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ABSTRACT: For genome-wide association studies and DNA sequencing studies, several powerful score-based tests, such as
kernel machine regression and sum of powered score tests, have been proposed in the last few years. However, extensions
of these score-based tests to more complex models, such as mixed-effects models for analysis of multiple and correlated
traits, have been hindered by the unavailability of the score vector, due to either no output from statistical software or no
closed-form solution at all. We propose a simple and general method to asymptotically approximate the score vector based on
an asymptotically normal and consistent estimate of a parameter vector to be tested and its (consistent) covariance matrix.
The proposed method is applicable to both maximum-likelihood estimation and estimating function-based approaches. We
use the derived approximate score vector to extend several score-based tests to mixed-effects models. We demonstrate the
feasibility and possible power gains of these tests in association analysis of multiple and correlated quantitative or binary traits
with both real and simulated data. The proposed method is easy to implement with a wide applicability.
Genet Epidemiol 39:469–479, 2015. © 2015 Wiley Periodicals, Inc.
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Introduction

To detect genetic associations in genome-wide association
studies (GWASs) and DNA sequencing studies, in addition
to the popular univariate minimum P-value (UminP) test,
many multivariate methods have been proposed to improve
statistical power. Several competitive ones are score based,
such as the classic score test, a variance-component score test
in kernel machine regression (KMR) [Kwee et al., 2008; Wu
et al., 2010, 2011], an adaptive score test [Lin and Tang, 2011],
and an adaptive sum of powered score (aSPU) test [Pan et al.,
2014]. A challenge is how to extend these score-based tests to
more complex models beyond the generalized linear models
(GLMs) for independent data. There are several reasons
to consider more complex mixed-effects models in genetic
association studies. First, even for a single-trait analysis, to
properly account for some complex and hidden relatedness
among the study subjects, or more generally for population
structure or population stratification, mixed-effects models
have been proposed as a general and effective approach [e.g.,
Yu et al., 2011; Zhang et al., 2010; Zhou and Stephens, 2014].
These mixed-effects models differ from the standard ones
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in that a random effect is introduced to induce correlations
among all the subjects, thus requiring some special and
fast algorithms for model fitting as implemented in several
recent software packages. These packages do not directly
output the score vector. Second, there has been increasing
interest in association analysis of multiple traits, which may
help gain power and shed light on pleiotropy. In addition,
one may encounter correlated traits as arising from familial
studies. To account for correlations among multiple traits,
either marginal models (based on generalized estimating
equations, GEE) [Liang and Zeger, 1986] or mixed-effects
models [Breslow and Clayton, 1993] can be applied. For
quantitative traits, a linear mixed-effects model (LMM) can
be used, from which the score vector can be derived. Accord-
ingly the KMR test has been extended to LMMs [Maity et al.,
2012; Schifano et al., 2012]. However, it is unclear how to
extend the KMR and other score-based tests to GLM models
(GLMMs) and Cox mixed-effects models, for which there
is no closed form for the score vector (because the marginal
likelihood involves an integral with random effects and in
general has no closed form) [Breslow and Clayton, 1993].
Although as an alternative to GLMM, marginal models/GEE
can be used, from which (generalized) score-based tests can
be derived [Wang et al., 2013; Zhang et al., 2014], there
may be substantial differences between the two in terms
of modeling assumptions, interpretation, and thus their
choices [Diggle et al., 2013]. More importantly, in genetic
association studies, as discussed earlier, random effects may
be necessary to effectively account for population structure,
prompting the use of non-LMMs. In these situations, due to
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the lack of computer output or closed-form solution for the
score vector, it is challenging to implement score-based tests.

In this paper, we propose a simple and yet general method
to approximate the score vector for any model. It is based
on the asymptotics of an estimator of the parameters to be
tested. It applies to both the maximum-likelihood estimates
(MLEs) and estimating function-based estimates. Its imple-
mentation involves only a few lines of R code. We demonstrate
its use in two types of mixed-effects models, a multivariate
LMM (mvLMM) proposed very recently for genetic associa-
tion analysis of multiple quantitative traits while correcting
for cryptic relatedness and population stratification [Zhou
and Stephens, 2014], and a GLMM with correlated binary
traits. Among others, we use both real and simulated data to
illustrate possible power gains of some approximate score-
based tests over the standard Wald and UminP tests.

Methods

Review: Some Score-Based Tests

Suppose U = (U1, . . . , Uk)T is the score vector for a set of
k parameters to be tested with H0: ψ = 0. The classic score
test is

TSco = UTĈov(U)–1U,

which is asymptotically equivalent to the Wald test and
likelihood ratio test (LRT). The UminP test that has been
widely used in GWASs can be written as

TUminP =
k

max
j =1

U2
j /Vjj ,

where Vjj is the j th diagonal element of V = Ĉov(U).
Recently, a variance-component score test in KMR has been
proposed for GLMs and shown to be powerful for analysis
of single nucleotide polymorphism (SNP) sets [Kwee et al.,
2008; Wu et al., 2010, 2011]. As discussed by Pan (2011),
with a linear kernel it is equivalent to the sum of squared
score (SSU) test:

TSSU = UTU =

k∑
j =1

U2
j .

Pan et al. [2014] proposed a family of the so-called SPU tests:

TSPU(γ) =

p∑
j =1

Uγ
j (1)

for a set of integers γ ≥ 1. It is easy to see that SPU(1) and
SPU(2) are exactly the same as the Sum test and the SSU
test, respectively [Pan, 2009]; the sum test, an example of
so-called burden tests, has been shown to perform well for
genetic association testing, especially for rare variants, under
some situations [Li and Leal, 2008; Pan, 2009]. In addition,
for an even integer γ → ∞, we have

TSPU(γ) ∝
⎛
⎝ p∑

j =1

|Uj |γ
⎞
⎠

1/γ

→ max
j

|Uj | = TSPU(∞),

the SPU(∞) is closely related to the UminP test (but ignoring
possibly varying variances of Uj ’s). Alternatively, an SPU(γ)
test can be regarded as a weighted score test [Lin and Tang,
2011] with adaptive weights Uγ–1

j on each component j . In
practice, because it is unknown which γ value would yield
high power, we use an adaptive SPU (aSPU) test to combine
the evidence across the SPU tests:

TaSPU = min
γ∈�

PSPU(γ), (2)

where PSPU(γ) is the P-value of the SPU(γ) test, and� contains
a set of candidate values γ. Pan et al. [2014] found that in
many situations � = {1, 2, 3, . . . , 8,∞} appeared to perform
well, which will be used here.

In general, resampling methods can be used to obtain
P-values for the SPU and aSPU tests. In this paper, we as-
sume that the asymptotic null distribution of the score vector
U ∼ N(0, V) holds (under H0). Accordingly, we can gen-
erate B-independent copies of the null score vector U(b),
for which the B copies of the SPU test statistics can be
calculated. Then the P-value of each SPU(γ) test is cal-
culated as PSPU(γ) =

∑B
b=1 I (|T(b)

SPU(γ)| ≥ |TSPU(γ)|)/B . Fur-
thermore, based on the same B copies of the simulated
score vector, we calculate the P-value for the aSPU test
as PaSPU =

∑B
b=1 I (T(b)

aSPU ≤ TaSPU)/B with T(b)
aSPU = min

γ∈�
p (b)

γ

and p (b1)
γ =

∑
b �=b1

I (|T(b)
SPU(γ)| ≥ |T(b1)

SPU(γ)|)/(B – 1).
In this paper, we use the SPU and aSPU tests as examples,

though other score-based tests [e.g., Lin and Tang, 2011; Sun
et al., 2013; Wu et al., 2010] can be equally applied. Our main
point does not depend on the choice of a specific score-based
test; rather, we aim to show how to extend a score-based test to
cases where there is no easy access to the score vector, as arising
in below two important applications. To be concrete, we focus
on detecting genetic association with SNPs, but the proposed
method is generally applicable to other problems of interest.

Two Example Models

Multivariate Linear Mixed Model

A multivariate linear mixed model (mvLMM) was pro-
posed by Zhou and Stephens [2014] to test for association
with multiple phenotypes while correcting for possible pop-
ulation stratification. Specifically, suppose we would like to
test for association between a multivariate trait and a single
SNP. We first combine the n trait vectors YT

i = (Yi1, . . . , Yik)
by row such that the resulting trait matrix Y is of dimension
n × k, and the j th column of Y corresponds to phenotype
j while the ith row of Y corresponds to the multiple traits from
the ith subject; W is an n × q design matrix for covariates (in-
cluding a column of 1’s for the intercept); x = (x1, . . . , xn)T

is an n × 1 vector of genotype scores (i.e., the counts of the
minor allele) for the SNP.

The mvLMM can be written as

Y = Wλ + xψT + G + E , G ∼ MNn×k(0, K , Vg ),

E ∼ MNn×k(0, In×n, Vε), (3)
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where λ is a q × k matrix of regression coefficients for co-
variates; ψ is a k × 1 vector of the SNP effect sizes for the
k phenotypes; G is an n × k matrix of random effects; E is
an n × k matrix of random errors; K is an n × n known kin-
ship matrix, or more generally, a genetic relatedness matrix
(GRM) estimated from whole-genome genotype data; In×n is
an n × n identity matrix; Vg is a k × k symmetric matrix of ge-
netic variance components; Vε is a k × k symmetric matrix of
environmental variance components; and MNn×k(0, V1, V2)
denotes the n × k matrix normal distribution with mean 0, a
column covariance matrix V1 of dimension n × n, and a row
covariance matrix V2 of dimension k × k. The goal is to test
H0: ψ = 0.

A mvLMM differs from a standard LMM in that an n × n
matrix K is used to account for possible genetic relatedness
among all the subjects. Because the kinship matrix K may
be full and may not be block diagonal, it means that all the
subjects may be possibly correlated. However, as discussed
by Zhou and Stephen [2014], the mvLMM can be rewritten
more like a standard LMM in the following way. An eigende-
composition of the relatedness matrix K can be performed
as K = UkDkUT

k , where Uk is a n × n matrix of eigenvectors
and Dk is a diagonal n × n matrix with diagonal elements
corresponding to eigenvalues (i.e., diag(δ1, . . . , δn)). Then
one can obtain the transformed phenotype matrix Ỹ = UkY,
transformed covariate matrix W̃ = UkW, transformed SNP
vector x̃ = Ukx, transformed random effect matrix G̃ = UkG ,
and transformed residual error matrix Ẽ = UkE . After trans-
formation, for each individual i, the transformed phenotypes
given the transformed covariates and SNP follow indepen-
dent (but not identical) multivariate normal distributions:

ỹ i = λTw̃i + ψx̃i + g̃ i + ẽ i, g̃ i ∼ N(0, δiVg ), ẽ i ∼ N(0, Ve),

(4)

where for i = 1, . . . , n, ỹ i
T is the ith row vector of Ỹ, w̃i

T is
the ith row vector of W̃, x̃i is the ith element of vector x̃, g̃ i

T

is the ith row vector of G̃ , and ẽ i
T is the ith row vector of Ẽ ;

Var(ỹ i) = δiVg + Ve ≡ Vi .
Based on model (4), one can write down the score vector:

U =

n∑
i=1

(W̃i, X̃ i)
TV̂–1

i,0(ỹ i – λ̂T
0 w̃i), (5)

where λ̂0 and V̂i,0 are obtained by fitting the null model under
H0 : ỹ i = λTw̃i + g̃ i + ẽ i .

It is quite challenging to develop a fast algorithm to fit a
mvLMM. Now such an algorithm is implemented in software
package GEMMA [Zhou and Stephens, 2014]. However, as for
most software packages, one is not able to obtain the score
vector directly from the output. A simple and practical way to
obtain the score vector is, as proposed earlier, to approximate
it by the MLE and its covariance estimate, both available
directly from the output of GEMMA; accordingly a score-based
test can be simply constructed and applied.

Generalized Linear Mixed Model

In a familial study, we observe that in each family i, subject j
has a univariate trait Yij , q covariates Wij = (Wij 1, . . . , Wij q)T

and p SNPs X ij = (X ij 1, . . . , X ijp )T . We would like to test for
association between the trait and the SNPs through a GLMM:

g(μij ) = WT
ij λ + X T

ij ψ + bi, bi ∼ N(0, σ2
b), (6)

where g() is a link function, μij = E (Yij |X ij , Wij , bi) is the
conditional mean of the trait for subject j in family i,
λ = (λ1, . . . , λq)T is a q × 1 vector of regression coefficients
for covariates Wij , ψ = (ψ1, . . . , ψp )T a p × 1 vector of re-
gression coefficients for SNP set X ij , and bi is a random effect
inducing correlations among the traits of the subjects from
the same family.

The goal is to test H0: ψ = 0. However, in general, due to
the lack of the closed form for the marginal likelihood, there
is no closed-form expression for the score vector for ψ either
[Breslow and Clayton, 1993]. Hence, it is not easy to develop
a score-based test for such a model. Below we propose a new
method to approximate the score vector, based on which it is
straightforward to construct a score-based test.

New Method: Approximating the Score Vector

Estimation via Maximum Likelihood

Suppose that we would like to test H0: ψ = ψ0 in the pres-
ence of nuisance parameter λ. Denote θ̂0 = (ψ0, λ̂0)T as the
restricted MLE of θ = (ψ, λ)′ under H0, while θ̂ = (ψ̂ , λ̂)T as
the unrestricted MLE of θ = (ψ, λ)T (i.e., under H1). Partition
the Fisher’s information matrix H accordingly as

H =

(
Hψψ Hψλ

Hλψ Hλλ

)
, H –1 =

(
Hψψ Hψλ

Hλψ Hλλ

)
.

Denote the whole score vector for θ as Uθ(θ) =

(Uψ(θ)T, Uλ(θ)T)T . As shown by Kent [1982, the equation
following (4.1)],

U ≡ Uψ(θ̂0) = (Hψψ)–1(ψ̂ – ψ0) + op (1). (7)

Because the consistent estimator Ĉov(ψ̂) = H ψ̂ ψ̂ , we have

U ≈ Ĉov(ψ̂)–1(ψ̂ – ψ0), Ĉov(U) = Ĉov(ψ̂)–1.

Thus, we first fit a full model (under H1) to obtain the MLE ψ̂

and its covariance estimate Ĉov(ψ̂), then we can approximate
the score vector U and its covariance matrix accordingly. In
this way, we can construct (approximate) score-based tests
such as the score test, the SPU, and aSPU tests. In particular,
it is easy to see that the approximate score-based score test is
the same as the Wald test:

UTĈov(U)–1U = (ψ̂ – ψ0)TĈov(ψ̂)–1(ψ̂ – ψ0).

Estimation via Estimating Functions

For estimating function-based approaches, although a gen-
eralized score test [e.g., Boos, 1992; Kent, 1982; Rotnitzky and

Genetic Epidemiology, Vol. 39, No. 6, 469–479, 2015 471



Jewell, 1990] can be constructed, the popular statistical soft-
ware may not provide direct output of such (generalized)
score vectors. For easy implementation, it may be useful to
approximate the (generalized) score vector by the parameter
estimate and its covariance matrix. Specifically, by treating an
unbiased mean 0 estimating function as a (generalized) score
function and by a Taylor expansion, we still have Equation

(7). However, Ĉov(ψ̂)M = H ψ̂ ψ̂ is the model-based covari-
ance estimator, which is not consistent unless all working
assumptions hold (essentially assuming that the estimating
function is indeed a score function). More generally, a con-
sistent sandwich estimator Ĉov(ψ̂)S is used. Hence, we can
modify the score vector approximation as

U ≈ Ĉov(ψ̂)–1
M(ψ̂ – ψ0),

Cov(U) ≈ Ĉov(ψ̂)–1
MĈov(ψ̂)S Ĉov(ψ̂)–1

M .

Accordingly, once we obtain the point estimate ψ̂ , its model-
based covariance estimate Ĉov(ψ̂)M and its sandwich esti-
mate Ĉov(ψ̂)S , we can obtain an approximation to the score
vector U, based on which we can construct a score-based
test. Again it is easy to verify that the score test based on the
approximate score is exactly the same as the Wald test.

We explored the use of such tests for marginal approaches
to GLMMs for correlated binary data (i.e., GEE) [Liang and
Zeger, 1986] (and to Cox regression for correlated survival
data; not shown). Note that in general our proposed ap-
proximate score vector is derived based on an asymptotically
normal point estimator, and thus is only asymptotically un-
biased, while the generalized score vector is simply the esti-
mating function being used and is often unbiased for finite
samples; this difference leads to varying performances of an
approximate score-based test and an exact generalized score
test [Boos, 1992] for finite samples, though their difference
diminishes as the sample size increases, as to be shown later
for GEE.

Results

Example

ADNI Data

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and nonprofit organiza-
tions, as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific mark-
ers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical
trials.

The principal investigator of this initiative is Michael
W. Weiner, MD, VA Medical Center and University of
California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic in-
stitutions and private corporations, and subjects have been
recruited from over 50 sites across the United States and
Canada. The initial goal of ADNI was to recruit 800 subjects
but ADNI has been followed by ADNI-GO and ADNI-2. To
date these three protocols have recruited over 1,500 adults,
ages 55–90, to participate in the research, consisting of cog-
nitively normal older individuals, people with early or late
MCI, and people with early AD. The follow-up duration of
each group is specified in the protocols for ADNI-1, ADNI-2,
and ADNI-GO. Subjects originally recruited for ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For
up-to-date information, see www.adni-info.org.

We applied the methods to the ADNI-1 data consisting of
681 non-Hispanic Caucasians with both genotypic and phe-
notypic data. The phenotypes were cortical thickness mea-
sures of some regions of interest (ROIs) in the brain; they
were cross-sectionally processed using FreeSurfer by UCSF
researchers [Hartig et al., 2012]. We tested on about 20 SNPs
and several multivariate traits as considered in Shen et al.
[2010] and Zhang et al. [2014]. For the purpose of illustra-
tion, we only show the results for two SNPs and four multi-
variate traits: APOE-ε4 in gene APOE that is well known to
be associated with AD, and rs7526034 on chromosome 1
(LOC199897), both were associated with multiple neu-
roimaging phenotypes [Shen et al., 2010]; the four mul-
tivariate traits were left and right sides of “Par” (denoted
as LPar and RPar), each with four ROIs (inferior and su-
perior parietal gyri, supramarginal gyrus, and precuneus),
right side of “Front” with six ROIs (caudal midfrontal, ros-
tral midfrontal, superior frontal, lateral orbitofrontal, medial
orbitofrontal gyri, and frontal pole), right side of “LatTemp”
with three ROIs (inferior temporal, middle temporal, and su-
perior temporal gyri). Given a large number of parameters to
be estimated (> k2 with k traits) in a mvLMM, as pointed out
by Zhou and Stephen [2014], only a small to moderate num-
ber of phenotypes (∼ 2–10) were recommended to be used
for a typical sample size for GWAS (i.e., n in thousands).
Hence, with only a moderate sample size n = 681 here, we
only considered a few multivariate traits containing no more
than six univariate traits (otherwise, in addition to the ques-
tionable asymptotics, we also encountered some numerical
convergence problems).

For each subject i, five covariates (Wi) were included: base-
line age, gender, baseline education (in years), handedness
(left or right), and baseline intracranial volume, plus an in-
tercept term; X i was the genotypic score of one of the above
two SNPs; Yi = (Yi1, . . . , Yik)T was a vector of k quantitative
traits (i.e., cortical thickness measures of k ROIs). For each
pair of the SNP-multivariate trait, a mvLMM (3) was fitted
using software GEMMA; we applied the proposed method
to approximate the score vector based on the MLE and its
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Table 1. P-values of the various mvLMM-based tests in analysis
of the ADNI data

SNP Test LPar(4) RFront(6) RLatTemp(3) RPar(4)

APOE-ε4 SPU(1) 1.2×10–5 2.0×10–7 2.0×10–5 1.3×10–6

SPU(2) 8.3×10–2 2.4×10–2 1.3×10–1 3.8×10–4

SPU(3) 1.9×10–1 2.4×10–3 1.9×10–2 1.3×10–2

SPU(4) 1.6×10–1 7.7×10–3 6.8×10–2 1.1×10–3

SPU(5) 3.6×10–1 4.3×10–3 3.5×10–2 2.1×10–2

SPU(∞) 2.9×10–1 5.2×10–3 4.8×10–2 7.8×10–3

aSPU 3.5×10–5 5.0×10–7 6.0×10–5 3.8×10–6

Wald 1.2×10–5 1.4×10–5 4.6×10–5 6.0×10–8

Score 1.8×10–5 2.3×10–5 5.9×10–5 1.4×10–7

rs7526034 SPU(1) 5.7×10–2 9.0×10–4 <1.0×10–7 6.2×10–2

SPU(2) 8.2×10–1 5.7×10–2 2.0×10–1 1.4×10–2

SPU(3) 6.5×10–1 5.8×10–2 6.8×10–2 4.8×10–2

SPU(4) 8.4×10–1 8.3×10–2 2.1×10–1 2.6×10–2

SPU(5) 7.7×10–1 7.5×10–2 1.5×10–1 4.8×10–2

SPU(∞) 8.4×10–1 8.4×10–2 2.7×10–1 4.0×10–2

aSPU 1.3×10–1 2.3×10–3 <1.0×10–7 3.5×10–2

Wald 2.6×10–1 1.4×10–5 2.0×10–6 3.5×10–4

Score 2.6×10–1 1.6×10–5 3.1×10–6 4.3×10–4

covariance estimate, from which the approximate score-based
SPU and aSPU tests were conducted. The K matrix in the
mvLMM was estimated based on nearly a half million SNPs in
the data (prior to fitting the model) in GEMMA. We used a step-
up procedure to gradually increase the value of the simulation
number B to calculate the P-values: starting from B = 104, if
a P-value was no more than 5/B , we increased B to 10 times
of its previous value and then repeated the test until either its
P-value was more than 5/B or we reached B = 107. For com-
parison, we also showed the results of the asymptotic Wald
and Score tests, directly available from the output of GEMMA.

Analysis Results

As shown in Table 1, for most SNP-multivariate trait pairs,
the aSPU test gave similar results as those of the classic Wald
and Score tests. However, there were a few differences. No-
tably, for rs7526034-RLatTemp, the aSPU test gave a more
significant P-value than those of the Wald and Score tests; on
the other hand, for APOE-ε4-RPar, it was the reverse. Among
the SPU tests, SPU(1) usually gave most significant results,
presumably because of the smaller number of univariate traits
(k) and the same direction of the SNP-univariate trait asso-
ciations. In summary, our results demonstrate the feasibility
of using our proposed method to approximate the score vec-
tor for a complex mvLMM, and accordingly construct the
score-based aSPU test, which might be more powerful in
some situations (to be shown in simulations) and thus can
be complementary to the standard Wald and Score tests.

Simulations

Simulation I: mvLMM

To mimic real data, we used the ADNI data to generate
multivariate phenotypes according to the fitted the mvLMM
models (3) while using the covariates and SNPs in the ADNI

Table 2. Simulation I: empirical Type I error and power for two
SNP-phenotype pairs, rs7526034-RLatTemp (pair 1) and APOE-ε4-
RPar (pair 2), based on fitting mvLMM

Approximate score vector

SPU(γ)

Pair γ = 1 2 3 4 5 ∞ aSPU Wald Score LRT

1 Type I 0.062 0.067 0.067 0.066 0.069 0.068 0.066 0.067 0.067 0.178
Power 0.722 0.103 0.195 0.112 0.139 0.120 0.621 0.599 0.591 0.604

2 Type I 0.058 0.065 0.063 0.066 0.065 0.067 0.068 0.064 0.058 0.188
Power 0.644 0.389 0.335 0.381 0.336 0.361 0.643 0.689 0.674 0.641

data too. Specifically, two SNP-phenotype pairs, rs7526034-
RLatTemp and APOE-ε4-RPar were chosen; from their cor-
responding fitted models (3), we obtained the parameter es-
timates such as λ̂, ψ̂ , V̂g , and V̂ε. Those parameter estimates
except ψ̂ , which was either 0 for the null model or was scaled
by a factor 1/2 to reduce the effect size of the SNP for the non-
null model (because we were using a nominal significance
level at 0.05), were then used to simulate the phenotypes by
model (3). For each simulated dataset, as before, the MLE
of ψ and its covariance estimate were obtained from GEMMA
to approximate its score vector so that the SPU and aSPU
tests could be applied. We used B = 1, 000 to calculate their
P-values. As a comparison, we also used the Wald test, Score
test, and LRT directly output by GEMMA. Based on 5,000 repli-
cates for each setup, we obtained the empirical Type I error
and power estimates. However, we note that there were some
convergence problems when running GEMMA for about 1%
and 2% of simulated datasets for the two SNP-phenotype
pairs, respectively; our results were based on the remaining
ones without any convergence problems.

As shown in Table 2, the Type I error rates for both pairs
were only slightly inflated for all the tests except the LRT,
which had largely inflated Type I error rates. The inflation
could be due to a large number of parameters to be estimated
in an mvLMM with a moderate sample size.

Because the Type I error rates based on fitting the mvLMM
were slightly inflated, while it was known that there was
barely any population stratification in the ADNI data [Xu
et al., 2014], we fitted the corresponding model after treating
K = I ; however, we experienced some numerical convergence
problems in fitting the mvLMM, likely due to that the two
unstructured covariance matrices Vg and Vε were not iden-
tifiable (after forcing K = I ). Thus we simply used function
gls() in R package nlme to fit a corresponding marginal
linear model with or without top 10 principal components
(PCs); the PCs were extracted using Plink [Purcell et al., 2007]
based on almost a half million SNPs of the 757 subjects in the
ADNI data. As shown in Table 3, the Type I error rates were
better controlled. Note that because the simulated data were
generated with a K �= I , some slight inflation of a Type I error
rate was expected under the incorrect assumption K = I .

The two SNP-phenotype pairs were chosen partly because
in the ADNI data analysis the aSPU test gave a more
significant P-value than those of the Wald and Score tests for
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Table 3. Simulation I: empirical Type I error and power for two
SNP-phenotype pairs, rs7526034-RLatTemp (pair 1) and APOE-ε4-
RPar (pair 2) based on fitting marginal linear models (LMs) with or
without the top 10 PCs

Approximate score vector

SPU(γ)

Model Pair γ = 1 2 3 4 5 ∞ aSPU Wald

LM, 10 PCs 1 Type I 0.049 0.057 0.063 0.057 0.061 0.058 0.061 0.059
Power 0.742 0.092 0.212 0.117 0.158 0.134 0.648 0.611

2 Type I 0.050 0.052 0.050 0.051 0.048 0.049 0.052 0.052
Power 0.616 0.347 0.306 0.347 0.316 0.339 0.610 0.664

LM, no PCs 1 Type I 0.049 0.059 0.062 0.057 0.061 0.057 0.060 0.057
Power 0.749 0.095 0.214 0.116 0.160 0.136 0.645 0.609

2 Type I 0.052 0.056 0.054 0.057 0.052 0.056 0.054 0.053
Power 0.633 0.360 0.317 0.361 0.327 0.352 0.634 0.683

pair 1, while it was the opposite for pair 2 (Table 1). It was
confirmed that in the simulations the aSPU test was indeed
slightly more (or less) powerful than the Wald and Score
tests for pair 1 (or pair 2).

Simulation II: LMM

We considered a case with unrelated individuals and mul-
tiple quantitative traits similar to those in Zhang et al.
[2014], for which the exact score vector could be derived.
We would compare the performance of an exact score-based
test with that of its approximate score-based one. For each
subject i = 1, . . . , n, we generated his/her genotype data as
in Pan [2009]. Specifically, for each subject i, we first gen-
erated a latent vector G i = (G j 1, . . . , G j ,p +1)′ from a mul-
tivariate normal distribution with a first-order autoregres-
sive (AR-1) covariance structure with parameter ρ = 0.5:
Cov(G is, G it) = ρ|s–t|. Second, each latent element G is was
dichotomized to 0 or 1 with probability Prob(G is = 1) as
its minor allele frequency (MAF), randomly drawn from a
uniform distribution. Third, we independently generated an-
other haplotype for subject i, then combined the two hap-
lotypes to form the genotypes for subject j . In this way, we
obtained the genotypes of all the subjects.

The first SNP was chosen as the causal one with MAF
randomly drawn from a uniform distribution U(0.3, 0.4),
while the MAFs of the other SNPs were independently drawn
from U(0.1, 0.5). For each subject i, we simulated k traits
Yi = (Yi1, . . . , Yik) from a linear model:

Yi = λ + xiψ + εi, (8)

where λ = (λ1, . . . , λk)T , ψ = (ψ1, . . . , ψk)T ; εi
iid∼

N(0, σ2R) with σ = 1 and R as a compound symme-
try (CS) correlation matrix with the correlation parameter
r = 0.3; xi is the genotype dosage of the causal SNP. Under
H0 we had ψ = 0; under H1 we had ψm �= 0 for 1 ≤ m ≤ 5
and ψm = 0 for 5 < m ≤ k. The nonzero ψj ’s were simulated
from a uniform distribution U(0.2, 0.3). In this way, under
H1, only the first five traits were associated with the causal
SNP; that is, as k = 5, 10, 20, 30, 40, we gradually increased

the number of the nonassociated traits from 0 to 5, 15, 25,
and 35.

The simulated data were fitted by an LMM:

Yij = λj + xiψj + bi + εij , bi ∼ N(0, σ2
b), εij ∼ N(0, σ2

e ),

(9)

where bi was a normal random effect to model the correla-
tions among multiple traits, εij was the random error, xi was
a scalar corresponding to the genetic score of the SNP nearest
to the causal SNP.

We implemented both the approximate score-based and
exact score-based tests. For an approximate score-based test,
we fitted model (9) and used the MLE of ψ to approximate its
score vector and its variance–covariance matrix. For an exact
score-based test, we fitted the reduced LMM modeled under
H0, Yij = λj + bi + εij , to obtain the MLEs λ̂ = (λ̂1, . . . , λ̂k)T .
Denote I as the k × k identity matrix. The exact score vector
and its variance–covariance matrix can be written as

U =

n∑
i=1

(I, X i)
TV̂–1

i (Yi – λ̂),

Cov(U) =

n∑
i=1

(I, X i)
TV̂–1

i (I, X i), (10)

where V̂i was the MLE of Vi with its diagonal elements σ̂2
b

+ σ̂2
ε

and off-diagonal elements σ̂2
b . Partition the score vector and

its covariance into two parts corresponding to the intercept
and ψ parameters, respectively,

U =

(
U1

U2

)
, Cov(U) =

(
V11 V12

V21 V22

)
,

then we have the exact score vector for ψ as U2 and its co-
variance matrix Cov(U2) = V22 – V21V–1

11 V12.
To estimate the Type I error and power, 1,000 datasets

were independently simulated and analyzed. Each of the
1,000 datasets consisted of 1,000 subjects. We used B = 1, 000
to obtain P-values for any permutation based methods.
As a comparison, we also showed the results from the
UminP.

As shown in Table 4, first, regardless of the test being ex-
amined, its version based on the approximate score vector
and that based on the exact score vector gave almost the same
results, suggesting the high accuracy of the asymptotic ap-
proximation in this case. Second, we note that the Type I
error rates were satisfactorily controlled, even for 40 traits.
Third, in agreement with Zhang et al. [2014], the aSPU test
was more powerful than the score test for five traits, but not
for other numbers of traits; both were much more powerful
than single trait based UminP test, presumably due to the for-
mer two’s combining information across the five associated
traits.

Simulation III: GLMM

We considered a familial/trio study design with a single bi-
nary trait; because there were multiple subjects in each family,
their traits might be correlated. For each of the two parents in
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Table 4. Simulation II: empirical type I error rates and power of the approximate (approx) score- and exact score-based tests when
multiple traits were correlated with a CS structure with correlation r = 0.3

SPU(γ)

Score vector No. of traits UminP γ = 1 2 3 4 5 ∞ aSPU Score

Type I Approx 5 0.041 0.042 0.040 0.048 0.038 0.044 0.043 0.042 0.034
10 0.050 0.051 0.056 0.056 0.057 0.059 0.053 0.052 0.059
20 0.048 0.057 0.046 0.048 0.049 0.047 0.050 0.045 0.047
30 0.048 0.048 0.051 0.050 0.049 0.051 0.050 0.053 0.053
40 0.047 0.052 0.042 0.046 0.048 0.045 0.051 0.042 0.046

Exact 5 0.043 0.045 0.034 0.042 0.038 0.043 0.043 0.039 0.034
10 0.052 0.051 0.056 0.057 0.054 0.052 0.050 0.052 0.059
20 0.046 0.053 0.051 0.050 0.049 0.048 0.049 0.046 0.047
30 0.047 0.047 0.053 0.056 0.045 0.053 0.050 0.053 0.053
40 0.051 0.055 0.039 0.047 0.045 0.042 0.049 0.046 0.046

Power Approx 5 0.140 0.686 0.139 0.288 0.146 0.188 0.144 0.549 0.435
10 0.324 0.274 0.528 0.341 0.454 0.331 0.324 0.486 0.590
20 0.394 0.097 0.597 0.433 0.544 0.403 0.392 0.512 0.606
30 0.378 0.088 0.581 0.395 0.540 0.399 0.375 0.493 0.570
40 0.364 0.071 0.538 0.416 0.532 0.404 0.368 0.474 0.543

Exact 5 0.138 0.685 0.133 0.285 0.141 0.182 0.141 0.543 0.434
10 0.323 0.274 0.536 0.334 0.458 0.315 0.322 0.479 0.588
20 0.384 0.099 0.594 0.426 0.544 0.401 0.397 0.519 0.606
30 0.384 0.080 0.571 0.399 0.543 0.398 0.378 0.500 0.569
40 0.369 0.068 0.534 0.419 0.531 0.410 0.368 0.470 0.542

The first five traits were associated with a causal SNP with effect size βj ∼ U(0.2, 0.3); the SNP nearest to the causal SNP was tested.
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Figure 1. Linkage disequilibrium plots for simulated genotypes with (n = 200, p = 10) (left panel) and (n = 400, p = 20) (right panel).

each family i = 1, . . . , n, we generated their haplotypes and
thus genotypes as described in the previous section (with
ρ = 0.8); then their offspring’s haplotype and thus genotype
data were obtained according to the Mendelian transmission.
In this way, we obtained the genotype data with p + 1 SNPs
for each subjects. The SNP at the center (i.e., at position
p/2 + 1) was chosen as the causal one with MAF 0.3, while
the MAFs of the other SNPs were independently drawn from

U(0.1, 0.4). Figure 1 shows linkage disequilibrium plots for
the generated SNPs (after the causal SNP was removed) based
on one parent from each family.

For subject j in family i, denote xij as the genotypic score
for the causal SNP, and X ij = (X ij 1, . . . , X ijp )T as a vector of
the genotypic scores for the p noncausal SNPs. The disease
indicator Yij = 0 or 1 was generated from the below GLMM:
Assuming λ0 is the background log odds ratio, ψ0 is the effect

Genetic Epidemiology, Vol. 39, No. 6, 469–479, 2015 475



sizes, the resulting GLMM model can be written as

Logit(E [Yij |bi]) = λ0 + xij ψ0 + bi ; bi ∼ N(0, σ2
b), (11)

where λ0 = – log(4) was chosen to have a 20% background
disease prevalence, while ψ0 at varying effect sizes was used
to investigate the empirical Type I error (ψ0 = log(1)) and
power (ψ0 > log(1)). We fixed σb = 1, and considered two
cases with (p = 10, n = 200) and (p = 20, n = 400). For each
simulation setup, we generated 1,000 simulated datasets to
estimate the empirical Type I error or power.

We fitted both a GLMM (6) and a corresponding marginal
model to test H0: ψ = 0. A GLMM was fitted using function
glmer() from R package lme4. Either the Laplace approx-
imation (LA) or adaptive Gaussian quadrature (AGQ) was
used to approximate the (marginal) log-likelihood. For AGQ,
we specified the number of points per axis nAGQ = 25; in the
manual of lme4, it was mentioned that “a model with a sin-
gle, scalar random-effects term could reasonably use up to
25 quadrature points per scalar integral” [Bates et al., 2014].
For a marginal model, both a working independence and a
working CS correlation structures were used in GEE. We then
applied our method to approximate the score vector for the
fitted GLMM and GEE models, respectively, based on which
we applied the SPU and aSPU tests; we used B = 1, 000 to
calculate their P-values. As a comparison, we also showed the
results from the UminP and Wald tests; recall that the Wald
test is equivalent to the approximate score test.

As shown in Table 5, it seems that the Type I error rates
were appropriately controlled by all the tests except the Wald
test, which gave slightly inflated Type I error rates in GEE
as well known in the literature [e.g., Zhang et al., 2014]. It
is clear that, for the same fitted model, the aSPU test was
much more powerful than the popular UminP and Wald
tests. Among the SPU tests, the SPU(1) was nearly as powerful
as SPU(2) and SPU(3) for a smaller number of parameters
to be tested with p = 10, but it was less powerful than the
latter two for p = 20. This is in agreement with the analysis
and motivation of the SPU tests: for p = 10, because all the
10 SNPs were correlated with the causal SNP, the SPU(1)
test was expected to be powerful, as more generally known
for the burden tests; on the other hand, for p = 20, because
some SNPs were barely correlated with the causal SNP, to
minimize the effects on power of the nonassociated SNPs, a
larger γ (here γ = 3) would yield higher power for the SPU(γ)
test. Among the three fitted models, the aSPU test based on
GEE(CS) was more powerful than that based on the other
two models, the latter of which gave similar results; the lower
power of GEE(Ind) might be due to the use of the working
independence correlation structure, while the GLMM was
fitted by an approximate maximum likelihood (using either
the LA by default, or ACQ in the function glme), leading
to loss of efficiency. It is noted that the results from the LA
and ACQ approximations were very close; they seemed to be
a little conservative with Type I rates much lower than the
nominal 0.05.

Because the proposed method of approximating the score
vector is asymptotic, to further evaluate its finite-sample

performance, we also applied the score-based tests based on
the exact, not approximate, GEE (generalized) score formu-
las, as implemented in Zhang et al. [2014]. Comparing the
test results in Tables 5 and 6, we can see that the approximate
score-based tests had slight losses of power for the smaller
sample size n = 200, but performed equally well as the exact
score-based tests for the larger sample size n = 400.

Discussion

We have described an asymptotic approach to approxi-
mating the score vector in some complex models, such as a
mvLMM or GLMM. The approximate score vector can then
be used to construct any score-based tests, including KMR
and aSPU tests for multiple traits or familial data. Using both
real and simulated data, we have demonstrated such approx-
imate score-based tests can improve power over (and control
the Type I error rate better than) the standard Wald test and
the UminP test that has been widely used in GWAS. The
proposed approximate score vector offers a simple and gen-
eral way to extend many score-based tests to other complex
models, in which the score vector is unavailable from the sta-
tistical package being used. Although we have focused on the
mvLMM and GLMM, we also considered the LMM, the Cox
frailty model [Therneau et al., 2003], and the Cox mixed-
effects model [Therneau, 2012], and reached similar conclu-
sions (results not shown to save space); the difference between
the two Cox models is that the latter includes a random effect
to account for genetic relatedness across all subjects, similar
to that adopted in the mvLMM. We envision the use of the
proposed approximate score vector in other models.

Our proposed general approach is a two-step procedure. In
the first step, a full model including a set of parameters to be
tested is fitted, then in the second step the score vector for the
parameter and its covariance matrix are approximated based
on the parameter estimates and their covariance matrix. In
this way, a score-based test can be applied without directly
calculating the score vector (and its covariance matrix), which
may not be easy to derive based on existing software packages,
such as for mvLMM and GLMM. Due to the nature of the
proposed two-step approach, the validity of the approach de-
pends on both the first step and the asymptotics. For example,
if we have a familial dataset with trait-ascertained samples,
then it is necessary to appropriately account for the sample
ascertainment in step one, e.g., based on some family-based
association testing procedures [Moerkerke et al., 2010; Zhang
et al., 2012]. Furthermore, because the proposed approxi-
mation to the score vector is based on the asymptotics of the
parameters to be tested, it has some limitations. First, if the
sample size is too small or more generally, if the conditions for
the asymptotics do not hold, e.g., in analysis of rare variants
[Chen et al., 2013; Jiang et al., 2014], then it may not perform
well with inflated false positives and false negatives. Second, in
order to obtain a point estimate of the parameters to be tested,
a full model has to be fitted, which may not be even com-
putationally feasible if the number of the parameters to be
estimated is too large relative to the sample size. Nevertheless,
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Table 5. Simulation III: empirical Type I error (for OR = 1) and power (for OR > 1) of the approximate score-based tests with correlated
binary traits

SPU(γ)

Model Case OR UminP γ = 1 2 3 4 5 ∞ aSPU Wald

GLMM 1 1 0.018 0.044 0.015 0.016 0.011 0.012 0.014 0.020 0.021
(LA) 1.4 0.078 0.125 0.100 0.105 0.088 0.090 0.074 0.100 0.057

1.8 0.216 0.323 0.296 0.294 0.266 0.257 0.195 0.300 0.141
2.2 0.406 0.514 0.494 0.511 0.461 0.452 0.368 0.470 0.280
2.6 0.580 0.702 0.681 0.680 0.645 0.641 0.568 0.667 0.427
3 0.736 0.825 0.822 0.826 0.799 0.794 0.713 0.807 0.587

2 1 0.028 0.030 0.018 0.024 0.017 0.019 0.024 0.023 0.032
1.4 0.096 0.157 0.116 0.138 0.106 0.108 0.090 0.131 0.067
1.8 0.344 0.424 0.422 0.467 0.425 0.431 0.353 0.414 0.187
2.2 0.677 0.668 0.750 0.776 0.750 0.755 0.667 0.748 0.419
2.6 0.862 0.834 0.897 0.914 0.902 0.904 0.848 0.893 0.666
3 0.950 0.918 0.964 0.969 0.968 0.972 0.938 0.963 0.825

GLMM 1 1 0.015 0.047 0.014 0.011 0.008 0.010 0.011 0.022 0.018
(AGQ) 1.4 0.073 0.118 0.084 0.096 0.085 0.083 0.070 0.092 0.039

1.8 0.198 0.310 0.279 0.281 0.248 0.242 0.187 0.281 0.122
2.2 0.390 0.505 0.472 0.489 0.439 0.431 0.353 0.463 0.255
2.6 0.565 0.688 0.669 0.664 0.624 0.616 0.536 0.654 0.397
3 0.724 0.816 0.817 0.817 0.792 0.783 0.695 0.794 0.557

2 1 0.024 0.029 0.016 0.023 0.016 0.015 0.022 0.024 0.025
1.4 0.085 0.149 0.110 0.133 0.096 0.103 0.083 0.122 0.056
1.8 0.329 0.407 0.408 0.450 0.396 0.415 0.332 0.412 0.166
2.2 0.665 0.667 0.727 0.764 0.730 0.737 0.657 0.744 0.374
2.6 0.851 0.833 0.892 0.910 0.895 0.901 0.834 0.888 0.637
3 0.947 0.916 0.962 0.970 0.968 0.970 0.928 0.958 0.810

GEE 1 1 0.030 0.040 0.024 0.023 0.026 0.024 0.026 0.032 0.057
(Ind) 1.4 0.093 0.134 0.108 0.111 0.100 0.099 0.088 0.116 0.106

1.8 0.215 0.291 0.284 0.288 0.253 0.248 0.202 0.272 0.170
2.2 0.375 0.478 0.459 0.467 0.428 0.422 0.366 0.445 0.308
2.6 0.519 0.625 0.625 0.628 0.596 0.588 0.519 0.603 0.438
3 0.672 0.754 0.755 0.757 0.736 0.729 0.656 0.740 0.558

2 1 0.036 0.037 0.035 0.033 0.032 0.034 0.042 0.033 0.081
1.4 0.113 0.146 0.128 0.149 0.134 0.137 0.110 0.146 0.125
1.8 0.323 0.368 0.368 0.410 0.377 0.394 0.320 0.385 0.229
2.2 0.589 0.593 0.662 0.709 0.677 0.680 0.579 0.672 0.427
2.6 0.775 0.761 0.829 0.847 0.826 0.830 0.770 0.825 0.619
3 0.902 0.865 0.926 0.939 0.932 0.928 0.881 0.925 0.755

GEE 1 1 0.044 0.061 0.041 0.037 0.035 0.035 0.034 0.040 0.065
(CS) 1.4 0.116 0.141 0.133 0.136 0.115 0.117 0.111 0.133 0.104

1.8 0.271 0.366 0.349 0.358 0.323 0.319 0.261 0.337 0.222
2.2 0.459 0.576 0.573 0.577 0.541 0.538 0.459 0.547 0.385
2.6 0.653 0.730 0.734 0.740 0.704 0.698 0.632 0.738 0.526
3 0.800 0.845 0.862 0.862 0.847 0.840 0.780 0.851 0.670

2 1 0.039 0.041 0.032 0.035 0.035 0.038 0.041 0.038 0.070
1.4 0.124 0.183 0.159 0.180 0.151 0.163 0.124 0.167 0.137
1.8 0.433 0.476 0.500 0.543 0.509 0.508 0.438 0.506 0.309
2.2 0.750 0.712 0.805 0.832 0.806 0.809 0.755 0.791 0.544
2.6 0.895 0.881 0.925 0.943 0.933 0.931 0.883 0.925 0.749
3 0.969 0.934 0.971 0.982 0.978 0.978 0.962 0.976 0.881

The two cases were for (n = 200, p = 10) and (n = 400, p = 20). A GLMM was fitted using either the Laplace (LA) or adaptive Gaussian quadrature (AGQ) approximation; the
working correlation structure in GEE was assumed to be either independent(Ind) or compound symmetry (CS).

the proposed method offers a simple and practical way to
extend many score-based tests to more complex models, for
which the score vector is either unavailable from software
or has no closed-form solution. In addition to testing for
main effects as considered here, it will also be interesting to
explore the use of the proposed method to detect gene-gene
and gene–environment interactions [Tzeng et al., 2011].
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Table 6. Simulation III: empirical Type I error (for OR = 1) and power (for OR > 1) of the GEE score-based tests with correlated binary
traits

SPU(γ)

Model Case OR UminP γ = 1 2 3 4 5 6 7 8 ∞ aSPU Score

GEE 1 1 0.036 0.047 0.037 0.038 0.031 0.027 0.031 0.033 0.033 0.034 0.038 0.042
(Ind) 1.4 0.090 0.129 0.120 0.117 0.108 0.106 0.099 0.097 0.093 0.090 0.117 0.074

1.8 0.228 0.295 0.305 0.303 0.277 0.264 0.254 0.248 0.245 0.220 0.284 0.148
2.2 0.404 0.474 0.480 0.489 0.459 0.450 0.433 0.428 0.425 0.399 0.462 0.280
2.6 0.567 0.630 0.654 0.658 0.623 0.614 0.603 0.591 0.577 0.555 0.625 0.406
3 0.698 0.766 0.786 0.779 0.759 0.752 0.740 0.736 0.727 0.694 0.765 0.544

2 1 0.049 0.046 0.044 0.038 0.039 0.042 0.045 0.044 0.044 0.048 0.051 0.054
1.4 0.124 0.141 0.152 0.158 0.148 0.151 0.137 0.134 0.125 0.115 0.153 0.092
1.8 0.355 0.369 0.403 0.429 0.413 0.415 0.392 0.385 0.368 0.344 0.413 0.198
2.2 0.627 0.595 0.690 0.725 0.696 0.699 0.672 0.669 0.658 0.613 0.693 0.399
2.6 0.803 0.770 0.852 0.865 0.843 0.841 0.827 0.825 0.820 0.787 0.841 0.597
3 0.915 0.875 0.941 0.949 0.941 0.942 0.933 0.930 0.924 0.895 0.934 0.745

GEE 1 1 0.040 0.066 0.047 0.048 0.044 0.043 0.042 0.041 0.041 0.043 0.050 0.041
(CS) 1.4 0.119 0.140 0.135 0.134 0.127 0.122 0.120 0.116 0.114 0.114 0.130 0.082

1.8 0.282 0.361 0.370 0.369 0.342 0.329 0.315 0.308 0.300 0.276 0.349 0.192
2.2 0.487 0.572 0.582 0.585 0.554 0.546 0.533 0.525 0.510 0.474 0.554 0.357
2.6 0.651 0.738 0.763 0.747 0.727 0.719 0.700 0.693 0.688 0.647 0.737 0.506
3 0.823 0.847 0.865 0.870 0.850 0.845 0.837 0.834 0.829 0.797 0.865 0.644

2 1 0.047 0.044 0.041 0.040 0.045 0.048 0.038 0.041 0.039 0.044 0.049 0.054
1.4 0.150 0.172 0.162 0.183 0.159 0.168 0.154 0.159 0.149 0.140 0.168 0.098
1.8 0.446 0.465 0.519 0.543 0.527 0.525 0.502 0.502 0.486 0.465 0.512 0.258
2.2 0.766 0.712 0.825 0.832 0.823 0.823 0.805 0.807 0.793 0.770 0.816 0.507
2.6 0.908 0.879 0.928 0.947 0.937 0.942 0.931 0.928 0.922 0.896 0.931 0.739
3 0.973 0.936 0.975 0.982 0.981 0.979 0.979 0.979 0.978 0.967 0.978 0.866

The two cases were for (n = 200, p = 10) and (n = 400, p = 20).

Pharmaceutical Company. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada. Private sector
contributions are facilitated by the Foundation for the National Institutes of
Health (www.fnih.org). The grantee organization is the Northern California
Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Disease Cooperative Study at the University of California, San
Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at
the University of Southern California.
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