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We propose a novel framework for the automatic propagation of a set of manually labeled brain atlases to a
diverse set of images of a population of subjects. A manifold is learned from a coordinate system embedding
that allows the identification of neighborhoods which contain images that are similar based on a chosen
criterion. Within the new coordinate system, the initial set of atlases is propagated to all images through a
succession of multi-atlas segmentation steps. This breaks the problem of registering images that are very
“dissimilar” down into a problem of registering a series of images that are “similar”. At the same time, it
allows the potentially large deformation between the images to be modeled as a sequence of several smaller
deformations. We applied the proposed method to an exemplar region centered around the hippocampus
from a set of 30 atlases based on images from young healthy subjects and a dataset of 796 images from
elderly dementia patients and age-matched controls enrolled in the Alzheimer's Disease Neuroimaging
Initiative (ADNI). We demonstrate an increasing gain in accuracy of the new method, compared to standard
multi-atlas segmentation, with increasing distance between the target image and the initial set of atlases in
the coordinate embedding, i.e., with a greater difference between atlas and image. For the segmentation of
the hippocampus on 182 images for which a manual segmentation is available, we achieved an average
overlap (Dice coefficient) of 0.85 with the manual reference.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The automated extraction of features from magnetic resonance
images (MRI) of the brain is an increasingly important step in
neuroimaging. Since the brain anatomy varies significantly across
subjects and can undergo significant change, either during aging or
through disease progression, finding an appropriate way of dealing
with anatomical differences during feature extraction has gained
increasing attention in recent years.

Among the most popular methods for dealing with this variability
are atlas-based approaches. These approaches assume that the atlases
can encode the anatomical variability either in a probabilistic or
statistical fashion. When building representative atlases, it is
important to register all images to a template that is unbiased
towards any particular subgroup of the population (Thompson et al.,
2000). Two approaches using the large deformation diffeomorphic
amework Programme by the
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setting for shape averaging and atlas construction have been proposed
by Avants and Gee (2004) and Joshi et al. (2004), respectively.
Template-free methods for co-registering images form an established
framework for spatial image normalization (Studholme and Cardenas,
2004; Avants and Gee, 2004; Zöllei et al., 2005; Lorenzen et al., 2006;
Bhatia et al., 2007). In a departure from approaches that seek a single
representative average atlas, two more recent methods describe ways
of identifying the modes of different populations in an image dataset
(Blezek and Miller, 2007; Sabuncu et al., 2008). To design variable
atlases dependent on subject information, a variety of approaches
have been applied in recent years to the problem of characterizing
anatomical changes in brain shape over time and during disease
progression. Davis et al. (2007) describe a method for population
shape regression in which kernel regression is adapted to the
manifold of diffeomorphisms and is used to obtain an age-dependent
atlas. Ericsson et al. (2008) propose a method for the construction of a
patient-specific atlas where different average brain atlases are built in
a small deformation setting according to meta-information such as
sex, age, or clinical factors.

Methods for extracting features or biomarkers from MR brain
image data often begin by automatically segmenting regions of
interest. A very popular segmentation technique is to use label
propagation, which transforms labels from an atlas image to an
unseen target image by bringing both images into alignment. Atlases
are typically, but not necessarily, manually labeled. Early work using
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Table 1
Information relating to the subjects whose images were used in this study.

N M/F Age MMSE

Normal 222 106/216 76.00±5.08 [60–90] 29.11±0.99 [25–30]
MCI 392 138/254 74.68±7.39 [55–90] 27.02±1.79 [23–30]
AD 182 91/91 75.84±7.63 [55–91] 23.35±2.00 [18–27]
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this approach was proposed by Bajcsy et al. (1983) as well as more
recently by Gee et al. (1993) and Collins et al. (1995). The accuracy of
label propagation strongly depends on the accuracy of the underlying
image alignment. To overcome the reliance on a single segmentation,
Warfield et al. (2004) proposed STAPLE, a method that computes for a
collection of segmentations a probabilistic estimate of the true
segmentation. Rohlfing et al. (2004) demonstrated the improved
robustness and accuracy of a multi-classifier framework where the
labels propagated from multiple atlases are combined in a decision
fusion step to obtain a final segmentation of the target image. Label
propagation in combination with decision fusion was successfully
used to segment a large number of structures in brain MR images by
Heckemann et al. (2006).

Due to the wide range of anatomical variation, the selection of
atlases becomes an important issue in multi-atlas segmentation. The
selection of suitable atlases for a given target helps to ensure that the
atlas-target registrations and the subsequent segmentation are as
accurate as possible. Wu et al. (2007) describe different methods for
improving segmentation results in the single atlas case by incorpo-
rating atlas selection. Aljabar et al. (2009) investigate different
similarity measures for optimal atlas selection during multi-atlas
segmentation. van Rikxoort et al. (2008) propose a method where
atlas combination is carried out separately in different sub-windows
of an image until a convergence criterion is met. These approaches
show that it is meaningful to select suitable atlases for each target
image individually. Although an increasing number of MR brain
images are available, the generation of high-quality manual atlases is
a labor-intensive and expensive task (see, e.g., Hammers et al., 2003).
This means that atlases are often relatively limited in number and, in
most cases, restricted to a particular population (e.g., young, healthy
subjects). This can limit the applicability of the atlas database even if a
selection approach is used. To overcome this, Tang et al. (2009) seek
to produce a variety of atlas images by utilizing a PCA model of
deformations learned from transformations between a single tem-
plate image and training images. Potential atlases are generated by
transforming the initial template with a number of transformations
sampled from the model. The assumption is that, by finding a suitable
atlas for an unseen image, a fast and accurate registration to this
template may be readily obtained. Test data with a greater level of
variation than the training data would, however, represent a
significant challenge to this approach. Additionally, the use of a
highly variable training dataset may lead to an unrepresentative PCA
model as the likelihood of registration errors between the diverse
images and the single template is increased. This restriction makes
this approach only applicable in cases were a good registration from
all training images to the single initial template can be easily obtained.

The approach we follow in this work aims to propagate a relatively
small number of atlases through to a large and diverse set of MR brain
images exhibiting a significant amount of anatomical variability. The
initial atlases may only represent a specific subgroup of target image
population, and the method is designed to address this challenge. As
previously shown, atlas-based segmentation benefits from the
selection of atlases similar to the target image (Wu et al., 2007;
Aljabar et al., 2009). We propose a framework where this is ensured
by first embedding all images in a low-dimensional coordinate system
that provides a distance metric between images and allows
neighborhoods of images to be identified. In the manifold learned
from coordinate system embedding, a propagation framework can be
identified and labeled atlases can be propagated in a stepwise fashion,
starting with the initial atlases, until the whole population is
segmented. Each image is segmented using atlases that are within
its neighborhood, meaning that deformations between dissimilar
images are broken down to several small deformations between
comparatively similar images and registration errors are reduced. To
further minimize an accumulation of registration errors, an intensity-
based refinement of the segmentation is done after each label
propagation step. Once segmented, an image can in turn be used as
an atlas in subsequent segmentation steps. After all images in the
population are segmented, they represent a large atlas database from
which suitable subsets can be selected for the segmentation of unseen
images. The coordinate system into which the images are embedded
is obtained by applying a spectral analysis step (Chung, 1997) to their
pairwise similarities. As labeled atlases are propagated and fused for a
particular target image, the information they provide is combined
with a model based on the target image intensities to generate the
final segmentation (van der Lijn et al., 2008; Wolz et al., 2009).

Prior work where automatically labeled brain images were used to
label unseen images did not result in an improvement of segmenta-
tion accuracy over direct multi-atlas propagation. In Heckemann et al.
(2006), when multiple relatively homogenous atlases were propa-
gated to randomly selected intermediate images that were used as
single atlases for the segmentation of unseen images, the resulting
average Dice overlaps with manual delineations were 0.80, compared
with 0.84 for direct multi-atlas propagation and fusion. In a second
experiment, single atlases were propagated to randomly selected
intermediate subjects that were then further used for multi-atlas
segmentation, resulting in Dice overlaps with manual delineations of
0.78 at best. In this article, however, we use multi-atlas segmentation
to systematically label intermediate atlases that are then used for
multi-atlas segmentation of target images that are selected according
to their similarity with the previously labeled atlas images. Compared
to previous work, we are dealing with a very diverse set of images. In
such a scenario, the gain from only registering similar images is more
likely to outweigh the accumulation of registration errors.

Our initial set of atlases consists of 30 MR images from young and
healthy subjects together with manual label maps defining 83
anatomical structures of interest. We used the proposed method to
propagate this initial set of atlases to a dataset of 796 MR images
acquired from patients with Alzheimer's disease (AD) and mild
cognitive impairment (MCI) as well as age-matched controls from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(Table 1). We show that this approach provides more accurate
segmentations due, at least in part, to the associated reductions in
inter-subject registration error.

Materials and methods

Subjects

Images were obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (www.loni.ucla.edu/ADNI) (Mueller et al.,
2005). In the ADNI study, brain MR images are acquired at baseline
and regular intervals from approximately 200 cognitively normal
older subjects, 400 subjects with MCI, and 200 subjects with early AD.
A more detailed description of the ADNI study is given in Appendix A.

In this work, we used the 796 available baseline images. An
overview on the subjects is given in Table 1. For each subject group,
the number of subjects, themale/female distribution, the average age,
and the average result of the mini-mental state examination (MMSE)
(Folstein et al., 1975) are shown.

Image acquisition was carried out at multiple sites based on a
standardized MRI protocol (Jack et al., 2008) using 1.5T scanners
manufactured by General Electric Healthcare (GE), Siemens Medical
Solutions, and Philips Medical Systems. Out of two available 1.5T

http://www.loni.ucla.edu/ADNI


Fig. 1. Hippocampus outline on a brain atlas.
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T1-weighted MR images based on a 3D MPRAGE sequence, we used
the image that has been designated as “best” by the ADNI quality
assurance team (Jack et al., 2008). Acquisition parameters on the
SIEMENS scanner (parameters for other manufacturers differ
slightly) are echo time (TE) of 3.924 ms, repetition time (TR) of
8.916 ms, inversion time (TI) of 1000 ms, flip angle 8°, to obtain 166
slices of 1.2-mm thickness with a 256×256 matrix.

All images were preprocessed by the ADNI consortium using the
following pipeline:

1. GradWarp: a system-specific correction of image geometry distor-
tion due to gradient non-linearity (Jovicich et al., 2006).

2. B1 non-uniformity correction: correction for image intensity non-
uniformity (Jack et al., 2008).

3. N3: a histogram peak sharpening algorithm for bias field correction
(Sled et al., 1998).

Since the Philips systems used in the study were equipped with B1
correction and their gradient systems tend to be linear (Jack et al.,
2008), preprocessing steps 1 and 2 were applied by ADNI only to
images acquired with GE and Siemens scanners.

For a subset of 182 of the 796 images, a manual delineation for the
hippocampus was provided by the ADNI consortium.

Atlases

The initial set of manually labeled atlases used in this work consists
of 30MR images acquired fromyoung healthy subjects (age range, 20–
54; median age, 30.5 years). The T1-weighted MR images were
acquired with a GE MR scanner using an inversion recovery-prepared
fast spoiled gradient recall sequence with the following parameters:
TE/TR 4.2 ms (fat and water in phase)/15.5 ms, time of inversion (TI)
450 ms, flip angle 20°, to obtain 124 slices of 1.5-mm thickness with a
field of view of 18×24 cm with a 192×256 image matrix.

This set of atlases was chosen because manual labels maps for 83
anatomical structures were available. These have been shown to be
useful for many neurological tasks (Hammers et al., 2003; Gousias et
al., 2008; Heckemann et al., 2008)3 and could be used in extensions of
the present work. Since no manual segmentations based on this
protocol exist for the ADNI images used for evaluation in thiswork, the
definition of the hippocampus in the initial atlas was changed to make
it consistent with manual hippocampus label maps provided by ADNI.
An example of the delineation of the hippocampus is given in Fig. 1.

Overview of the method

To propagate an initial set of atlases through a dataset of images
with a high level of inter-subject variance, a manifold representation
of the dataset is learned where images within a local neighborhood
are similar to each other. The manifold is represented by a coordinate
3 www.brain-development.org.
embedding of all images. This embedding is obtained by applying a
spectral analysis step (Chung, 1997) to the complete graph in which
each vertex represents an image and all pairwise similarities between
images are used to define the edge weights in the graph. Pairwise
similarities can be measured as the intensity similarity between the
images or the amount of deformation between the images or as a
combination of the two.

In successive steps, atlases are propagated within the newly
defined coordinate system. In the first step, the initial set of atlases are
propagated to a number of images in their local neighborhood and
used to label them. Images labeled in this way become atlases
themselves and are, in subsequent steps, further propagated through-
out the whole dataset. In this way, each image is labeled using a
number of atlases in its close vicinity, which has the benefit of
decreasing registration error. An overview on the segmentation
process with the LEAP (Learning Embeddings for Atlas Propagation)
framework is depicted in Fig. 2.

Graph construction and manifold embedding

In order to determine the intermediate atlas propagation steps, all
images are embedded in amanifold representedby a coordinate system,
which is obtained by applying a spectral analysis step (Chung, 1997).
Spectral analytic techniques have the advantage of generating feature
coordinates based on measures of pairwise similarity between data
items such as images. This is in contrast tomethods that require distance
metrics between data items such as multidimensional scaling (MDS)
(Cox and Cox, 1994). After a spectral analysis step, the distance between
two images in the learned coordinate system is dependent not only
upon theoriginal pairwise similarity between thembut also upon all the
pairwise similarities that each image has with the remainder of the
population. This makes the distances in the coordinate system
embedding a more robust measure of proximity than individual
pairwise measures of similarity which can be susceptible to noise. A
good introduction to spectral analytic methods can be found in von
Luxburg (2007), and further details are available in Chung (1997).

The spectral analysis step is applied to the complete, weighted, and
undirected graph G=(V,E) with each image in the dataset being
represented by one vertex vi. The non-negative weights wij between
two vertices vi and vj are defined by the similarity sij between the
respective images. In this work, intensity-based similarities are used
(see section 5). A weights matrixW for G is obtained by collecting the
edge weights wij=sij for every image pair and a diagonal matrix T
contains the degree sums for each vertex dii = Σjwij. The normalized
graph Laplacian L is then defined by (Chung, 1997)

L = T−1=2 T − Wð ÞT−1=2
: ð1Þ

The Laplacian L encodes information relating to all pairwise
relations between the vertices and the eigen decomposition of L
provides a feature vector for each vertex. The dimension of the
feature data derived from a spectral analysis step can be chosen by
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Fig. 2. Process of atlas propagation with the proposed framework. All labeled (atlases) and unlabeled images are embedded into a low-dimensional manifold (1). The N closest
unlabeled images to the labeled images are selected for segmentation (2). The M closest labeled images are registered to each of the selected images (an example for one image is
shown in panel 3). Intensity refinement is used to obtain label maps for each of the selected images (4). Steps 2 to 4 are iterated until all images are labeled.
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the user. In our work, we tested each dimension for the feature data
in turn and assessed the ability to discriminate between the four
subject groups (young, AD, MCI, and older control subjects). The
discrimination ability was measured using the average inter-cluster
distance based on the centroids of each cluster for each feature
dimension. For the groups studied, it was maximal when using two-
dimensional features and reduced thereafter (see Fig. 3). We
therefore chose to use the 2D spectral features as a coordinate
space in which to embed the data.

Image similarities

In this article, we use an intensity-based similarity between a pair
of images Ii and Ij. This similarity is based on normalized mutual
information (NMI) (Studholme et al., 1999), which is with the entropy
H(I) of an image I and the joint entropyH(Ii,Ij) of two images defined as

NMIij =
H Iið Þ + H Ij

� �
H Ii; Ij
� � ð2Þ
Fig. 3. The discrimination ability for different chosen feature dimensions among the
four subject groups (healthy young, elderly controls, MCI, AD). The best discrimination
was achieved using two-dimensional features therefore a 2D embedding was used to
define the distances between images.
In this work, we are primarily interested in segmenting the
hippocampus; we therefore compute the similarity measure be-
tween a pair of images as the NMI over a region of interest (ROI)
around the hippocampus. The framework is, however, general and a
user can choose the similarity measure and region of interest
appropriate to the region or structure being segmented. To define
the ROI, all training images were automatically segmented using
standard multi-atlas segmentation (Heckemann et al., 2006). The
resulting hippocampal labels were then aligned to the MNI152 brain
T1 atlas (Mazziotta et al., 1995) using a coarse non-rigid registration
modeled by free-form deformations (FFDs) with a 10 mm B-spline
control point spacing (Rueckert et al., 1999) between the
corresponding image and the atlas. The hippocampal ROI was then
defined through the dilation of the region defined by all voxels,
which were labeled as hippocampus by at least 2% of the
segmentations. To evaluate the pairwise similarities, all images
were aligned to the MNI152 brain atlas using the same registrations
used for the mask building. Fig. 4 shows the ROI around the
hippocampus superimposed on the brain atlas used for image
normalization.

Segmentation propagation in the learned manifold

In order to propagate the atlas segmentations through the dataset
using the learned manifold, all images I∈I are separated into two
groups, containing the labeled and unlabeled images. These groups are
indexed by the sets L and U, respectively. Initially, L represents the
initial atlas images and U represents all other images. Let d(Ii,Ij)
represent the Euclidean distance between images Ii and Ij in the
manifold, the average distance from an unlabeled image Iu to all
labeled images is:

d Iu;Lð Þ = 1
jL j

X
laL

d Iu; Ilð Þ ð3Þ

At each iteration, the images Iu;uaU with the N smallest average
distances d

–
(Iu) are chosen as targets for propagation. For each of

these images, the M closest images drawn from Il; laL are selected as
atlases to be propagated. Subsequently, the index sets U and L are
updated to indicate that the target images in the current iteration



Fig. 4. The MNI152 brain atlas showing the region of interest around the hippocampus that was used for the evaluation of pairwise image similarities.
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have been labeled. Stepwise propagation is performed in this way
until all images in the dataset are labeled.

N is a crucial parameter as it determines the number of images
labeled during each iteration and therefore it strongly affects the
expected number of intermediate steps that are taken before a target
image is segmented. M defines the number of atlas images used for
each application of multi-atlas segmentation. A natural choice is to set
M to the number of initial atlases. Independent of the choice of N, the
number of registrations needed to segment K images is M×K. The
process of segmentation propagation in the learned manifold is
summarized in algorithm 1.

Multi-atlas propagation and segmentation refinement

Each label propagation is carried out by applying a modified
version of the method for hippocampus segmentation described in
van der Lijn et al. (2008). In this method, the segmentations f

j
,

j=1,…, M obtained from registering M atlases are not fused to
hard segmentation as in Heckemann et al. (2006) but are instead
used to form a probabilistic atlas in the coordinate system of the
target image I. For each voxel p∈I, the probability of its label being
fi is

PA fið Þ = 1
N

X
j=1;:::;N

1; fi = f ji
0; else

(
ð4Þ

In the original work, this subject-specific atlas is combined with
previously learned intensity models for foreground and background
to give an energy function that is optimized by graph cuts. We
previously extended this method in a way that directly estimates the
intensity models from the unseen image and that generalizes the
approach to more than one structure (Wolz et al., 2009). A Gaussian
distribution for a particular structure is estimated from all voxels
which at least 95% of the atlases assign to this particular structure. The
background distribution for a particular structure i with label fi is
estimated from the Gaussian intensity distributions of all other
structures with label fj,j≠ i and of Gaussian distributions for the tissue
classes Tk,k=1,…, 3 in areas where no particular structure is defined.
Spatial priors γj=PA(fj) for defined structures and for the tissue
classes γk (obtained from previously generated an non-rigidly aligned
probabilistic atlases) are used to formulate a mixture of Gaussians
(MOG) model for the probability of a voxel being in the background
with respect to structure i:

P yp j fi;back
� �

= 1− γstructð Þ P
k=1;:::;3

γkP yp jTk
� �

+ γstruct
P

j=1;:::;N;j ≠ i
γjP yp j fj

� �
;

ð5Þ

with γstruct = Σj=1; N ;N;j ≠ iγj defines the weighting between the
distributions of defined structures and the general distributions of the
tissue classes. The intensity and spatial contributions are combined to
give the data term Dp(fp) of a Markov random field (MRF) (Li, 1994):

E fð Þ = λ
X
paI

Dp fp
� �

+
X
p;qf gaN

Vp;q fp; fq
� �

; ð6Þ

The smoothness constraint Vp,q (fp,fq) between two voxels p and q in a
local image neighborhood is based on intensities and gradient (Song
et al., 2006). In a graph defined on I, each voxel is represented by a
vertex. Edges in this graph between neighboring vertices as well as
between individual vertices and two terminal vertices s and t are
defined by Vp,q (fp,fq) and Dp (fp), respectively. By determining an s–t
cut on this graph, the final segmentation into foreground and
background is obtained (Boykov et al., 2001).

By incorporating intensity information fromtheunseen image into the
segmentation process, errors done with conventional multi-atlas seg-
mentation can be overcome (van der Lijn et al., 2008; Wolz et al., 2009).

Each registration used to build the subject-specific probabilistic
atlas in Eq. (4) is carried out in three steps: rigid, affine, and non-rigid.
Rigid and affine registrations are carried out to correct for global
differences between the images. In the third step, two images are non-
rigidly aligned using a free-form deformation model in which a
regular lattice of control point vectors are weighted using B-spline
basis functions to provide displacements at each location in the image
(Rueckert et al., 1999). The deformation is driven by the normalized
mutual information (Studholme et al., 1999) of the pair of images. The
spacing of B-spline control points defines the local flexibility of the



Fig. 5. Coordinate embedding of 30 atlases based on healthy subjects and 796 images from elderly dementia patients and age-matched control subjects. Looking at the hippocampal
areas for chosen example subjects support the impression that neighborhoods in the coordinate system embedding represent images that are similar in terms of hippocampal
appearance.
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non-rigid registration. A sequence of control point spacings was used
in a multi-resolution fashion (20, 10, 5, and 2.5 mm).

Experiments and results

Coordinate system embedding

We applied the method for coordinate system embedding
described in section 4 to a set of images containing the 30 initial
atlases and the 796 ADNI images. We used the first two features from
spectral graph analysis to embed all images into a 2D coordinate
system. The results of coordinate system embedding are displayed in
Fig. 5. The original atlases form a distinct cluster on the left hand side
of the graph at low values for the first feature. Furthermore, it can be
seen that control subjects are mainly positioned at lower values,
whereas the majority of AD subjects is positioned at higher values.
The hippocampal area for chosen example subjects is displayed in
Fig. 5. These types of observations support the impression that
neighborhoods in the coordinate system embedding represent
images that are similar in terms of hippocampal appearance.

All 796 images were segmented using five different approaches:

I Direct segmentation using standard multi-atlas segmentation
(Heckemann et al., 2006).

II Direct segmentation using multi-atlas segmentation in combina-
tionwith an intensity refinement based on graph cuts (van der Lijn
et al., 2008; Wolz et al., 2009) (see also section 7).

III LEAP with M=30 and N=300 and no intensity refinement after
multi-atlas segmentation.

IV LEAP (see section 2) with M=30 and N=1.
V LEAP with M=30 and N=300.
Table 2
Characteristics of the subjects used for comparison between manual and automatic
segmentation.

N M/F Age MMSE

Normal 57 27/30 77.1±4.60 [70–89] 29.29±0.76 [26–30]
MCI 84 66/18 76.05±6.77 [60–89] 27.29±3.22 [24–30]
AD 41 21/20 76.08±12.80 [57–88] 23.12±1.79 [20–26]
Evaluation of segmentations

For evaluation, we compared the automatic segmentation of the
ADNI images with a manual hippocampus segmentation. This
comparison was carried out for all of the images for which ADNI
provides a manual segmentation (182 out of 796). Comparing these
182 subjects (Table 2) with the entire population of 796 subjects
(Table 1) shows that the subgroup is characteristic of the entire
population in terms of age, sex, MMSE, and pathology.

An example for the segmentation of the right hippocampus of an
AD subject is shown in Fig. 6. A clear over-segmentation into CSF space
and especially an under-segmentation in the anterior part of the
hippocampus can be observed, both in the case of multi-atlas
segmentation with andwithout intensity-based refinement (methods
I and II). The fact that the intensity-based refinement cannot
compensate for this error is due to the high spatial prior in this area
that is caused by a significant misalignment of the majority of atlases
in this area. The resulting high spatial prior cannot be overcome by the
intensity-based correction scheme. When using the proposed frame-
work without intensity-refinement (method III), the topological
errors can be avoided, but the over-segmentation into CSF space is
still present. The figure also shows that all observed problems can be
avoided by using the proposed framework.

The average overlaps as measured by the Dice coefficient or
similarity index (SI) (Dice, 1945) for the segmentation of left and
right hippocampus on the 182 images used for evaluation are shown
in Table 3. The difference between all pairs of the five methods is
statistically significant with pb0.001 on Student's two-tailed paired
t-test.

These results clearly showan improved segmentation accuracy and
robustness for the proposed method. Our hypothesis is that by
avoiding the direct registration of images whose distance in the
embedded space is too large but instead registering the images via
multiple intermediate images improves significantly the segmentation
accuracy and robustness of multi-atlas segmentation. To test this
hypothesis, we have investigated the development of the segmenta-
tion accuracy as a function of distances in the coordinate system
embedding as well as the number of intermediate steps. Fig. 7 shows
this for the five segmentation methods in the form of ten bar plots.
Each bar plot corresponds to the average SI overlap of 18 images (20 in



Fig. 6. Comparison of segmentation results for the right hippocampus on a transverse slice. Panels b, c, d, and e correspond to methods I, II, III, and V, respectively.
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the last plot). The first plot represents the 18 images closest to the
original atlases, the next plot represents images slightly further from
the original atlases and so on. These results show the superiority of the
proposed method over direct multi-atlas segmentation approaches in
segmenting images that are different from the original atlas set.

With increasing distance from the original atlases in the learned
manifold, the accuracy of direct multi-atlas segmentation (method I)
as well as multi-atlas segmentation with intensity-based refinement
(method II) steadily decreases. By contrast, LEAP with both parameter
settings shows a steady level of segmentation accuracy. It is
interesting to see that our method with a step width of N=1
(method IV) leads to worse results than the direct multi-atlas
methods up to a certain distance from the original atlases. This can
be explained by registration errors accumulated through many
registration steps.With increasing distance from the atlases, however,
the gain from using intermediate templates outweighs this registra-
tion error. Furthermore, the accumulated registration errors do not
seem to increase dramatically after a certain number of registrations.
This is partly due to the intensity-based correction in everymulti-atlas
segmentation step which corrects for small registration errors.
Segmenting the300 closest images with LEAP before doing the next
intermediate step (N=300, method V) leads to results at least as good
as and often better than those given by the direct methods for images
at all distances from the initial atlases. The importance of an intensity-
based refinement step after multi-atlas segmentation is also under-
lined by the results of method III. When applying LEAP without this
step, the gain compared to method I gets more and more significant
with more intermediate steps, but the accuracy still declines
significantly, which can be explained by a deterioration of the
Table 3
Dice overlaps for hippocampus segmentation.

Left hippocampus Right hippocampus

Direct 0.775±0.087 [0.470–0.904] 0.790±0.080 [0.440–0.900]
Direct, GC 0.820±0.064 [0.461–0.903] 0.825±0.065 [0.477–0.901]
LEAP, N=300, no GC 0.808±0.054 [0.626–0.904] 0.814±0.053 [0.626–0.900]
LEAP, N=1 0.838±0.023 [0.774–0.888] 0.830±0.024 [0.753–0.882]
LEAP, N=300 0.848±0.033 [0.676–0.903] 0.848±0.030 [0.729–0.905]
propagated atlases (note that for the first 300 images, method II and
method V are identical, as are methods I and III). The influence of N on
the segmentation accuracy is governed by the trade-off between using
atlases that are as close as possible to the target image (small N) and
using a design where a minimum number of intermediate steps are
used to avoid the accumulation of registration errors (large N). Due to
the computational complexity of evaluating the framework, we
restricted the evaluation in this article to two values.
Volume measurements

A reduction in hippocampal volume is a well-known factor
associated with cognitive impairment (e.g., Jack et al., 1999; Reiman
et al., 1998). To measure the ability of our method to discriminate
clinical groups by hippocampal volume, we compared the volumes
measured on the 182 manually labeled images to the ones obtained
from our automatic method (method V, LEAP with M=30 and
N=300). Box plots showing these volumes for the left and right
hippocampus are displayed in Fig. 8. The discriminative power for the
volume of left and right hippocampus between all pairs of clinical
groups is statistically significant with pb0.05 on a Student's t-test but
is slightly less significant than the manual discrimination.

A Bland–Altman plot of the agreement of the two volume
measurements is shown in Fig. 9. This plot supports the impression
of the volume measures in Fig. 9 that the automated method tends to
slightly overestimate the hippocampal volumes. This over-segmen-
tation is more significant for small hippocampi. The same phenom-
enon has been described for an automatic segmentation method
before by Hammers et al. (2007). The intraclass correlation coefficient
(ICC) between the volume measurements based on the manual and
automatic segmentation is 0.898 (ICC (3,1) Shrout-Fleiss reliability
(Shrout and Fleiss, 1979)). This value is comparable to the value of
0.929 reported in Niemann et al. (2000) for inter-rater reliability.

Discussion and conclusion

In this work, we have described the LEAP framework for
propagating an initial set of brain atlases to a diverse population of
unseen images via multi-atlas segmentation. We begin by embedding
all atlas and target images in a coordinate system where similar



Fig. 7. Development of segmentation accuracy with increasing distance from the original set of atlases. Each subset of images used for evaluation is represented by one bar plot.
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images according to a chosen measure are close. The initial set of
atlases is then propagated in several steps through the manifold
represented by this coordinate system. This avoids the need to
estimate large deformations between images with significantly
Fig. 8. Average hippocampal volumes for manual
different anatomy and the correspondence between them is broken
down into a sequence of comparatively small deformations. The
formulation of the framework is general and is not tied to a particular
similarity measure, coordinate embedding, or registration algorithm.
and automatic segmentation using method V.



Fig. 9. A Bland–Altman plot showing the agreement between volume measurement
based on manual and automatic segmentation of the hippocampus (method V). The
solid line represents the mean and the dashed lines represent ±1.96 standard
deviations.
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We applied LEAP to a target dataset of 796 images acquired from
elderly dementia patients and age-matched controls using a set of 30
atlases of healthy young subjects. In this first application of the
method, we have applied it to the task of hippocampal segmentation
even though the proposed framework can be applied to other
anatomical structures as well. The proposed method shows consis-
tently improved segmentation results compared to standard multi-
atlas segmentation. We have also demonstrated a consistent level of
accuracy for the proposed approach with increasing distance from the
initial set of atlases and therefore withmore intermediate registration
steps. The accuracy of standardmulti-atlas segmentation, on the other
hand, steadily decreases. This observation suggests three main
conclusions: (1) the decreasing accuracy of the standard multi-atlas
segmentation suggests that the coordinate system embedding used is
meaningful. The initial atlases get less and less suitable for
segmentation with increasing distance. (2) The almost constant
accuracy of the proposedmethod suggests that, by using several small
deformations, it is possible to indirectly deform an atlas appropriately
to a target in a way that is not matched by a direct deformation within
the multi-atlas segmentation framework used. (3) The gain from
restricting registrations to similar images counters the accumulation
of errors when using successive small deformations.

Our results indicate that, if many intermediate registrations are
used, the segmentation accuracy initially declines quickly but then
remains relatively constant with increasing distance from the initial
atlases. The initial decline can be explained by an accumulation of
registration errors, which results frommany intermediate registration
steps. The reason why the accuracy does not monotonically decline is
likely to be due to the incorporation of the intensity model during
each multi-atlas segmentation step. By automatically correcting the
propagated segmentation based on the image intensities, the quality
of the atlas can be preserved to a certain level.

Apart from the obvious application of segmenting a dataset of
diverse images with a set of atlases based on a subpopulation, the
proposed method can be seen as an automatic method for generating
a large repository of atlases for subsequent multi-atlas segmentation
with atlas selection (Aljabar et al., 2009). Since the manual generation
of large atlas databases is expensive, time-consuming, and in many
cases unfeasible, the proposed method could potentially be used to
automatically generate such a database.

Notwithstanding the challenge represented by variability due to
image acquisition protocols and inter-subject variability in a dataset
as large and as diverse as the one in the ADNI study, the results
achieved with our method compare well to state of the art methods
applied to more restricted datasets (van der Lijn et al., 2008; Morra et
al., 2008; Chupin et al., 2009; Hammers et al., 2007) in terms of
accuracy and robustness.
In future work, we plan to evaluate other approaches for the
coordinate system embedding of brain images. The main method-
ological choices to consider in this context are the pairwise image
similarities where we are planning to investigate the use of an
energy based on image deformation (e.g., Beg et al., 2005) and the
embedding method itself. Using a direct metric based on pairwise
diffeomorphic registration to describe the distances between images
would allow for the use of manifold learning techniques such as
MDS (Cox and Cox, 1994) or Isomap (Tenenbaum et al., 2000). An
alternative is to use the Euclidean distance derived from spectral
analysis as data for a subsequent learning step using these
techniques. The resulting geodesic distance of such an embedding
could lead to an improved description of a complex manifold
covering a large variety of images.

The ultimate goal is to apply the proposed method to all 83
structures in our atlas set. In its current form, the LEAP framework
would need to be applied to each structure separately. Future work
will therefore need to be carried out to adapt the method to segment
multiple structures in a computationally efficient manner. In this
work, we chose the number of dimensions for the embedded
coordinates based on the resulting discrimination between the
subject groups. The optimal number of dimensions can vary according
to the data studied. Other methods for selecting the dimension of
embedding coordinates are possible and represent a potentially useful
area of future study.

Another area of future research will be the extension of this
framework to 4D datasets so that atrophy rates can be accurately
determined. One approach would be to align follow-up scans with
their baseline and then use the same label maps as for the baseline
image to segment the follow-up scan using an intensity model as
described in Wolz et al. (2009).
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Appendix A. The Alzheimer's Disease Neuroimaging Initiative

The Alzheimer's Disease Neuroimaging Initiative (ADNI) was
launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and AD.

http://cordis.europa.eu/ist/
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Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The principle investigator of this
initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California–San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic institutions
and private corporations, and subjects have been recruited from over
50 sites across the United States and Canada. The initial goal of ADNI
was to recruit 800 adults, ages 55 to 90 years, to participate in the
research—approximately 200 cognitively normal older individuals to
be followed for 3 years, 400 people with MCI to be followed for 3
years, and 200 people with early AD to be followed for 2 years. For up-
to-date information, see www.adni-info.org.
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