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Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in
many important medical image analysis applications. In general, to achieve label fusion a single target image is
first registered to several atlas images. After registration a label is assigned to each target point in the target
image by determining the similarity between the underlying target image patch (centered at the target point)
and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion
process it's critical for the chosen patch similarity measurement to accurately capture the tissue/shape appear-
ance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that
they often apply a fixed size image patch throughout the entire label fusion procedure. Doing somay severely af-
fect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue
appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-
art by adding three new label fusion contributions: First, each image patch is now characterized by a multi-scale
feature representation that encodes both local and semi-local image information. Doing so will increase the ac-
curacy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity
measurement being wrongly guided by the presence of multiple anatomical structures in the same image
patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according
to the existing labels. Since image information has now been semantically divided into different patterns, these
new label-specific atlas patchesmake the label fusion processmore specific andflexible. Lastly, in order to correct
target points that are mislabeled during label fusion, a hierarchical approach is used to improve the label fusion
results. In particular, a coarse-to-fine iterative label fusion approach is used that gradually reduces the patch size.
To evaluate the accuracy of our label fusion approach, the proposedmethodwas used to segment the hippocam-
pus in the ADNI dataset and 7.0 T MR images, sub-cortical regions in LONI LBPA40 dataset, mid-brain regions in
SATA dataset from MICCAI 2013 segmentation challenge, and a set of key internal gray matter structures in IXI
dataset. In all experiments, the segmentation results of the proposed hierarchical label fusion method with
multi-scale feature representations and label-specific atlas patches are more accurate than several well-known
state-of-the-art label fusion methods.
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Introduction

Manymedical image analysis studies require an accurate segmenta-
tion of anatomical structures in order to measure structural differences
across individuals or between groups (Aljabar et al., 2009; Hsu et al.,
2002). For example, in connectome applications multiple brain regions,
in hundreds of brainMR images, need to be automatically identified be-
fore constructing a brain connectivity network (Liu et al., 2012; Liu and
Ye, 2010) that describes network architecture of the human brain.
Therefore, to improve segmentation accuracy the development of auto-
matic ROI (region of interest) labeling methods has seen increased
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⁎ Some label fusion methods use patch pre-selection to discard the less similar patches.
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attention in themedical imaging field over the last several years (Aljabar
et al., 2009; Coupé et al., 2011; Rousseau et al., 2011; Tong et al., 2012;
Wang et al., 2011a; Wang et al., 2011b; Warfield et al., 2004; Wu et al.,
2014).

Multiple atlases with manually identified labels have proven to be
very useful when used to detect and label ROIs in the target image
that may show high structural variations in the population. The basic
assumption behind multi-atlas based segmentation is that the target
image point should bear the same label as the atlas image point if the
local tissue shape or appearance is very similar. All atlas images are re-
quired to be registered to a target image before label fusion. To alleviate
possible registration errors, patch-based label fusion (Coupé et al., 2011;
Rousseau et al., 2011) seeks multiple correspondence candidates using
patchwise similarity measurements between the target image patch
and the atlas image patches within a certain voxel neighborhood.
Intuitively, if the calculated similarity measurement between a target
image patch and a particular atlas image patch is very high, then the
atlas label assigned to the target point is the correct one.

To accurately assess image patch similarity, the identification and se-
lection of ideal image patches are key components of patch-based label
fusion methods. Most state-of-the-art methods simply use fixed size
patches throughout the entire label fusion procedure. For example,
7 × 7 × 7 or 9 × 9 × 9 cubic patches are usually used in the literature
(Coupé et al., 2011; Rousseau et al., 2011; Tong et al., 2012;Wang et al.,
2011a). In order tomake the label fusion robust to noise, image patches
are required to be sufficiently large enough to capture the intended
image content. However, using a large image patch may create addi-
tional problems when labeling small anatomical structures, e.g. the
patchwise similarity measurement could be dominated by other larger
anatomical structures surrounding the smaller one in the image patch.
In short, methods that use fixed-size patches lack discriminative
power to characterize complex appearance patterns in the medical
imaging data.

During the last decade, many efforts have beenmade to improve the
discrimination ability of image patches during label fusion. For instance,
sparse dictionary learning is used in Tong et al. (2013) to find the best
feature representations prior to label fusion. Moreover, in Wang et al.
(2011a) andWu et al. (2014) dependencies among atlas image patches
have been investigated to improve labeling accuracy by iteratively
inspecting incorrectly labeled patches that show similar labeling error
patterns. However, these state-of-the-art approaches use patches with
fixed size and therefore still suffer from this limitation.

In this paper, we address the above limitations by developing hierar-
chical and high-level feature representations to adequately describe
image patches. We propose the following three contributions: First,
a layer-wise multi-scale feature representation adaptively encodes
image features at different scales for each image point in the image
patch. In the proposed approach, feature representations near the cen-
ter of the patch provide more detailed (fine-scale) shape or appearance
information,whereas feature representations near the edge of the patch
provide less detailed (coarse-scale) shape or appearance information.
Second, it's very common that the structure to be segmented, e.g. the
hippocampus, is surrounded by other anatomical structures in the
image patch. In such cases it becomes very difficult to correctly recog-
nize the intended structure from the surrounding ones and mislabeling
is likely to occur. In computer vision, object recognition algorithms ad-
dress this limitation by attempting to separate the foreground pattern
from background clutter (Li et al., 2010). In light of this research, a
novel label-specific patch partition technique is proposed that splits
each atlas patch into a set of new complementary label-specific
(or structure-specific) image patches. To handle the increased number
of label-specific image patches after the proposed patch splitting strate-
gy a group sparsity constraint is included. As a result, the discriminative
power of each label-specific image patch is enhanced because it only
contains the image information of the corresponding anatomical
structure. To the best of our knowledge, this type of representation is
rarely exploited in label fusion. Third, because existing label fusion
methods typically use a fixed patch size, and label the entire target
image in one pass, they are not given a chance to correct possible errors.
To overcome this limitation the proposed method uses an iterative
label-fusion procedure. Specifically, larger image patches are used in
the beginning to increase the search range, however at each iteration
the labeling result is evaluated and the size of the image patch is gradu-
ally reduced. To ensure that spurious artifacts do not dominate the pro-
posed label-fusion method, a sparsity constraint is included that only
allows a small number of atlas patches to participate in the label fusion
process.

It should be noted that this paper is an extension of our previous
work in Wu and Shen (2014). However, there are several differences,
specifically: a group sparsity constraint is used instead of a weighting
vector sparsity constraint, a more comprehensive validation of each
contribution (i.e., multi-scale feature representation, label-specific
patch partition, and iterative label fusion), and additional datasets
are used to evaluate the performance of the proposed label fusion
method.

Performance of the proposed label fusion method is compared to
existing state-of-the-art patch-based labeling methods (Coupé et al.,
2011; Rousseau et al., 2011) using several different datasets. Specifical-
ly, the datasets used to evaluate the proposed method are the MICCAI
2013 segmentation challenge dataset (Landman and Warfield, 2012)
with 14 manually labeled ROIs in the mid-brain, the LONI LBPA40
dataset (Shattuck et al., 2008) with 54 manually labeled ROIs at sub-
cortical regions, and the IXI dataset with 83 manually labeled ROIs
(Hammers et al., 2003; Hammers et al., 2007). Finally, we also include
hippocampus segmentation experiments using the ADNI (Alzheimer's
Disease Neuroimaging Initiative) dataset and 7.0 T MR images
(Cho et al., 2010). For each dataset the proposed method achieves a
more accurate labeling result.

The remainder of the paper is organized as follows: In the Method
section we present our novel generative probability model for label
fusion, in the Experiments section we evaluate its performance by com-
paring it with conventional patch-basedmethods, and in the Discussion
section we provide a brief conclusion.

Method

Given the target image T, the goal of label fusion is to automatically
determine the label map LT for the target image. We first register each
atlas image, as well as the label maps, onto the target image space. We
use I= {Is|s= 1,…, N} and L= {Ls|s=1,…, N} to denote the N regis-
tered atlases and label maps, respectively. For each target image point x
(x∈ T), all the atlas patches⁎within a certain searchneighborhoodn(x),
denoted as β

*

s;y (β
*

s;y⊂Is; y∈n xð Þ), are used to compute the patchwise
similarities w.r.t. the target image patch α*T ;x (α*T ;x⊂T ). We arrange
each patch, β

*

s;y and α*T ;x , into a column vector. We use the tuple b =
(s, y) to denote both the atlas image index s and the location of the
patch center point y, respectively. Thus, each atlas image patch β

*

s;y

can now be simplified to β b (b = 1, …, Q), where Q = N × |n(x)| is
the total number of atlas image patches which are used to label the cen-
ter point of the target image patch α*T ;x . For clarity, we use only α* to
denote the underlying target image patch by dropping off the subscripts
in α*T ;x.

Label fusion methods such as non-local averaging (Coupé et al.,
2011; Rousseau et al., 2011), can be used to calculate theweighting vec-

tor w
*¼ wb½ �b¼1;…;Q for all atlas patches, each of which is denoted by β

*

b.
As we will explain in the Label-specific Atlas Patch Partition section, we
adopt the sparsity constraint (Liu et al., 2009a,b; Tibshirani, 1996) in our
method by regarding the label fusion procedure as the problem of
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finding the optimal combination among a set of atlas patches β
*

b

n o
for

the target image patch α
*
(Tong et al., 2012; Zhang et al., 2012):

b
w
* ¼ arg min

w
*

1
2
jj α* −B w

* jj2 þ λ jj w* jj1; ð1Þ

where the scalar λ controls the strength of sparsity constraint and B is a

matrix built by assembling all column vectors β
*

b

n o
in a columnwise

manner. The image patch vectors are usually required to be normalized
to the unit vector before optimizing over the sparse coefficients

w
*

(Wright et al., 2009). Assuming that we have M possible labels
{l1, …, lm, …, lM} in the atlases, the label on target image point x
can be efficiently determined by:

L̂T xð Þ ¼ arg max
m¼1;…;M

XQ
b¼1

wb � δ Lb; lmð Þ½ �; ð2Þ

where Lb denotes the label in the center point of the atlas patch βb, and
the Dirac function δ(Lb, lm) is equal to 1 when Lb = lm and 0 otherwise.

As we can see in Eq. (1), the image intensities in the entire image
patch are used for label fusion. Since one image patch may contain
more than one anatomical structure and the to-be-segmented target
ROI may have a complex shape/appearance pattern, the current patch-
based label fusion methods have a certain risk of being misled by
the patchwise similarities computed using image patches of fixed size
or scale. We address this issue by introducing the idea of adaptive
scale that has the following three components. Firstly, we treat each-
element within the image patch differently w.r.t. the radial distance
toward the patch center. Therefore, a single image patch can convey
image information from multiple scales (section Multi-scale feature
representations). Secondly, we treat the label information within the
image patch separately, insteadof as awhole. Specifically,we adaptively
build label-specific atlas patches by using the existing label information
in the atlases (section Label-specific atlas patch partition). Thirdly,
we dynamically reduce the patch size from large to small in order to
hierarchically improve the label fusion accuracy in a coarse-to-fine
manner (section Hierarchical patch-based label fusion).

Multi-scale feature representations

As demonstrated in our previous work (Wu et al., 2006), image
points at different brain regions should use different image scales to
precisely characterize the local anatomical information. However, in
most patch-based label fusion methods, every point in the image
patch contributes equally and uses just its own intensity value for
computing the patchwise similarity. We overcome this limitation
by allowing each point to use an adaptive scale for capturing local
Fig. 1. Construction of the multi-scale image patch by adaptively replacing the inte
appearance characteristics. Specifically, we first partition the whole
image patch into several nested non-overlapping layers, spreading
from the center point to the boundaries of the image patch. Next, we
capture the fine-scale features for the layer closest to the patch center
since the label fusion procedure eventually aims at determining the
label for the central point. We gradually use larger and larger scales to
capture the coarse-scale information as the distance to the patch center
increases. Although the image pyramid technique (Liu and Ye, 2010)
can be applied for multi-scale feature representation, we choose the
less computationally demanding solution of adaptively replacing the
original intensity values with the convolved intensity values using
different Gaussian filters.

Fig. 1 illustrates the procedure of how to integrate the multi-scale
feature representation into the conventional image patch. In the follow-
ing example, we use three non-overlapping layers. First, we deploy
three Gaussian filters upon the original image patch separately and ob-
tain three smoothed image patches. Then, for each element in the image
patch, we replace its original intensity value with the new value in the
smoothed image at the same location. In this example, we replace the
intensities in the inner most layer by the convolved intensity values
smoothed via a Gaussian filter with the smallest kernel (in blue, in the
right side of the figure). For each point in the middle layer, we use
the convolved intensity value from the smoothed image patch via a
Gaussian filter with the medium kernel (in red). Similarly, we use the
smoothed image patch via a Gaussian filter with the largest kernel as
the feature representation for the image points in the third layer
(in green). In this way, the image patch is now equipped with the
multi-scale feature representations, as shown in the right of Fig. 1. Here-
after, α

*
and β

*

b denote the image patches after replacing the original
intensities with the multi-scale feature representations.

The advantage of using multi-scale feature representation in patch-
based label fusion is shown in Fig. 2. Specifically, we examine the dis-
criminative power of two target image points, designated by red ‘+’

and red ‘Δ’ in Fig. 2. For clarity,we only use one atlas image in this exam-
ple (bottom left of Fig. 2). The corresponding locations of the two target
image points in the atlas image are designated with blue ‘+’ and blue
‘Δ’, respectively. For each candidate point in the search neighborhood
(i.e., blue dash boxes in Fig. 2), we compare the patch-wise intensity
similarity w.r.t the target image point by using small-scale image
patches (3 × 3 × 3), large-scale image patches (17 × 17 × 17), and our
proposed multi-scale image patches, respectively. Figs. 2(a)–(c) shows
the similarity maps obtained by comparing the target image patch and
each candidate atlas image patch in the search neighborhood, where
bright colors indicate high similarity, and dark colors indicate low
similarity.

The principle behind patch-based label fusion methods is that two
image patches should bear the same label if they have similar appear-
ances. Therefore, the benefit of our multi-scale feature representation
lies in its ability to recognize more reliable correspondences than the
nsity values with the convolved intensity values via multiple Gaussian filters.



Fig. 2. The advantages of using the multi-scale patch representation in patch-based label fusion. Each marker (“+” or “Δ”) denotes a pair of corresponding points in the atlas and target
images, respectively. We show the advantages of using the multi-scale patch representation by examining the patch-wise similarity maps for a particular target image point w.r.t. each
atlas image point. Comparedwith the similaritymaps byusing a small-scale image patch (a) and a large-scale image patch (b), ourmulti-scale image patch (c) can identify the correspond-
ing locations in the atlas image domain more accurately. This can be noted by the fact that the similarity maps have high values (bright red) around the corresponding location and
comparatively lower values (dark blue) elsewhere.
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conventional image patches. As shown in Fig. 2(a), when using conven-
tional small-scale image patches many image regions from obviously
different anatomical structures present high similarities. This is because
the appearance information in the small-scale image patch is too limited
to characterize the complex anatomical structures. This has the undesir-
able effect of introducing misleading labels in label fusion. On the other
hand, using conventional large-scale image patches can alleviate this
issue by incorporating global information, but at the expense of losing
discriminative power. This can be seen in Fig. 2(b), where a convention-
al large-scale image patch can approximately distinguish the atlas
patches nearby the corresponding locations. However, a large number
of atlas image patches belonging to different anatomical structures
still present high similarities when using conventional large-scale
image patches. Our multi-scale image patch combines both local and
global information, which leads to a more reasonable similarity map
as shown in Fig. 2(c). As we can see, our method can identify more
accurate correspondences than using either small or large conventional
patches. Thus, in the scenario of patch-based label fusion, the similarity
map obtained by using our multi-scale image patch representation
encourages assigning high weights to the true anatomical correspon-
dences (with the correct labels) and also suppresses the atlas patches
belonging to other structures (with incorrect labels).

Label-specific atlas patch partition

Since atlas image patches have label information, we can partition
each atlas patch into a set of new label-specific atlas patches, thus sep-
arately encoding the image information for each individual label.

Given the atlas image patch β
*

b , we use γ
*

b to denote its associated
label patch. Suppose there are Mb (0 b Mb ≤ M) different labels in γ b .
Then, the proposed label-specific atlas patch set Pb consists of Mb

label-specific atlas patches, i.e., Pb ¼ p
*m

b jm ¼ 1;…;Mb
n o

, where p
*m

b is

a column vector. Each element u in p
*m

b preserve the intensity value β
*

b

uð Þ if and only ifγ
*

b uð Þhas the label lm; otherwise, p
*m

b uð Þ ¼ 0.Mathemat-

ically, we have p
*m

b uð Þ ¼ β
*

b uð Þ � δ γ
*

b uð Þ; lm
� �

and β
*

b ¼ ∪M
m¼1p

*m

b , where

δ(.,.) is the same Dirac function as used in Eq. (2).
Fig. 3 demonstrates the construction of the label-specific atlas patch

partition. For clarity, we only use the original 3 × 3 image patch in this
example, instead of the above multi-scale image patch. Suppose that
we have three atlas image patches and there are two labels (hippocam-
pus and non-hippocampus) in each patch, i.e., Mb = 2 (b = 1, 2, 3).

Next, for each atlas patch β
*

b , we split it into two partial patches p
*1
b

and p
*2
b , which are denoted in blue (non-hippocampus) and red

(hippocampus) in Fig. 3, respectively. Each label-specific atlas patch
pb
m preserves the intensity value only if the element bears the label lm.

Otherwise, use zero to represent the elements with a different label in
the particular partial patch pb

m.
Note that the number of image patches increases significantly after

we partition each atlas patch into the label-specific atlas patch set.
Thus, we propose to use the sparsity constraint in label fusion, in
order to select only a small number of label-specific atlas patch p

*m

b for
representing the target image patch α

*
. By replacing each conventional

atlas patch with the label-specific atlas patches, the matrix of atlas
patches B in Eq. (1) now expands to P = [Pb]b = 1,…,Q. Then, the new
energy function for label fusion can be reformulated as:

b
ξ
*

¼ argmin
ξ
*
1
2

α
* −P ξ

*
����

����
2
þ λ ξ

*
����

����
1
; s:t: ξ

*

N0; ð3Þ

where ξ
*

¼ ξmb
� �

is theweighting vector for each label-specific atlas patch

p
*m

b . Since the goal of Eq. (3) is to minimize the difference between the
target image patch and its sparse representation of label-specific atlas

patches, the padded zero values in each label-specific atlas patch p
*m

b

have no influence when optimizing Eq. (3).



Fig. 3. The construction of a label-specific atlas patch partition.
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Conventionally, each weight ξbm in ξ
*

is independently treated when
optimizing Eq. (3). Here, we go one step further and enforce the group
sparsity constraint on ξ

*

. Obviously, there are Q non-overlapping
groups of label-specific atlas patches, where each group consists
of a set of label-specific atlas patches split from β

*

b . Supposing
that ξ

*

b ¼ ξmb
� �

m¼1;…;Mb denotes the weights for all label-specific
Fig. 4. The advantage of enforcing the gro
atlas patches within the original atlas image patch β
*

b , the new
energy function with group sparsity constraint is:

b
ξ
*

¼ argmin
ξ
*

1
2

α
* −P ξ

*
����

����
2
þ λ1

XQ
b¼1

ξ
*

b

����
����
2
þ λ2 ξ

*
����

����
1
; s:t: ξ

*

N0; ð4Þ
up sparsity constraint in label fusion.
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where λ1 and λ2 control the strength upon non-overlapping groups and
the entire weighting vector ξ

*

, respectively. The new energy function
falls into the scenario of sparse group LASSO (Friedman et al., 2010;
Vincent and Hanse, 2014) which encourages sparsity not only for the
entire weighting vector ξ

*

(as reflected by the third term in Eq. (4)),
but also for the number of selected groups (as reflected by the second
term in Eq. (4)). The optimization of Eq. (4) can be efficiently solved
by using the SLEP (Sparse Learning with Efficient Projection) software
package (Liu et al., 2009b; Liu and Ye, 2010).

Since eachp
*m

b is only relatedwith aparticular label lm, each element ξbm

in ξ
*

represents the probability of labeling the center point x of the target

image patchα
*
with the label lm. Therefore, the labeling result on the target

image point x can be obtained by:

L̂T xð Þ ¼ arg max
m¼1;…;M

XQ
b¼1

ξmb : ð5Þ

The advantage of using label-specific atlas patches is demonstrated
by a toy example in Fig. 4, wherewe use red and blue to denote two dif-
ferent labels and we use numbers to represent the intensity values. For
the sake of simplicity, we have only used two atlas patches in this exam-
ple. Both the first atlas patch (i.e., the first column in B) and the target

patch α
*
belong to the same structure since their intensity values are in

ascending order. If we estimate theweighting vectorw
*
based on the en-

tire atlas patch by Eq. (1) (λ=0.01), theweights for thefirst and second
atlas patches are 0.43 and 0.49, respectively. According to Eq. (2), we
have to assign the target point with the blue (incorrect) label. In our
method, we first extend the matrix B to the label-specific atlas patch
set P, as shown in the bottom of Fig. 4, and then solve the newweighing

vector ξ
*

by Eq. (4) (λ1 = 0.1 and λ2 = 0.1). According to Eq. (5), the
overall weights for red and blue labels are 0.8194 (0.8094 + 0.0100)
and 0.3329 (0.2683 + 0.0646), respectively. Therefore, it is straightfor-
ward to correctly assign the target point with the red label. It is worth

noting that, if only using the sparsity constraint on ξ
*

, the overall weights
for the red and blue labels are 0.8850 (0.8000 + 0.0050) and 0.8004
(0.6901 + 0.1103), respectively. As we can see, the vote for the red
label is only slightly better than the blue label. This example demon-
strates the benefits of both the label-specific patch partitions and of
enforcing group sparsity.

Hierarchical patch-based label fusion

In section Multi-scale feature representations, we have presented
the use of multi-scale image patch to adaptively treat each element in
the image patch. As observed in Fig. 2, combining global and local infor-
mation can significantly increase the robustness and discriminative
power of the image patch in label fusion. Along the same lines, we fur-
ther propose to dynamically adjust the patch size from large to small
during the label fusion procedure. The idea is to initially resort to global
information (i.e., using a large patch size) to discard themisleading can-
didate atlas patches and then gradually use more local information
(i.e., using smaller patch sizes) to refine the optimization of the energy
function (in Eq. (4)) based on the remaining atlas patches.

In the beginning of patch-based label fusion, we propose to use a
large patch size in order to capture the global image information.

Since we use the sparsity constraint for solving the weighing vector ξ
*

,
only a small number of image patches are selected to represent the

target image patch α
*
, since many elements in ξ

*

are zero or almost
zero. After discarding those unselected atlas patches,we can confidently
reduce the patch size of those selected atlas patches and then repeat the
whole label fusion procedure as described in sections Multi-scale
feature representations and Label-specific atlas patch partition by
usingmore detailed, local features. In this way, our label fusionmethod
can iteratively improve the labeling results in a hierarchical way.

The advantage of our hierarchical patch-based label fusion is dem-
onstrated in Fig. 5, where we aim to determine the label of the target
image point x (red cross in Fig. 5) located near the boundary of the hip-
pocampus (with ground-truth label corresponding to hippocampus). To
determine the label for this target image point x, a set of candidate atlas
image patches are examined in a 15 × 15 × 15 search neighborhood
(i.e., blue dash boxes). After patch pre-selection (Coupé et al., 2011),
only around 2000 atlas patches are used in determining the label for tar-
get image point x. In order to explicitly show the advantage of our hier-
archical patch-based label fusion scenario, we only use the original
image patch, with neither multi-scale representation nor label-specific
partition. Moreover, only the sparsity constraint is used to seek for the
label fusion weights (i.e., Eq. (3)), instead of using the group sparsity
constraint. In the first iteration, the patch size is set to 11 × 11 × 11. In
Fig. 5(a), we plot the sparse coefficients after solving Eq. (3). The red
and blue plots correspond to the atlas patches with hippocampus label
and non-hippocampus label, respectively. It is clear that a large number
of atlas image patches with non-hippocampus labels are selected to
represent the target image patch, which makes the selection of the
underlying label somewhat arbitrary due to the fact that the overall
weight for the non-hippocampus label is nearly the same as for the
hippocampus. In the second iteration, we only focus on the remaining
(selected) atlas patches by discarding the unselected atlas patches
(with zero coefficients). At this point, we reduce the patch size from
11 × 11 × 11 to 7 × 7 × 7, in order to resort to the local image informa-
tion to refine the sparse representation. Since a lot of misleading and
noisy image patches have been removed, the task of sparse representa-
tion becomes relatively easier. As shown in Fig. 5(b), the overall weight
voting for hippocampus dominates the weight for non-hippocampus.
However, we still can see some large sparse coefficients for some non-
hippocampus image patches. Thus, we finally repeat the same proce-
dure with the patch size reduced to 3 × 3 × 3. It can be observed in
Fig. 5(c) that (1) only a few atlas patches are used to determine the
label for the target image point x, and (2) all the selected atlas patches
have the correct label w.r.t. the target image point x. It is worth noting
that directly using the 3 × 3× 3 image patches from scratch does not re-
sult in good estimations, as indicated by the plot of sparse coefficients in
Fig. 5(d). The main reason is that the appearance information from
small image patches is too local to deal with the complex anatomical
structures present in the brain images. On the contrary, our hierarchical
label fusion framework uses the global image information to gradually
remove the misleading candidate atlas patches, thus ensuring to obtain
more accurate label fusion results when applying the small image patch
size in the end.

Experiments

To evaluate label performance, the proposed label fusion method is
compared to several existing state-of-the-art patch-based methods
using publically available neuroimaging datasets. Specifically, the non-
local weighting (Nonlocal-PBM) (Coupé et al., 2011; Rousseau et al.,
2011), and the recently proposed sparse patch-based labeling method
(Sparse-PBM) (Tong et al., 2012; Zhang et al., 2012) are tested. To assess
label accuracy, the Dice ratio is used which measures the degree of
overlap between two ROIs O_1 and O_2 as follows:

Dice O1;O2ð Þ ¼ 2� O1∩O2j j
O1j j þ O2j j ; ð6Þ

where | ⋅ | means the volume of the particular ROI.
As shown in Table 1, an iterative process that uses varying configu-

rations is implemented. In general, a configuration defines several
partition layers definedwithin the patch. For instance, if the label fusion
method initially starts with a 9 × 9 × 9 patch it will be partition into



Fig. 5. The advantage of using hierarchical label fusion with dynamic patch sizes.
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three layers. From the center point of the patch the [1,1,2] setting
describes the width of each partition. For this particular setting, the
width of the first two layers is 1 voxel and the width of the third layer
is 2 voxels. Lastly, the [0.5,1,2] setting controls the kernel width that is
used for smoothing. Likewise for this setting, 0.5 is the kernel width
for the first layer, 1 is the kernel width for second layer, and 2 is the
kernel width for the third layer. The above process is executed for two
additional iterations that gradually reduce the patch size to 3 × 3 × 3.
These parameters are fixed throughout all the experiments. For the
other counterpart methods, we report the results using the parameters
that result in the best performance. Lastly, the values of λ1 and λ2 are
both set to 0.1 for all experiments.

The remainder of this section is organized as follows: In Section 3.1 a
comprehensive evaluation of the proposed label fusion method is per-
formed using the ADNI dataset, then in Section 3.2 the parameters are
fixed and the proposed method is used to segment the hippocampus
in 7.0 T MR images. In section Experimental result of hippocampus
labeling on the ADNI dataset, the proposed method is evaluated using
the 14 mid-brain structures in the SATA MICCAI 2013 segmentation
challenge dataset, and in section Experimental result on the LONI
Table 1
Example multiple layer configuration.

Patch size Number of layers Layer width Gaussian Kernel size

9 × 9 × 9 3 [1,1,2] [0.5,1.0,2.0]
5 × 5 × 5 2 [1,1] [0.5,1.0]
3 × 3 × 3 1 [1] [0.5]
LPBA40 dataset the proposed method is evaluated using 54 manually
labeled sub-cortical regions in the LONI LBPA 40 dataset (Shattuck
et al., 2008). For a fair comparison, the Nonlocal-PBM and Sparse-PBM
parameter settings reported in Coupé et al. (2011) and Zhang et al.
(2012) respectively, are used.
Experimental result of hippocampus labeling on the ADNI dataset

In many neuroscience studies, accurate delineation of hippocampus
is very important for quantifying the inter-subject anatomical difference
and subtle intra-subject longitudinal changes, since the structural
change of hippocampus is closely related with dementias, such as
Alzheimer's disease (AD). In this experiment, we randomly select 23
normal control (NC) subjects, 22MCI (Mild Cognitive Impairment) sub-
jects, and 21 AD subjects from the ADNI dataset.† The following three
pre-processing steps have been performed to all subject images:
(1) Skull removal by a learning-based meta-algorithm (Shi et al.,
2012); (2) N4-based bias field correction (Tustison et al., 2010); (3) in-
tensity standardization to normalize the intensity range (Madabhushi
and Udupa, 2006). Semi-automated hippocampal volumetry was
carried out using a commercial high-dimensional brain mapping tools
(Medtronic Surgical Navigation Technologies, Louisville, CO), which
has been validated and compared tomanual tracing of the hippocampus
(Hsu et al., 2002). In this experiment, we regard the hippocampal
segmentations from ADNI as the ground truth.
† http://adni.loni.ucla.edu/.

http://adni.loni.ucla.edu/


Table 2
Dice ratiomean, standard deviation, andmean computation time results forNonlocal-PBM, Sparse-PBM, degraded versions of the proposedmethod, the proposed label fusionmethod and
when used to label the hippocampus.

Nonlocal-PBM Sparse-PBM Degraded_1 Degraded_2 Degraded_3 Proposed method

Dice ratio 86.6 ± 3.5 87.3 ± 3.4 87.9 ± 3.0 88.2 ± 2.5 87.6 ± 2.9 88.5 ± 2.2
Time (sec) 75 128 136 196 511 618
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A leave-one-out strategy is used to compare the label performance
of Nonlocal-PBM, Sparse-PBM, and proposed label fusion method. In
each leave-one-out experiment, affine registration is first performed
by FLIRT in the FSL toolbox (Smith et al., 2004) with 12 degrees of free-
dom and the default parameters (i.e., normalized mutual information
similarity metric, and a search range of ± 20 mm in all directions).
Then after the affine registration, a deformable registration is performed
using the diffeomorphic demons (Vercauteren et al., 2009) method
and the default registration parameters (i.e., smoothing sigma 1.8, and
iterations in low, middle, and high resolutions as 20 × 10 × 5).

To evaluate the contribution of each component in the proposed
label fusion method, we compare our method with the three degraded
versions of our method: Degraded_1: our method using only the multi-
scale feature representation (with patch size of 9 × 9 × 9), Degraded_2:
our method using only the label-specific atlas patches (with patch size
of 9 × 9 × 9), and Degraded_3: our method using only the hierarchical
labeling mechanism.

Using all 66 leave-one-out cases, themean and standard deviation of
theDice ratios from the hippocampus label results are calculated and re-
ported in Table 2. A few important observations can bemade. Compared
to the five other methods, the proposed label fusion method with no
degradation achieves the highest Dice ratio results, obtaining approxi-
mately a 1.9% and 1.2% improvement over the Nonlocal-PBM and
Sparse-PBM methods, respectively. Each component in the proposed
label fusion method improves labeling accuracy as seen by the 0.6%,
0.9%, and 0.3% Dice ratio increases over Degraded_1, Degraded_2, and
Degraded_3, tests respectively. The computation times by the 6 label
fusionmethods are also reported in the last row of Table 2. The computa-
tion environment of our experiments is 8 CPUs @ 3.0 GHz and 16 G RAM.

Since the improvement in label fusion is usually obtained around the
boundary of hippocampus, it is interesting to examine the label results
at the hippocampus surface. To perform this experiment we first con-
struct ground-truth hippocampus surface mask and an estimated hip-
pocampus surface mask. Then the distance at each vertex between
two surfaces is computed. Table 3 shows the values of the averaged
surface-to-surface distance and the maximum surface-to-surface
distance by Nonlocal-PBM, Sparse-PBM, Degraded_1, Degraded_2,
Degraded_3, and the proposedmethodwith nodegradation.We further
perform the paired t-tests upon the surface distances. We observe that
all degraded methods and the proposed method with no degradation
have significant improvement (p b 0.05) over Nonlocal-PBM, the
Degraded_1, Degraded_2, and the proposed method with no degrada-
tion have significant improvement (p b 0.05) over Sparse-PBM.

Experimental result on the 7.0 T MR images

With the advent of 7.0-Tesla MR imaging technology (Cho et al.,
2010) the achievement of high signal-to-noise ratio (SNR), as well as a
dramatic increase in tissue contrast compared to the 1.5- or 3.0-Tesla
MR images, is possible. A visual comparison in provided in Fig. 6,
Table 3
Dice ratio mean, standard deviation, and maximum surface distance results when used to la
(p b 0.05) over the Nonlocal-PBM and sparse-PBMmethods.

Nonlocal-PBM Sparse-PBM Degraded_1+*

Mean 0.410 ± 0.15 0.380 ± 0.10 0.353 ± 0.10
Max 4.359 3.742 3.317
which shows a typical brain image slice produced by a 7.0-Tesla scanner
with resolution of 0.35 × 0.35 × 0.35mm3 next to slice from a 1.5-Tesla
scanner with a resolution of 1 × 1 × 1 mm3. These high-resolution im-
ages enable researchers to clearly observe fine brain structures with
sub-milimetric precision. We believe that the 7.0-Tesla MR imaging
technique has the potential to become the standard technique for
discovering the morphological patterns in the human brain in the near
future.

For the 7.0-Tesla scanner (Magnetom, Siemens), an optimized mul-
tichannel radiofrequency (RF) coil and a 3D fast low-angle shot (Spoiled
FLASH) sequencewere utilized,with TR=50ms, TE=25ms,flip angle
10°, pixel band width 30 Hz/pixel, field of view (FOV) 200 mm,
matrix size 512 × 576 × 60, 3/4 partial Fourier, and number of average
(NEX) 1. The image resolution of the acquired images is isotropic,
e.g., 0.35×0.35×0.35mm3. The hippocampiweremanually segmented
by neurologists (Cho et al., 2010). All images were pre-processed by the
following steps: 1) inhomogeneity correction using N4 bias correction
(Tustison et al., 2010); 2) intensity normalization for making image
contrast and luminance consistent across all subjects (Madabhushi
and Udupa, 2006); 3) affine registration to the selected template by FSL.

Using 7.0-Tesla MR imaging technology, the proposed label fusion
method is used to segment the hippocampus from twenty-one
7.0-Tesla MR brain images. Unfortunately, existing state-of-the-art de-
formable image registration methods that are developed for 1.5-Tesla
or 3.0-Tesla MR images do not perform well when used on 7.0-Tesla
MR images. In general, this is primarily due to the severe intensity inho-
mogeneity in 7.0-Tesla MR images, the richer texture information in
7.0-Tesla MR images (as seen in Fig. 6(b)), and that only a small
segment of the brain covering the hippocampus is scanned, instead of
the whole brain.

Since we have themanually labeled hippocampus for each 7.0-Tesla
MR image, we can quantitatively measure label fusion accuracy using a
leave-one-out cross validation strategy. The mean and standard devia-
tion of the Dice ratios on hippocampus are (77.42 ± 3.44) % by
Nonlocal-PBM, (79.29 ± 2.46) % by Sparse-PBM, and (82.65 ± 1.37) %
by the proposed method. Furthermore, in Table 4 we list the average
and maximum surface distances between the manually segmented
and the automatically estimated hippocampusmasks by three different
label fusionmethods. Fig. 7 shows themappings of the surface distances
on three typical 7.0-Tesla MR images.

Experimental result on the SATA MICCAI 2013 challenge dataset

Using the SATA dataset, provided by MICCAI 2013 segmentation
challenge workshop (https://masi.vuse.vanderbilt.edu/workshop2013/
index.php/Main_Page), 35 training samples (atlas images and labels)
as well as a collection of 12 testing images are provided. There are 14
ROIs that cover accumbens area, amygdala, caudate, hippocampus,
pallidum, putamen, and thalamus on both hemispheres. Since the
organizers have provided all registered atlas images to each target
bel the hippocampus (unit: mm). Symbols ‘+’ and ‘*’ indicate significant improvement

Degraded_2+* Degraded_3+ Proposed Method+*

0.342 ± 0.09 0.369 ± 0.12 0.334 ± 0.09
3.000 3.464 2.450

https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page
https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page


Fig. 6. The hippocampus shown by (a) 1.5-Tesla and (b) 7.0-TeslaMR scans. The 1.5-Tesla image has been enlarged tomatch the size of the 7.0-Tesla image for visual comparison purposes.

Table 4
Dice ration mean, standard deviation, and maximum surface distance results found by
Nonlocal-PBM, sparse-PBM, and the proposed label fusion method when used to label
the hippocampus in 7.0-Tesla MR image (unit: mm).

Nonlocal-PBM Sparse-PBM Our method

Mean 1.91 ± 0.41 1.43 ± 0.32 0.86 ± 0.16
Max 7.07 5.20 4.69

42 G. Wu et al. / NeuroImage 106 (2015) 34–46
image to be labeled, no registration is needed for this experiment. After
the proposed label fusion method generates the label results, they are
submitted to the workshop organizer that returned the quantitative re-
sults shown in Table 5. The Dice ratios in all ROIs by the three label fu-
sion methods are shown in Fig. 8. It worth noting that the proposed
method (named “UNC IDEA SuperMAS”) is currently ranked the topmost
label fusion method in this challenge (http://masi.vuse.vanderbilt.edu/
submission/leaderboard.html).

Experimental result on the LONI LPBA40 dataset

Here we evaluate the performance of label fusion using the LONI
LBPA 40 dataset (Shattuck et al., 2008) that includes 40 brain images,
and each brain image has 54manually labeled ROIs.We randomly select
20 images as atlases and another 20 as target images. To label each tar-
get image, we first apply affine registration by FLIRT in the FSL toolbox
(Smith et al., 2004) with 12 degrees of freedom and the default param-
eters (i.e., using the normalized mutual information similarity metric,
and the search range ± 20 in all directions). Then after the affine regis-
tration, a deformable registration is performed using the diffeomorphic
demons (Vercauteren et al., 2009) method and the default registration
parameters (i.e., using the smoothing sigma 2.0, and iterations in low,
middle, and high resolutions as 20 × 10 × 5).

The Dice ratio mean and standard deviation measures for the 54
ROIs are provided in Table 6. The proposed method achieves a 3.15%
and 1.51% improvement compared the Nonlocal-PBM and Sparse-PBM
methods, respectively. Fig. 9 shows the Dice ratio in each ROI found by
the Nonlocal-PBM (blue), Sparse-PBM (green), and the proposed
method (red). The proposed label fusion method shows a significant
improvement in 34 of 54 ROIs when compared to Nonlocal-PBM
(‘+’ denoting significant improvement according to a paired t-test
(p b 0.05)), and in 29 of 54 ROIs when compared to Sparse-PBM (‘*’
denoting significant improvement according to a paired t-test (p b 0.05)).

Comparison with other state-of-the-art methods on the IXI dataset

Recently, many multi-atlas based label fusion methods
(Artaechevarria et al., 2009; Asman and Landman, 2012; Cardoso
et al., 2013; Sabuncu et al., 2010a) have been developed to segment
anatomical structures in medical images. STEPS (Similarity and Truth
Estimation for Propagated Segmentations) (Cardoso et al., 2013) is
one the most recent label fusion method that integrates image appear-
ance information into the classic STAPLE algorithm (Warfield et al.,
2004). Specifically, STEPS has achieved better segmentation results
than other existing label fusion methods including those of Asman
and Landman (2011), Asman and Landman (2012), Sabuncu et al.
(2010b), and Yushkevich et al. (2010).

Here we compare segmentation performance of the proposed label
fusion method with STEPS, Nonlocal-PBM, and Sparse-PBM using
the IXI dataset (Hammers et al., 2003; Hammers et al., 2007) .‡ The IXI
‡ The IXI dataset can be downloaded at http://biomedic.doc.ic.ac.uk/braindevelopment/
index.php?n=Main.Datasets.
dataset contains 30 subjects, each with 83 manually labeled ROIs. For
the sake of comparison, we report the Dice ratios for the same 7 ROIs
(Hippocampus, Amygdala, CaudateNucleus, Nuc. Accumbens, Putamen,
Fig. 7. Surface distance renderings obtained by Nonlocal-PBM, Sparse-PBM and our
proposed label fusion method on 7.0-Tesla MR images.

http://masi.vuse.vanderbilt.edu/submission/leaderboard.html
http://masi.vuse.vanderbilt.edu/submission/leaderboard.html
http://biomedic.doc.ic.ac.uk/braindevelopment/index.php?n=Main.Datasets
http://biomedic.doc.ic.ac.uk/braindevelopment/index.php?n=Main.Datasets


Table 5
Mean Dice ratio, standard deviation, median, maximum and minimum results found by
Nonlocal-PBM, Sparse-PBM, and theproposed label fusionmethod using the SATAdataset.

Mean Standard deviation Median Max Min

Nonlocal-PBM 85.81 2.80 86.95 89.04 80.61
Sparse-PBM 85.94 3.25 87.09 89.28 78.27
Proposed method 86.54 2.59 87.67 89.23 82.00

Table 6
Mean Dice ratio and standard deviation results found by Nonlocal-PBM, Sparse-PBM, and
the proposed method using the LONI LPBA40 dataset.

Nonlocal-PBM Sparse-PBM Proposed method

Mean and standard deviation 78.31 ± 3.52 79.95 ± 3.38 81.46 ± 2.25
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Thalamus, Globus pallidus) originally reported in Cardoso et al. (2013).
Similarly to Cardoso et al. (2013), we run Nonlocal-PBM, Sparse-PBM,
and the proposed label fusion methods on all 30 subjects using a
leave-one-out cross validation strategy. Table 7 shows the mean Dice
ratio value for the 7 ROIs found by the different label fusion methods
under test. As we can see, the proposed method achieves the best
(i.e. greatest value) Dice ratio.
Fig. 8. Dice ratios for each ROI obtained by Nonlocal-PBM
Discussion

Linear vs deformable image registration

In Rousseau et al. (2011), the authors propose the strategy that com-
bines non-local label fusion with deformable image registration.
According to their conclusions, accurate correspondences derived
from deformable image registration could further improve non-local
label fusion performance, especially when the intensity contrast is
low. Since the overall goal of our paper is to improve labeling accuracy.
, Sparse-PBM, and the proposed label fusion method.



Fig. 9. Dice ratio for each ROI found by Nonlocal-PBM (blue), Sparse-PBM (green), and the proposed label fusion method (red). Symbols ‘+’ and ‘*’ indicate significant
improvement (p b 0.05) with respect to Nonlocal-PBM and sparse-PBM, respectively.
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In light of this, the proposed label fusion method was applied after de-
formable registration (using diffeomorphic demons) to map the labels
from the atlas images to the target image. However, after several exper-
iments we observed some interesting label fusion results that used lin-
ear registration instead of a non-linear one. In particular, Table 8 shows
the mean and standard deviation of Dice ratios when segmenting the
hippocampus using a 66 leave-one-out cross validation experiment.
As shown in this table, we compared the Nonlocal-PBM, Sparse-PBM,
Degraded_1, Degraded_2, Degraded_3, and our full label fusionmethod.
Furthermore, the same dataset in section Experimental result of
hippocampus labeling on the ADNI dataset was used with one excep-
tion: all the label fusion methods under test were executed after linear
registration. Compared to the Dice ratios in Table 2, the segmentation
of the proposed method is more accurate when linear registration is
performed, and is less accurate when a deformable image registration
is performed. Moreover, in hippocampus dataset, label fusion results
after deformable image registration are more accurate than those
after linear registration (87.9% by linear registration vs 88.5% by
deformable registration), but at the expense of longer computational
time (i.e., 20 min by linear registration vs 55 min by deformable
registration).
Table 7
Mean Dice ratio results found by STEPS, Nonlocal-PBM, Sparse-PBM, and the proposed
method using the IXI dataset.

STEPS Nonlocal-PBM Sparse-PBM Proposed method

Hippocampus 84.2 82.3 84.0 84.6
Amygdala 80.5 78.2 79.5 81.5
Caudate nucleus 89.2 88.5 88.9 89.5
Nuc. accumbens 69.5 68.9 69.1 70.6
Putamen 89.1 87.4 88.8 89.2
Thalamus 89.4 87.8 89.2 89.5
Globus pallidus 79.8 78.1 79.5 80.3
Overlapping vs non-overlapping layers in the multi-scale feature
representation

In section Multi-scale feature representations, the image patch was
partitioned into non-overlapping layers that may present blockness
problems across different layers. In order to evaluate how this potential
problem affects label fusion performance the two additional tests were
evaluated: Include overlapping layers with a 1 image point overlap
between two layers, and increase the number of layers in each image
patch. For each additional test, the label fusion method was rerun
with non-overlapping layers and with overlapping layers on the hippo-
campus dataset. After performing a 66 leave-one-out cross validation,
themean and standard deviation of the Dice ratios achieved by the pro-
posed label fusionmethod,with non-overlapping layers, andwith over-
lapping layers, were 87.91±3.04 and 87.95± 2.96, respectively. Paired
t-test indicates no significant statistical difference between when non-
overlapping or overlapping layers are used. However, in our implemen-
tation there is a significant difference in computation time. Specifically,
the time required when overlapping is used requires significantly more
time when non-overlapping layers are used.
Limitations and future work

In order to efficiently obtain themulti-resolution feature representa-
tion at each point, we experimentally partition the image patch into
several nested non-overlapping layers and assign each layer with a
pre-determined Gaussian Kernel. However, as we demonstrated in our
previous work (Wu et al., 2006b), each image point should have its
own best scale to describe the local characteristics of the anatomical
structure. Thus, one of our future works is to develop an adaptivemeth-
od to use thebest image patch size and the best set of smoothing kernels
for each point. To further increase the computational efficiency of the
proposed method, GPU processing using the CUDA programming tech-
nique can be used to exploit parallel patch operations. Lastly, the



Table 8
Dice ratio mean and standard deviation results when the hippocampus is labeled using only a linear registration.

Nonlocal-PBM Sparse-PBM Degraded_1 Degraded_2 Degraded_3 Our method

Dice ratio 85.7 ± 4.0 86.2 ± 3.8 86.8 ± 3.0 87.2 ± 2.8 86.7 ± 3.3 87.9 ± 3.1
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integration of the proposed label fusion method into an open-source
stand-alone software package, like MARS (Multi-Atlas Robust Segmen-
tation) that is hosted at NITRC (http://www.nitrc.org/projects/mars),
would give other researchers direct access to the software developed
in this manuscript.

Finally, although we address the limitation of existing label fusion
methods that use fixed size image patches, many other works are
aimed at improving label fusion performance from different perspec-
tives. For example, Ta et al. (2014) introduced a new patch-based
method using the ‘PatchMatch’ algorithm that provides competitive
segmentation accuracy in near real-time. Results showed that their
label fusion method can segment the hippocampus from MR images
in less than 1 s. From the application point of view, the non-local
based method has been adapted to multiple medical imaging studies,
such as intracranial cavity extraction (Eskildsen et al., 2012; Manjón
et al., 2014) and extraction of hippocampus structural features for
early detection of AD (Coupé et al., 2012a; Coupé et al., 2012b). In our
future work, we plan to evaluate our proposed label fusion method in
other imaging-based studies (Chen et al., 2009; Liu et al., 2012; Verma
et al., 2005).

Conclusion

In this paper, new techniques are used to improvemulti-atlas patch-
based label fusion performance. Specifically, each atlas patch is assigned
amulti-scale feature representation; atlas imagepatches are partitioned
into several label-specific patches based on existing label information;
and a hierarchical label fusion mechanism that i\teratively improves
the labeling result by gradually reducing patch size. Label fusion perfor-
mance is evaluated using the ADNI dataset, 7.0-Tesla MR image dataset,
SATA MICCAI 2013 segmentation challenge dataset, LPBA40, and IXI
dataset. Compared to publicly available state-of-the-art label fusion
methods, the proposedmethod has demonstrated the best label perfor-
mance for each dataset. Lastly, it is worth noting that the proposed
method has achieved the highest ranking in the SATA segmentation
challenge.
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