitively normal or CN, 162 MCI, 65 AD) with baseline magnetic resonance imaging 

(MRI) data, cerebrospinal fluid (CSD) biomarkers, and cognition data in the Alzheimer's Disease 

Neuroimaging Initiative database. We used independent component analysis (ICA) on structural 

MR images to derive 30 gray matter covariance patterns (ICs) across all participants. These ICs 

were used in iterative and stepwise discriminant classifier analyses to predict diagnostic 

classification at 24 months for CN vs. MCI, CN vs. AD, MCI vs. AD, and stable MCI (MCI-S) vs. 

MCI progression to AD (MCI-P). Models were cross-validated with a “leave-10-out” procedure. 

For CN vs. MCI, 84.7% accuracy was achieved based on cognitive performance measures, ICs, p-

tau181p, and ApoE ε4 status. For CN vs. AD, 94.8% accuracy was achieved based on cognitive 

performance measures, ICs, and p-tau181p. For MCI vs. AD and MCI-S vs. MCI-P, models 

achieved 83.1% and 80.3% accuracy, respectively, based on cognitive performance measures, ICs, 

and p-tau181p. ICA-derived MRI biomarkers achieve excellent diagnostic accuracy for MCI 

conversion, which is little improved by CSF biomarkers and ApoE ε4 status.

Keywords

Data reduction; MCI; AD; Alzheimer's Disease Neuroimaging Initiative

*Corresponding author: Dimitrios Kapogiannis, M.D., Laboratory of Neurosciences, National Institute on Aging, 3001 S. Hanover St, 
NM531, Baltimore, MD, 21225, USA; Tel.: +1-410-350-3953; Fax: +1-410-350-7308; kapogiannisd@mail.nih.gov. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Psychiatry Res. Author manuscript; available in PMC 2015 November 30.

Published in final edited form as:
Psychiatry Res. 2014 November 30; 224(2): 81–88. doi:10.1016/j.pscychresns.2014.08.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Identifying predictors of mild cognitive impairment (MCI) and Alzheimer's disease (AD) 

can lead to earlier, more accurate diagnosis and facilitate participant selection for clinical 

trials (Sperling et al., 2011; Reiman et al., 2012). The typical diagnostic progression from 

cognitively normal (CN), to MCI (Petersen et al., 1999; Gauthier et al., 2006), and finally 

AD reflects a systematic pattern of progressive atrophy (Whitwell et al., 2007; McDonald et 

al., 2009; Risacher et al., 2010), which corresponds to the spread of amyloid and tau 

neuropathology (Arnold et al., 1991; Braak and Braak, 1991; Jack et al., 2010). Measures of 

cognitive function (Gomar et al., 2011), regional atrophy (Bakkour et al., 2009; Davatzikos 

et al., 2011), and cerebrospinal fluid (CSF) biomarkers have been used to predict MCI or 

AD diagnosis. Prognostic classification accuracy based solely on radiologically detected 

atrophy (Cuingnet et al., 2011) or CSF biomarkers, such as amyloid-β 1-42 (Aβ1-42), tau, 

and phosphorylated tau at Thr181 (p-tau181p), varies widely, but is generally sub-optimal 

(Arnold et al., 1991; Braak and Braak, 1991; Shaw et al., 2007; Visser et al., 2009; Liu et al., 

2013a).

The limited accuracy of individual biomarkers in predicting MCI and AD has motivated 

researchers to examine the combined prognostic value of structural magnetic resonance 

imaging (MRI), cognitive performance scores, CSF biomarkers, and genetic polymorphisms 

(Mueller et al., 2005; Davatzikos et al., 2011; Shaffer et al., 2013). A variety of approaches 

have been used to derive MRI biomarkers from whole brain images for use in diagnostic 

classifiers (Cuingnet et al., 2011). We chose to use independent component analysis, or ICA, 

to analyze structural MRI data (Xu et al., 2009) collected in the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (Mueller et al., 2005).

ICA is a data-driven, multivariate approach for reducing data dimensionality of images with 

minimal bias. ICA can be used to decompose whole brain gray matter (GM) maps into 

maximally independent spatial GM covariance patterns called independent components, or 

ICs. We applied ICA to MRI GM maps across participants diagnosed as CN, MCI, or AD. 

We examined how generated ICs can be used for prognostic diagnostic classification. 

Shaffer and colleagues (2013) recently used ICA as a data-reduction technique on a cohort 

of MCI participants from ADNI, followed by an additive logistic regression analysis to 

examine to what degree structural MRI ICs, CSF biomarkers, fluorodeoxyglucose positron 

emission tomography (FDG-PET), and other factors could distinguish between participants 

with MCI that remained stable (MCI-S) or that progressed to AD (MCI-P). We modified and 

extended this approach to a wider range of diagnostic classifications. While FDG-PET scans 

may also be useful in diagnostic classification (Shaffer et al., 2013), we focused on MRI-

derived measures since MRI is far more commonly used in clinical practice.

Critically, we emphasize that ICA was used across all subjects only as a data-reduction 

technique. No ICs were extracted on the basis of any diagnostic classification, which would 

bias classifiers and otherwise require using training and validation datasets. Rather, ICs were 

used to account for variance across the AD spectrum and to reduce the dimensionality of the 

brain. Shaffer and colleagues (2013) notably used ICA in the same way.

Willette et al. Page 2

Psychiatry Res. Author manuscript; available in PMC 2015 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used baseline MRI, cognitive data, and CSF biomarkers to predict clinical diagnosis of 

CN, MCI, or AD at 24 months. Specifically, for each diagnostic pair, we performed a series 

of discriminant classification analyses iteratively to assess the additive prognostic value of 

30 structural ICs derived from all subjects, cognitive data, CSF biomarkers (Shaw et al., 

2007), and apolipoprotein ε4 genotyping (ApoE ε4 status) (Liu et al., 2013a). We also 

performed stepwise discriminant classification analyses to see if relatively sparse models 

achieved comparable diagnostic accuracy. Finally, to determine the clinical and biological 

significance of derived ICs, we assessed their relationships with cognitive performance 

measures and CSF biomarkers.

2. Methods

2.1. Ethics statement

Institutional review boards approved the ADNI protocol (“ADNI 1 Procedures Manual” at 

http://adni.loni.ucla.edu/methods/documents/) at their respective institutions. Participants at 

their respective ADNI sites gave written informed consent.

2.2. Subjects

All retrospective, de-identified data were obtained from the ADNI database 

(www.loni.ucla.edu/ADNI). The National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies, and non-profit organizations launched ADNI in 

2003. ADNI is a $60 million, 5-year public-private partnership. Details about the initiative 

are described elsewhere by the principal investigator (Weiner et al., 2012).

For our purposes, between October to November 2012, we gathered data from 93 CN, 162 

MCI, and 65 AD participants enrolled in ADNI that had the following characteristics: (1) 

baseline CSF biomarkers; (2) baseline 1.5-Tesla T1-weighted structural scans; (3) ApoE ε4 

status; (4) baseline neuropsychological performance; and (5) clinical diagnosis at baseline 

and at the month 24 visit. Participants with MCI at baseline either remained stable by 24 

months (i.e., MCI-S; n = 86) or progressed to AD (i.e., MCI-P; n = 76). We chose to 

examine the ability of baseline measures to predict diagnosis after 24 months because 

predictions within this timeframe are clinically meaningful at the first evaluation of a 

patient. In addition, there is already evidence that structural MRI of patients with MCI may 

contain sufficient information to predict conversion to AD 2 years in advance (Whitwell et 

al.,2007).

2.3. Cognition and CSF measures

Table 1 presents baseline demographic and cognitive data, including the 70-point 

Alzheimer's Disease Assessment Scale-cognitive subscale, or ADAS-cog (Rosen et al., 

1984); the Clinical Dementia Rating-sum of boxes (Morris, 1993); and the Mini-Mental 

State Examination, or MMSE (Folstein et al., 1975). For discriminant classification 

analyses, we used the composite executive function (Gibbons et al., 2012) and memory 

factor scores (Crane et al., 2012) available on the ADNI website. These scores are the 

product of a factor analysis of ADNI memory and executive function tests. Clinical 
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diagnosis, MMSE, and CDR scores for participants at baseline and the month 24 visit are 

listed in Supplementary Table 1.

Standardized ADNI criteria were used to diagnose CN based on (1) a CDR of 0, (2) MMSE 

inclusively between 24 and 30, (3) no evidence of depression, and (4) no memory 

complaints. MCI was diagnosed based on (1) a CDR of 0.5, (2) an MMSE inclusive of 24 to 

30, (3) preserved activities of daily living, and (4) worse performance on the WMS-Revised 

Logical Memory II test using education-adjusted scores. Probable AD was diagnosed based 

on (1) a CDR of 0.5 or 1.0, 2) an MMSE inclusive of 20 to 26, and (3) having met other 

criteria defined by NINCD-ADRDA (McKhann et al., 1984).

CSF was collected by lumbar puncture and assayed for tau, p-tau181p, and Aβ1-42 as 

previously described (Shaw et al., 2007). For ApoE ε4 status, participants were 

dichotomously classified as having zero ApoE ε4 alleles (“Non-ApoE ε4”) versus one or 

two ApoE ε4 alleles (“ApoE ε4”).

2.4. MRI acquisition, pre-processing, and ICA

T1-weighted MPRAGE images of typically 1.25 × 1.25 × 1.2 mm were acquired on 1.5 -

Tesla MR imaging instruments using a standardized protocol (Jack et al., 2008). Images 

underwent standardized quality control inspection and system-specific correction for 

imaging artifacts at the Mayo Clinic. Adjustments included gradient non-linearity correction 

and intensity non-uniformity correction.

As summarized in Supplementary Fig. 1A, scans were preprocessed using the toolbox 

VBM8 (Eggert et al., 2012) (http://dbm.neuro.uni-jena.de/vbm/download/), an add-on to 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Briefly, this technique is an 

extension of the unified segmentation algorithm (Ashburner and Friston, 2005), a technique 

whereby bias correction, registration, and segmentation are done in one unified generative 

model. VBM8 utilizes a maximum a posteriori approach to remove noise and correct for 

partial volume estimation. Image registration is optimized by nonlinearly conforming a 

given ADNI brain image to a set of probabilistic tissue class maps in Montreal Neurological 

Institute (MNI) space using Diffeomorphic Anatomical Registration Through Exponentiated 

Lie Algebra, or DARTEL (Ashburner, 2007). Images were modulated to compensate for 

normalization to MNI space and were segmented into GM, white matter, and CSF. Images 

were inspected to ensure proper segmentation and removal of meninges and other non-brain 

structures. GM maps were smoothed with a 6-mm Gaussian kernel (Xu et al., 2009).

Next, we applied spatial ICA to all 320 smoothed GM maps (Calhoun et al., 2001) using the 

Infomax algorithm as applied in the SBM toolbox (http://www.nitrc.org/projects/gift), as 

summarized in Supplementary Fig. 1B (Xu et al., 2009). Based on previous component 

estimation analyses (Xu et al., 2009; Kapogiannis et al., 2013), 30 ICs were chosen as the 

number of GM covariance patterns that balanced reduced dimensionality through eigen 

decomposition while maximally retaining original source image variance. Exploratory 

analyses with 20 ICs resulted in poor spatial specificity for smaller, important structures 

such as the hippocampus, while 40 or 50 IC solutions produced fragmentary ICs that did not 

encompass larger parietal or prefrontal areas. Infomax ICA was conducted three times to 
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reliably estimate eigen decomposition. SBM ICA decomposes structural MRI data into 

subject loading coefficients (or loading scores) and component maps. Specifically, each GM 

map image was converted into a vector and was arrayed in a subject-by-image matrix of all 

GM maps. This matrix was then decomposed into a mixing matrix (expressing the 

relationship between the subjects and the 30 ICs) and a source matrix (expressing the 

relationship between the 30 ICs and the image voxels). Each row of the mixing matrix 

contained the loading coefficients or loading scores for one IC and expresses how this IC 

contributed to each of the subjects. Each column of the mixing matrix expressed how 

different subjects contributed to an individual IC. Conversely, the rows of the source matrix 

expressed how each IC contributed to each of the voxels, and its columns indicate how each 

voxel contributed to each of the ICs. Additional information on these matrices can be found 

in previous reports that used SBM ICA (Calhoun et al., 2006; Xu et al., 2009) and 

Supplementary Fig. 1B. In effect, a higher loading weight for a given IC strongly reflects 

higher GM volume (Calhoun et al., 2006; Xu et al., 2009). Source matrices were 

reconstructed into 3D z-scored images of ICs in the MNI coordinate system.

2.5. Statistics

All statistical analyses were conducted in SPSS 20.0 (Chicago, IL). Discriminant 

classification analysis was used to predict month-24 diagnostic classification for the 

following diagnostic pairs: (1) CN vs. MCI, (2) CN vs. AD, (3) MCI vs. AD, and (4) MCI-S 

vs. MCI-P (Supplementary Fig. 1C). We did not use logistic regression because it requires 

larger sample sizes per independent variable entered to maintain model reliability (Spicer, 

2005). The accuracy (i.e., percentage of subject pairs that were correctly classified), 

sensitivity, and specificity with respective confidence intervals were calculated for each 

classification model. Receiver operating characteristic (ROC) curves plotting sensitivity 

against 1-specificity were created for each classifier. The area under the curve (AUC) was 

used as a measure of classification accuracy. The goal was to identify the model that had the 

best accuracy for a given diagnostic classification. To examine if a more complex model had 

significantly higher accuracy than a less complex one, an F-test change statistic was 

computed by comparing derived F-values. This process was iteratively repeated from the 

most complex to least complex models.

We performed classifier analyses in an iterative manner, examining increasingly complex 

models. At each one of these iterations, all variables were entered in a single step, so that all 

canonical discriminant functions were included in the composite classifier. The least 

complex model included three nuisance variables (age, sex, and education), followed by 

successively adding the 30 ICs, then adding the two cognitive factors, then adding CSF 

biomarkers, and finally adding ApoE ε4 status for the most complex model. Age, sex, and 

education were always included because they are standard nuisance variables in several 

classifier articles (e.g., Shaffer et al., 2013). CSF biomarkers were not entered 

simultaneously to avoid multicollinearity. The CSF biomarker that best improved model 

accuracy was kept in the model.

In addition, we performed stepwise analyses to determine if smaller sets of variables 

produce classification accuracies comparable to more complex models. For stepwise 
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classifier analysis, independent variables (the three nuisance variables, ICs, cognitive 

factors, etc.) were entered in a stepwise fashion, based on Wilks’ lamda and using F value of 

3.84 as criterion for entry and F value of 2.71 as criterion for removal in subsequent steps.

All models were cross-validated using a “leave-10-out” approach. To determine which of 

the 30 ICs contributed more to a given diagnostic classification, a multivariate analysis of 

covariance (MANCOVA) was conducted for each diagnostic pair (e.g., CN vs. AD), in 

which diagnosis at 24 months was the independent variable, the loading factor weights of 

the 30 ICs across participants were the dependent variables, and age, sex, and years of 

education were covariates. Then, to assess the biological plausibility and external validity of 

these ICs against established measures reflecting AD pathogenesis, we computed their two-

tailed Pearson's correlations with CSF biomarkers and cognitive factors. Again, the 30 ICs 

were derived from all subjects regardless of diagnostic outcome, in order to minimize bias.

3. Results

3.1. ICA results

The eigenvalues of the 30 ICs, derived from 320 brains and agnostic to baseline or 24-month 

diagnosis, accounted for 95.4% of total source variance. The variance inflation factor (VIF) 

for all ICs within all diagnostic classification models did not exceed 3.4, confirming that ICs 

are not multicollinear. Supplementary Fig. 2 shows and describes all 30 ICs.

Fig. 1 and Supplementary Fig. 3, respectively, illustrate the ICs that consistently had the 

largest F-values in the MANCOVAs, and therefore contributed the most to the various 

classification analyses. We named these ICs conventionally after the regions primarily 

included, as follows: (1) IC 10 (“Medial temporal lobe, or MTL IC”) comprised bilateral 

hippocampus, medial temporal cortex, and immediately proximal inferior temporal cortex; 

(2) IC 14 (“middle frontal gyrus, or MFG IC”) comprised right middle frontal gyrus and 

superior temporal sulcus; (3) IC 20 (“temporoparietal junction, or TPJ IC”) comprised 

bilateral TPJ; (4) IC 25 (“calcarine IC”) comprised bilateral calcarine sulcus, lingual gyrus, 

and precuneus; (5) IC 26 (“inferior temporal-occipital IC”) comprised parts of inferior 

temporal, fusiform, posterior occipital, and inferior parietal gyri; (6) IC 30 (“anterior 

cerebellar IC”) comprised anterior cerebellum, but also superior occipital and parietal gyri; 

(7) IC 22 (“Right anterior temporal lobe” IC) comprised most of the right anterior temporal 

lobe; and (8) IC 27 (“posteromedial cortex IC”) comprised precuneus and posterior 

cingulate gyrus.

3.2. CN vs. MCI

Table 2 and Supplementary Fig. 4 depict classifier model performance and ROC curves for 

the CN vs. MCI discriminant classification. Based on the MANCOVA for CN vs. MCI, the 

three most significant ICs in all models were the MTL IC [F(1,172) = 7.595, P = 0.006], 

medial parietal-occipital IC [F(1,172) = 11.538, P < 0.001], and anterior cerebellar IC 

[F(1,172) = 10.907, P < 0.001] (Supplementary Fig. 3). The best accuracy achieved was 

84.7% for a model that included demographic covariates, the two cognitive factors, the 30 

ICs, p-tau181p, and ApoE ε4 status. Based on the F-test change statistic, however, the 
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Covariates + Cognition + MRI + CSF + ApoE model did not perform better than the 

Covariates + Cognition + MRI + CSF model [F(1,171) = .804, P = .371]. The Covariates + 

Cognition + MRI + CSF model also did not achieve better accuracy compared with the 

Covariates + Cognition + MRI model [F(1,172) = 1.298, P = 0.256]. The Covariates + 

Cognition + MRI model was a more accurate classifier than the Covariates + Cognition or 

Covariates + MRI models [F(1,173) = 12.365, P < 0.001]. The Covariates + MRI model 

performed worse than the Covariates + Cognition model [F(1,174) = 33.771, P < 0.001]. 

The model selected by the stepwise method had 8.1% less accuracy relative to the 

Covariates + Cognition + MRI + CSF + ApoE iterative model. The stepwise model included 

(1) the memory factor [F(1,167) = 59.095, P < 0.001]; (2) the right anterior temporal lobe IC 

[F(2,166) = 35.709, P < 0.001]; (3) the posteromedial cortex IC [F(3,165) = 26.993, P < 

0.001]; (4) CSF tau [F(4,164) = 21.789, P < 0.001]; (5) IC13, an IC primarily encompassing 

inferior frontal operculum and lateral temporal regions [F(5,163) = 18.835, P < 0.001]; and 

(6) IC9, an IC encompassing dorsal prefrontal cortex and middle cingulate cortex [F(6, 162) 

= 16.888, P < 0.001].

3.3. CN vs. AD

Classifier model performance and ROCs for CN vs. AD are depicted in Table 3 and 

Supplementary Fig. 5. Based on the MANCOVA for CN vs. AD, the three most significant 

ICs in all models were the MTL IC [F(1,230) = 65.643, P < 0.001], MFG IC (F(1,230) = 

51,712, P < 0.001), and inferior temporal-occipital IC [F(1,230) = 34.564, P < 0.001] 

(Supplementary Fig. 3). The highest accuracy iterative model achieved 94.8% accuracy and 

included demographic covariates, the two cognitive factors, the 30 ICs, and p-tau181p. Based 

on the F-value change statistic, this Covariates + Cognition + MRI + CSF model did not 

have a better fit than the Covariates + Cognition + MRI model [F(1,230) = 3.333, P = 

0.069]. The Covariates + Cognition + MRI model achieved better accuracy than the 

Covariates + Cognition and Covariates + MRI models [F(1,231) = 17.531, P < 0.001]. The 

Covariates + MRI model was a less accurate classifier than the Covariates + Cognition 

model [F(1,233) = 35.883, P < 0.001]. The model selected by the stepwise method had 3.1% 

lower accuracy relative to the highest accuracy iterative model and included (1) the memory 

factor [F(1,228) = 319.479, P < 0.001]; (2) ApoE ε4 status [F(1,227) = 82.019, P < 0.001]; 

(3) the MTL IC [F(3,226) = 124.117, P < 0.001]; (4) the calcarine IC [F(4,225) = 96.279, P 

< 0.001]; and IC17, an IC primarily comprising the striatum, posterior cerebellum, and to a 

lesser extent ventral PFC [F(5,224) = 78.893, P < 0.001].

3.4. MCI vs. AD

Classifier model performance for MCI vs. AD and ROC curves are depicted in Table 4 and 

Supplementary Fig. 6. Based on the MANCOVA for MCI vs. AD, the three most predictive 

ICs in all models were the MTL IC [F(1,220) = 18.227, P < 0.001], MFG IC [F(1,220) = 

22.955, P < 0.001], and inferior temporal-occipital IC [F(1,220) = 25.898, P < 0.001] 

(Supplementary Fig. 3). The highest accuracy iterative model achieved a classification 

accuracy of 83.1% and included demographic covariates, the two cognitive factors, 30 ICs, 

and tau. Based on F-test change statistics, however, this Covariates + Cognition + MRI + 

CSF model did not have a better fit than the Covariates + Cognition + MRI model [F(1,220) 

= 1.381, P = 0.241]. The Covariates + Cognition + MRI model performed better than the 
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Covariates + MRI and Covariates + Cognition models [F(1,221) = 6.492, P = 0.012]. The 

Covariates + MRI model achieved lower accuracy than the Covariates + Cognition model 

[F(1,222) = 38.642, P < 0.001]. The model selected by the stepwise method had 5.3% lower 

accuracy relative to the highest accuracy iterative model and included (1) the memory factor 

[F(1,217) = 75.689, P < 0.001]; 2) the TPJ IC [F(2,216) = 47.163, P < 0.001]; (3) the MTL 

IC [F(3,215) = 34.576, P < 0.001]; and (4) the executive function factor [F(4,214) = 27.268, 

P < 0.001].

3.5. MCI-S vs. MCI-P

Classifier model performances for MCI-S vs. MCI-P are depicted in Table 5, with ROCs in 

Supplementary Fig. 7. Based on the MANCOVA for MCI-S vs. MCI-P, the three most 

predictive ICs in all models were the MTL IC [F(1,156) = 22.703, P < 0.001], TPJ IC 

[F(1,156) = 11.621, P < 0001], and inferior temporal-occipital IC [F(1,156) = 16.137, P < 

0.001] (Supplementary Fig. 3). The highest accuracy model achieved 80.3% accuracy and 

included demographic covariates, the two cognitive factors, the 30 ICs, and p-tau181p. Based 

on the F-change statistic, this Covariates + Cognition + MRI + CSF model did not perform 

better than the Covariate + Cognition + MRI model [F(1,156) = 2.275, P = 0.133]. The 

Covariates + Cognition + MRI model was a more accurate classifier than the Covariates + 

Cognition or Covariates + MRI models [F(1,157) = 4.670, P = 0.032]. The Covariate + MRI 

model performed better than the Covariate + Cognition model [F(1,158) = 43.658, P < 

0.001]. The model selected by the stepwise method had 4.8% less accuracy than the most 

accurate iterative model. It included (1) the memory factor [F(1,154) = 35.632, P < 0.001]; 

(2) the TPJ IC [F(2,153) = 24.210, P < 0.001] and the MTL IC [F(3,152) = 19.070, P < 

0.001].

3.6. ICs, CSF biomarkers and cognitive factors

We computed correlations between ICs 10, 20, 22, 26, and 27, the ICs that were most 

consistently featured in the various classification analyses (Fig. 1 and Supplementary Fig. 3) 

with the cognitive factors and CSF biomarkers.

Supplementary Table 2 shows that for all ICs except the posteromedial parietal IC, higher 

factor loadings representing more gray matter predicted, to varying degrees, higher memory 

and executive function scores, higher Aβ1-42, and lower tau and p-tau181p.

4. Discussion

In this report, comparable to Shaffer et al. (2013), ICA was used solely as a data-reduction 

technique for baseline structural MR images from ADNI. ICs were generated and combined 

with cognitive performance measures and other indices in classifier models to predict 

diagnosis in the CN-MCI-AD spectrum after 24 months. One key conclusion is how 

robustly cognition predicted diagnostic classifications. Gomar and colleagues (2011) 

recently showed that cognitive measures were better predictors of MCI conversion to AD 

than most biomarkers. However, we advise caution because the cognitive performance 

measures we used were derived, in part, from the same ADNI participants to whom we 

applied diagnostic classification. While other reports have also used these factors in 
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classifiers (Crane et al., 2012; Habeck et al., 2012; Nir et al., 2013), we would like to 

caution readers to this source of potential bias and the possibility of inflated classification 

accuracy based on using these cognitive factors.

Nonetheless, our findings suggest that there is added accuracy gained by incorporating MRI 

metrics to predict diagnostic classification. Specifically, models that incorporated covariates, 

ICs, and cognition had significantly higher accuracies for each diagnostic classification than 

models based solely on cognition or MRI. This increased accuracy was highest in 

distinguishing CN vs. MCI (4.9%) and CN vs. AD (6.9%). Interestingly, for each 

dichotomous diagnostic classification, the ICs that contributed most to the classification 

significantly reflected patterns of atrophy recognized by prior research (McDonald et al., 

2009; Risacher et al., 2010). In addition, these ICs were correlated with cognitive factors 

and AD biomarkers, supporting their biological plausibility and external validity as useful 

indices of AD atrophy. CSF biomarkers or ApoE ε4 status appeared to offer no significant 

additive value for all diagnostic classifications. Results will be discussed separately for each 

diagnostic dichotomy.

4.1. CN vs. MCI

A variety of techniques have been used to derive MRI biomarkers for classification between 

CN and MCI or CN and MCI-P (Chincarini et al., 2011; Cuingnet et al., 2011; Hinrichs et 

al., 2011; Wolz et al., 2011; Chu et al., 2012; Liu et al., 2012). Liu and colleagues (Liu et al., 

2012) have to date achieved the best CN vs. MCI prognostic accuracy (87.85%) using a 

random patch-based ensemble classifier. However, it is unclear if they made diagnostic 

predictions for baseline diagnoses or a subsequent time point, where baseline prediction 

would yield higher accuracy. In comparison, we achieved a poorer accuracy of 74.3% based 

on ICs alone and an accuracy of 83.3% by combining cognitive scores and ICs. CSF 

biomarkers and ApoE ε4 status appear to have little to no added statistical utility in 

improving the CN vs. MCI classifier, validating previous reports (Vemuri et al., 2009; 

Walhovd et al., 2010).

In our analysis, the ICs that contributed most to this classification were the MTL IC, right 

anterior temporal lobe IC, posteromedial cortex IC, and calcarine IC. Recent studies using 

ADNI data (McDonald et al., 2009; Risacher et al., 2010) have similarly indicated that 

atrophy in MCI is found in temporal and parietal-occipital regions. It is important to note 

that these ICs correspond to the distribution of tau pathology and neurodegeneration in early 

AD, which first target allocortical MTL regions, followed by multimodal temporal and 

posteromedial parietal and occipital cortical areas (Arnold et al., 1991; Braak and Braak, 

1991).

4.2. CN vs. AD

A variety of methodologies have been applied to distinguish between participants who 

appear to be normally aging versus those with AD (Chincarini et al., 2011; Cuingnet et al., 

2011; Wolz et al., 2011; Chu et al., 2012; Liu et al., 2012, 2014; Yuan et al., 2012). Thus 

far, using MRI, Chincarini and colleagues (2011) have achieved the best results (AUC = 

0.97) using a random forest classifier and machine learning approach among a priori 
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designated areas in MTL. Wee and colleagues (2013) achieve a comparable result 

integrating cortical volume, thickness, and correlative matrices of morphological features. 

Our AUC was similar to both studies (AUC = 0.935). Our ICA method achieved better 

accuracy than many ROI or dimensionality-reducing techniques, as surveyed elsewhere 

(Cuingnet et al., 2011). The iterative model including MRI and cognitive factors performed 

comparably (AUC = 0.980) to the Chincarini MRI model and similar multimodal feature 

sets (Zhang and Shen, 2012). It should be noted that while the most accurate CN vs. AD 

model included CSF biomarkers, the gain in accuracy (0.5%) was non-significant. Including 

ApoE ε4 status in a classifier model similarly produces a non-significant increase of 1.4%.

The ICs that contributed most to this classification were the MTL, calcarine, MFG, and 

inferior temporal-occipital ICs. The overall pattern is highly similar to one identified based 

on the cortical thickness of select ROIs (Wolz et al., 2011) and reflects the diffuse atrophy 

typical of AD (McDonald et al., 2009; Risacher et al., 2010) and the progression of tau 

neuropathology (Arnold et al., 1991; Braak and Braak, 1991).

4.3. MCI vs. AD and MCI-S vs. MCI-P

In distinguishing MCI-S versus MCI-P, the ICA model achieved better accuracy (79.6%) 

than other techniques (Aksu et al., 2011; Chincarini et al., 2011; Cuingnet et al., 2011; 

Gomar et al., 2011; Hinrichs et al., 2011; Chu et al., 2012; Liu et al., 2013b; Shaffer et al., 

2013). Shaffer and colleagues (2013) also used baseline structural ICA as a data-reduction 

tool to perform diagnostic classification for MCI-S vs. MCI-P. They derived four ICs and 

achieved an AUC of 0.741, which was not significantly higher than the AUC of just the 

covariates, whereas models incorporating ICs from FDG-PET images achieved an AUC of 

0.874. By contrast, the AUC we derive for 30 ICs was 0.853 and did outperform models 

including covariates and covariates plus cognitive factors. Furthermore, the addition of CSF 

and ApoE ε4 status did not significantly increase accuracy. Critically, the AUCs from our 

study and in Shaffer et al. are comparable, suggesting that our classifier models using ICs 

derived from all subjects regardless of diagnosis were not biased.

To the best of our knowledge, for MCI-S vs. MCI-P, the accuracy we achieved with MRI 

ICA is excellent and on par with the accuracy (81.5%) reported by Misra and co-workers 

(Misra et al., 2009), while our AUC (0.853) is higher. Wee and colleagues (Wee et al., 2013) 

also achieved a high degree of accuracy when predicting MCI conversion 3 years after 

baseline (75.05%). Thus, presently, ICA represents an optimal MR data-reduction technique 

for classifying MCI-S and MCI-P, but not other diagnostic classifications. The Covariates + 

Cognition + MRI model was again the model with the highest significant F-value. While 

including CSF or ApoE ε4 status, respectively, increased accuracy by 0.6% or 2.4%, these 

increases were non-significant. For MCI vs. AD, including CSF biomarkers and ApoE ε4 

status again led to non-significant increases in accuracy, suggesting that CSF biomarkers 

and ApoE genotyping may have little additive prognostic value.

In our analysis, the ICs that contributed most to the MCI vs. AD classification were the 

MTL, MFG, and inferior temporal-occipital ICs. For MCI-S vs. MCI-P, the most significant 

ICs included MTL, TPJ, and inferior temporal-occipital ICs. These findings are consistent 

with the fact that with transition to clinical AD, tangle pathology (Arnold et al., 1991; Braak 
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and Braak, 1991) and atrophy spread to frontal regions and the superior temporal sulcus 

(Whitwell et al., 2007; McDonald et al., 2009; Risacher et al., 2010).

4.4. Limitations and conclusions

Patterns of GM covariance predicted future classification in the CN-MCI-AD diagnostic 

spectrum, presumably by reflecting patterns of atrophy already established 2 years in 

advance of diagnosis. Different ICs emerged along the AD spectrum. Specifically, atrophy 

in the MTL was predictive across the spectrum. Preserved anterior temporal and 

posteromedial areas were predictive of future CN status, while TPJ atrophy was predictive 

for MCI participants who convert to clinical AD. Importantly, these temporal and parietal 

ICs were associated with neuropsychological performance and CSF biomarkers, confirming 

similar associations with regional GM volumetric measures seen in the literature. Our MRI 

ICA data-reduction approach achieved excellent accuracy in distinguishing MCI-S and 

MCI-P. When combined with neuropsychological performance, our other diagnostic 

classifiers utilizing ICA perform less well or comparably to other ADNI multimodal 

classifiers. One limitation is that the accuracy of some of the discriminant classifiers should 

be interpreted with caution. Factors such as the number of ICs selected, the sample size of 

groups, and clinical heterogeneity can lead to variations in model fit. Future ICA studies in 

larger datasets should confirm our findings, in particular regarding MCI conversion. It is 

also important to again highlight that the ADNI memory and executive function factors were 

derived from some, but not all, of the same participants to whose data we applied 

discriminant classification. Thus, classifier model accuracies may be inflated. Another 

limitation is that ICA cannot currently be translated into a clinical setting for diagnostic 

classification. Nonetheless, advances in clinical grade software could automate this process 

and classify participants based on an exemplar dataset. While the diagnostic utility of CSF 

biomarkers and ApoE ε4 status should not be discounted, they appear to offer little additive 

benefit compared with MRI biomarkers (Vemuri et al., 2009; Walhovd et al., 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Stepwise-selected representative ICs
Stepwise discriminant analysis consistently selected 5 independent components (ICs) as the 

most significant GM covariance patterns among the different group classifications (e.g., CN 

vs. AD). The ICs were IC10 (“medial temporal lobe”), IC20 (“tempoparietal junction”), 

IC22 (“right anterior temporal lobe”), IC25 (“calcarine”), and IC27 (“posteromedial 

cortex”). Diagnostic labels for each group classifier are listed with a given IC for orientation 

purposes. AD = Alzheimer's Disease; CN = cognitively normal; IC = Independent 

Component; L = Left; MCI = Mild Cognitive Impairment. Brains are oriented in 

neurological space.
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Table 2

CN and MCI Classification Results for Iterative Models and the Stepwise Model

Model AUC + CI ACC (%) Sensitivity (%) Specificity (%)

Covariates .604 (.521-.688) 60.1 68.1 53.0

Covariates + Cognition .832 (.771-.893) 78.4 73.1 83.1

Covariates + MRI .819 (.758-.880) 74.3 68.8 79.3

Covariates + Cognition + MRI .896 (.851-.941) 83.3 76.7 89.1

Covariates + Cognition + MRI + CSF .901 (.857-.945) 83.0 76.7 88.5

Covariates + Cognition + MRI + CSF + ApoE .908 (.867-.950) 84.7 78.0 90.7

Stepwise Model .868 (.817-.918) 76.6 67.6 84.7

ACC = accuracy; ApoE = Apolipoprotein ε4 status; AUC = area under the curve; CI = confidence interval (95%). Covariates included age, sex, and 
education. Iterative models used the p-tau181p CSF biomarker. The bold in the upper part of the table denotes the model that had the highest 

classification accuracy and a significant increase in the F-value relative to less complex models.
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Table 3

CN and AD Classification Results for Iterative Models and the Stepwise Model

Model AUC + CI ACC (%) Sensitivity (%) Specificity (%)

Covariates .556 (.481-.632) 60.2 100 0

Covariates + Cognition .958 (.930-.987) 93.0 94.5 91.8

Covariates + MRI .935 (.904-.966) 87.4 91.7 82.5

Covariates + Cognition + MRI .980 (.965-.995) 94.3 94.9 94.0

Covariates + Cognition + MRI + CSF .981 (.967-.995) 94.8 94.9 94.6

Covariates + Cognition + MRI + CSF + ApoE .983 (.971-.995) 93.5 95.7 90.2

Stepwise Model .972 (.953-.992) 91.7 92.0 90.7

ACC = accuracy; ApoE = apolipoprotein ε4 status; AUC = area under the curve; CI = confidence interval (95%). Covariates included age, sex, and 
education. Iterative models used the p-tau181p CSF biomarker. The bold font in the upper part of the table denotes the model that had the highest 

classification accuracy and a significant increase in the F-value relative to less complex models.
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Table 4

MCI and AD Classification Results for Iterative Models and the Stepwise Model

Model AUC + CI ACC (%) Sensitivity (%) Specificity (%)

Covariates .471 (.392-.549) 62.7 100.0 0

Covariates + Cognition .833 (.781-.886) 78.3 86.5 64.5

Covariates + MRI .843 (.792-.894) 77.6 84.7 65.7

Covariates + Cognition + MRI .886 (.843-.929) 81.4 86.1 73.0

Covariates + Cognition + MRI + CSF .885 (.842-.928) 83.1 89.1 73.0

Covariates + Cognition + MRI + CSF + ApoE .867 (.820-.913) 82.2 87.6 73.0

Stepwise Model .863 (.817-.910) 77.8 84.3 66.9

ACC = accuracy; ApoE = apolipoprotein ε4 status; AUC = area under the curve; CI = confidence interval (95%). Covariates included age, sex, and 
education. Iterative models used the p-tau181p CSF biomarker. The bold font in the upper part of the table denotes the model that had the highest 

classification accuracy and a significant increase in the F-value relative to less complex models.
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Table 5

MCI-S and MCI-P Classification Results for Iterative Models and a Stepwise Model

Model AUC + CI ACC (%) Sensitivity (%) Specificity (%)

Covariates .479 (.390-.569) 53.5 25.2 78.4

Covariates + Cognition .769 (.697-.841) 73.3 74.2 72.5

Covariates + MRI .853 (.794-.912) 79.6 75.6 83.2

Covariates + Cognition + MRI .874 (.820-.928) 80.0 78.3 81.5

Covariates + Cognition + MRI + CSF .878 (.825-.931) 80.3 81.7 79.0

Covariates + Cognition + MRI + CSF + ApoE .855 (.798-.913) 79.9 80.3 79.6

Stepwise Model .828 (.764-.892) 75.5 74.8 76.0

ACC = accuracy; ApoE = apolipoprotein ε4 status; AUC = area under the curve; CI = confidence interval (95%). Covariates included age, sex, and 
education. Iterative models used the p-tau181p CSF biomarker. The bold font in the upper part of the table denotes the model that had the highest 

classification accuracy and a significant increase in the F-value relative to less complex models.
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