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Abstract
Neuroinflammation-induced neurodegeneration and immune cell infiltration are two features of Alzheimer disease (AD). 
This study aimed to identify potential peripheral biomarkers that interact with cerebrospinal fluid (CSF) and infiltrating 
immune cells in AD. Blood and CSF data were downloaded from the Alzheimer’s disease Neuroimaging Initiative database. 
We identified differentially expressed genes (DEGs) in AD and assessed infiltrating immune cells using the Immune Cell 
Abundance Identifier (ImmuCellAI) algorithm. Blood-brain barrier (BBB) and immune-related genes were identified from  
medical databases, and common genes were used to construct a protein-protein interaction network (PPI). Potential biomarkers reflecting 
the clinical features of AD were screened using Pearson correlations and logistic regression analysis. We identified 210 DEGs 
in the AD group. ImmuCellAI indicated that blood samples from patients with AD had a higher abundance of exhausted T 
(Tex; 0.196 vs. 0.132) and induced regulatory T (iTreg; 0.180 vs. 0.137) cells than controls. Thirty-two genes overlapped 
between the BBB and immune-related genes, and 27 genes in the PPI network were associated with eight pathways, including 
the cytokine-cytokine receptor interaction pathway (hsa04060) and the chemokine signaling pathway (hsa04062). Pearson 
correlations showed that five genes were associated with the CSF biomarkers, Aβ, total, and phosphorylated tau. Logistics 
analysis showed that the B cell-associated genes, CXCL12 and TNFRSF13C, were independent risk factors for AD diagnosis. 
Peripheral CXCL12 and TNFRSF13C genes that correlated with immune cell infiltration in AD might serve as easily 
accessible biomarkers for the early diagnosis of AD.
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Introduction

Alzheimer disease (AD) is a progressive and irreversible 
neurological degenerative disease that has a slow onset and 
ultimately leads to neuron death. This disease is clinically 
characterized by manifestations of dementia, including 
memory impairment, loss of recognition, impaired visual 
skills, and executive and behavioral dysfunction. AD affects 
~30% of the population aged > 85 years and accounts for 
60–70% cases of dementia in elderly populations (Sawikr 
et al. 2017). The prevalence of this disease increases with 

age, but the age of onset of AD can be quite early because 
the interval between onset to symptomatic presentation can 
be longer than 10 years (McDade et al. 2018; Mietelska-
Porowska and Wojda 2017; Quiroz et al. 2018; Sawikr et al. 
2017). Most patients are diagnosed at the late stage of this 
disease using biomarkers and imaging or cerebrospinal fluid 
(CSF), and only the symptoms are treated. Accordingly, AD 
is a leading medical concern because easily accessible and 
reliable biomarkers for its early detection have not been 
established.

The pathogenesis of AD is linked to immunological 
mechanisms ,  and  neuro inf lammat ion- induced 
neurodegeneration is an important feature of AD (Janssen 
et al. 2016; Ortiz et al. 2017; Regen et al. 2017). Increasing 
evidence shows that neuroinflammation is a major 
contributor to AD progression (Calsolaro and Edison 2016; 
Heneka et al. 2015; Ortiz et al. 2017; Regen et al. 2017). 
In light of neuroinflammation, much focus has centered on 
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the activation of brain glial cells in the pathogenesis of AD 
(Mietelska-Porowska and Wojda 2017). The activation of 
glial cells in the central nervous system (CNS) stimulates 
the deposition and accumulation of amyloid-β (Aβ) and 
hyperphosphorylated tau, the production of reactive 
oxygen species (ROS), and the production of a series 
of proinflammatory cytokines and molecules including 
interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α 
(TNF-α), and cyclooxygenase 2 (COX-2) (Higham et al. 
2019; Regen et al. 2017; Sawikr et al. 2017; Singhal et al. 
2014). Aβ can directly induce neuronal cytotoxicity, death, 
and impairment or can do so indirectly by elevating ROS 
production and IL-1β released from neurons, astrocytes, and 
microglia (Medeiros and LaFerla 2013; Singhal et al. 2014). 
However, AD is mainly diagnosed clinically based on finding 
elevated and decreased Aβ in plaques and CSF, respectively, 
and excessive total-tau (T-tau) and phosphorylated tau 
(P-tau) in plaques and CSF. The activation of glial cells 
in the AD brain can only be confirmed postmortem. 
Biomarkers in peripheral blood that interact with those in 
CSF and infiltrating immune cells are urgently needed to 
diagnose AD.

T cells are able to target Aβ plaques, suggesting that T 
cells migrate from the blood to the CNS through the blood-
brain barrier (BBB) or the blood-cerebrospinal fluid barrier 
(Fisher et al. 2010; González and Pacheco 2014; Mietelska-
Porowska and Wojda 2017; Rezai-Zadeh et  al. 2009). 
Chemokines secreted by brain cells can recruit circulating 
immune cells from the peripheral blood to infiltrate the 
CNS (Prinz and Priller 2017; Rezai-Zadeh et al. 2009). 
During AD pathogenesis and progression, degenerating 
neurons and enhanced Aβ deposition activate glial cells, 
astrocytes, and microglia by binding to and activating toll-
like receptors (TLR) and mitogen-activated protein kinases 
(MAPK). These responses subsequently lead to the secretion 
of inflammatory cytokines and chemokines in microglial 
cells and the recruitment of blood-derived immune cells 
(Medeiros and LaFerla 2013; Singhal et  al. 2014). The 
Immune Cell Abundance Identifier (ImmuCellAI) algorithm 
can reliably estimate the infiltrative levels of 24 immune 
cells (Miao et al. 2019). The fact that ImmuCellAI estimates 
are consistent with flow cytometry data suggests that 
ImmuCellAI could offer a promising prognostic signature 
for human cancers. Although suitable for application to 
RNA-Seq and microarray expression data derived from 
blood or tissue samples (Miao et al. 2019), ImmuCellAI is 
presently applied only to tuberculosis and human cancers 
(Mei et  al. 2020; Shi and Qi 2020; Song et  al. 2020). 
Furthermore, less is understood about interactions among 
peripheral blood, BBB damage, neuroinflammation, and 
immune cell infiltration during AD progression.

Numerous potential genetic factors associated with 
the pathogenesis, diagnosis, and prognosis of AD have 

been identified (Wang and Wang 2020; Yuen et al. 2020; 
Zamanian Azodi et  al. 2020). These studies identified 
differentially expressed genes (DEGs) in patients with AD 
and identified potential hub genes in AD using bioinformatic 
methods. However, clinical verification is lacking (Yuen 
et al. 2020). Reduced Aβ clearance might be associated 
with genes that encode Fyn and epidermal growth factor 
receptor in AD pathogenesis (Yuen et al. 2020). However, 
potential peripheral blood biomarkers that might interact 
with biomarkers in CSF during the pathogenesis or diagnosis 
of AD have not been reported.

We therefore aimed to identify interactions among 
peripheral blood, BBB injury, neuroinflammation, and 
infiltration of immune cells in patients with AD. We 
analyzed and integrated public data about peripheral blood 
genes, immune cell infiltration, and CSF biomarkers for AD 
using bioinformatics methods. We identified common genes 
between DEGs in peripheral blood and genes related to 
immune, as well as genes associated with CSF biomarkers, 
including T-tau, P-tau, and Aβ. Identifying peripheral 
biomarkers that link interactions between the brain and 
blood might improve our understanding of the etiology of 
AD.

Materials and Methods

Data Collection

We downloaded peripheral blood, CSF, and plasma data 
of 304 patients with AD, early and late mild cognitive 
impairment, and elderly persons without cognitive 
impairment (controls; CN) from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu/).

Abundance of Infiltrating Immune Cells in the Blood 
Samples

ImmuCellAI (http://bioin fo.life.hust.edu.cn/ImmuC ellAI #!/) 
predicts responses of patients to immune checkpoint blockade 
therapy and estimates the abundance and differences in 
infiltration by the following 24 types of immune cells (Miao 
et al. 2019): B, CD4 naïve, T, CD8 naïve, CD8 T, dendritic 
(DC), induced regulatory T (iTreg), mucosal-associated 
invariant T (MAIT), natural killer, natural killer T, natural 
regulatory T (nTreg), cytotoxic T (Tc), central memory T 
(Tcm), effector memory T (Tem), exhausted T (Tex), T 
follicular helper (Tfh), T gamma delta (Tgd), Th1, Th17, 
Th2, type 1 regulatory T (Tr1) cells, neutrophil macrophages, 
and monocytes. We analyzed these types of immune cells in 
all blood samples. The immune scores of infiltrating immune 
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cells were calculated using ImmuneCellAI methods from a 
gene expression dataset including RNA-Seq and microarray 
data. The abundance of immune cells was re-estimated by 
measuring the weights of DEGs using a compensation matrix 
and least-squares regression.

Identification of Immune‑Related Genes

The robust, public Comparative Toxicogenomics 
Database (CTD; http://ctdba se.org/) provides manually 
curated information about gene–disease relationships. We 
downloaded the genes associated with 24 types of immune 
cells in the CTD. AmiGO2 (http://amigo .geneo ntolo gy.org/
amigo ) is an online set of tools with which to search and 
browse the Gene Ontology (GO) database (Balsa-Canto et al.  
2016). Human immune-related genes were downloaded from 
AmiGO2 using the keyword, “immune”. Common genes 
between the AmiGO2 and CTD databases were retained and  
further analyzed.

Identification of DEGs in AD and CN

The gene expression profiles of DEGs in the blood samples 
were analyzed using the Limma package (version 3.34.9, http://
bioco nduct or.org/packa ges/relea se/bioc/html/limma .html) in R 
3.4.1. Genes with |log2-fold change (AD/CN)|> 0 were screened 
out. Genes with significant differences in expression between 
AD and CN were regarded as DEGs and selected based on 
a threshold of p < 0.05. DEGs with  log2 fold change (FC) > 0 
and p < 0.05 were deemed significantly upregulated, and those 
with  log2-FC < 0 and p < 0.05 were deemed significantly 
downregulated.

Selection of Genes Associated with Cerebral 
Diseases and Immunity

Genes associated with BBB damage according to published 
literature in PubMed, Embase, and UniProt (https ://www.
unipr ot.org/) were screened. Genes associated with BBB 
damage in AD, brain inflammation, and immunity were 
selected. Overlapping BBB-associated genes, immune-
associated genes, and DEGs were selected and regarded as 
candidates for selecting biomarkers for AD.

Protein‑protein Interaction Network Analysis

The PPI network provides important information about 
interactions between gene products and indicates hub 
nodes. Interactions among candidates were identified using 
the STRING database (version 10.5, https ://strin g-db.org). 

Interactions with scores > 0.4 were retained and used to 
construct the PPI network, which was visualized using 
Cytoscape (version 3.6.01, http://www.cytos cape.org/).

Functional Enrichment Analysis

The database for annotation, visualization, and integrated 
discovery (DAVID; version 6.7, https ://david .ncifc rf.gov/) 
is a web-accessible and expanded annotation database 
with novel algorithms with which to extract biological 
processes and pathways from large gene lists (Huang 
et al. 2007). Functional enrichment was analyzed using the 
DAVID online tool to investigate GO biological processes 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways associated with potential biomarkers of AD. The 
significance threshold for enrichment was p < 0.05, and the 
fold discovery rate was < 0.05.

Validation of Hub Genes in Microarrays

We selected microarray datasets of AD (including 
GSE4226, GSE4229, and GSE18309) from the National 
Center of Biotechnology Information Gene Expression 
Omnibus (https ://www.ncbi.nlm.nih.gov/) using the key 
words, “Alzheimer disease” AND “cerebrospinal fluid” 
OR “peripheral blood mononuclear cells”, to validate hub 
gene profiles. The inclusion criteria for the microarray 
datasets were (1) transcriptomic data from patients with 
and without (controls) AD; (2) data extracted from 
peripheral blood mononuclear cells or cerebrospinal 
f luid; (3) without restriction on ethnicity; and (4) 
> 3 samples per group. The GSE4226, GSE4229, and 
GSE18309 datasets comprised 28 (AD and CN, n = 14), 
40 (AD, n = 18, and CN, n = 22), and nine (AD and 
CN, n = 3 each) samples, respectively. Gene expression 
profiles were calculated using GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r /).

Statistical Analysis

All data were statistically analyzed using SPSS 22.0 
(IBM Corp., Armonk, NY, USA). Associations between 
expression profiles of identified peripheral biomarkers 
(immune cell-specific genes) and the CSF markers (Aβ, 
T-tau, and P-tau) were assessed using binary Pearson 
correlation analyses. Values were averaged for samples 
with more than one duplicate, and correlations with 
p < 0.05 were regarded as significant. Blood biomarkers 
associated with CSF biomarker concentrations were used 
to screen independent risk factors for AD using logistic 

http://ctdbase.org/
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regression analysis with 95% confidence intervals (CI). 
Between-group differences in the abundance of immune 
cells were analyzed using Mann-Whitney U tests. The 
threshold for a significant difference was p < 0.05.

Results

Identification of DEGs in AD Blood and CSF Samples

Figure 1 shows a flow chart of the study. We first identified the 
DEGs between the AD and CN groups. After sample matching,  
a total of 304 overlapping blood and CSF samples were screened  
out, including 44 AD and 260 CN samples. Based on expression  
levels, we found 210 DEGs between the AD and CN groups  
(Table  S1), including 11 and 13 that were significantly   
downregulated and upregulated, respectively (Table 1).

Abundance of Infiltrating Immune Cells

The infiltration scores of immune cells were assessed using 
ImmuCellAI based on the 210 DEG signatures in each sample. 
Figure 2a shows the proportions of the 24 types of immune  
cells in all individuals, and Fig. 2b shows differences between  
the AD and CN groups. We found that Tc, CD8 T, MAIT, and DC 

cells, as well as macrophages, monocytes, and neutrophils, were 
relatively more abundant than other types of cells in blood samples 
from AD. Blood samples from patients with AD contained more 
Tex (0.196 vs. 0.132), iTreg (0.180 vs. 0.137), and Tgd (0.146 
vs. 0.107) cells and less Tcm cells (0.04 vs. 0.07) than the blood 
samples from the controls (Fig. 2b). These results showed that 

Fig. 1  The flow chart of data analysis in this paper. AD, Alzheimer 
disease. ADNI, Alzheimer’s disease neuroimaging initiative. BBB, 
blood-brain barrier. CN, elderly controls. CTD, Comparative Toxi-

cogenomics Database. DEGs, differentially expressed genes. Immu-
CellAI, Immune Cell Abundance Identifier. PPI, protein-protein inter-
action

Table 1  Significantly differentially expressed genes between the elderly 
controls and patients with Alzheimer disease

FC fold change
a The gene was not related to blood-brain barrier (BBB) in literature

Names logFC P value Names logFC P value

CLDN5 −0.25 0.00 MMP2 0.04 0.03 
BLVRB −0.20 0.02 ITM2B 0.05 0.02 
SLC7A5 −0.18 0.00 VEGFA 0.07 0.03 
SLC2A1 −0.14 0.03 CCND1 0.07 0.00 
DUX4La −0.11 0.01 CASP1 0.08 0.05 
CSF1R −0.10 0.02 PSEN1 0.10 0.02 
NOXO1 −0.10 0.00 NCF2 0.10 0.02 
ACHE −0.09 0.04 MAPK14 0.12 0.04 
LAMA5 −0.06 0.03 TGFBR1 0.14 0.01 
TGFB2 −0.05 0.04 IL1R1 0.15 0.04 
TJP1 −0.04 0.04 FAS 0.26 0.00 
CXCL12 0.03 0.02 MMP9 0.28 0.04 
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the levels of T cell infiltration differed between the patients with 
AD and the controls.

Screening Genes Related to Immune Cells

We mined the literature and identified 560 genes, including 
134 receptor genes that are associated with the BBB (Table S2) 
and 202 DEGs between AD and CN, including 23 that were 
significant (Table 1). The 202 DEGs were named cluster 1.

Based on the screening of the AmiGO2 and  
CTD databases, we identified 3324 and 2022 genes that 
were associated with immune cells and the 24 immune 
cell types, respectively. We identified 651 common genes 
and named them cluster 2 (Table S2).

We finally identified 32 genes that were common to 
clusters 1 and 2 (Table 2). Among them, 15, seven, six, 
six, and five genes were associated with macrophages, 
neutrophils, T cells, B cells, and monocytes, respectively.

Network and Enrichment Analysis 
of Immune‑Related DEGs in AD

Figure 3 shows that the PPI network derived from the 32 
genes comprised 27 DEGs, including upregulated neutrophil 
cytosolic factor 2 (NCF2), matrix metalloproteinase 9 (MMP9), 
and chemokine stroma-derived factor 1 (CXCL12) and 
downregulated transforming growth factor (TGF)-β 2 (TGFB2) 
and colony-stimulating factor 1 receptor (CSF1R). The degrees 
of TNF, C–C chemokine ligand (CCL5), CXCL2, CXCL12, 
CCL3, CXCL1, and MMP9 gene interactions were high in this 
network (range, 11–21).

Functional enrichment analysis showed that these 27 
DEGs were associated with 18 biological processes, including 
inflammatory response (GO: 0006954), immune response 
(GO: 0006955), neutrophil chemotaxis (GO: 0030593), and 
chemokine-mediated signaling pathway (GO: 0070098), 
and eight KEGG pathways including cytokine-cytokine 
receptor interaction (hsa04060), chemokine signaling pathway 
(hsa04062), TNF signaling pathway (hsa04668), and rheumatoid 
arthritis (hsa05323) (Table S3).

Correlations Between Blood Gene Expression 
and CSF Biomarkers

Associations between the 27 DEG profiles and CSF biomarkers 
(Aβ, T-tau, and P-tau) were assessed using Pearson correlation 
analyses. The results showed that expression of five genes, 
including TNFRSF13C, CXCL3, CXCL12, CCL4L1, and 
CCL1, were significantly correlated with levels of Aβ, T-tau, 
and/or P-tau in CSF (Table 3). For instance, CCL1 and CCL4L1 
expression in blood samples correlated with Aβ contents in CSF 
(r = 0.142 and 0.140, p < 0.05, respectively), whereas CXCL12 
expression correlated negatively with Aβ content (r = −0.158, 
p < 0.05) and positively with T-tau content in CSF samples 
(r = 0.156, p < 0.05).

Potential Blood Biomarkers for AD

Based on the correlations between the DEGs and CSF 
biomarkers, we speculated that their expression might be a risk 
factor for the diagnosis of AD. Logistics analysis indicated that 
two genes, namely TNFRSF13C (odds ratio [OR], −1.574; 95% 

Fig. 2  Abundance of 24 immune cells in blood samples. a The abun-
dance of 24 immune type cells in 109 individuals. b The abundance 
of immune cells in groups and the whole cohort. CN, elderly controls. 
AD, Alzheimer disease. There is a significant difference between 
the two groups in the abundance of corresponding immune cells 
(p < 0.05, by t test). Tc, cytotoxic T cells. Treg, regulatory T cells. 

iTreg, induced Treg cells. nTreg, natural Treg cells. Tgd, T gamma 
delta cells. Tfh, T follicular helper cells. Tex, exhausted T cells. DC, 
dendritic cells. NK: natural killer cells. Tem, effector memory T cells. 
MAIT, mucosal-associated invariant T cells. Tr1, type 1 regulatory T 
cells. NKT, natural killer T cells. Tcm, central memory T cells
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CI 0.045–0.951, p = 0.043) and CXCL12 (OR, 101.63, 95% CI 
2.002–5158.642, p = 0.021, were independent risk factors for 
AD diagnosis (Table 4). Both genes were associated with B 
cells (Table 2).

Validation of Genes Associated with B and T Cells 
in Microarray Datasets

Based on the above results, we found that the levels of T cell 
subset infiltration differed in AD and that the TNFRSF13C and 
CXCL12 genes associated with B cells were independent risk 

factors for a diagnosis of AD. The profiles of T cell-related genes 
(IL27RA, TGFB2, CD109, CCL5, CCL2, and CCL1) and B cell-
related genes (CXCL13, RELA, CXCL14, BCL2, TNFRSF13C, 
and CXCL12) among the 27 DEGs in the PPI network were 
validated in AD samples. Three datasets (GSE4226, GSE4229, 
and GSE18309) were downloaded, and the expression profiles 
of the 12 genes were determined (Fig. 4). CXCL13, CXCL14, 
BCL2, IL27RA, CCL2, and CCL1 were upregulated in AD 
samples from one to three datasets, and CXCL12 and TGFB2 
were downregulated in GSE18309. However, most of these 
genes were not significantly deregulated in AD.

Table 2  The list of the 32 genes that were common to clusters 1 and 2

Sig significant (p < 0.05)
NA not applicable

Gene Description/annotation Sig. Down/up

TNFRSF13C B cell-activating factor receptor NA
TNF TNF, macrophage/monocyte-derived NA
TGFB2 Glioblastoma-derived T cell suppressor factor Down
RELA Nuclear factor of kappa light polypeptide gene enhancer in B cells 3 NA
PTGS2 Macrophage activation-associated marker protein P71/73 NA
PPBP Macrophage-derived growth factor/neutrophil activating peptide-2 NA
NCF2 Neutrophil cytosolic factor 2 Up
MMP9 Macrophage gelatinase Up
IL3RA Colony-stimulating factor 2 receptor, alpha, low affinity (granulocyte macrophage) NA
IL27RA T cell cytokine receptor NA
CYBB Neutrophil cytochrome b 91 kDa polypeptide NA
CXCL6 Alveolar macrophage chemotactic factor NA
CXCL5 Epithelial-derived neutrophil-activating protein 78 NA
CXCL3 Macrophage inflammatory protein 2-alpha/beta; dendritic cell inflammatory protein 1; cytokine-

induced neutrophil chemoattractant 2
NA

CXCL2 Macrophage inflammatory protein 2; cytokine-induced neutrophil chemoattractant 3 NA
CXCL14 B cell and monocyte-activating chemokine NA
CXCL13 B cell-attracting chemokine 1 NA
CXCL12 pre-B cell growth-stimulating factor Up
CXCL1 Cytokine-induced neutrophil chemoattractant 1 NA
CSF2RB Colony stimulating factor 2 receptor, beta 1, low-affinity (granulocyte-macrophage) NA
CSF1R LOW QUALITY PROTEIN: macrophage colony-stimulating factor 1 

receptor
Down

CSF1 Colony stimulating factor 1 (macrophage) NA
CD109 Activated T cell marker CD109 NA
CCL5 Regulated upon activation normal T-cell expressed and secreted NA
CCL4L2 Macrophage inflammatory protein-1b2; monocyte adherence-induced protein 5-alpha NA
CCL4L1 Macrophage inflammatory protein-1b2; monocyte adherence-induced protein 5-alpha NA
CCL3 Macrophage inflammatory protein 1 alpha NA
CCL27 Cutaneous T cell attracting chemokine NA
CCL26 Macrophage inflammatory protein 4-alpha NA
CCL2 Monocyte chemoattractant protein 1 NA
CCL1 T cell activation protein 3 NA
BCL2 B cell CLL/lymphoma 2 NA
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Discussion

Screening easily accessible and reliable biomarkers is 
of major significance for the early diagnosis and timely 
treatment of AD. Blood neutrophils, brain-derived 
neurotrophic factors, and miRNA are associated with and 
might be used as biomarkers for AD (Balietti et al. 2018;  
Dong et al. 2019; Swarbrick et al. 2019). We found higher 
levels of circulating T-cell subsets, including Tex, iTreg,  
and Tgd cells in patients with AD than in the controls.  

Both TNFRSF13C and CXCL12 were identified as potential 
blood markers of AD, as their high and low expression levels 
were independent risk factors for AD, respectively.

Circulating lymphocytes and macrophages infiltrate 
the brains of patients with progressive neurodegenerative 
diseases of the CNS such as AD, multiple sclerosis 
(MS), and Parkinson disease (Rosenberg 2012; Sawikr 
et  al. 2017). The Aβ-mediated release of microglial 
inflammatory cytokines, including TNF-α, can promote the 
transendothelial migration of T lymphocytes (Mietelska-
Porowska and Wojda 2017; Schaerli and Moser 2005; Yang 
et al. 2013). In response to inflammation, cells at sites of 
damage secrete high levels of inflammatory cytokines and 
chemokines, which subsequently recruit immune cells from 
peripheral blood (Marsh et al. 2016). During the onset and 
development of AD, Aβ deposition or responses to cell 
damage activate glial cells, microglia, and TLR and MAPK 
signaling to recruit circulating immune cells (Ho et  al. 
2005; Medeiros and LaFerla 2013; Singhal et al. 2014). 
We showed here that the expression of the genes encoding 
circulating proteins, including NCF2, MMP9, and CXCL12, 
were upregulated in patients with AD compared with the 
controls. The upregulation of CXCL12, a pre-B cell growth-
stimulating factor, was associated negatively with the levels 

Fig. 3  The protein-protein 
interaction network of the 32 
common genes in Alzheimer 
disease. This network consists 
of 27 nodes, including three 
upregulated genes (red) and two 
downregulated genes (green). 
Gray color indicates genes 
with insignificant differential 
expression between patients and 
controls. Node size corresponds 
to interaction degree in the 
network

Table 3  Correlation of the differentially expressed genes with cerebro-
spinal fluid biomarkers

T-tau total Tau, P-tau phosphorylated tau
*p < 0.05, respectively

Genes Cerebrospinal fluid biomarker

Aβ T-tau P-tau

TNFRSF13C 0.163* −0.019 −0.060
CXCL3 −0.021 0.163* 0.122
CXCL12 −0.158* 0.156* 0.100
CCL4L1 0.140* −0.094 −0.102
CCL1 0.142* −0.020 −0.094
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of Aβ, and positively with increased T-tau and P-tau in CSF 
samples. These results showed that CXCL12 interacts with 
blood and CSF in AD.

Levels of 24 types of infiltrative immune cells and 
immune-related prognostic/diagnostic signatures in 
human diseases can now be determined using ImmuCellAI 
(Miao et al. 2019; Song et al. 2020; Sun et al. 2020). The 
ImmuCellAI results are consistent with flow cytometry 
data and might serve as prognostic signatures for human 
cancers (Mei et al. 2020; Song et al. 2020). For instance, 
the infiltration of Th1 cells and M1 macrophages 
correlates with a favorable prognosis, and the higher 
expression levels of the M1 macrophage markers, CD68 
and CSF1R, are also associated with a good prognosis 
among patients with osteosarcoma (Song et al. 2020). The 
present study used ImmuCellAI to estimate the abundance 
of 24 types of immune cells based on the expression of 
210 DEGs in blood samples. We found that patients with 

AD had a higher abundance of Tex, iTreg, and Tgd cells, 
and a lower proportion of Tcm cells. These T cell subsets 
have distinct functions in the immune system (Prinz and 
Priller 2017), but none of the markers of these cells was 
associated with the diagnosis of AD.

Most T cells in CSF are Tem cells that express the 
receptors CD62L and CCR7, and have a homing capacity 
for guiding theirs recruitment to target tissues (Pepper and 
Jenkins 2011; Prinz and Priller 2017). These cells play 
important roles in antitumor and anti-disease immunity 
with long-term memory (Liu et al. 2015; Klebanoff et al. 
2005; Pepper and Jenkins 2011; Sallusto et  al. 2004). 
Within a few hours post-stimulation, Tem cells secrete 
IFN-γ, IL-4, and IL-5 and are therefore characterized by 
a rapid effector function (Pepper and Jenkins 2011). The 
expression of CXCL12 prevents Tc cells from infiltrating 
tumor tissues in tumor models in vivo (Garg et al. 2018), 
and when expressed in the bone marrow, CXCL12 
promotes the migration of Treg cells from peripheral blood 
to bone marrow (Zou et al. 2004). Here, we confirmed 
that CXCL13 and CXCL14, which are associated with B 
cells, and IL27RA, CCL5, and CCL2, which are associated 
with T cells, were upregulated in AD compared with the 
controls. The upregulated expression of IL27RA, CCL5, 
and CCL2 in the blood was consistent with the increased 
infiltration of iTreg, Tgd, and Tex cells.

However, only CXCL12 and TNFRSF13C were independent 
risk factors for AD. Notably, TNFRSF13C encodes a B cell-
activating factor receptor (BAFFR) during the ontogeny, 
terminal differentiation, maturation, and survival of B 
cells (Mihalcik et al. 2010; Ntellas et al. 2020). This gene is 
undetectable in B cell precursors, but is overexpressed in B cell 
neoplasms such as B cell acute lymphoblastic leukemia (Turazzi 
et al. 2018; Tussiwand et al. 2012). The enhanced BAFFR-
signaling induced by the H159Y (rs61756766) polymorphism 
in TNFRSF13C correlates with MS (Ntellas et al. 2020). We 
showed here that TNFRSF13C downregulation and CXCL12 
overexpression contribute to a diagnosis of AD. The present 
findings suggest that the abundance of B cells might play a 
crucial role in the etiology of AD.

Table 4  Correlations of 
the differentially expressed 
genes with Alzheimer disease 
diagnosis

OR odds ratio, CI confidence interval

Genes Univariate Multivariate

β OR (95% CI) P β OR (95% CI) P

TNFRSF13C −1.550 0.212 (0.046–0.976) 0.046 −1.574 0.207 (0.045–0.951) 0.043
CXCL3 0.923 2.528 (0.150–42.349) 0.521
CXCL12 4.483 88.531 (1.831–4281.430) 0.023 4.621 101.630 (2.002–5158.642) 0.021
CCL4L1 −0.345 0.708 (0.340–1.477) 0.358
CCL1 −0.756 0.469 (0.066–3.336) 0.450

Fig. 4  The profiles of B cell- and T cell-related genes in microarray 
datasets. GSE4226, GSE4229, and GSE18309 were downloaded from 
the Gene Expression Omnibus (https ://www.ncbi.nlm.nih.gov/). Gene 
expression profiles were calculated using GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r /). FC, fold change

https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
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Conclusions

The abundance of Tex, iTreg, and Tgd cells in peripheral 
blood was higher in patients with AD than in the controls. 
The expression of the B cell-related genes TNFRSF13C and 
CXCL12 was elevated in the peripheral blood and correlated 
with T-tau and Aβ levels in the CSF of patients with AD. 
Therefore, TNFRSF13C and CXCL12 gene expression in 
the peripheral blood might serve as an easily accessibly 
biomarker of AD. The interaction between B cell activity 
and T cell infiltration in AD appears significant. However, 
a limitation of this paper is that the above results are not 
verified. The exact mechanism remains unclear and requires 
investigation.

Supplementary Information The online version contains supplementary 
material available at https ://doi.org/10.1007/s1203 1-021-01809 -7.

Author Contribution Conception and design of the research: Qianqian 
Wu and Wei Kong. Acquisition, analysis, and interpretation of data: 
Qianqian Wu, Shuaiqun Wang, and Wei Kong. Statistical analysis: 
Qianqian Wu. Drafting the manuscript: Qianqian Wu. Manuscript 
revision for important intellectual content: Wei Kong. All authors have 
read and approved the manuscript.

Funding This work was supported by Natural Science Foundation of 
Shanghai (No.18ZR1417200, obtained by Wei Kong) and National 
Natural Science Foundation of China (No.61803257; obtained by 
Shuaiqun Wang).

Data Availability The original microarray datasets of Alzheimer disease  
(including GSE4226, GSE4229, and GSE18309) are available from 
the National Center of Biotechnology Information Gene Expression 
Omnibus (https ://www.ncbi.nlm.nih.gov/). Peripheral blood, CSF, 
and plasma data of patients with Alzheimer disease and controls were 
downloaded from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (http://adni.loni.usc.edu/).

Declarations 

Ethics Approval and Consent to Participate This article does not con-
tain any studies with human participants or animals performed by any 
of the authors; therefore, the ethical approval and consent to participate 
are not applicable.

Competing Interests The authors declare that they have no competing 
interests.

References

Balietti M, Giuli C, Conti F (2018) Peripheral blood brain-derived 
neurotrophic factor as a biomarker of Alzheimer’s disease: are there 
methodological biases? Mol Neurobiol 55:6661–6672. https ://doi.
org/10.1007/s1203 5-017-0866-y

Balsa-Canto E, Henriques D, Gábor A, Banga JR (2016) AMIGO2, 
a toolbox for dynamic modeling, optimization and control in 
systems biology. Bioinformatics 32:3357–3359

Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s 
disease: current evidence and future directions. Alzheimers Dement 
12:719–732

Dong X, Nao J, Shi J, Zheng D (2019) Predictive value of routine 
peripheral blood biomarkers in Alzheimer’s disease. Front Aging 
Neurosci 11. https ://doi.org/10.3389/fnagi .2019.00332 2019.00332 

Fisher Y, Nemirovsky A, Baron R, Monsonego A (2010) T cells 
specifically targeted to amyloid plaques enhance plaque clearance 
in a mouse model of Alzheimer’s disease. PLoS One 5:e10830

Garg B et  al (2018) NFκB in pancreatic stellate cells reduces  
infiltration of tumors by cytotoxic T cells and killing of cancer 
cells, via up-regulation of CXCL12. Gastroenterology 155:880–
891.e888. https ://doi.org/10.1053/j.gastr o.2018.05.05120 18.05.051

González H, Pacheco R (2014) T-cell-mediated regulation of 
neuroinflammation involved in neurodegenerative diseases. J 
Neuroinflammation 11:201

Heneka MT et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet 
Neurol 14:388–405. https ://doi.org/10.1016/S1474 -4422(15)70016 -5

Higham JP, Malik BR, Buhl E, Dawson JM, Ogier AS, Lunnon K, Hodge 
JJL (2019) Alzheimer’s disease associated genes ankyrin and tau 
cause shortened lifespan and memory loss in drosophila. Front Cell 
Neurosci 13:260–260. https ://doi.org/10.3389/fncel .2019.00260 

Ho GJ, Drego R, Hakimian E, Masliah E (2005) Mechanisms of cell 
signaling and inflammation in Alzheimer’s disease. Curr Drug 
Targets: Inflammation Allergy 4:247–256

Huang DW et al (2007) DAVID Bioinformatics Resources: expanded 
annotation database and novel algorithms to better extract 
biology from large gene lists. Nucleic Acids Res 35:W169–W175

Janssen B et al (2016) Imaging of neuroinflammation in Alzheimer’s 
disease, multiple sclerosis and stroke: Recent developments in positron 
emission tomography. Biochim Biophys Acta (BBA) - Mol Basis Dis 
1862:425–441. https ://doi.org/10.1016/j.bbadi s.2015.11.011

Klebanoff CA et al (2005) Central memory self/tumor-reactive CD8+ T 
cells confer superior antitumor immunity compared with effector 
memory T cells. Proc Natl Acad Sci 102:9571–9576

Liu HL et al (2015) Clinical significance of preoperative CD8+ central 
memory T cells for operable pancreatic adenocarcinoma. Dig Surg 
32 (6):433-438

Marsh SE et  al (2016) The adaptive immune system restrains 
Alzheimer’s disease pathogenesis by modulating microglial 
function. Proc Natl Acad Sci USA 12:P463–P464

McDade E et  al (2018) Longitudinal cognitive and biomarker 
changes in dominantly inherited Alzheimer disease. Neurology 
91:e1295–e1306

Medeiros R, LaFerla FM (2013) Astrocytes: conductors of the Alzheimer 
disease neuroinflammatory symphony. Exp Neurol 239:133–138

Mei J, Xu R, Xia D, Yang X, Wang H, Liu C (2020) Profiles and clinical 
significance of immune cell infiltration in pancreatic adenocarcinoma. 
bioRxiv. https ://doi.org/10.1101/2020.1103.1130.01732 7

Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, Guo AY 
(2019) ImmuCellAI: a unique method for comprehensive T-cell 
subsets abundance prediction and its application in cancer 
immunotherapy bioRxiv:872184

Mietelska-Porowska A, Wojda U (2017) T lymphocytes and 
inflammatory mediators in the interplay between brain and blood in 
Alzheimer’s disease: potential pools of new biomarkers. J Immunol 
Res 2017:4626540. https ://doi.org/10.1155/2017/46265 40

Mihalcik SA, Huddleston PM, Wu X, Jelinek DF (2010) The 
structure of the TNFRSF13C promoter enables differential 
expression of BAFF-R during B cell ontogeny and terminal 
differentiation. J Immunol 185:1045–1054

Ntellas P et  al (2020) TNFRSF13C/BAFFR P21R and H159Y 
polymorphisms in multiple sclerosis. Mult Scler Relat Disord 
37:101410–101422. https ://doi.org/10.1016/j.msard .10201 9.10142 2

https://doi.org/10.1007/s12031-021-01809-7
https://www.ncbi.nlm.nih.gov/
http://adni.loni.usc.edu/
https://doi.org/10.1007/s12035-017-0866-y
https://doi.org/10.1007/s12035-017-0866-y
https://doi.org/10.3389/fnagi.2019.003322019.00332
https://doi.org/10.1053/j.gastro.2018.05.0512018.05.051
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.3389/fncel.2019.00260
https://doi.org/10.1016/j.bbadis.2015.11.011
https://doi.org/10.1101/2020.1103.1130.017327
https://doi.org/10.1155/2017/4626540
https://doi.org/10.1016/j.msard.102019.101422


 Journal of Molecular Neuroscience

1 3

Ortiz G et al (2017) Oxidative stress: Love and hate history in central 
nervous system. Adv Protein Chem Struct Biol 108:1-31. https ://doi.
org/10.1016/bs.apcsb .2017.01.003

Pepper M, Jenkins MK (2011) Origins of CD4(+) effector and 
central memory T cells. Nat Immunol 12:467–471. https ://doi.
org/10.1038/ni.2038

Prinz M, Priller J (2017) The role of peripheral immune cells in the CNS 
in steady state and disease. Nat Neurosci 20:136–144. https ://doi.
org/10.1038/nn.4475

Quiroz YT et  al (2018) Association between amyloid and tau 
accumulation in young adults with autosomal dominant Alzheimer 
disease. JAMA Neurol 75:548–556

Regen F, Hellmann-Regen J, Costantini E, Reale M (2017) 
Neuroinflammation and Alzheimer’s disease: Implications for 
microglial activation. Curr Alzheimer Res 14:1140-1148. https ://
doi.org/10.2174/15672 05014 66617 02031 41717 

Rezai-Zadeh K, Gate D, Town T (2009) CNS infiltration of peripheral 
immune cells: D-Day for neurodegenerative disease? J 
Neuroimmune Pharmacol 4:462–475

Rosenberg GA (2012) Neurological diseases in relation to the blood-
brain barrier. J Cereb Blood Flow Metab 32:1139–1151

Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory 
and effector memory T cell subsets: function generation, and 
maintenance. Annu Rev Immunol 22:745–763. https ://doi.
org/10.1146/annur ev.immun ol.22.01270 3.10470 2

Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A (2017) 
Neuroinflammation in Alzheimer’s disease: the preventive and 
therapeutic potential of polyphenolic nutraceuticals. Adv Protein 
Chem Struct Biol 108:33-57. https ://doi.org/10.1016/bs.apcsb . 
2017.02.001

Schaerli P, Moser B (2005) Chemokines: control of primary and memory 
T-cell traffic. Immunol Res 31:57–74

Shi B, Qi J (2020) The pattern and prognostic relevance of immune 
activity scores and tumor-infiltrating immune cells in metastatic 
clear cell renal cell carcinoma: evidence from multiple datasets. Int 
Immunopharmacol 85:106651

Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT (2014) 
Inflammasomes in neuroinflammation and changes in brain 
function: a focused review. Front Neurosci 8:315

Song YJ et al (2020) Immune landscape of the tumor microenvironment 
identifies prognostic gene signature CD4/CD68/CSF1R in 
Osteosarcoma. Front Oncol 10:1198. https ://doi.org/10.3389/
fonc.2020.01198 

Sun S et al (2020) Development and validation of an immune-related 
prognostic signature in lung adenocarcinoma. Cancer Med 
9:5960–5975

Swarbrick S, Wragg N, Ghosh S, Stolzing A (2019) Systematic review 
of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol 
56:6156–6167

Turazzi N et  al (2018) Engineered T cells towards TNFRSF13C 
(BAFFR): a novel strategy to efficiently target B-cell acute 
lymphoblastic leukaemia. Br J Haematol 182:939–943. https ://doi.
org/10.1111/bjh.14899 

Tussiwand R, Rauch M, Flück LA, Rolink AG (2012) BAFF-R 
expression correlates with positive selection of immature B cells. 
Eur J Immunol 42:206–216

Wang X, Wang L (2020) Screening and identification of potential 
peripheral blood biomarkers for Alzheimer’s disease based on 
bioinformatics analysis. Med Sci Monit 26:e924263. https ://doi.
org/10.12659 /MSM.92426 3

Yang YM, Shang DS, Zhao WD, Fang WG, Chen YH (2013) 
Microglial TNF-α-dependent elevation of MHC class I expression 
on brain endothelium induced by amyloid-beta promotes T cell 
transendothelial migration. Neurochem Res 38:2295–2304

Yuen SC, Zhu H, Leung SW (2020) A Systematic Bioinformatics 
Workflow With Meta-Analytics Identified Potential Pathogenic 
Factors of Alzheimer’s Disease. Front Neurosci 14:209

Zamanian Azodi M, Rezaei-Tavirani M, Rezaei Tavirani M (2020) 
Investigating the effects of ibuprofen on the gene expression profile 
in Hippocampus of mice model of Alzheimer’s disease through 
bioinformatics analysis. Iranian Journal of Pharmaceutical Research 
19:352–359

Zou L et al (2004) Bone marrow is a reservoir for CD4+ CD25+ 
regulatory T cells that traffic through CXCL12/CXCR4 signals. 
Can Res 64:8451–8455

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/bs.apcsb.2017.01.003
https://doi.org/10.1016/bs.apcsb.2017.01.003
https://doi.org/10.1038/ni.2038
https://doi.org/10.1038/ni.2038
https://doi.org/10.1038/nn.4475
https://doi.org/10.1038/nn.4475
https://doi.org/10.2174/1567205014666170203141717
https://doi.org/10.2174/1567205014666170203141717
https://doi.org/10.1146/annurev.immunol.22.012703.104702
https://doi.org/10.1146/annurev.immunol.22.012703.104702
https://doi.org/10.1016/bs.apcsb.2017.02.001
https://doi.org/10.1016/bs.apcsb.2017.02.001
https://doi.org/10.3389/fonc.2020.01198
https://doi.org/10.3389/fonc.2020.01198
https://doi.org/10.1111/bjh.14899
https://doi.org/10.1111/bjh.14899
https://doi.org/10.12659/MSM.924263
https://doi.org/10.12659/MSM.924263

	Peripheral Blood Biomarkers CXCL12 and TNFRSF13C Associate with Cerebrospinal Fluid Biomarkers and Infiltrating Immune Cells in Alzheimer Disease
	Abstract
	Introduction
	Materials and Methods
	Data Collection
	Abundance of Infiltrating Immune Cells in the Blood Samples
	Identification of Immune-Related Genes
	Identification of DEGs in AD and CN
	Selection of Genes Associated with Cerebral Diseases and Immunity
	Protein-protein Interaction Network Analysis
	Functional Enrichment Analysis
	Validation of Hub Genes in Microarrays
	Statistical Analysis

	Results
	Identification of DEGs in AD Blood and CSF Samples
	Abundance of Infiltrating Immune Cells
	Screening Genes Related to Immune Cells
	Network and Enrichment Analysis of Immune-Related DEGs in AD
	Correlations Between Blood Gene Expression and CSF Biomarkers
	Potential Blood Biomarkers for AD
	Validation of Genes Associated with B and T Cells in Microarray Datasets

	Discussion
	Conclusions
	References


