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We propose a new method of measuring atrophy of brain structures by simultaneously segmenting
longitudinal magnetic resonance (MR) images. In this approach a 4D graph is used to represent the
longitudinal data: edges are weighted based on spatial and intensity priors and connect spatially and
temporally neighboring voxels represented by vertices in the graph. Solving the min-cut/max-flow problem
on this graph yields the segmentation for all timepoints in a single step. By segmenting all timepoints
simultaneously, a consistent and atrophy-sensitive segmentation is obtained. The application to
hippocampal atrophy measurement in 568 image pairs (Baseline and Month 12 follow-up) as well as 362
image triplets (Baseline, Month 12, and Month 24) from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) confirms previous findings for atrophy in Alzheimer's disease (AD) and healthy aging. Highly
significant correlations between hippocampal atrophy and clinical variables (Mini Mental State Examination,
MMSE and Clinical Dementia Rating, CDR) were found and atrophy rates differ significantly according to
subjects' ApoE genotype. Based on one year atrophy rates, a correct classification rate of 82% between AD and
control subjects is achieved. Subjects that converted from Mild Cognitive Impairment (MCI) to AD after the
period for which atrophy was measured (i.e., after the first 12 months) and subjects for whom conversion is
yet to be identified were discriminated with a rate of 64%, a promising result with a view to clinical
application. Power analysis shows that 67 and 206 subjects are needed for the AD and MCI groups
respectively to detect a 25% change in volume loss with 80% power and 5% significance.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Alzheimer's disease (AD) is the most common form of dementia. It
is a devastating disease for those who are affected and presents a
major burden to caretakers and society. The worldwide prevalence of
AD is predicted to quadruple from 26.6 million in 2006 to more than
100 million by the year 2050 (Brookmeyer et al., 2007). Genetic risk
factors have been identified (Lehtovirta et al., 1996; Harold et al.,
2009). A definitive diagnosis, however, requires histological exami-

nation of brain tissue. In practice, AD is diagnosed from the patient's
history and clinical presentation, while neuroimaging is used as an
adjunct (Dubois et al., 2007). Much research effort is directed at
developing imaging biomarkers, motivated by the desire to increase
diagnostic accuracy and to enable earlier diagnoses.

The extraction of biomarkers from structural magnetic resonance
(MR) images forms a major field of research. The main focus in this
area is directed at measurement of cortical thickness (Evans et al.,
2005) and volume measurements of brain structures. The hippocam-
pus is one of the first structures in the brain to be affected by
Alzheimer's disease (Braak and Braak, 1991), and hippocampal
volume and especially atrophy over time has been shown to correlate
with disease progression, e.g. Crum et al. (1999), Jack et al. (2004).
Estimates of hippocampal atrophy in longitudinal MR images can give
insights into onset and progression of dementia and can serve as
biomarkers helping to discriminate dementia patients from healthy
subjects. Since manual determination of the volume of brain
structures is time-consuming and requires careful examination of
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intra-rater and inter-rater reliability, many efforts have been devoted
to developing automated methods of atrophy rate measurement:
Freeborough and Fox (1997) proposed the boundary shift integral
(BSI) that measures atrophy from the difference of a structure's
boundaries in baseline and registered follow-up scan. SIENA is a
method that quantifies atrophy from the movement of image edges
between timepoints (Smith et al., 2002). In tensor-based morphom-
etry (TBM), the Jacobian determinants obtained from non-rigidly
registering a follow-up scan to its baseline are integrated to measure
atrophy (Boyes et al., 2006; Leow et al., 2007). Alternatively, volume
differences can be established by segmenting a structure of interest at
different timepoints (Fox et al., 2000; Barnes et al., 2008; Morra et al.,
2009; Schuff et al., 2009). A technique proposed by Thompson et al.
(2004) that combines 3D parametric surface mapping of a structure at
Baseline and follow-up with automatic segmentation has recently
been applied to the measurement of hippocampal atrophy in subjects
from the ADNI study (Morra et al., 2009). When measuring subtle
volume changes caused by atrophy, a consistent segmentation
procedure for all timepoints is crucial. Simultaneous segmentation
of image sequences has been shown to increase the accuracy of
atrophy measurement (Xue et al., 2006).

The majority of existing methods addresses the segmentation of
single timepoints only. A method based on graph cuts (Boykov et al.,
2001) and multi-atlas label propagation (Heckemann et al., 2006) has
been applied successfully to the segmentation of the hippocampus
and subcortical structures (van der Lijn et al., 2008;Wolz et al., 2009).
In this work we extend this algorithm to the simultaneous
segmentation of a series of MR images acquired from the same
subject. A subject-specific probabilistic atlas of a structure of interest
is generated for each baseline image. After affine registration of
follow-up scans to their baseline scan, this probabilistic atlas is used as
spatial prior for all timepoints. This spatial prior, together with an
intensity model derived from the unseen image, provides the data
term to a Markov random field (MRF) which defines a graph on the
image sequence connecting each voxel to a foreground and
background label. To define a regularization term, additional edges
between neighboring voxels within each image and between
corresponding voxels along the time axis are defined. These
constraints enforce a consistent segmentation within each image
and across the series. Solving a single min-cut/max-flow problem on
the graph defined on all timepoints yields segmentations for all
images in one single step. Compared to existing methods, the
additional smoothness constraint linking images along the time axis
reduces the risk of spurious segmentation differences between the
timepoints caused by random noise or artefacts in a particular image.
Our hypothesis is that a simultaneous segmentation enables more
accurate and consistent measurement of atrophy compared to
segmenting the timepoints independently of each other.

We applied theproposedmethod to imagepairs of 568 subjects from
the Alzheimer's Disease Neuroimaging Initiative for whom a Baseline
and aMonth 12 follow-up scanwas available. Subsequently, we applied
it to the subset of 362 subjects for whom image triplets obtained at
Baseline, Month 12 and Month 24 were available. For each series, we
calculated the atrophy rate and determined its suitability as a
discriminant between clinical groups. We evaluated the correlation of
atrophy rates with Mini Mental State Examination (MMSE, Folstein et
al., 1975) and Clinical Dementia Rating (CDR, Morris, 1993) scores. We
also investigated the influence of subjects' ApoE genotype on atrophy.

Materials and methods

Image data

Images used in this studywere obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI,
Mueller et al., 2005). In the ADNI study brain MR images are

acquired at baseline and regular intervals from approximately 200
cognitively normal older subjects, 400 subjects with MCI, and 200
subjects with early AD. A more detailed description of the ADNI
study as well as image acquisition and preprocessing steps is
provided in Appendix A.

Subjects

In this work we used those subjects for whom a Baseline andMonth
12 follow-up 1.5 T scan were available (n=568). For 362 subjects
within this population, a Month 24 follow-up image was also available.
All images where downloaded in April 2009. For 112 subjects,
progression from MCI to AD has been reported during the study. We
separately looked at the subject group that converted between Baseline
and Month 12 follow-up (P-MCI≤12) and the group that converted at
any point after the Month 12 scan (P-MCIN12), as well as the group of
subjects which had a stable diagnosis of MCI (S-MCI). While the ADNI
study aims to follow all subjects for 36 months, for most subjects the
examination for this timepoint was not available in September 2009,
whichmeans that some subjects in the S-MCI group are likely to convert
to P-MCIN12 in the future. An overview of the subject groups is given in
Table 1: For each group the total number of subjects, number of females,
and the average MMSE and CDR scores are shown, along with the
development of these clinical values over time. The mean age for all
subjects of 75.3±6.6 years and themean time passed between Baseline
and Month 12 scan of 12.96±1.32 months do not vary significantly on
t-test between the groups.

Table 2 shows for the subset of subjects for which three timepoints
(Baseline, Month 12, Month 24) were available, the total number,
number of females as well as the average change in MMSE and CDR
scores between Baseline and Month 24. The average time between
Baseline and Month 24 follow-up scan was 24.96±1.09 months with
no significant difference between the groups. There is no significant
difference for the clinical values at Baseline and Month 12 between
this subset and the whole set as described in Table 1.

For 11 subjects in the MCI group and two subjects in the AD group,
a reversion to the control and MCI group respectively has been
reported. For eight and two subjects respectively, a Month 24 scan is
available. These subjects were excluded from the analysis.

Table 1
Clinical and demographical overview of the study population. Mean age of 75.3±
6.6 years and mean time between both scans of 12.96±1.32 months for the whole
population does not vary between subject groups.

N (F) MMSE ΔMMSE CDR ΔCDR

CN 163 (73) 29.08±1.03 −0.07±1.39 0±0 0.02±0.19
MCI 279 (101) 27.02±1.74 −0.72±2.64 0.5±0 0.04±0.20
S-MCI 167 (60) 27.25±1.71 −0.03±2.35 0.5±0 0.02±0.15
P-MCIN12 63 (22) 26.57±1.57 −0.97±1.95 0.5±0 0.04±0.14
P-MCI≤12 49 (21) 26.88±1.89 −2.79±2.83 0.5±0 0.20±0.25
AD 126 (63) 23.48±1.85 −2.59±4.09 0.74±0.25 0.22±0.49

Table 2
Subpopulation for which three timepoints were available. The number of subjects,
number of females and average change in MMSE and CDR during 24 months are given
for the six subject groups.

N(F) ΔMMSE ΔCDR

CN 114 (54) −0.16±1.29 0.06±0.16
MCI 165 (55) −2.11±3.79 0.10±0.32
S-MCI 90 (29) −0.47±2.58 0.03±0.17
P-MCIN12 47 (16) −4.02±4.04 0.16±0.29
P-MCI≤12 28 (10) −4.18±4.22 0.41±0.45
AD 83 (39) −4.43±5.64 0.47±0.58
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Hippocampus atlases

The atlases used to automatically segment the hippocampus in
baseline and follow-up images are based on hippocampal label maps
provided by ADNI. To define these label maps, semi-automated
hippocampal volumetry was carried out using a commercially
available high dimensional brain mapping tool (Medtronic Surgical
Navigation Technologies, Louisville, CO), that has previously been
compared to manual tracing of the hippocampus (Hsu et al., 2002).
First, 22 control points were placed manually as local landmarks for
the hippocampus on the individual brain MRI data: one landmark at
the hippocampal head, one at the tail, and four per slice (i.e., at the
superior, inferior, medial and lateral boundaries) on five equally
spaced slices perpendicular to the long axis of the hippocampus.
Second, fluid image transformation was used to match the individual
brains to a template brain (Christensen et al., 1997). Transformed
label maps were inspected and if necessary manually corrected by
qualified reviewers. Empirically, we found that the resulting hippo-
campal delineations start anteriorly with their separation from the
amygdalae; include the bulk of the hippocampal subfields CA1–4
(Lorente de No, 1934), the subiculum, the dentate gyrus; miss some of
the medial hippocampal head at the level of the uncus; but contain
most of the intralimbic gyrus, the alveus as well as much of the
fimbria, and end posteriorly shortly posterior to where cella media,
temporal horn, and occipital horn fuse on coronal slices.

Although other hippocampus definitions exist (e.g. Niemann et al.,
2000; Hammers et al., 2003) and can be used with the proposed
method, we applied the protocol used by ADNI to allow comparison
with other methods.

3D image segmentation with graph cuts

Energy functions based on Markov random fields (MRF) in
combination with graph cuts have been used widely for labeling
problems in computer vision (Greig et al., 1989; Boykov et al., 2001;
van der Lijn et al., 2008; Song et al., 2006; Khan and Shah, 2009).
Segmenting an image I is usually defined as assigning a label fp ∈ L to
each voxel p ∈ I. An MRF-based energy function can be formulated as

E fð Þ = λ∑
p∈I

Dp fp
� �

+ ∑
p;qf g∈N

Vp;q fp; fq
� �

; ð1Þ

where N is a neighborhood of voxels and f is the labeling of I (Boykov
et al., 2001). The data term Dp (fp) measures the disagreement
between a prior probabilistic model and the observed data. Vp,q (fp, fq)
is a smoothness term penalizing discontinuities in N. The parameter λ
governs the influence of the data and smoothness terms. In previous
work (Wolz et al., 2009) we found that setting λ=2 leads to robust
results for hippocampal segmentation.

To optimize Eq. (1) with graph cuts, a graph G=<V, E> with a
node v∈ V for each voxel p is defined on image I. Its edges e∈ E consist
of connections between each node v and two terminal nodes F, B (sink
and source) as well as connections between neighboring voxels. The
terminals F and B represent the two labels describing foreground and
background, respectively. By determining an F–B cut on G, the desired
segmentation can be obtained (Boykov et al., 2001).

4D image segmentation with graph cuts

The segmentation of a structure in serial imagesmay vary between
scans even if there are only small variations in the intensity (Xue et al.,
2006). This is more likely near indistinct boundaries, e.g. between
hippocampus and amygdala. To be more robust against intensity
variations between timepoints and against differences caused by
image noise, we extend the segmentation from a single image to the
simultaneous segmentation of a sequence of images. This is achieved

by extending the graph defined by the energy function in Eq. (1) from
3D to 4D. A 4D image I is not only defined by spatial coordinates x, y, z
but also by a time coordinate t. 4D images are generated for each
subject by affine registration of the follow-up scans to their baseline
image, establishing correspondence between voxels in 4D.

For a 4D image, a voxel px,y,z has a 8-neighborhood N which
incorporates the two temporally adjacent voxels px,y,z,t−1 and px,y,z,t+1

into the standard 6-neighborhood in 3D.
The smoothness constraint thus applies both in space and time,

and the segmentations at different timepoints are forced to be
consistent in areas where only a small gray value difference between
the images exists. The difference in the segmentation result of
neighboring timepoints can then be expected to reflect intensity
differences caused by atrophy and is less likely to be caused by noise
in individual images.

Energy terms

We use similar energy terms to those used in van der Lijn et al.
(2008) andWolz et al. (2009): The data term Dp (fp) is estimated from
a spatial prior and a probabilistic model of the intensity of the
structure of interest. The spatial prior is obtained from registering
multiple atlases to the target image and interpreting the propagated
label maps probabilistically. We use the intensity model estimated
from the target image, as proposed in Wolz et al. (2009), instead of
relying on manual training as suggested in van der Lijn et al. (2008).

The spatial prior for the baseline images is generated by our
previously proposed LEAP framework (Wolz et al., 2010). In this
framework, a diverse set of brain images (e.g. images from a large
multi-center trial such as ADNI) and an initial set of manually labeled
atlases are embedded in a low-dimensional manifold where neigh-
borhoods represent similarity according to a chosen measure. The
initial set of atlases is propagated in several steps through the
manifold using multi-atlas label propagation. That way, only similar
images are registered directly; this has been shown to reduce
segmentation errors (Wolz et al., 2010).

After applying LEAP, N atlases have been registered to every image
in the dataset. The spatial probability of observing a structure of
interest (foreground) is determined for each voxel px,y,z,t from these
atlases:

PA p; f F
� �

=
1
N

∑
N

j=1

1; f F = f F;j

0; else

�
ð2Þ

with f F defining the foreground label.
After affine registration of follow-up images to their baseline, the

probabilistic atlas produced for the baseline image is used for all
timepoints. To establish one-to-one correspondences, voxel grids of
follow-up images are aligned with that of the baseline using an
interpolation based on B-splines (Unser et al., 1991). Tissue loss
resulting from Alzheimer's disease can be observed as a shift of the
boundaries of anatomical structures. This means that differences in
the segmentations of different timepoints can be expected to lie
primarily in the boundary region of structures. Since the prior
probability values of the atlas are low in the boundary regions, the
segmentation in these areas dependsmainly on the intensity model. A
consistent gray value difference between two timepoints at a
particular location therefore results in a segmentation difference
which will be interpreted as atrophy.

To account for global intensity differences in individual scans,
intensities in the follow-up scans are matched to those in the baseline
scan using linear regression. A Gaussian probability distribution is
used as the intensity model PF (p, fF). It is defined from the voxels in
the image sequence where the prior probability PA of observing the
structure of interest is at least 95%.

3R. Wolz et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS

Please cite this article as: Wolz, R., et al., Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI,
NeuroImage (2010), doi:10.1016/j.neuroimage.2010.04.006

http://dx.doi.org/10.1016/j.neuroimage.2010.04.006


The probability PB (p, f B) of observing the background label f B at a
certain voxel p with intensity yp is estimated from a mixture-of-
Gaussians (MOG) model. It is defined by Gaussian distribution
parameters τk, k=1, 2, 3 (Van Leemput, 1999) and previously
generated and non-rigidly aligned probabilistic atlases γk for three
tissue classes (white matter (WM), gray matter (GM) and cerebro-
spinal fluid (CSF)):

PB p; f B
� �

= ∑
3

k=1
γkP yp jτk

� �
: ð3Þ

The intensity and spatial contributions, PX, X ∈ F, B and PA, are
combined to give the data term, Dp, that defines the edge weights
connecting each node to the source F and sink B (Boykov et al., 2001).

The smoothness term Vp,q determining the weight of an edge
connecting two voxels p, q is based on intensity differences between
neighboring voxels as well as image gradients, as originally proposed
in Song et al. (2006). To discriminate between spatial edges (within
timepoints) and temporal edges (between timepoints), we use an
additional parameter αpq weighting each edge individually.

Experiments and results

The proposed 4D graph cuts method was applied to the two image
sets described in the Image data section: Set 1, consisting of 555 image
pairs at Baseline and Month 12 follow-up and Set 2, consisting of 352
image triplets at Baseline, Month 12, and Month 24.

Fig. 1 shows a typical segmentation result for Baseline and Month
12 images on a transverse section of the right hippocampus in a
subject with AD. The atrophy-related discrepancy of the strong GM-

CSF boundary is accurately captured and, more importantly, a
consistent segmentation across timepoints is produced in areas
where the hippocampus is not defined by clear boundaries.

Hippocampal atrophy after 12 and 24 months

Atrophy rates in Set 1 are shown in Table 3. All subject groups
show a statistically significant volume loss with pb0.001 on a paired t-
test. Mean atrophy rates (%) are shown along with the standard
deviations displayed for the three clinical groups (AD, MCI, controls
(CN)) as well as the different groupings of MCI subjects introduced in
the Subjects section.

Table 4 shows the average atrophy rates (%) over 24 months when
segmenting Baseline, Month 12 andMonth 24 images simultaneously.

Fig. 2 shows box-and-whisker plots of atrophy rates over 12 and
24 months for normal controls, MCI converters (P-MCI), subjects
with stable MCI (S-MCI), and AD. The difference between all clinical
groups (CN, MCI, AD) is statistically significant (pb0.001) on a two-
sample (unpaired) t-test. No significant difference was observed
between P-MCI and AD, which can be explained by the fact that
subjects in the P-MCI group later convert to the AD group and are
therefore likely to be pathomorphologically similar.

To investigate the consistency of the proposed method as well as
the influence of additional constraints when segmenting more than
two timepoints, we compared the atrophy results obtained for the
first year when segmenting two and three timepoints simultaneously.
T-tests indicate no significant difference between the means of
matched samples (p=0.57). A Bland–Altman plot comparing both
measures is displayed in Fig. 3. The plot shows good agreement
between the two measurements with few outliers.

Fig. 1. Segmentation of the right hippocampus in an AD subject. Baseline (a) and Month 12 follow-up (b) segmentation using 4D graph cuts.

Table 3
Hippocampal atrophy rates (%) in 555 subjects over 12 months. Number of subjects is
given in parentheses. Mean±std.

CN (163) MCI (268) AD (124)

r 0.78±1.77 2.19±2.88 3.82±2.25
l 0.92±1.89 2.36±2.47 3.96±2.51
r+l 0.85±1.59 2.34±2.12 3.85±1.99

S-MCI (156) P-MCI (112) P-MCI≤12 (49) P-MCIN12 (63)

r 1.68±3.12 2.97±2.28 3.27±2.09 2.75±2.41
l 1.67±2.23 3.41±2.44 4.00±2.20 2.98±2.53
r+l 1.72±1.91 3.23±2.10 3.61±1.91 2.88±2.23

Table 4
Hippocampal atrophy rates (%) in 352 subjects over 24 months. Number of subjects is
given in parentheses. Mean±std.

CN (114) MCI (157) AD (81)

r 1.52±2.29 4.36±3.26 6.71±3.27
l 1.80±2.19 4.65±3.49 6.87±3.19
r+l 1.66±2.07 4.50±3.12 6.74±2.89

S-MCI (82) P-MCI (75) P-MCI≤12 (28) P-MCIN12 (47)

r 3.55±3.02 5.33±3.29 5.32±3.45 5.33±3.23
l 3.46±3.30 6.08±3.18 6.43±3.72 5.88±2.83
r+l 3.50±2.90 5.70±2.96 5.86±3.36 5.61±2.74
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Correlation with clinical values

We used Set 1 (555 subjects with Month 12 follow-up) to
determine correlations of atrophy with clinical data. Table 5 shows
Pearson's r-values for the correlation of atrophy with MMSE, CDR, and
the change of both values over one year. Correlations are displayed for
the whole image set as well as for the clinical groups individually.

Since CDR does not vary within the MCI and CN groups at Baseline,
nomeaningful correlation can bemeasured.When using all subjects, a
significant correlation in the anticipated direction could be observed
in all tests. Correlations were almost as strong for the MCI group and
were still significant for the left hippocampus when looking at the AD
group separately.

ApoE genotype

Further tests were carried out to gain an understanding of the
influence of a subjects' ApoE genotype (determined by the ApoE
alleles carried) on hippocampal atrophy. Humans carry two out of
three possible ApoE alleles (ε2, ε3, and ε4). Carriers of ApoE4 have
been shown to have a higher risk of developing AD, while ApoE2
carriers have a lower risk (Lehtovirta et al., 1996). Table 6 shows the

results of a two-tailed t-test comparing the atrophy rates for ε3/3 and
ε3/4 carriers (ε2/2, ε2/3, ε2/4, and ε4/4 carriers were excluded).
Significant differences between the genotypes can be observed when
looking at all subjects simultaneously, but also within subgroups—
controls, MCI and the combination of both. No significant difference of
atrophy rates in the left hippocampus can be observed when only
looking at the control group.

Additionally, we compared atrophy rates for the ε2/3 and ε3/3
carriers. The only fairly significant difference in atrophy rates,
however, could be observed for the left hippocampus when using
all subjects (t=2.28, p=0.02) or when combining CN andMCI groups
(t=2.13, p=0.03).

Discrimination between clinical groups based on atrophy

We evaluated the automatically determined atrophy values for
their power to discriminate between subject groups. Receiver
operating characteristic (ROC) curves for atrophy-based classification
after 12 and 24 months are displayed in Fig. 4.

Fig. 2. Hippocampal volume loss in % from Baseline after 12 and 24 months. Box-and whisker plots for AD, P-MCI, S-MCI, CN.

Fig. 3. Comparison of volume loss after 12 months when segmenting two (method a) or
three (method b) timepoints simultaneously. Dashed lines represent the 95%
confidence interval of the mean (solid line).

Table 5
Correlation of 12-month atrophy rates with clinical values. Number of subjects are
given in parentheses. (a: pb0.001, b: pb0.01).

All (555) CN (163) MCI (268) AD (124)

MMSE r −0.43a −0.13 −0.31a −0.17
l −0.52a −0.09 −0.38a −0.26b

ΔMMSE r 0.30a 0.16 0.26a 0.13
l 0.36a 0.14 0.32a 0.22b

CDR r 0.38a N.A. N.A. 0.14
l 0.47a N.A. N.A. 0.22b

ΔCDR r −0.21a −0.06 −0.15b −0.15
l −0.27a −0.08 −0.20a −0.23b

Table 6
T-statistics for the hypothesis of atrophy rates over 12 months in ε3/3 and ε3/4 carriers
come from the same distribution. The number of subjects carrying E3 and E4
respectively is given in parentheses. a: pb0.001.

All CN (96/42) MCI (115/141) CN and MCI (211/183)

r −6.09a −3.21a −2.95a −5.03a

l −5.33a −1.1 −2.60a −4.01a
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A bootstrapping approach that has previously been used for
classification based on hippocampal volume (Chupin et al., 2009) was
used to evaluate the classification rate between pairs of clinical
groups: for each group 75% of the subjects were randomly selected for
training. The remaining 25% were then classified according to their
difference from the mean rates estimated in the training sets. The
average classification rate, sensitivity and specificity for different
groups after 5000 runs is displayed in Table 7. Values based on
atrophy rates after 24 months are given in parentheses.

Using atrophy rates from the first year of observation, a
classification rate of 75%–82% is obtained when discriminating
between healthy controls and AD patients or subjects that develop
AD during the study. Of clinical interest is the identification of subjects
converting from MCI to AD. Early and reliable detection of these
subjects could support clinical decisions for or against therapy with
disease-modifying drugs. Hippocampal atrophy over the first year
correctly identified 70% of subjects who converted from MCI to AD in
the same period. An even more interesting result is the classification
rate of 64% between subjects who did not convert within the entire
observation period and subjects who converted after 12 months.
Taking atrophy rates after 2 years, better results are achieved in all
pairings except P-MCI≤12 vs S-MCI.

Sample size calculation

For each patient group, we estimated the sample size needed in a
hypothetical two-arm study to detect a reduction in the mean annual
rate of atrophy.With a chosen effect size ofΔ and a standard deviation

σ, the following formula can be used to estimate the sample size
needed:

n =
2σ2 z1−α=2 + z1−β

� �2

Δ2 : ð4Þ

We chose theΔ to be 0.25 μwhere μ is themean atrophy rate of the
corresponding group (see Tables 3 and 4). We set the significance
level (α) to 0.05 and the power (1−β) to 0.8. The cutoff points of the
standard normal probability distributions matching the defined
significance and statistical power are z1−α/2≈1.96 and z1−β≈0.84
respectively.

The total estimated sample sizes for both arms needed to detect a
25% reduction in the AD and MCI groups in intervals of 12 and
24 months are displayed in Table 8.

Segmentation accuracy

Test re-test reliability
To test the reliability of the proposed method, we applied single

timepoint segmentation to ten image pairs that were each acquired
from the same ADNI subject in the same study session. When
randomly selecting a reference segmentation for each pairing, the
average volume difference to the second segmentation is not
statistically significant.2 The average absolute difference between the
measurements is 1.2±1.3% of their average value. Applying 4D graph
cuts to these image pairs reduces the average absolute difference to
0.34±0.36%. This shows that segmentations obtained simultaneously
from multiple time points are more consistent than single-time point
segmentations.

Comparison of simultaneous to semi-automatic independent
segmentation

To assess the importance of segmenting images from all time-
points simultaneously, we compared our atrophy estimates with
those based on the label maps provided by ADNI as described in the
Hippocampus atlases section. These label maps have previously been
used to study hippocampal atrophy in work by Schuff et al. (2009).

Table 7
Classification results using automatically determined atrophy rates after 12 months and
after 24 months in parentheses.

AD/CN MCI/CN P-MCI/CN P-MCI≤12/CN P-MCIN12/CN

Class. rate 82%(86%) 63%(72%) 76%(83%) 80%(82%) 75%(84%)
Sensitivity 81%(85%) 59%(65%) 73%(79%) 76%(69%) 72%(83%)
Specificity 83%(87%) 71%(83%) 78%(85%) 81%(86%) 75%(85%)

P-MCI/S-MCI P-MCI≤12/S-MCI P-MCIN12/S-MCI

Class. rate 66%(67%) 70%(67%) 64%(68%)
Sensitivity 62%(66%) 66%(61)% 63%(70)%
Specificity 68%(69%) 72%(70)% 64%(68)%

2 The hypothesis that the distribution has zero mean cannot be rejected with
p=0.32.

Fig. 4. ROC curves show the discrimination between subject groups. The area under the curve (AUC) for Controls vs AD, Controls vs MCI, Controls vs P-MCI and P-MCI vs S-MCI are
0.88 (0.92), 0.71 (0.77), 0.83 (0.86), and 0.72 (0.71), respectively. AUC's for rates after 24 months are given in parentheses.
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We used the similarity index (SI) (Dice, 1945) to measure average
overlaps between the manually corrected label maps and the
segmentation produced by the proposedmethod. The average overlap
for 262 Baseline and Month 12 follow-up images is 0.83±0.04. There
is no significant difference between left and right hippocampus.

We used the subset of images for which label maps at Baseline and
Month 12 were provided by ADNI to compare both approaches of
atrophy measurement. Resulting atrophy rates (%) are shown in
Table 9. Despite the significant differences in mean values, there is a
high correlation between both measures with r=0.45 and pb0.001
when looking at all values. The correlation is still high and significant
(pb0.001) when looking at AD and MCI groups separately (r=0.61,
r=0.42 respectively).

Fig. 5 shows ROC curves, demonstrating the ability of both
measurements to discriminate between clinical groups. Although
the mean difference between clinical groups is higher with the ADNI
label maps, classification results are better with the proposed graph
cuts approach. This can be explained by the larger precision of the
proposed method, evidenced by the lower standard deviation of the
atrophy rates measured. The sample sizes required to detect a 25%
reduction in atrophy in the AD and MCI groups confirm this
observation with substantially lower values for the proposed method.
Atrophy rates based on the label maps provided by ADNI result in
samples sizes for both arms of 150 and 750 subjects for the AD and
MCI groups respectively. Applying 4D graph cuts to this subset results
in reduced sample sizes of 62 and 204 subjects respectively.

Temporal smoothness term
To assess the influence of the weighting factor αpq introduced in

the Energy terms section that weights spatial and temporal edges
individually, we run the atrophymeasurement over 12 months for Set
1 with different parameter settings. While small parameter changes
do not influence the segmentation outcome substantially, we found
that weighting spatial edges with around 20 times higher than
temporal edges leads to a robust framework that results in consistent
segmentations but is still flexible enough to accurately detect atrophy.
Depending on the structure to be segmented and expected difference
over time, temporal constraints can be varied in different settings.

Setting αpq=0 for all temporal edges leads to average atrophy
rates of 3.94±2.13, 2.32±2.31, 0.87±1.66 for the AD, MCI and CN
groups respectively. The increased difference in mean values does not
outweigh the increase in standard deviation and therefore results in
slightly worse classification results and larger sample sizes needed to
detect change.3

Discussion and conclusion

We applied a 4D graph cuts segmentation method to measuring
hippocampal atrophy in longitudinal MR images from AD patients,
subjects with MCI as well as age matched healthy controls taken from
the ADNI study. We simultaneously segmented 568 image pairs

(Baseline and Month 12 follow-up) as well as 362 image triplets
(Baseline, Month 12, Month 24 follow-up). The resulting atrophy
rates confirm previous results for hippocampal loss in AD and healthy
aging, with atrophy rates significantly higher in AD (3.85±1.99 vs.
0.85±1.59). The values are in the same range as atrophy rates for
both groups reported in a recently published meta-analysis of
hippocampal loss rates in AD which combines nine studies using
manual and automatic approaches (Barnes et al., 2009). Two recent
studies report substantially different atrophy rates for a similar subset
of ADNI subjects: Morra et al. (2009) with AD: 5.59±7.24, CN: 0.66±
5.96 and Schuff et al. (2009) with AD: 4.4±5.88, CN: 0.8±5.63.4

While the hippocampus atlases we used are based on the same
protocol used in Schuff et al. (2009), the differences to the atrophy
rates reported in Morra et al. (2009) may partly be explained by a
potential difference in region definition. In addition, both previous
studies report relatively large confidence intervals which make an
estimate of mean values less reliable.

We found that atrophy rates in subjects with progressive MCI are
significantly higher than in subjects with a stable diagnosis of MCI.
Furthermore, subjects with stableMCI show higher atrophy rates than
control subjects. These results confirm findings by Wang et al. (2009)
and are also supported by the finding of significantly reduced cortical
thickness in the P-MCI group compared to the S-MCI group reported
in Julkunen et al. (2009). Our results furthermore show that subjects
converting to AD during the first year of the study showed
significantly higher atrophy in that time period. More interesting,
however, is the significantly higher atrophy rate of subjects convert-
ing to AD after year one. This suggests that substantial loss in
hippocampal volume can be observed before a conversion to AD is
diagnosed with psychological tests.

We used the automatically determined atrophy rates over
12 months to determine their correlation with clinical variables,
comparing our results to previously reported values using a similar
subset of ADNI images (Morra et al., 2009). A direct numerical
comparison of both methods is not possible. Stronger and statistically
more significant correlations indicate, however, that the method we
propose achieves better accuracy. When using all subjects, a strong
and highly significant correlation between atrophy rates and MMSE,
CDR as well as the change of both variables over time could be
observed. Taking into account the definition of these clinical variables
and the difference in atrophy reported, these correlations are as
expected.When looking at theMCI group separately, the correlation is
almost as significant. In the AD group, however, only a relatively poor
correlation between atrophy and clinical variables was measured for
the left hippocampus. This confirms findings by Morra et al. (2008).
Apart from the lower power to detect correlation caused by the
relatively small group size, a potential explanation is the heteroge-
neity of the AD group with respect to change in clinical variables (see
Table 1). The absence of a significant correlation for the control group
can probably be explained by the small amount of variation of both
atrophy rates and clinical variables.

Table 9
Average atrophy rates (%) for the subset of Set 1 for which hippocampal label maps
were provided by ADNI. Atrophy rates based on these label maps are compared to
automatically determined rates based on the proposed method. Numbers of subjects
are given in parentheses. mean±std.

CN (85) MCI (122) S-MCI (65) P-MCI (57) AD (55)

ADNI labels 1.10±5.82 3.23±5.58 2.72±5.49 3.81±5.66 6.27±4.84
4D graph cuts 0.9±1.61 2.31±2.08 1.82±1.89 2.87±2.16 3.67±1.82

3 Classification was performed as described in Discrimination between clinical
groups based on the atrophy section, results are not shown here. Using Eq. (4) shows
slightly higher sample sizes compared to the ones reported in the Sample size
calculation section.

4 Standard deviations were calculated from 95% confidence intervals and standard
errors respectively as well as sample sizes provided in the original work.

Table 8
Estimated sample sizes for both arms that would be needed to detect a 25% reduction in
atrophy in the AD and MCI groups in intervals of 12 and 24 months.

Interval AD MCI

12 months 67 206
24 months 46 121
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Furthermore, we investigated the influence of a subject's ApoE gene
status on hippocampal atrophy. We found a statistically highly
significant difference between ε3/3 and ε3/4 carriers when combining
all subject groups. Remarkably, the difference is still significant when
lookingat control orMCI groupsonly.Wealso looked at thedifference in
atrophy rates of ε2/3 and ε3/3 carriers, but could only observe trends.

The reported atrophy rates allow classification between subject
groups. Although to our knowledge no classification results based on
hippocampal atrophy have been published for the ADNI group so far,
other classifiers have been proposed. Based on baseline volume of the
hippocampus, Chupin et al. (2009) report a rate of 64% for the
clinically important classification between MCI converters (P-MCI)
and subjects with stableMCI (S-MCI). In Gerardin et al. (2009), a more
sophisticated classifier based on hippocampal shape features achieves
discrimination between MCI and controls with an accuracy of 80%.

Hippocampal atrophy rates over 12 months based on 4D graph
cuts distinguish between controls and AD or MCI with a classification
rate of 82% and 67% respectively. A discrimination of MCI converters
from healthy subjects and especially from MCI non-converters is of
clinical importance. With the proposed method, all converters could
be discriminated from controls with a rate of at least 75%. Atrophy
rates after 12 months allow the identification of 70% of the subjects
that convert fromMCI to AD in the same period. The classification rate
of 64% between non-converters and subjects that converted after
Month 12 shows that an indication of future conversion can be
obtained before clinical tests identify the subjects as AD patients.
Taking atrophy rates after 2 years, better results are achieved in all
pairings except P-MCI≤12 vs S-MCI. This can probably be partly
explained by missing information about subjects that progress from
the S-MCI group to the P-MCI group after 24 months. Although all
subjects are followed for 36 months in the ADNI study, the final
examination is not available for the majority of subjects. Some
subjects are likely to convert to AD after Month 24 but are assigned to
the S-MCI group, which spuriously reduces the classification rates.
Another factor is probably the relatively small sample size for the
interval between Month 12 and 24 (especially for P-MCI≤12), which
results in relatively large confidence intervals around the mean
atrophy rate (see Table 4).

We found a high level of agreement between the individual
hippocampal segmentations generated by the proposed method and
semiautomatically generated reference segmentations provided by
ADNI (SI 0.83±0.04). Atrophy rates calculated on the basis of both
methods were strongly correlated. Significant differences between
the two approaches are seen when the comparison is based on

classification rates and statistical power: on these criteria, the 4D
graph cuts based method is clearly superior. We attribute this
superiority to the presence of increased temporal constraints when
segmenting images of all timepoints simultaneously: this leads to
higher consistency within the ensembles of measurements on which
the atrophy calculation is based.

In future studies we plan to apply the proposedmethod to atrophy
measurement in other brain structures than the hippocampus by
using a segmentation based on a more detailed anatomical atlas, e.g.
Hammers et al. (2003). Atrophy rates of different regions could then
be used to form a potentially stronger classifier for an early detection
of Alzheimer's disease.
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Appendix A. The Alzheimer's Disease Neuroimaging Initiative

The Alzheimer's Disease Neuroimaging Initiative (ADNI) was
launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB),

Fig. 5. ROC curves show the discrimination between subject groups. The area under the curve AUC for (ADNI labels/4D graph cuts) Controls vs AD, Controls vs MCI, Controls vs P-MCI
and P-MCI vs S-MCI are 0.76/0.87, 0.60/0.70, 0.63/0.77, and 0.58/0.66, respectively.
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the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and AD.
Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The Principle Investigator of this
initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California — San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic institutions
and private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55 to 90, to participate in the research —

approximately 200 cognitively normal older individuals to be
followed for 3 years, 400 people with MCI to be followed for
3 years, and 200 people with early AD to be followed for 2 years.
For up-to-date information see www.adni-info.org.

Image acquisition and preprocessing

Image acquisition was carried out at multiple sites based on a
standardized MRI protocol (Jack et al., 2008) using 1.5 T scanners
manufactured by General Electric Healthcare (GE), Siemens Medical
Solutions, and Philips Medical Systems. Out of two available 1.5 T T1-
weighted MR images based on a 3D MPRAGE sequence, we used the
image that has been designated as “best” by the ADNI quality
assurance team (Jack et al., 2008). Acquisition parameters on the
Siemens scanner (parameters for other manufacturers differ slightly)
are echo time (TE) of 3.924 ms, repetition time (TR) of 8.916 ms,
inversion time (TI) of 1000 ms, flip angle 8°, to obtain 166 slices of 1.2-
mm thickness with a 256×256 matrix.

All images were preprocessed by the ADNI consortium using a
pipeline consisting of GradWarp (A system-specific correction of
image geometry distortion due to gradient non-linearity (Jovicich
et al., 2006)), B1 non-uniformity correction (Correction for image
intensity non-uniformity (Jack et al., 2008)) and N3 (A histogram
peak sharpening algorithm for bias field correction (Sled et al.,
1998)). Since the Philips systems used in the study were equipped
with B1 correction and their gradient systems tend to be linear (Jack
et al., 2008), the first two preprocessing steps were applied by ADNI
only to images acquired on GE and Siemens scanners.
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