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Abstract

Motivation: With the emerging of high-dimensional genomic data, genetic analysis such as genome-wide
association studies (GWAS) have played an important role in identifying disease-related genetic variants and novel
treatments. Complex longitudinal phenotypes are commonly collected in medical studies. However, since limited
analytical approaches are available for longitudinal traits, these data are often underutilized. In this article, we
develop a high-throughput machine learning approach for multilocus GWAS using longitudinal traits by coupling
Empirical Bayesian Estimates from mixed-effects modeling with a novel ‘0-norm algorithm.

Results: Extensive simulations demonstrated that the proposed approach not only provided accurate selection of
single nucleotide polymorphisms (SNPs) with comparable or higher power but also robust control of false positives.
More importantly, this novel approach is highly scalable and could be approximately >1000 times faster than recent-
ly published approaches, making genome-wide multilocus analysis of longitudinal traits possible. In addition, our
proposed approach can simultaneously analyze millions of SNPs if the computer memory allows, thereby potential-
ly allowing a true multilocus analysis for high-dimensional genomic data. With application to the data from
Alzheimer’s Disease Neuroimaging Initiative, we confirmed that our approach can identify well-known SNPs associ-
ated with AD and were much faster than recently published approaches (�6000 times).
Availability and implementation: The source code and the testing datasets are available at https://github.com/
Myuan2019/EBE_APML0.
Contact: sxu@genmab.com or myuan@ustc.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Repeated measurements of phenotypes are usually collected to
understand dynamics of diseases such as the onset of disease, treat-
ment effect, resistance to a treatment and progression or relapse of
diseases. It is well appreciated that high-dimensional genomic ana-
lysis such as genome-wide association studies (GWAS) based on
repeated measures could markedly increase the statistical power,
particularly for detecting genetic variants with relatively weak
effects (Chiu et al., 2016; Marchetti-Bowick et al., 2016). In add-
ition, multilocus GWAS analyses could further improve the power
of GWAS and produce more accurate P-values and tests (Li et al.,

2011; Wu et al., 2009). Therefore, it is imperative to develop a mul-
tilocus approach for GWAS using longitudinal traits.

Over the last decade, different approaches have been attempted
for multilocus GWAS of longitudinal outcomes (Das et al., 2013;
Furlotte et al., 2012; Jiang et al., 2015; Li and Sillanpää, 2013; Li
et al., 2015; Londono et al., 2013; Meirelles et al., 2013; Sikorska
et al., 2013; Yang et al., 2009). Most recently, Time-Varying Group
Sparse Additive Model (TV-GroupSpAM) was proposed to provide
a multilocus, functional analysis solution for high-dimensional
GWAS data and longitudinal traits (Marchetti-Bowick et al.,
2016), which demonstrated greater statistical power than previous
methods. However, although TV-GroupSpAM demonstrated
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computational advantage over other published methods for func-
tional GWAS, it is still extremely time-consuming and computation-
ally expensive and takes >1 h for testing 1000 single nucleotide
polymorphisms (SNPs). Therefore, it is not scalable and computa-
tionally infeasible for large-scale GWAS where tests of millions of
SNPs are required.

Empirical Bayesian Estimates (EBEs), derived from mixed-effects
models without covariates, are often used to facilitate identification
of covariates for longitudinal data (Combes et al., 2014; Savic and
Karlsson, 2009). The EBEs-based variable selection approach is sim-
ple and quick because only simple linear regression is involved.
Recently, Xu et al. (2017) performed extensive simulation studies
and revealed that statistical tests based on EBEs not only provided
almost identical power for detecting a covariate effect but also better
controlled the false positive (FP) rate compared to the commonly
used likelihood ratio test within the framework of non-linear mixed-
effects modeling.

Regularized methods were attempted to improve the power of
GWAS and produce more accurate P-values and tests (Li et al.,
2011; Wu et al., 2009). These approaches usually use a ‘1-norm
regularization penalty (Tibshirani, 1996) to identify SNPs that are
predictive of phenotypical outcomes. It is well-known that the opti-
mal penalty for the variable selection purpose is the ‘0-norm of the
regression coefficients for all predictors. Unfortunately, due to the
non-convexity and discontinuity of the ‘0-norm, solving such a regu-
larized optimization is computationally challenging, known as non-
deterministic polynomial-time hard (NP-hard, Natarajan, 1995).
Recently, Li et al. (2018) developed a two-stage procedure for ‘0-
penalty variable selection and demonstrated superior performance
of the proposed method in terms of selection accuracy and computa-
tional speed as compared to ‘1-norm.

In this article, taking advantages of simplicity of EBEs and accur-
acy of the novel ‘0-norm algorithm, we develop a two-stage machine
learning approach named EBEAPML0 for multilocus GWAS using
longitudinal traits. Compared to existing methods, this approach
not only provides accurate selection of SNPs with comparable or
higher power but also robust control of FPs. In addition, our pro-
posed approach is able to accommodate as many SNPs as the com-
puter memory allows, e.g. perform multilocus GWAS analysis by
chromosome with �100 000 SNPs altogether. Importantly, this
novel approach is highly scalable and could be approximately thou-
sands times faster than recently published approaches.

2 Materials and methods

Denote by yij the longitudinal disease profile at time tij; i ¼
1; . . . ;n; j ¼ 1; . . . ; ni and Xi the p� 1 biomarkers (SNPs) for the ith
subject. To identify prognostic biomarkers for the dynamic profile,
we could model their relationship via a mixed-effects model, written
as

yij ¼ ai þ bitij þ �ij; �ij � N 0; r2
y

� �
ai ¼ a0 þ gi0; gi0 � N 0;r2

a

� �
bi ¼ b0 þ c

0
Xi þ gi1; gi1 � N 0;r2

b

� �
;

(1)

where the intercept ai and slope bi are random effect parameters, c is
the p� 1 biomarker effect on the random slope. The regression coef-
ficient of the SNP� time interaction term characterizes the size of
SNPs’ influence on the evolution of the trait over time. The model
could also be written as follow:

yij ¼ a0 þ b0tij þ cXitij þ gi0 þ gi1tij þ �ij
gi0eN 0; r2

a

� �
; gi1eN 0; r2

b

� �
; �ijeN 0; r2

� �
:

It is challenging to estimate the model when the high-
dimensional biomarkers are modeled interactionally with the dy-
namic profile and random effect is involved. To solve this problem,
we propose a two-stage modeling approach to select biomarkers for
longitudinal dynamic data by separating the modeling of dynamic

profile and biomarker selection. A similar mixed-effects model but
without biomarkers is used to model the dynamic profile alone,
given by setting c ¼ 0 in Equation (1) which is always called
‘reduced model’ or ‘base model’. The longitudinal profile could be
summarized and simplified to the random slope. The random slope
under the reduced model could be estimated and extracted by the
empirical Bayesian method. EBEs are calculated as the mean or me-
dian of posterior distribution of random effects given the data and
the fixed effects and are usually called the best linear unbiased pre-
dictors (BLUPs) in literature. The calculation of EBEs does not in-
volve biomarker, thus is relatively simple and time efficient.

After the BLUPs are calculated from the reduced model, we
could use a much simpler linear model to model the dynamic profile
with biomarkers via this subject-specific random effect instead of
directly performing biomarker selection on the longitudinal data,
that is,

b̂i ¼ b�0 þ c�0Xi þ g�i1 :

Classical biomarkers selection is usually performed by a ‘0 penal-
ization on the likelihood function. Denote by lðc0; cÞ the log-
likelihood function of the model above. The ‘0 penalized optimiza-
tion problem is given by:

min �n�1l c0; cð Þ þ kjcj0
� �

;

where jjcjj0 ¼
Pp
j¼1

Iðcj 6¼ 0Þ and cj is the jth component of c. It is in-
feasible to solve this problem computationally, especially when the
number of biomarkers is large, which is an NP-hard problem. We
follow the same formulation as Li et al. (2018) and augment the
function with a surrogate parameter h and minimize the following
constrained objective function:

�n�1lðc0; cÞ þ kjjhjj0; s:t:
Xp

j¼1

/j cj � hj
� � � M; (2)

where /jðxÞ is a convex function satisfying /jð0Þ ¼ 0 and /jðjxjÞ �
0 for any x 6¼ 0, and M is a tuning parameter. When M ¼ 0, it
becomes the original ‘0-norm problem. The objective function could
be written in the equivalent Lagrange form:

Lkðc; hÞ ¼ �n�1lðc0; cÞ þ kjjhjj0 þ q
Xp

j¼1

/j cj � hj
� �

:

To minimize this, we could iteratively update all parameters till
convergence. Parameters are initialized from all zeros and updated
based on the algorithm, given by

ĉ0; ĉ ¼ argmin
�
� n�1l

�
c0; cÞ þ q

Xp

j¼1

/jðjcjjÞ
�

ĥ ¼ argmin kjhj0 þ q
Xp

j¼1

/j ĉ j � hj
� �0

@
1
A:

Note that in the first stage, the target function does not involve
thetas and it can be optimized take a coordinate descent approach.
For the jth component of c we solve

�n�1
@l c0; cjĉ�j

� �
@cj

þ k
@/j cjð Þ
@cj

¼ 0; j ¼ 1; 2; . . . ; p;

where lðc0; cjĉ�jÞ is the log-likelihood function with all components
fixed except jth component of c. And the second step could be
solved in a closed form:

ĥ j ¼ ĉ jI /j ĉ j

� �
>

k
q

� �
;

which is to perform hard-thresholding on the estimate from the first
step. We call this approach as one-step coordinate descent algorithm
since the first stage theta is taken to be 0 and we need not to update
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gamma iteratively after theta is updated in the second stage. Li et al.
(2018) showed that the one-step updating strategy performs well
and can substantially improve computational efficiency.

Many convex function includes lasso (‘1-norm) and elastic net
(combination of ‘1-norm and ‘2-norm) can be used in Equation (2).
In Li et al. (2018), the number of non-zero coefficients are tuned in
the second step by keeping the first few largest coefficients of jĉ jj. In
this article, we suggest to directly selecting the two tuning parame-
ters k and q based on cross-validation. We will implement this new
feature in the next version of R package APML0 (https:/cran.r-pro
ject.org/web/packages/APML0/index.html).

The novelty of the proposed approach lies in its ability to per-
form multilocus feature selection for large-scale GWAS while effect-
ively controlling FP rate and maintaining high power. Furthermore,
the proposed approach is efficient and is scalable to ultra-high di-
mension of SNPs and can perform whole GWAS screening in
minutes.

3 Results

3.1 Simulation study
To evaluate the performance of our method, we performed intensive
simulation studies under a linear mixed-effects model with random
intercept and slope. First, we generated SNPs (p ¼ 50, 100, 1000 or
10 000) for a group of subjects (N¼ 100, 500 or 1000). The correl-
ation r between SNPs was set to be r ¼ 0 or 0.8 using function
genCorData in R package ‘simstudy’. Then, a subset of SNPs (q ¼ 5,
10 or 20) were selected as the true variables with active effects.
Next, we generated the observation yij at jth time tij for the ith sub-

ject according to the mixed-effects model with random intercept
and random slope described as in (1). For each subject, 7 time
points were simulated at tij ¼ 1, 14, 27, 40, 53, 66 and 79. In

Equation (1), a0 ¼ 0:8, r2
a ¼ 0:01 and 0.04 while the random

errors r2
y ¼ 0:01 and 0:09, r2

b ¼ 10�6 and 4� 10�6. The intercept

parameter b0 is set to be 0.002 and cj ¼ 0; j ¼ 1; . . . ; p� q; cj ¼
ð�1Þj�pþqþ1 � 2:5ðj� pþ qÞ � 10�4; j ¼ p� qþ 1; . . . ;p: We chose
the parameters’ values according to a real dataset for Alzheimer’s
disease (Xu et al., 2013). Since the unit of the progression rate
(point/day) and the progression rate for chronic disease such as
Alzheimer’s disease is usually slow, the parameter c (slope for dis-
ease progression) is therefore very small.

We compared performance of our method, EBEAPML0, with the
TV-GroupdSpAM in terms of number of FPs, number of true posi-
tives (TP), F1 score and running times under various scenarios. We
also compared our method with a naive two-stage approach,
EBELASSO, which applies the LASSO method in the second stage. As
the number of SNPs selected is required to be specified in advance
for TV-GroupSpAM, we selected exactly q SNPs assuming that
number of active variables is known. For other methods, there is no
need to predefine the number of SNPs to be selected. We present the
results for q ¼ 10 in Figure 1. Similar results were observed for q ¼
5 and 20, and presented in Supplementary Figures S2 and S3. In
total, 288 simulation scenarios were created, and we generated 20
datasets for each scenario. We also explored the sensitivity of the
distribution assumptions on the random effects. Twenty datasets
were generated for each of the 288 scenarios by sampling the ran-
dom effect from a t distribution (df ¼ 4). To keep the variance of the
t distribution the same with the variance of normal distribution, the
t distribution was multiplied by a constant. The results demon-
strated that the proposed method is robust to the specification of the
distribution of random effects, and the use of t distribution pro-
duced almost identical results compared to those based on the nor-
mal distribution (Supplementary Figures S1–S3). In addition, to
confirm the simulation result with larger number of simulation repli-
cates, we also generated 100 datasets under each of the following
scenarios N ¼ 1000; q ¼ 10;p ¼ 1000: The results are shown in
Supplementary Table S1.

Generally, EBEAPML0 provides consistent and robust control for
FPs genetic variants. The FPs did not change with increasing sample

size or number of SNPs although it slightly increased with correl-
ation among SNPs. EBEAPML0 consistently selected <3 FPs when
SNPs are independent and it selected at most 19 SNPs (out of 1000
SNPs) when SNPs are highly correlated. Interestingly, the FPs would
decrease to a relative low level in the highly correlated situations
when the number of SNPs is large (e.g. p¼10 000) so that the true
variables are sparse enough. The FPs for EBELASSO were consistently
high, ranging from 4 to 140. The FP of TV-GroupSpAM varied with
sample size and number of SNPs. It seems to be able to control FP
when sample size is large (N � 500). However, number of FPs was
high when sample size was small (e.g. N¼100).

The TP for EBELASSO was always the highest regardless of sam-
ple size and number of SNPs. The TP for EBEAPML0 approach was
comparable to EBELASSO when sample size was 500 or above, but
was slightly lower than when N¼100. The TP for TV-GroupSpAM
was always the lowest when sample size �500. For all the methods,
the TP increased with sample size but decreased with the number of
SNPs.

Although the EBELASSO has the best TP, it also has the worst FP.
We therefore consider a composite measure of FP and TP, namely
the F1 score. EBEAPML0 approach consistently provided the highest
F1 scores in the majority of the simulation scenarios. This is particu-
larly impressive given that TV-GroupSpAM artificially limited the
number of FPs as it requires specification of the number of markers
to be selected. In comparison, the other two approaches, i.e.
EBEAPML0 and EBELASSO, did not require the limit of number of
markers and could select as many markers as those in the dataset.
Since the FPs for EBELASSO were high, the F1 scores of this approach
were generally lower than those of the other two methods, except
for the scenarios where the SNPs are highly correlated and the sam-
ple size is small. For all the tested methods, the F1 score increased
with sample size but decreased with the number of SNPs.

For all the three approaches, the computational time increased
exponentially with sample size and more than exponentially with
number of SNPs. TV-GroupSpAM took more than almost 11 days
(�100 000s) to analyze 10 000 SNP for 1000 subjects when the
SNPs were highly correlated while EBELASSO and EBEAPML0 took
only 40 s. Both EBEAPML0 and EBELASSO required markedly less
time compared to TV-GroupSpAM, improving the time efficiency
by �100–2500 folds, depending on the sample size and number of
SNPs included in the analysis.

3.2 Genome-wide association study for Alzheimer’s dis-

ease dynamics
We performed a genome-wide association study for Alzheimer’s dis-
ease using TV-GroupSpAM, EBELASSO and EBEAPML0. We exam-
ined association between SNPs and the change of ADAS11-cog
score over time. ADAS11-cog score is an important assessment
measure to assess the level of cognitive dysfunction in Alzheimer’s
disease. For this analysis, data were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (www.loni.usc.
edu/ADNI). We performed quality control (QC) steps on the raw
genotype data which removed missing records for ADAS11-cog
score and SNPs with (i) >5% missing values, (ii) minor allele fre-
quency below 0.05 and (iii) constant genotypes across all subjects.
The missing values of the remaining SNPs were imputed by the
mean value of the corresponding SNP. After the QC, we obtained
5335 observations from n¼785 subjects and their genotype data of
p¼145 559 SNPs on the 19th chromosomes. As the number of
observations for every subject is required to be the same for TV-
GroupSpAM, we only analyzed those subjects with >5 longitudinal
measurements and keep the first 5 observations which end up with
3140 measurements for 28 subjects. Non-genetic factors, such as
gender, length of education and age at baseline were also incorpo-
rated as static covariates into mixed-effects model and TV-
GroupSpAM.

Following the procedure of Marchetti-Bowick et al. (2016), we
performed a two-stage selection. First, we split the genotype data
into 30 subsets, containing �5000 SNPs each, and applied
EBELASSO, EBEAPML0 and TV-GroupSpAM on each dataset. This
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yielded a filtered set of 2943 SNPs for TV-GroupSpAM, 149 SNPs
for EBELASSO and 80 SNPs for EBEAPML0. Figure 2 shows the model
weight (an indicator of significance) of every SNP in the filtered set
for each method. Next, we performed these methods again separate-
ly only with their selected SNPs in the first stage. For TV-
GroupSpAM, we first selected �100 SNPs in the first stage and then
selected �50 SNPs. EBELASSO, EBEAPML0 and TV-GroupSpAM fi-
nally selected 126, 73 and 53 SNPs, respectively. Ranking these
SNPs according to their fitted model weights (estimated effect sizes),
the top 10 SNPs for each method are listed in Table 1. The complete
sets of SNPs selected by each method are listed in Supplementary
Tables S2–S4. Finally, it took TV-GroupSpAM �16 days to com-
plete the analysis, whereas, EBELASSO and EBEAPML0 only took 18.7
and 3.7 min, respectively. This suggests an impressive improvement
in terms of time efficiency (�1200- and 6200-fold) for EBELASSO

and EBEAPML0, respectively, compared to TV-GroupSpAM.
All three methods selected SNP rs429358 located in the fourth

exon of the ApoE gene, which is the most well-known genetic risk
factor for Alzheimer’s disease. In addition, the SNP rs7256200
located in the ApoC1 gene was also identified by both EBELASSO

and EBEAPML0. ApoC1 has been previously reported to be

associated with Alzheimer’s disease by several independent studies
(Zhou et al., 2014). Besides, several other SNPs that are associated
with diseases for the elderly were also selected. For example,
rs1800468 was reported to affect osteoporosis (Langdahl et al.,
2008). To visualize the mean ADAS11-cog score trend for different
SNP groups (the number of copies of minor allele is 0, 1 or 2), we
plotted fitted locally polynomial regression (loess) curves. Figure 3
shows loess plots of three different groups: 0, 1 or 2 for rs429358
(top), rs7256200 (middle) and rs7256200 (bottom). Apparently, the
time profiles of the ADAS11-cog scores were different for different
genotypes. For rs429358 and rs7256200, the progression of
ADAS11-cog score in subjects with one copy of minor allele appears
higher faster than those with zero or two copies of minor allele. On
the other hand, for SNP rs1800468, the worsening of ADAS11-cog
score over time appears more severe with increasing copies of minor
allele after 50 months.

We checked the predictive performance of linear mixed-effects
models with different sets of gene features obtained by various meth-
ods by ADNI data. We put the top 50/20/10 genes selected by three
different methods (EBELASSO, EBEAPML0 and TV-GroupSpAM) into
the full model as covariates, and calculated the average prediction

N = 100

r = 0

N = 100

r = 0.8

N = 500

r = 0

N = 500

r = 0.8

N = 1000

r = 0

N = 1000

r = 0.8

log
10 F

P
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P
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1
log

10 tim
e
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Fig. 1. Comparison of number of false positive, number of true positive, F1 score and computational time

Fig. 2. Scatter plot of the normalized model weights for each SNP in the filtered set for EBELASSO, EBEAPML0 and TV-GroupSpAM. Weight was calculated by normalizing ef-

fect size b to b̂ ¼ b�bmin

bmax�bmin
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errors using the 10-fold cross-validation method. Predictive per-
formance for EBELASSO, EBEAPML0 and TV-GroupSpAM are
reported in Table 2. EBEAPML0 and EBELASSO have comparable per-
formance when top 50 or 20 SNPs are included in the linear mixed-
effects model. EBEAPML0 has smaller predictive error than EBELASSO

when less SNPs are included. In all scenarios, EBELASSO

and EBEAPML0 have better predictive performance than TV-
GroupSpAM.

4 Discussion

Analysis of longitudinal phenotypes in genomic studies can facilitate
the understanding of complex disease status over time such as dis-
ease onset, progression and improvement after treatment, etc. In
addition, genomic analysis based on longitudinal traits can marked-
ly improve the power to detect rate variants or variants with rela-
tively weak effects, particularly when multilocus approach is used.
However, analyzing longitudinal traits collected over time is chal-
lenging as measurements from the same individual are often corre-
lated, and therefore the approaches used for ‘static traits’ GWAS
(e.g. linear regression models) are no longer valid. Furthermore, due
to complex algorithms involved in the traditional statistical methods
for longitudinal data (such as mixed-effects modeling), performing
multilocus, high-dimensional whole-genome analysis using these
methods is not computationally scalable and feasible. Most existing
methods test each single SNP for association with the longitudinal
phenotypes at a time point (Aulchenko et al., 2010; Sikorska et al.,

2015) which can only identify the marginal effects of a locus, and
use a conservative multiple hypothesis testing correction. Although
this approach works well for traits that depend on strong effects
from a few loci, when it comes to complex, polygenic traits that are
influenced by weak effects from many different SNPs, it is less effect-
ive. In this article, we proposed a multilocus, high-throughput and
efficient feature selection method by coupling EBEs from mixed-
effects modeling with a regularized method based on ‘0-penalty vari-
able selection.

The EBE-based approach converts multilocus GWAS for longitu-
dinal data to standard GWAS as only linear regression is involved,
providing a simple solution for implementation of multilocus
GWAS approach for longitudinal traits. As the EBEs tend to be
shrunk to the corresponding population mean estimate, there is a
concern that shrinkage may mask existing parameter–covariate rela-
tionships (Meirelles et al., 2013; Sikorska et al., 2013). However,
our application to ADNI data shows that the proposed approaches
have better predictive performance than the existing approach (TV-
GroupSpAM) with smaller predictive error. In addition, our recent
research revealed that association tests based on EBEs had compar-
able performance compared to the standard approach using likeli-
hood ratio test within the framework of mixed-effects modeling (i.e.
almost identical power for detecting true covariate effects, and
slightly better control of the FP rate).

The 2HiGWAS (Jiang et al., 2015) provides a high-dimensional
varying coefficient model to chart a complete picture of the genetic
architecture of complex traits that are dynamically expressed on a
time-space scale. It is a two-step procedure that is dimension reduc-
tion by prescreening and predictor selection through penalized re-
gression. In our revision, we compared 2HiGWAS with the
proposed approach in terms of the FP, TP, F1 score and the running

Table 1. Top 10 selected SNPs by three different approaches

SNP name Gene MAF

EBELASSO

rs111677971 LOC390937 0.08981

rs35194062 RELB 0.05732

19_14572615 None 0.11210

rs150478685 None 0.05669

rs73488486 ZNF358 and LOC105372261 0.10064

rs143988316 None 0.07643

rs55869726 None 0.06369

rs3816034 LINC01837 and LINC01533 0.07325

rs11670478 ZNF460-AS1 0.05541

rs147388909 LOC107987267 0.07516

EBEAPML0

rs55869726 None 0.06369

rs62111468 None 0.05669

rs62109563 ERCC1 and CD3EAP 0.07962

19_14572615 None 0.11210

rs111677971 LOC390937 0.08981

rs35194062 RELB 0.05732

rs16969505 SCGB1B2P 0.05032

rs73488486 ZNF358 and LOC105372261 0.10064

rs429358 ApoE 0.23694

rs143988316 None 0.07643

TV-GroupSpAM

rs3212764 JAK3 0.26624

rs11667387 None 0.35414

rs892012 None 0.36115

rs1019945 NCLN 0.14904

rs62116566 LOC101927151 0.09873

rs1019946 NCLN 0.14841

rs56042840 ZNF160 0.09745

rs11670284 NLRP13 0.29490

rs7258847 NLRP13 0.25669

rs740568 None 0.35605

Note: SNPs that have not been identified to play a biological role is marked

as ‘None’.

Fig. 3. The mean trend of ADAS11-cog score was plotted against time (in month)

from the baseline for each group with the number of minor alleles are 0, 1, 2 (top:

rs429358, middle: rs7256200, bottom: rs1800468)

Table 2. Predictive errors for linear mixed-effects models with top

50/20/10 selected SNPs with EBELASSO, EBEAPML0 and TV-

GroupSpAM, respectively

Predictive error EBEAPML0 EBELASSO TV-GroupSpAM

Top 50 SNPs included 54.01212 54.43673 59.75249

Top 20 SNPs included 53.97637 53.26435 57.47443

Top 10 SNPs included 55.95391 59.94889 63.50255
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time. The 2HiGWAS approach has a better control of FP rates com-
pared to EBEAPML0. The tradeoff was that the true positive rates of
2HiGWAS are lower than those of EBEAPML0. Taking both FP and
TP into consideration, the EBEAPML0 had comparable and slightly
better F1 scores than the 2HiGWAS approach. Finally, EBEAPML0 is
far more time efficient than 2HiGWAS (�500- to 6000-fold). For
example, for r is 0.4 and r2

y ¼ 0:09; r2
b ¼ 10�6 EBEAPML0 only

spends 28.33 s while it cost 2HiGWAS >8.5 h.
‘0-norm is preferred in terms of variable selection as it can pro-

vide optimal power and control of FPs (Li et al., 2018). However,
due to computational challenges (non-convexity and discontinuity;
Barron et al., 1999; Davis et al., 1997; Manyem and Ugon, 2012),
currently most common approach is ‘1-norm regularization (or
Lasso regression) proposed by Tibshirani (1996), which is a convex
relaxation to ‘0-regularization and can provide good predictive
power. In this article, we updated a recently developed two-stage
procedure for ‘0-penalty variable selection (Li et al., 2018). Our
two-stage ‘0-norm regularization approach overcomes instability
and inconsistency suffered by Lasso regression and provides much
better control of FPs without sacrificing power to detect true effects.

Taking advantages of the simplicity of EBE-based approaches
and the superior properties for variable selection from our ‘0-norm
regression, the proposed novel EBEAPML0 approach allows fast, ac-
curate and multilocus GWAS analyses for complex longitudinal
traits. Compared to the most recently proposed approach for longi-
tudinal traits (TV-GroupSpAM), EBEAPML0 not only provides
greater power detecting true active SNPs but also markedly shortens
the analysis time by >1000 times. It only takes hours for EBEAPML0

to perform a full genome-wide multilocus GWAS (e.g. millions of
SNPs) compared to months if TV-GroupSpAM is used.
Furthermore, EBEAPML0 provides consistent and robust control FPs
genetic variants, whereas FP from TV-GroupSpAM varied with
sample size and number of SNPs. Although TV-GroupSpAM was
able to control FP rate when sample size is large (N � 500), but as
the tradeoff, the power and TP detection rate was apparently lower
than that from EBEAPML0.

In addition, due to its simplicity, a real genome-wide multilocus
GWAS for longitudinal traits becomes possible with EBEAPML0. For
example, if computing capability allows, i.e. sufficient memory, it is
possible to conduct multilocus GWAS based on longitudinal traits
for millions of SNPs together. However, other methods such as TV-
GroupSpAM and 2HiGWAS (Jiang et al., 2015) are so time-
consuming that it takes hours to deal with 1000 SNPs together, let
alone millions of SNPs. A true multilocus GWAS is important as it
takes into account the correlation among SNPs and could effectively
reduce the confounding. However, it should be mentioned that the
statistical power tended to decrease with increasing number of SNPs
included in the model at once. In this analysis, we also attempted to
perform the EBELASSO and EBEAPML0 by including all the 145 559
SNPs on chromosome 19 together at once, only 4 and 2 SNPs were
selected, respectively (it is worth noting that both methods were still
be able to select ApoE4, the most known Alzheimer’s Disease-
related SNP in this case). Nevertheless, with emerging of large elec-
tronic health record data and large-scale genetic data from bio-
banks, we may be able to attain sufficient power when including all
the SNPs in the model at the same time in the future.

Though in the present study, we limited ourselves linear mixed-
effects modeling, EBEAPML0 can be easily extended to non-linear,
functional dynamic data via linearization, Taylor expansion for ex-
ample. Our research opens the door for efficient and scalable func-
tional GWAS for more complex non-linear longitudinal traits. Over
the last decade, different approaches have been attempted for non-
linear GWAS of longitudinal outcomes (Das et al., 2011, 2013; Hou
et al., 2008; Li et al., 2015; Marchetti-Bowick et al., 2016).
However, these methods are extremely time-consuming and require
months to scan the whole genome.

Finally, we also limit ourselves to association tests without look-
ing into the estimate of effect size as the primary task for GWAS is
testing the association. Since EBEAPML0 represents a high-
throughput approach that can provide very high power detecting

true, active SNPs and control the FPs in a consistent way, estimation
of time-varying effects or prediction of trajectory of traits can be
performed using standard traditional approaches after we identify
the active SNPs.
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