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Abstract—Alzheimer’s disease (AD) is a neurodegenerative
disease with an irreversible and progressive process. To under-
stand the brain functions and identify the biomarkers of AD
and early stages of the disease [also known as, mild cognitive
impairment (MCI)], it is crucial to build the brain functional
connectivity network (BFCN) using resting-state functional mag-
netic resonance imaging (rs-fMRI). Existing methods have been
mainly developed using only a single time-point rs-fMRI data for
classification. In fact, multiple time-point data is more effective
than a single time-point data in diagnosing brain diseases by
monitoring the disease progression patterns using longitudinal
analysis. In this article, we utilize multiple rs-fMRI time-point to
identify early MCI (EMCI) and late MCI (LMCI), by integrating
the fused sparse network (FSN) model with parameter-free cen-
tralized (PFC) learning. Specifically, we first construct the FSN
framework by building multiple time-point BFCNs. The multi-
task learning via PFC is then leveraged for longitudinal analysis
of EMCI and LMCI. Accordingly, we can jointly learn the
multiple time-point features constructed from the BFCN model.
The proposed PFC method can automatically balance the con-
tributions of different time-point information via learned specific
and common features. Finally, the selected multiple time-point
features are fused by a similarity network fusion (SNF) method.
Our proposed method is evaluated on the public AD neuroimag-
ing initiative phase-2 (ADNI-2) database. The experimental
results demonstrate that our method can achieve quite promising
performance and outperform the state-of-the-art methods.
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I. INTRODUCTION

ALZHEIMER’S disease (AD) is one of the most fre-
quent forms of dementia, which leads to approximately

60%–80% of dementia cases in the world [1]. AD patients’
experience gradually decline in memory and cognitive func-
tions as their disease progresses [2], and eventually die
in 3–10 years [3]. To date, there is no evidence that the
pathophysiologic progression due to AD can be reversed or
cured [4], [5]. According to the recent statistics, there are
a total number of 47 million people suffering from this dis-
ease and the number will increase to more than 131 million
by 2050 [6]. The average probability of converting mild cog-
nitive impairment (MCI) [e.g., early MCI (EMCI) and late
MCI (LMCI)] to AD is 15%. Hence, it is necessary to treat
and monitor AD progression before onset [7]. However, the
majority of the existing computer-aided diagnosis methods do
not meet the clinical diagnosis requirement, especially for MCI
diagnosis.

Resting-state functional MRI (rs-fMRI) is capable of build-
ing the brain functional connectivity network (BFCN) among
brain regions, by examining the functional impairment of
brain networks caused by MCI [8], [9]. In fact, BFCN rep-
resents the temporal correlation of blood-oxygenation-level-
dependent (BOLD) time series among the brain areas [10],
and the reduced BOLD connectivity is related to hypoper-
fusion in AD [11]. The BFCN [12] approaches have been
successfully used to diagnose MCI and AD [13]–[16] to under-
stand the functional interactions among the brain areas, and
have received an increasing attention in the neurocognitive
area [17].

In the last decade, numerous methods for constructing
BFCNs have been proposed, including the Pearson’s corre-
lation (PC)-based methods [18], graphical models [19], and
sparse representation methods [20]. The PC method is one
of the typical BFCN modeling algorithms based on the pair-
wise correlation among different brain regions, which can
be enhanced by a high-order functional connectivity [21].
However, the BFCN constructed by the PC method is too
dense to clearly express the connection between the brain
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regions that are most related to the disease [22]. The graph-
ical models are another popular ways to enhance the PC
method [19]. For example, Rosa et al. [23] proposed a sparse
network-based discriminative modeling framework based on
the Gaussian graphical models. However, these methods
require a great amount of prior knowledge, which may be
infeasible [20], [24], [25]. In contrast, it is known that
sparse learning is sparsely constructed, which can show
biological significant findings. Therefore, it is more appeal-
ing to construct a BFCN via sparse learning. For example,
Wee et al. [22] proposed a group-constrained sparse (GCS)
model to construct BFCN for MCI identification. As the
disease progresses, brain function changes are reflected by
the regions of interest (ROIs) relationships of the BFCN at
different time points. However, these attempts fail to con-
sider the multiple time-point information and fused group
constraints to characterize the brain function. Recently, the
techniques of dynamical graph theory networks have been
proposed and achieved a good performance in studying demen-
tia diseases [26]–[29]. The dynamical graph theory networks
can capture the dynamical information in brain to replace the
static information. However, those methods increase compu-
tational complexity. The previous works mainly utilize the
single time-point rs-fMRI data [30], [31]. Longitudinal anal-
ysis with multiple time-point data can be more appealing for
MCI disease diagnosis [32]. To overcome the deficiencies of
the previous studies and enhance the diagnostic performance,
we propose a fused sparse learning method to construct the
BFCN using multiple time points (i.e., FSN). The FSN can
utilize the group and time constraints to characterize complex
brain functions as well.

For the BFCN-based methods, the high feature dimen-
sion and low subject size suffer from overfitting [33]. To
address this drawback, feature selection from the BFCN is
an effective way. For example, Zhu et al. [25] used the Lasso
method to reduce feature dimension. Yu et al. [34] adopted
the t-test to select similar subnetworks, and the weighted
sparse groups method was developed for MCI classification.
Guo et al. [20] used the Kolmogorov–Smirnov test to select
features from a hypernetwork. However, these are single-task
methods, which are often disadvantageous compared to the
multitask learning methods. Also, these methods contain too
many parameters, which make them difficult to tune for the
clinical applications. To overcome the aforementioned prob-
lems, we propose a parameter-free centralized (PFC) multitask
learning strategy for feature selection. It can describe the
interaction of the BFCN constructed at different time points
and perform effective longitudinal analysis.

The PFC multitask learning method can identify specific and
common BFCN features at multiple time points. This method
leverages the underlying development of the MCI based on the
rs-fMRI data. The PFC explicitly identifies the BFCN features
with multiple time points, which have different contributions
for the MCI classification in a multitask learning framework.
These BFCN features are regularized to be sparse and central-
ized, which can be considered as common features to be shared
across different time points. The PFC model exploits a square
root objective function to discover the differences among

multiple time points. The importance of each task is automat-
ically learned without tuning parameters (i.e., parameter-free).
As a result, such a learning strategy is efficient and robust to
outliers. In addition, our method makes use of these features
across multiple time points collaboratively. It further improves
the classification performance of each task by exploiting
more informative features unlike the ones obtained only from
a single time point. These specific and common features in
different time points from the PFC model are representative
to facilitate the disease progression analysis and diagnosis.
To further improve the effectiveness of classification, we fuse
the features in multiple time points by the similarity network
fusion (SNF) method [35], [36]. We evaluate our method in the
rs-fMRI database of the AD Neuroimaging Initiative Phase-2
(ADNI-2), which includes 29 normal control (NC), 29 EMCI,
and 18 LMCI in the two time points, baseline, and year 1.
The experimental results demonstrate that our proposed frame-
work achieves a quite promising diagnostic performance. The
best identification performance of the proposed method for
LMCI versus NC, EMCI versus NC, and EMCI versus LMCI
is 87.23%, 82.76%, and 80.85%, respectively.

II. METHODOLOGY

A. Proposed Framework

The overview of our proposed method is shown in Fig. 1.
The input is the rs-fMRI data with multiple time points.
First, we use the preprocessed rs-fMRI data in multiple time
points to build BFCNs by the FSN model. Second, we use
the proposed PFC feature selection method to jointly learn
the features constructed from the BFCN model. Finally, the
selected features are fused by the SNF method, and the fused
features are sent to the support vector machine (SVM) for
classification [37].

B. Subjects and Data Acquisition

The data in this article is obtained from the ADNI database
(http://adni.loni.usc.edu/). Specific and sensitive markers for
the detection of early AD progression are designed to help
scholars and clinical experts to develop innovative therapies
and monitor their efficacy, which can effectively reduce the
cost and time of clinical diagnosis. A large number of private
companies and academic institutions are working together to
build the ADNI database and subjects were recruited from
more than 50 sites in the USA and Canada [38]–[40].

The data used in this article is acquired from the ADNI-2
database. The MRI scan data is obtained from the ADNI site,
and the spatial distortion caused by B1-field inhomogeneity
and gradient nonlinearity is corrected.

C. Image Preprocessing

All subjects are scanned by the 3.0T Philips Achieva at
different centers and the parameters are defined as follows:
TR/TE = 3000/30 mm, rollover angle = 80◦, 140 volumes,
imaging matrix = 64 × 64, 48 slices, and body thick-
ness = 3.3 mm. We obtain the rs-fMRI data in 4-D spatiotem-
poral neuroimaging informatics technology initiative (NIFTI)
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format. The data is preprocessed with the standard prepro-
cessing procedure based on the statistical parametric mapping
(SPM12) and data processing assistant for resting-state fMRI
(DPARSF) software.

The preprocessing includes the following stages.
1) Discarding the first 10 rs-fMRI volumes of each subject

before any further processing to keep the magnetization
equal.

2) The remaining 130 volumes are corrected by the stag-
gered sequence of slice collection, which takes advan-
tage of the echo planar scan to ensure that the data on
each slice corresponds to the unanimous point in time.

3) The interpolation time point is set as TR/2 so that the
relative error of every TR is minimized. A rigid body
spatial transformation and a least square approach are
used to realign the slice timing to correct the rs-fMRI
time series of each subject after the acquisition of time
delay.

4) Removing head motion, the second last volume of each
subject is used as the reference to which all subsequent
volumes are realigned [41].

5) The rs-fMRI is divided into 90 brain regions using the
automatic anatomical labeling (AAL) template.

6) A high-pass filter is used to refine the average rs-fMRI
time series of each brain region. Furthermore, we regress
out the head movement parameters, the cerebrospinal
fluid, and mean BOLD time series of the white matter.
We extract the mean of the BOLD signal in 90 ROIs as
the original rs-fMRI signal (i.e., 90 nodes) [42].

D. Fused Sparse Network

In this article, the matrices are represented in bold capi-
tal letters, the vectors are in bold lowercase letters, and the
scalars are in normal italic letters. Assuming that there are
N subjects and X = [x1, . . . , xr, . . . , xR] ∈ R

R×N denotes
our input data, the AAL template is utilized to divide the
brain into R ROIs and the rth ROI with a BOLD regional
mean time series (M length) is represented by a response
vector xn

r = [xn
1r, xn

2r, . . . , xn
Mr]. An

r denotes all ROIs sig-
nal matrix except xn

r , An
r = [xn

1, . . . xn
r−1, . . . xn

r+1, . . . , xn
R],

wn
r ∈ R

R−1 is a weighting regression coefficient vector, and
Wr = [w1

r , . . . wn
r , . . . , wN

r ]. The sparse networks are used
to represent the brain functional connectivity that can be
constructed using GCS and is defined as

J(Wr) = min
Wr

1

2

N∑

n=1

∥∥xn
r − An

r wn
r

∥∥2
2 + Rg(Wr) (1)

where Rg(Wr) is a group regularization given by

Rg(Wr) = λ1‖Wr‖2,1 = λ1

R−1∑

d=1

∥∥∥wd
r

∥∥∥
2

(2)

where λ1 is the group regularization parameter, and ‖Wr‖2,1
is the summation of the l2-norm of wn

r . Specifically, we use the
l2-norm on the row vectors of the rth feature in the entire sub-
jects by imposing the weights. We further adopt the l1-norm
to jointly select information by R−1 ROIs’ weights. wd

r is the

dth row vector of Wr. As a sparse regression network method,
GCS ensures all models in the unequal group with identical
connections. The l2-norm is imposed on identical elements
across the unequal matrix Wr, which forces the weight cor-
responding to connections across the different subjects to be
grouped together. The constraint imposes a common connec-
tion topology among the subjects and leverages the variation of
connection weights among them. Therefore, the model is able
to rebuild the target ROI using the remaining ROIs. Moreover,
the reconstruction of each ROI is independent from others.
However, the existing GCS model with penalty ignores the
smoothing properties of different subjects within the model.
To overcome this drawback, a novel model is devised to
jointly learn the shared functional brain networks of each sub-
ject by the group sparse regularization and the smoothness
regularization. The objective function is

J(Wr) = min
Wr

1

2

N∑

n=1

∥∥xn
r − An

r wn
r

∥∥2
2 + Rg(Wr) + Rs(Wr) (3)

where Rg(Wr) is the group regularization, and Rs(Wr) denotes
the smoothness regularization, which is denoted as

Rs(Wr) = λ2

N−1∑

n=1

∥∥∥wn
r − wn+1

r

∥∥∥
1

(4)

where λ2 is the parameter of smoothness regularization. The
second term ‖wn

r − wn+1
r ‖1 constrains the diversity between

two consecutive weighting vectors from the same groups to
be as small as possible. When the smoothness regulariza-
tion parameter λ2 is zero, the proposed method reproduces
the GCS original method. Because of the l1-norm utilized in
the smoothness term, the weight vectors difference is encour-
aged since lots of zero components appear in the imparity
vectors of weighting. In other words, due to the smoothing
constraints, a large number of components from the adjacent
weight vectors will be the same. The informative features will
be selected due to nonzero weights in our task. We introduce
the smoothness terms to smooth the connectivity coefficients
of the subjects. In addition, we fuse the regularization terms
in this learning model to impose a high level of constraints.
We call this sparse learning model as FSN.

E. Optimization Algorithm

Both group and smoothness regularization are included in
our objective function simultaneously. We use the iterative
projected gradient descent algorithm to solve this equation.
Specifically, the objective function in (3) is divided into the
smoothness term

s(Wr) = min
Wr

1

2

N∑

n=1

∥∥xn
r − An

r wn
r

∥∥2
2 (5)

and the nonsmoothness term

n(Wr)= λ1‖Wr‖2,1 + λ2

N−1∑

n=1

∥∥∥wn
r − wn+1

r

∥∥∥
1
. (6)

In iteration k, two steps are contained in the projected gra-
dient descent. Let the gradient of s(Wr) at Wk

r denote s′(Wk
r),
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Fig. 1. Flowchart of the proposed method.

and the step size is denoted as γk and is determined via the
line search. The first step is denoted as

V(k)
r = Wk

r − γks′(Wk
r

)
(7)

and the second step is represented as

Wk+1
r = arg min

1

2

∥∥∥Wr − Vk
r

∥∥∥
2

2
+ n(Wr). (8)

For the nonsmoothness term n(Wr) in (8), we can sequen-
tially calculate the proximal operator related to the group
Lasso and fused Lasso constraints [43], [44].

An accelerated gradient descent method is used to further
accelerate the above gradient [45]. We compute the search
point Sk

r instead of performing gradient descent based on Wk
r

Sk
r = Wk

r + αk

(
Wk

r − Wk−1
r

)
(9)

where αk is a predefined variable and Vk
r is

Vk
r = Sk

r − γis
′(Sk

r

)
. (10)

Finally, the new approximate solution is obtained. The detailed
solution is listed in Algorithm 1.

F. Feature Extraction

The asymmetrical BFCN does not contribute to the final
classification accuracy. Hence, W∗ = (Wn +WT

n )/2 is defined
to obtain the symmetry [46]. Local clustering coefficients of
weighted graphs are utilized to extract features from each
established BFCN. Specifically, the clustering coefficient of
each node is computed in the network to quantify the proba-
bility of the nodes being connected to the neighboring nodes.
Assuming that there are R nodes in a network, wij is the weight
of the edge, which connects vertex i to vertex j. vi denotes the
set of vertices directly connected to vertex i, and the num-
ber of elements in vi is defined as |vi|, we define the cluster

Algorithm 1: Solving (3)

Input: xn
r ∈ R

M×1, An
r ∈ R

M×(R−1), λ1, λ2;
Output: Wr ∈ R

(R−1)×N ;
1 Initialize k = 0, Sk

r , Wk
r by an identity matrix;

2 Repeat
3 Update matrix Vk

r by solving Eq. (7);
4 Update matrix Sk

r by solving Eq. (9);
5 Update matrix Wk

r by solving Eq. (8);
6 k = k + 1;
7 Until it converges or a stop criterion is satisfied.;

coefficient of vertex i as

ρi = 2
∑

j:j∈vi

(
wij

) 1
3

|vi|(|vi| − 1)
. (11)

In this article, the AAL atlas with 90 ROIs is utilized for
brain parcellation. Therefore, each network generates a feature
vector containing 90 clustering coefficients [21], [22].

G. Parameter-Free Centralized Multitask Learning

The multitime point information for the longitudinal anal-
ysis is more desirable for improving the diagnostic accuracy
of the disease as compared with the single time-point data.
For this reason, we jointly learn features with multiple time
points to simultaneously identify specific and common fea-
tures, which helps to analyze the development of the disease.
The specific features of different time points characterize the
differences in the disease progression, while the common fea-
tures describe the interaction effect of the disease progression.
These groups of different time points collaboratively help
each other to improve identification performance. It is pos-
sible to discover more biomarkers of biological significance
unidentified in a model built with only one time-point data.

Let X1, . . . , Xt, . . . , XT ∈ R
N×R be the FSN feature matri-

ces at T time points. We divide the features of each time point
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into a group. Each group of data is regarded as a task, and
there are T tasks. Let yt ∈ R

N be a label vector at the t-th task,
N is the number of subjects, and R is the dimension of feature,
the weight matrix is W = [w1, . . . wt, . . . , wT ] ∈ R

R×T . The
multitask learning via the least square loss function to select
the informative features is given as

min
wt

T∑

t=1

∥∥yt − Xtwt
∥∥2

2 + γ ‖W‖1 (12)

where γ denotes a non-negative parameter controlling the spar-
sity ratio. In this article, the centralized regularization is used
to penalize the variance of the coefficient vector, which can
make different tasks to help each other collaboratively. The
objective function is computed as

min
wt,w

T∑

t=1

√∥∥yt − Xtwt
∥∥2

2 + ‖wt − w‖2,1 + γ ‖W‖1. (13)

To facilitate the optimization and find the variables wt and w,
we reformulate (13) as

min
wt,w

T∑

t=1

αt

(∥∥yt − Xtwt
∥∥2

2 + ‖wt − w‖2,1

)
+ γ ‖W‖

1
(14a)

αt = 1

2
√∥∥yt − Xtwt

∥∥2
2 + ‖wt − w‖2,1

. (14b)

αt is optimized via sequentially taking the derivative with
respect to the variables wt and w. Therefore, we solve (13)
by alternatively updating (14a) and (14b). To optimize them
easily, we reformulate (14a) as

min
wt,w

T∑

t=1

αt

(∥∥yt − Xtwt
∥∥2

2 + βt‖wt − w‖2
2

)
+ γ ‖W‖1 (15a)

βt = 1

2
√‖wt − w‖2

(15b)

where w is initialized as (XT
t Xt+0.001×I)−1XT

t yt, I ∈ R
(R×R)

is the identity matrix, w is the average of all wt, and αt =
(1/T), βt = (1/T), t = 1, 2, . . . , T . αt and βt can be regarded
as the weights of the centralized regularization. Note that both
αt and βt are automatically acquired without tuning parame-
ters. αtβt is the weight to reduce the variance of wt in the term
αtβt‖wt − w‖2

2, which makes all tasks similar. αtβt is used to
measure the diversity and the flexibility of Xt. If Xt is more
similar to other tasks, the value of αtβt should be large enough
to push wt closer to w. In this case, Xt has less flexibility and

more stability. Let ŷt = [
√

αtyT
t ,

√
αtβtw

T]
T ∈ R

(n+R)×1, X̂t =
[
√

αtXT
t ,

√
αtβtI]

T ∈ R
(n+R)×R, (15) can be reformulated to

min
T∑

t=1

∥∥̂yt − X̂twt
∥∥2

2 + γ ‖W‖1. (16)

Equation (16) is a standard objective function of sparse
multitask learning, which can be solved by the MALSAR
toolbox [47], [48].

H. Similarity Network Fusion

Let the selected features of the ith and jth subjects be fi

and fj, respectively. The similarity network is represented as
a graph G = (V, E), where V and E denote the vertices
and edges weighted by the similarity among the subjects,
respectively. The pair of sample similarity (i.e., matrix S) is
calculated as

S(i, j) = exp

(
−

(
ρ2

(
fi, fj

)

μεi,j

))
(17)

ρ
(
fi, fj

) =
√(

fi,1 − fj,1
)2 + · · · + (

fi,d − fj,d
)2 (18)

where S(i, j) and ρ(fi, fj) indicate the similarity and Euclidean
distance between subjects i and j, respectively. μ is an empir-
ically set hyperparameter and εi,j is introduced to solve the
scaling problem using

εi,j = mean(ρ(fi, Ni)) + mean
(
ρ
(
fj, Nj

)) + ρ
(
fi, fj

)

3
(19)

where Ni denotes a set of fi and its neighbors in the graph,
and mean(ρ(fi, Ni)) is the average Euclidean distance of fi

from its neighbors. We construct a full kernel and a sparse
kernel on the vertex set V. A normalized weight matrix P
with

∑
j P(i, j) = 1 is denoted as

P(i, j) =
{

S(i,j)
2
∑

k 	=iS(i,k) i 	= j
1
2 i = j.

(20)

The local affinity using means of K-nearest neighbors is
computed by

K(i, j) =
{

S(i,j)∑
inNi

S(i,k) j ∈ Ni

0 otherwise.
(21)

The similarity values of the non-neighboring points are set
based on the assumption that the remote similarities are less
reliable than the local ones. Here, P has the full information
while K only contains the most similar ones for each subject.
Supposing that there are T time points data with full and sparse
kernels P(t) and K(t), t = 1, 2, . . . , T, and P(t)

m=0 = P(t) is the
initial state matrices at m = 0, the full kernel matrices are
then updated iteratively as follows:

P(t)
m+1 = K(t) ×

(∑
l 	=t P(l)

m

T − 1

)
×

(
K(t)

)T
, t, l = 1, 2, . . . , T

(22)

where T is the transpose operation. P(t)
m+1 denotes the state

matrix of the t-th time points data after M iterations. Then,
the state matrix of all time points is calculated by

P =
∑T

t=1P(t)
M

T
. (23)

SNF starts from P as the initial state and use K as the kernel
matrix in the fusion process to capture the local structure of
graphs and computational efficiency.
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TABLE I
DEMOGRAPHIC INFORMATION OF THE USED SUBJECTS

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

We conduct numerous experiments on the public ADNI
dataset (http://adni.loni.usc.edu/) to verify the performance of
the proposed method. There are 76 subjects (including 47 MCI
patients and 29 NC) acquired from the ADNI-2 database. Out
of the 47 MCI patients, 18 are LMCI patients (an impairment
on cognitive testing is usually defined as the performance of
1.5 standard deviations (SD) below the normative mean) and
29 are EMCI patients (an impairment on cognitive testing is
usually defined as the performance between 1.0 and 1.5 SD
below the normative mean on a standard test). All subjects
have the rs-fMRI data with two time points (baseline and
year1). The features are the BOLD signal in every ROI. In this
article, we jointly identify the different classes (e.g., LMCI,
EMCI, and NC) [49]. Table I summarizes all the demographic
information of all used subjects.

Since we have a small amount of data, the leave-one-
out cross-validation (LOOCV) strategy is used to assess our
proposed method. For N subjects, one of them is left out
for testing, and the remaining N − 1 subjects are utilized for
training. The hyperparameters in each method are empirically
set by the greedy search to identify the optimal parameters.
For example, we obtain the values of λ1 and λ2 through the
exhaustive search strategy from 10−5 to 102. Five quantita-
tive metrics are utilized to evaluate the diagnosis performance:
1) accuracy (ACC); 2) area under receiver operating charac-
teristic curve (AUC); 3) Precision (PRE); 4) Recall (REC);
and 5) balanced accuracy (BAC). The SLEP and LibSVM
toolboxes are used to construct sparse representation and clas-
sification, respectively [50]. To confirm whether our method
performs statistically better than the selected methods, we per-
form paired t-tests on the ACCs of our method and other
methods. The p-values (P) are reported.

There are N−1 corresponding testing subjects and N−1 dif-
ferent training subsets. The combination of regularization
parameters that give the best performance is selected as the
optimal parameters. N − 1 classifiers are used to classify the
completely unknown testing subject. A majority voting strat-
egy is used for the final classification decision. Each subject in
the dataset will be picked out for testing, so that the above pro-
cess is repeated by N times. Then, the overall cross-validation
classification results are computed [34].

To assess the effectiveness of our proposed framework, we
conduct three groups (LMCI versus NC, EMCI versus NC,
and EMCI versus LMCI) of experiments on the multiple time
points (baseline and year1) data of the ADNI-2 dataset. In
addition, we compare our results with the recent related meth-
ods in literature, namely, PCR, PCL, PCI, PCP, PCAE, PCPF,
GCSR, GCSL, GCSI, GCSP, GCSAE, GCSPF, FSNR, FSNL,
FSNI, FSNP, FSNAE, and FSNPF.

PCR: PCR is a framework, which uses PC to construct
the BFCN and the regression method to select the effective
features for classification.

PCL: PCL denotes a framework that uses PC to construct
the BFCN and Lasso for feature selection.

PCI: PCI is a method that utilizes PC to generate the
BFCN and independent component analysis (ICA) to reduce
the data dimension for classification.

PCP: PCP denotes a method, which uses PC to construct
the BFCN and principal components analysis (PCA) to reduce
the features for training classifier.

PCAE: PCAE is a framework that uses PC to construct the
BFCN and the autoencoder (AE) method to reduce the feature
dimension for classification.

PCPF: PCPF is a BFCN constructed from PC and
feature selection is selected by the PFC method. The
PFC jointly learns the features with multiple time
points.

GCSR: GCSR denotes a framework that uses GCS to con-
struct the BFCN and adopts the regression method to select
the effective features to train the classifier.

GCSL: GCSL is a framework that the BFCN is constructed
by GCS and the feature is selected by Lasso for training
classifier.

GCSI: GCSI is a method that utilizes GCS to generate the
BFCN and ICA is used to reduce the data dimension for
classification.

GCSP: GCSP denotes a framework that the BFCN is con-
structed by GCS and PCA is used to reduce the features for
training classifier.

GCSAE: GCSAE denotes a framework that GCS is used to
construct the BFCN and the AE method is used to reduce the
feature dimensions to train the classifier.

GCSPF: GCSPF is a framework that the BFCN is con-
structed by GCS and feature is selected by the PFC multiple
task model.

FSNR: FSNR denotes a framework that FSN is used to con-
struct the BFCN and the regression method is used to select
the effective features.

FSNL: FSNL is a framework that the BFCN is constructed
by the proposed FSN and the features are selected by the Lasso
method.

FSNI: FSNI is a method that BFCN is constructed by FSN
and ICA is used to reduce the data dimension for classification.

FSNP: FSNP denotes a method that FSN is used for the
BFCN construction and PCA is used to reduce the features
for training classifier.

FSNAE: FSNAE is a framework that the BFCN is con-
structed by the proposed FSN and the AE method is adopted
to reduce the feature dimensions.

FSNPF: FSNPF is a framework that the BFCN is built
by FSN. The PFC feature selection method is employed to
jointly learn the features with multiple time points, which is
our proposed method.

B. Effect of the FSN Functional Connectivity Network

A good BFCN model helps to construct relationships
among the ROIs. To reveal the effect of our proposed FSN
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TABLE II
CLASSIFICATION RESULTS OF THE PROPOSED METHOD AND THE COMPETING METHODS ON BASELINE, YEAR1, AND FUSION (%)

network, we compare the performance to the typical FC
networks, such as PC and GCS. Table II summarizes the
comparison results in terms of various metrics (boldfaces
represent the best performances). Obviously, the FSN model
achieves the best performance. In the classification task of
LMCI versus NC, the highest accuracy of our FSN model
is 82.98% and 85.11% on the baseline and year1 datasets,
respectively, which are higher than the PC and GCS models,
respectively.

Similarly, in the classification task of EMCI versus NC,
our FSN model achieves an accuracy of 77.59% and 81.03%
on the baseline and year1 datasets, respectively, which are
higher than the PC and GCS models. For the classification task
of EMCI versus LMCI, our FSN model obtains an accuracy
of 76.00% and 78.72% on the baseline and year1 datasets,
respectively, which are higher than the PC and GCS models.
The above results demonstrate that our FSN model is effective
and outperforms the other competing methods.
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C. Effect of the PFC Feature Selection Method

Dimensionality reduction is a very important step in
biomedical applications. To evaluate the effectiveness of the
PFC feature selection method, we compare our method with
the typical feature selection methods, such as Lasso, regres-
sion, ICA, PCA, and AE (Table II). In the classification task
of LMCI versus NC, the accuracies of our PFC feature selec-
tion method are 82.98% and 85.11% on the baseline and year
1 datasets, respectively. In the classification task of EMCI ver-
sus NC, our FSNPF model achieves 77.59% and 81.03% in
the baseline and year1 datasets, respectively. In the classifica-
tion task of EMCI versus LMCI, the highest accuracies of our
FSNPF model are 76.00% and 78.72% in the baseline and
year1 dataset, respectively. The results demonstrate that the
PFC method is quite effective.

The above results demonstrate that the effectiveness of our
PFC method in selecting the most discriminative features.
Among the top-10 brain regions selected from LMCI ver-
sus NC classification, the discovered common regions on the
baseline and year1 data are parahippocampal gyrus, amyg-
dala, middle frontal gyrus, median cingulate, superior frontal
gyrus, and the special regions are percental gyrus, superior
parietal gyrus, olfactory cortex, inferior temporal gyrus, and
cuneus.

Among the top-10 brain regions selected from EMCI ver-
sus NC classification, the discovered common regions on
the baseline and year1 datasets are anterior cingulate, thala-
mus, paracentral lobule, lenticular nucleus, and supplementary
motor area and the special regions are superior parietal gyrus,
inferior occipital gyrus, inferior frontal gyrus, postcentral
gyrus, and inferior temporal gyrus. It is worth noting that these
brain regions are consistent with the previous MCI classifica-
tion studies (e.g., inferior frontal gyrus, olfactory cortex, and
anterior cingulate in [34], and middle frontal gyrus, amygdala,
and inferior temporal gyrus in [22]). The common regions
have a strong correlation with MCI, which may be the potential
factors causing the disease.

D. Fusion via SNF

It is obvious that an effective fusion method can improve the
classification accuracy. To reveal the fusion results via SNF, we
compare the performance based on two different time points,
baseline, and year1 datasets. From Table II, we can see that
our proposed FSNPF framework yields a better classification
performance than the single time-point data. Specifically, the
highest classification accuracy for LMCI versus NC, EMCI
versus NC, and EMCI versus LMCI is 87.23%, 82.76%, and
80.85%, respectively. The fusion results demonstrate that the
SNF method is quite effective. Fig. 2 shows the accuracy
results of various time points for different methods using SVM
classifiers. Fig. 3 shows the ROC curves of various methods
and Fig. 4 indicates the Precision–Recall curves of different
methods using SVM. To confirm whether our method performs
statistically better than the selected methods, we perform the
t-tests on both our method and other methods in terms of

(a)

(b)

(c)

Fig. 2. Classification accuracy results of different methods. (a) LMCI versus
NC. (b) EMCI versus NC. (c) EMCI versus LMCI.

ACC results under different scenarios. In our statistical analy-
sis results, all the P values in all scenarios are lower than 0.01,
which indicates that our method is statistically better than the
listed method.

We can see that our proposed FSN model outperforms PC
and GCS in terms of classification results based on single
time point and multiple time points. From the comparison
results of different feature selection methods, it is observed
that the PFC feature selection method is the most effective
one. The main reason is that we use the PFC method for
feature selection, which not only can achieve a high accu-
racy but also can analyze lesion areas in multiple time-point
data.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. ROC curves of various methods. (a) LMCI versus NC–Baseline.
(b) EMCI versus NC–Baseline. (c) EMCI versus LMCI–Baseline. (d) LMCI
versus NC–Year1. (e) EMCI versus NC–Year1. (f) EMCI versus LMCI–Year1.
(g) LMCI versus NC–Fusion. (h) EMCI versus NC–Fusion. (i) EMCI versus
LMCI–Fusion.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Precision–Recall curves of various methods. (a) LMCI versus NC–
Baseline. (b) EMCI versus NC–Baseline. (c) EMCI versus LMCI–Baseline.
(d) LMCI versus NC–Year1. (e) EMCI versus NC–Year1. (f) EMCI versus
LMCI–Year1. (g) LMCI versus NC–Fusion. (h) EMCI versus NC–Fusion.
(i) EMCI versus LMCI–Fusion.

The experimental results reveal that the features fused with
multitime points are more effective than those with single time
points in brain disease diagnosis. The primary explanation for
the decrease in classification accuracy is that the PC and GCS

(a)

(b)

(c)

Fig. 5. Classification accuracy results of different classifiers. (a) LMCI versus
NC. (b) EMCI versus NC. (c) EMCI versus LMCI.

models cannot accurately and effectively express the relation-
ship between brain ROIs. This also proves that our proposed
FSN model is promising. However, not all fused multitime
features by SNF are useful for the disease diagnosis. Some sin-
gle time-point features extracted from PC and GCS functional
connectivity networks can gain higher classification accuracy
than the fused multitime point features.

E. Classifiers Comparison

Eight classifiers are used in our experiments, includ-
ing K-nearest neighbor (KNN), gradient boosting decision
tree (GBDT), random forest (RF), Bayes (BY), adaptive boost-
ing (AdaBoost), extreme gradient boosting (XGBoost), deep
neural networks (DNNs), and SVM [51]–[53]. We use the
FSNPF method to learn the features that are then sent to
different classifiers.

The results are shown in Table III. Fig. 5 shows the FSNPF
method on different classifiers’ accuracy results in terms of
various time points. Fig. 2 shows the different methods on
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TABLE III
CLASSIFICATION RESULTS OF THE PROPOSED METHOD WITH DIFFERENT CLASSIFIERS ON BASELINE, YEAR1, AND FUSION (%)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. ROC curves of various classifiers. (a) LMCI versus NC–Baseline.
(b) EMCI versus NC–Baseline. (c) EMCI versus LMCI–Baseline. (d) LMCI
versus NC–Year1. (e) EMCI versus NC–Year1. (f) EMCI versus LMCI–Year1.
(g) LMCI versus NC–Fusion. (h) EMCI versus NC–Fusion. (i) EMCI versus
LMCI–Fusion.

SVM classifiers’ accuracy results in terms of multiple time-
point datasets. Fig. 6 shows the ROC curves of the FSNPF
method on different classifiers. Fig. 7 indicates the Precision–
Recall curves of the FSNPF method on different classifiers.
We can clearly see that the classification performance of SVM
classifier is more stable.

TABLE IV
ALGORITHM COMPARISONS (%)

SVM obtains an accuracy of 87.23%, 82.76%, and 80.85%
for LMCI versus NC, EMCI versus NC, and EMCI versus
LMCI classification, respectively. In most of the cases, the
SVM classifier can get the highest classification accuracy.
SVM classifiers are more suitable for the classification of small
datasets. Although some quantitative measurements of other
classifiers are also very good, we choose SVM as the final
classifier.

F. Algorithm Comparison

The state-of-the-art competing methods are compared
with our proposed FSNPF framework based on the ADNI-
2 database. The LMCI versus NC, EMCI versus NC, and
EMCI versus LMCI classification results are listed in Table IV.
The FSNPF obtains an accuracy of 87.23%, 82.76%, and
80.85% for LMCI versus NC classification, EMCI versus NC,
and EMCI versus LMCI classification, respectively. Note that
our method achieves the best classification performance com-
pared with the listed methods. Overall, the FSNPF achieves the
best accuracy compared with the related algorithms. It is worth
noting that our method takes an advantage of the PFC feature
selection method, which can simultaneously learn the features
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Precision–Recall curves of various classifiers. (a) LMCI versus NC–
Baseline. (b) EMCI versus NC–Baseline. (c) EMCI versus LMCI–Baseline.
(d) LMCI versus NC–Year1. (e) EMCI versus NC–Year1. (f) EMCI versus
LMCI–Year1. (g) LMCI versus NC–Fusion. (h) EMCI versus NC–Fusion.
(i) EMCI versus LMCI–Fusion.

of different time points and select the most representative
features extracted by the parameter-free adjustment.

IV. DISCUSSION

Since the brain area interacts mainly with only a few other
regions, each region can be expressed accurately and effec-
tively using a small number of regions [22]. Fig. 8 shows the
brain functional connection networks, where the line thick-
ness represents the weights of brain area. Fig. 9 illustrates the
BFCN with the most discriminative 30 brain regions, where
the green and blue lines denote the baseline and year1 datasets,
respectively.

We set the same threshold at two time points to pick out
the brain function connection. We randomly select LMCI and
EMCI patients from the database to compare the BFCN at
different time points. Obviously, the baseline connection is
thicker than the year1 connection. As time progresses, the con-
dition continues to deteriorate, and the brain lesion regions are
also changed, which verifies that our proposed FSNPF model
is quite effective.

The importance of different brain regions is illustrated
using the histogram and exploiting BrainNet Viewer [55] to
visualize the regional importance on the brain, as shown in
Fig. 10. The colors in different brain regions represent the
importance to identify the LMCI and EMCI. The histograms
show the different ROI’s weight for diagnosing the diseases.
The experimental results show that several common ROIs are
selected by our PFC method as an important features for LMCI
and EMCI classification on baseline and year1 datasets. The

(a) (b)

(c) (c)

Fig. 8. Brain functional connection networks. (a) LMCI–Baseline.
(b) LMCI–Year1. (c) EMCI–Baseline. (d) EMCI–Year1.

(a) (b)

Fig. 9. Top 30 brain regions connectivity. (a) LMCI versus NC. (b) EMCI
versus NC.

identified brain biomarkers are consistent with the findings in
the previous studies [22], [34].

Although the proposed framework gains a promising
performance, there are still two main limitations in this article.
One limitation of this article is evaluated on small number of
subjects, which may make it hard to generalize our results.
In fact, the analysis of multiple time points requires that each
subject has the corresponding data. Hence, the subjects are
limited. In addition, the MCI patients with more than two
time-point data are too few. For example, there are more
than 2000 MCI subjects in the ADNI dataset, while there are
only less than 100 MCI subjects with rs-fMRI data at two
time points. The second limitation of the proposed method is
that, we only consider one modality. In fact, the multimodal
data can boost the classification performance. However, sub-
jects with more than one modality are limited. Yet, we plan
to explore the efficacy of our method on multimodal data in
our future work.
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Fig. 10. Weights of different brain regions for classification. (a) LMCI versus NC–Baseline. (b) LMCI versus NC–Year1. (c) EMCI versus NC–Baseline.
(d) EMCI versus NC–Year1. (e) EMCI versus LMCI–Baseline. (f) EMCI versus LMCI–Year1.

V. CONCLUSION

In this article, we propose an FSNPF framework to fuse
the rs-fMRI data across multiple time points, which is effec-
tive in diagnosing both EMCI and LMCI. First, we devise an
FSN model to build BFCNs with multiple time points, which
can effectively construct brain functional network. Then, the
PFC multitask learning is used for the longitudinal analysis of
MCI. We jointly learn the features of two time points extracted
from the BFCNs model (baseline and year1). The novel FSN
model achieves more promising performance compared with
PC and GCS. We jointly learn the multiple time points fea-
tures extracted from the BFCNs by our PFC method. This
method can automatically balance the importance of different
time points features without parameter tuning. The represen-
tative common and specific features are exploited for disease
progression analysis and diagnosis. In addition, we fuse the
selected features by the SNF method to enhance the rep-
resentation ability and classification accuracy. In identifying
EMCI and LMCI, our method is clearly shown from the
experimental results that it is superior to the related algo-
rithms. In addition, our method outperforms the state-of-the-art
methods as well. In our future work, more modalities and
smoothing constraints will be considered to enhance the MCI
diagnosis accuracy. Dynamic brain function network and high-
order network can also be incorporated into our framework to
enhance the performance of the entire framework as well.
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