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Abstract

Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer’s disease (AD) is very
important for making early interventions. Many classification methods focus on integrating multiple imaging modalities
such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the
main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many
subjects. For example, in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not
have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear
Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose
the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve
all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the
similar estimated mean difference between the two classes (under classification) for those shared features. Compared with
the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification
tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different
feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented
by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the
incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further
compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification
method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising
performance of our proposed MLPD method.
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Introduction

Alzheimer’s disease (AD) is one of the most common forms of

dementia characterized by progressive cognitive and memory

deficits. The increasing incidence of AD makes the disease a very

important health issue and also huge financial burden for both

patients and governments [1,2]. It has been reported that 1 in

every 85 persons in year 2050 will be likely affected by the disease

[3]. The cost of care for AD patients by family members or health

care professionals is more than $100 billion per year, and this

number is expected to rise dramatically as the population ages

during the next several decades [4]. As more and more treatments

are being developed and evaluated, it is very important to develop

diagnostic and prognostic biomarkers that can predict which

individuals are relatively more likely to progress clinically. This

kind of research is especially important for the individuals with

Mild Cognitive Impairment (MCI), which is a prodromal stage of

AD, since approximately 10% to 15% of individuals with MCI will

progress to the probable AD [5,6] although other MCI individuals

remain stable. Hence, there is much interest in the research of

early diagnosis of AD to identify those MCI individuals who will

progress to clinical AD (progressive MCI) from those who remain

stable (stable MCI). This study is very valuable for making early

interventions in order to prevent the onset of AD or at least reduce

the risk.

It is known that AD is related to the structural atrophy,

pathological amyloid depositions, and metabolic alterations in the

whole brain [7,8]. At present, neuroimaging techniques are very

promising and powerful tools for the diagnosis of AD or MCI. For

example, structural magnetic resonance imaging (MRI) [9–12] can

be used to delineate brain atrophy, functional MRI (fMRI) can be

used to characterizes hemodynamic response related to neural

activity [13,14], and fluorodeoxyglucose positron emission tomog-

raphy (FDG-PET) can be used to measure the metabolic patterns

in the brain [15,16]. In the past decade, many classification

methods have been developed for early diagnosis of AD and MCI,

including methods based on the structural MRI data only [6,17–

19] and methods based on both MRI and PET data [20–24].
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Other studies about the diagnosis of AD and MCI can be found in

[25–32]. Since different brain imaging modalities provide the

complementary information for characterizing brain structures

and functions, the classification methods using both MRI and PET

data are shown to deliver much better performances.

One special challenge for using multi-modality data for disease

diagnosis is related to the missing data, which is unavoidable, i.e.,

due to the high cost of measures (e.g., PET scans) or patients’

dropout. In the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) study, almost half of the subjects do not have PET images.

Most existing classification methods using both MRI and PET are

not applicable to this dataset due to missing data. To address this

issue, the simplest method is to remove all subjects/samples with

missing PET images. However, this approach will greatly reduce

the sample size and ignore a lot of useful information in the

samples with missing PET. Another approach is to use the missing

data imputation method, e.g., those in [33–36]. Although these

algorithms could be effective when the missing locations are

random, they are less effective when a complete block of the data

(such as PET) is missing (in almost half of the ADNI subjects). The

state-of-the-art method for integrating multi-source incomplete

data is the incomplete Multi-Source Feature (iMSF) learning

method proposed by [37]. The iMSF method formulates the

prediction problem as a multi-task learning problem by first

decomposing the prediction problem into a set of tasks, one for

each combination of data sources available, and then building the

models for all tasks simultaneously. The important assumption in

the iMSF method is that all models involving a specific source

share the common set of features for that particular source.

However, when different imaging modalities are highly correlated,

this assumption could be too strong. In that case, for some data

sources, it may be more reasonable to choose different feature

subsets for different involved tasks.

In this paper, we propose a new and flexible binary classification

method, namely Multi-task Linear Programming Discriminant

(MLPD) analysis. The proposed MLPD method can be viewed as

a generalization of the Linear Programming Discriminant (LPD)

rule [38] for single-task classification. As the iMSF method, MLPD

method also formulates the learning of multi-source incomplete

data as a multi-task learning problem. Specifically, to jointly solve

all those different tasks together, our proposed MLPD method

constrains them to achieve the similar estimated mean difference

between two classes (under classification) for those shared features.

For a specific data source, instead of constraining all involved tasks

to share the common set of features, MLPD could flexibly and

adaptively select different feature subsets for different tasks.

Furthermore, MLPD can be efficiently implemented by linear

programming. As an illustrative application, we will combine the

incomplete MRI and PET images to discriminate between

progressive MCI and stable MCI. Our experimental results show

very competitive performance of our proposed MLPD method.

The rest of this paper is organized as follows. In the Materials

section, we describe the data set and the image preprocessing

procedure. In the Method section, we review some important

learning methods and then introduce our proposed MLPD

method in detail. In the Experimental Result section, we compare

our method with other state-of-the-art methods. In the Discussion

section, we further discuss different classification methods, and also

the effect of parameter and the methodological limitations in our

proposed method. Finally, we conclude this paper in the

Conclusion section.

Materials

Data used in the preparation of this paper were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(http://adni.loni.ucla.edu/). As a $60 million, 5-year public-

private partnership, the ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and

Drug Administration (FDA), private pharmaceutical companies

and non-profit organizations. The primary goal of ADNI has been

to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical

and neuropsychological assessments can be combined to measure

the progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is very important and useful

for the researchers and clinicians to develop new treatments and

monitor their effectiveness as well as lessen the time and cost of

clinical trials.

The Principal Investigator of ADNI is Michael W.Weiner who

is a MD at VA Medical Center and University of California-San

Francisco. ADNI is the results of efforts of many co-investigators

from a broad range of academic institutions and private

corporations. Subjects in that research have been recruited from

over 50 sites across the U.S. and Canada. The initial goal of ADNI

was to recruit 800 adults with age between 55 and 90.

Approximately, 200 cognitively normal older individuals and

400 MCI individuals were followed for 3 years and 200 individuals

with early AD were followed for 2 years (see www.adni-info.org for

up-to-date information).

According to some criteria such as Mini-Mental State Exam-

ination (MMSE) scores, the subjects in ADNI can be divided into

three categories: healthy subjects, MCI subjects and AD. The

detailed description for each category can be found in [23]. For

MCI, some subjects had converted to AD within 18 months, while

some other MCI subjects were stable over time [5,6]. Based on

whether the MCI subjects would convert to AD within 18 months,

the MCI subjects are divided into two classes: progressive MCI

(pMCI) and stable MCI (sMCI). In this paper, only MCI subjects

with corresponding MRI and/or PET baseline data are used. This

yields a total of 393 MCI subjects, including 167 pMCI and 226

sMCI. However, some MCI subjects have both MRI and PET

baseline data, while some MCI subjects have only MRI baseline

data. All subject information is summarized in Table 1.

MRI and PET
All structural MR scans were acquired from 1.5T scanners. We

downloaded the raw Digital Imaging and Communications in

Medicine (DICOM) MRI scans from the public ADNI web site

(www.loni.ucla.edu/ADNI). All the MR scans were reviewed for

quality and automatically corrected for spatial distortion caused by

gradient nonlinearity and B1 field inhomogeneity. The baseline

PET data are also downloaded from the ADNI web site. PET

images were acquired 30–60 min post-injection, averaged, spa-

tially aligned, interpolated to a standard voxel size, intensity

normalized and smoothed to a common resolution of 8-mm full

width at half maximum.

Image Processing
The image pre-processing is performed for all MRI and PET

images, with the detailed process described below:

(1) Use MIPAV software (http://mipav.cit.nih.gov/clickwrap.

php) to perform anterior commissure (AC) - posterior

Multi-Task LPD Analysis
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commissure (PC) correction on all images and re-sample the

images to the size of 256|256|256;

(2) Use the N3 algorithm [39] to correct the intensity

inhomogeneity;

(3) Perform skull-stripping using the method proposed in [40] on

all the MRI images and then manually review each skull-

stripping result to ensure the clean skull and dura removal;

(4) Carry out the intensity inhomogeneity correction [39] and

remove the cerebellum based on registration with atlas;

(5) Use FAST in FSL [41] to segment each skull-stripped brain

into three tissues: Grey Matter (GM), White Matter (WM) and

Cerebrospinal Fluid (CSF);

(6) Use HAMMER [42] to do the registration and further get the

ROI-labeled image based on the Jacob template [43] with 93

manual ROIs;

(7) From each of the 93 labeled ROIs in the MRI, compute its

GM tissue volume as a feature;

(8) Align the PET image to its respective MR image of the same

subject using affine registration, and then compute the

average intensity of each ROI in the PET image as a feature.

After the above image preprocessing, for each subject, we obtain

93 features from MRI and/or other 93 features from PET image

(depending on whether PET image is available for this subject).

Ethics Statement

The individuals in this manuscript have given written informed

consent at the time of enrollment for imaging and completed

questionnaires approved by each participating sites. The authors

have obtained approval from the ADNI Data Sharing and

Publications Committee to use the data. The authors confirm that

the data was analyzed anonymously.

Methods

Suppose our data were collected from S data sources, e.g., S~2
with MRI and PET in this study. Note that, in this study, the

complete block of the data (such as PET) was missing in many

subjects, thus there exists multiple possible combinations of data

sources available. In this way, it is natural to build multiple

classifiers for multiple combinations, with one classifier for one

possible combination. Rather than learning each classifier

separately, which could limit the overall performance, we propose

to learn multiple classifiers jointly by using the whole data set. This

can be formulated as a multi-task learning problem, where one

task represents learning one classifier. Suppose that our dataset

leads to totally T different combinations for the available

data sources. Then we have T tasks in our formulated

multi-task learning framework, where subjects in the same task

have the same number of features. For the ith task, we denote the

number of features as pi and the training subjects as

X(i)~fX(i)
1 ,X

(i)
2 , . . . ,X(i)

ni1
,X

(i)
ni1z1, . . . ,X

(i)
ni1zni2

g, where ni1 (or ni2)

is the number of subjects in the first class (or second class) and

X
(i)
k [Rpi|1 represents features of the kth subject in the ith task.

Furthermore, we denote s(i,j) as the set of the shared features

indices between task i and task j.

In the following sections, we first review the classic linear

discriminant analysis (LDA) and also the recent linear program-

ming discriminant (LPD) rule for single-task learning. Then, we

introduce our proposed MLPD method for multi-task learning in

detail.

Linear Discriminant Analysis and Linear Programming
Discriminant Rule

If all the features are observed and the number of subjects is

much larger than the number of features, linear discriminant

analysis (LDA), which uses a linear combination of features to

separate two classes of subjects, has been shown to perform well in

machine learning. Without loss of generality, we use data in task 1

(described above), fX(1)
1 ,X

(1)
2 , . . . ,X(1)

n11
,X

(1)
n11z1, . . . ,X

(1)
n11zn12

g, to

illustrate how to construct a linear classifier based on LDA.

LDA assumes that fX(1)
1 ,X

(1)
2 , . . . ,X(1)

n11
g and

fX(1)
n11z1, . . . ,X

(1)
n11zn12

g are the independently and identically

distributed random samples from N(m(1)
1 ,S(1)) and N(m(1)

2 ,S(1))

respectively. If m
(1)
1 , m

(1)
2 and S(1) are known, the LDA method

classifies a new subject Z to class 1 if and only if

(Z{m(1))
0
(S(1)){1d(1)

§0, ð1Þ

where m(1)~(m
(1)
1 zm

(1)
2 )=2 and d(1)~m

(1)
1 {m

(1)
2 .

As shown in (1), LDA requires the estimation of the inverse

covariance matrix. In the low dimensional setting, the inverse

sample covariance matrix can be a good estimation. However, in

the high dimensional setting, the sample covariance is singular and

its inverse is not well defined. In that case, certain structural

assumptions on S(1) (or (S(1)){1) and d(1) are needed to ensure

that the estimations are consistent [38]. The most commonly used

structural assumption is the sparsity assumption. Under the

assumption that (S(1)){1 and d(1) are sparse, (S(1)){1 and d(1)

can be estimated separately and then plugged into the LDA

[44,45].

In the high dimensional setting, a recent important extension of

LDA method is introduced in [38]. As shown in (1), it can be

observed that the LDA method depends on (S(1)){1 and d(1) only

through their product (S(1)){1d(1). In the proposed LPD rule [38],

Table 1. Summary of subject information.

Class label Category Sample size Age Female/Male Education MMSE

pMCI MRI+PET 76 75.4+6.5 28/48 15.9+2.6 26.7+1.7

MRI 91 74.4+7.2 37/54 15.5+3.0 26.5+1.7

sMCI MRI+PET 126 74.9+7.4 38/88 15.6+3.0 27.4+1.7

MRI 100 75.0+8.0 37/63 15.5+3.4 27.1+1.9

(For the second column, MRI+PET represents the group of subjects with both MRI and PET features, and MRI represents the group of subjects with only MRI features.
The last column shows the Mini-Mental State Examination (MMSE) score.).
doi:10.1371/journal.pone.0096458.t001
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instead of estimating (S(1)){1 and d(1) separately, they suggested to

estimate the product (S(1)){1d(1) directly through a constrained l1
minimization method. The LPD rule performs well when

(S(1)){1d(1) is approximately sparse, which is a weaker and more

flexible assumption than requiring both (S(1)){1 and d(1) to be

sparse. Theoretically, the LPD rule can get the asymptotically

optimal misclassification rate under some conditions. For compu-

tation, this method can be implemented efficiently by linear

programming.

Considering task 1, we can construct the single-task LPD

(SLPD) rule as follows:

1. Compute

m̂m
(1)
1 ~

1

n11

Xn11

k~1

X
(1)
k , ŜS

(1)
1 ~

1

n11

Xn11

k~1

(X
(1)
k {m̂m

(1)
1 )(X

(1)
k {m̂m

(1)
1 )
0

m̂m(1)
2 ~

1

n12

Xn12

k~1

X
(1)
kzn11

,

ŜS
(1)
2 ~

1

n12

Xn12

k~1

(X
(1)
kzn11

{m̂m
(1)
2 )(X

(1)
kzn11

{m̂m
(1)
2 )
0

d̂d(1)~m̂m(1)
1 {m̂m(1)

2 , m̂m(1)~(m̂m(1)
1 zm̂m(1)

2 )=2, ŜS(1)

~
1

n11zn12
(n11ŜS

(1)
1 zn12ŜS

(1)
2 ):

b̂b~ arg min
b[Rp1

fjbjL1
: jŜS(1)b{d̂d(1)j?ƒlg, ð2Þ

where jbjL1
~
Pp1

i~1 jbij, jbj?~ max1ƒiƒp1
jbij and l is a tuning

parameter chosen by cross validation.

Z, classify Z to the first class if and only if

(Z{m̂m(1))
0
b̂b§0:

The optimization problem in (2) is convex and can be recast as the

following linear programming problem:

min
Xp1

j~1

uj

subject to : {bjƒuj for all 1ƒjƒp1

bjƒuj for all 1ƒjƒp1

{ŜS(1)
j: bzd̂d(1)

j ƒl for all 1ƒjƒp1

ŜS
(1)
j: b{d̂d

(1)
j ƒl for all 1ƒjƒp1,

where d̂d
(1)
j is the jth component of d̂d(1) and ŜS

(1)
j: is the jth row of

ŜS(1).

Multi-task Linear Programming Discriminant (MLPD)
Analysis

As mentioned above, for the incomplete data collected from

multiple data sources, we can decompose the respective classifi-

cation problem into several different tasks. Since different tasks

could share some common features, these tasks can be highly

related. Instead of learning each task separately, it is very

important and useful to learn all these tasks simultaneously. For

the multi-task learning, the most important issue is how to link

different tasks. In the existing multi-task learning methods, some

methods assume that different tasks share parameters or prior

distributions of the hyper-parameters [46], while other methods

assume that different tasks share a common underlying represen-

tation [37,47]. In this paper, since different tasks correspond to

different combinations of data sources, we propose to link different

tasks by requiring them to achieve the similar estimated mean

difference between two classes (under classification) for those

shared features.

In order to use all the available incomplete multi-source data,

we generalize the LPD rule as follows:

1. For i~1,2, . . . ,T , compute

m̂m
(i)
1 ~

1

ni1

Xni1

k~1

X
(i)
k , ŜS

(i)
1 ~

1

ni1

Xni1

k~1

(X
(i)
k {m̂m

(i)
1 )(X

(i)
k {m̂m

(i)
1 )
0

m̂m(i)
2 ~

1

ni2

Xni2

k~1

X
(i)
kzni1

, ŜS(i)
2 ~

1

ni2

Xni2

k~1

(X
(i)
kzni1

{m̂m(i)
2 )(X

(i)
kzni1

{m̂m(i)
2 )
0

d̂d(i)~m̂m
(i)
1 {m̂m

(i)
2 , m̂m(i)~(m̂m

(i)
1 zm̂m

(i)
2 )=2,

ŜS(i)~
1

ni1zni2

(ni1ŜS
(i)
1 zni2ŜS

(i)
2 ):

b(i), i~1,2, . . . ,T as follows:

minimize
XT

i~1

jb(i)jL1
zv

X

ivj

jŜS(i)
s(i,j)b

(i){ŜS(j)
s(i,j)b

(j)jL1
ð3Þ

subject tojŜS(i)b(i){d̂d(i)j?ƒli for i~1,2, . . . ,T ,

where ŜS(i)
s(i,j) is the sub-matrix of with row indices in the ŜS(i)

s(i,j).

Multi-Task LPD Analysis
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3. For a testing subject
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common feature set



b̂b(1) ,b̂b(2) , . . . ,b̂b(T) as the solutions for the optimization

problem (3). For testing subject Z(i) which has the same features

as the training subjects in task i, classify Z(i) to the first class if

and only if

(Z(i){m̂m(i))
0
b̂b(i)

§0:

Note that, if the parameter v in (3) is set to be zero, the LPD rule

for multiple tasks is the same as the LPD rule for the single task.

The term v
P

ivj jŜS
(i)
s(i,j)b

(i){ŜS
(j)
s(i,j)b

(j)jL1
in (3) links different tasks

together. In fact, ŜS(i)
s(i,j)b

(i) estimates d(i)
s(i,j), which is the expected

mean difference of features s(i,j) between class 1 and class 2 in the

ith task. Since the features in the set s(i,j) are shared by task i and

task j, the difference between the estimate of d
(i)
s(i,j) and the estimate

of d
(j)
s(i,j) should be small. The parameter v is used to control their

similarity. Similar to the optimization problem in (2), problem in

(3) is also convex and thus can be formulated as a linear

programming problem.

MLPD for the incomplete MRI and PET images
For imaging modalities MRI and PET, even after feature

extraction, there are still many irrelevant features. Thus, feature

selection is a very important step for removing those irrelevant

features before learning a good classifier. The state-of-the-art

iMSF method constrains all models involving a specific data

source to select a common set of features for that particular data

source. This constraint could be too rigorous, especially when

there exists a strong correlation between different imaging

modalities such as MRI and PET used in this paper. Specifically,

all 393 subjects have MRI features, while only 202 subjects have

both MRI and PET features. Then, we can decompose this

classification problem into two tasks: task 1 for subjects with both

MRI and PET features, and task 2 for subjects with only MRI

features. The canonical correlations between MRI features and

PET features using the data in task 1 are shown in Figure 1. The

canonical correlation histogram indicates strong correlation

between MRI features and PET features. Since PET features

can explain some information of MRI features, instead of choosing

the same MRI features as task 1 (with both MRI and PET), it may

be more reasonable to select more MRI features for task 2 (with

only MRI) in order to achieve reasonable predictive performance.

The histograms of the number of selected features for each task by

the LASSO method [48] as shown in Figure 1 further demonstrate

this point.

For our case of using two data sources (MRI and PET), each

subject in task 1 has 186 features, while each subject in task 2 has

93 features. In order to save the computational time, we use the

two-sample t-test method to remove some obvious noisy features

before using our proposed MLPD method. Specifically, for each

MRI feature and PET feature, we compute the p-value of the two-

sample t-test only using the training subjects in task 1 and denote

the respective p-values as c(1)
1 ,c(1)

2 , . . . ,c(1)
186. Furthermore, for each

MRI feature, we compute the p-value of the two-sample t-test only

using the training subjects in task 2 and denote the respective p-

Figure 1. Left: Histogram of the canonical correlations between MRI features and PET features; Middle: Histogram of the number of selected MRI
features for task 1 based on 50 times simulation. Each time we chose 76 pMCI subjects and 76 sMCI subjects randomly in task 1; Right: Histogram of
the number of selected MRI features for task 2 based on 50 times simulation. Each time we chose 76 pMCI subjects and 76 sMCI subjects randomly in
task 2. For the middle and right plots, the LASSO method is used for feature selection and 10-fold cross validation is used to choose the optimal
number of features.
doi:10.1371/journal.pone.0096458.g001
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values as c(2)
1 ,c(2)

2 , . . . ,c(2)
93 . For task 1, we remove feature j if

c
(1)
j wC. For task 2, in order to keep more MRI features, we

remove feature j if c(1)
j wC and c(2)

j wC. Here, C is a predefined

threshold parameter.

After removing those noisy features, we reorder the features so

that common MRI features of task 1 and task 2 are the first p0

features. Similar to the optimization problem in (2), our proposed

MLPD method for this two-task learning problem can be recast as

the following linear program:

min
Xp1

j~1

ujz
Xp2

s~1

vsz
Xp0

t~1

gt

subject to : {b(1)
j ƒuj , b(1)

j ƒuj for all 1ƒjƒp1

{b(2)
s ƒvs, b(2)

s ƒvs for all 1ƒsƒp2

ŜS
(1)
t: b(1){ŜS

(2)
t: b(2)

ƒgt, ŜS
(2)
t: b(2){ŜS

(1)
t: b(1)

ƒgt for all 1ƒtƒp0

{ŜS
(1)
j: b(1)zd̂d

(1)
j ƒl1, ŜS

(1)
j: b(1){d̂d

(1)
j ƒl1 for all 1ƒjƒp1

{ŜS(2)
s: b(2)zd̂d(2)

s ƒl2, ŜS(2)
s: b(2){d̂d(2)

s ƒl2 for all 1ƒsƒp2,

where pi (i~1,2) is the number of features in task i,

d̂d(i)~(d̂d
(i)
1 ,d̂d

(i)
2 , . . . ,d̂d(i)

pi
)
0

and ŜS
(i)
k: is the kth row of ŜS(i).

Results

In this section, we perform various experimental studies to

demonstrate the effectiveness of our proposed MLPD method. As

mentioned, two imaging modalities (MRI and PET) are used in

our experiment. The data set contains 167 pMCI subjects and 226

sMCI subjects. Among all these 393 subjects, 76 pMCI and 126

sMCI subjects have both MRI and PET features, while 91 pMCI

and 100 sMCI subjects have only MRI features. Our experiments

include two separate parts. In the first part, we compare MLPD

method with the state-of-the-art iMSF method for the incomplete

multi-source feature learning. In the second part, in order to show

the advantage of using the whole incomplete data set, we compare

MLPD with SLPD (Single-task Linear Programming Discrimi-

nant) when considering subjects with only MRI features or subjects

with both MRI and PET features.

Experimental Setup
We use 2-, 5- and 10-fold cross validation (CV) strategies

respectively to evaluate the classification accuracy. Specifically,

when 10-fold CV is used, 76 pMCI (task 1), 126 sMCI (task 1), 91

pMCI (task 2), and 100 sMCI (task 2) subjects are equally

partitioned into 10 subsets, respectively. Each time the subjects

within one subset are selected as the testing subjects, while the

subjects in the other 9 subsets are used as the training subjects. For

both MLPD and SLPD methods, the parameter C used in the

previous two-sample t-test based feature selection step is fixed as

0.01. The effect of the parameter C will also be discussed in the

Discussion section. For the SLPD method, 20 equally spaced

values of l in logarithmic scale between 0.01 and 1 are considered,

and then the inner 5-fold CV on the training data is used to choose

the optimal l. Similarly, for MLPD, we also use the same 5-fold

CV strategy on the training data to select its respective parameters

such as v,l1, and l2. Specifically, for v, 20 equally spaced values

in logarithmic scale between 0.01 and 10 are searched. For l1, we

use the same sequence as l. For l2, we set l2~l1p2=p1 where pi is

the total number of features in task i.

In the experiment, we treat pMCI as positive class and sMCI as

negative class. The performances of different methods are

evaluated by accuracy, sensitivity, and specificity, as defined

below:

Accuracy~
TPzTN

TPzFPzTNzFN
, Sensitivity~

TP

TPzFN
,

Specificity~
TN

TNzFP
,

where TP, TN, FP and FN denote numbers of true positives, true

negatives, false positives and false negatives, respectively.

Here, the sensitivity measures the proportion of true pMCI that

are correctly identified, and the specificity measures the proportion

of sMCI that are correctly identified. The accuracy measures the

overall correct classification rate for the whole data set. The whole

process is repeated 30 times and the average performance is

reported.

Comparison of MLPD with iMSF using incomplete MRI
and PET

In our first experiment, we apply both MLPD and iMSF

methods for the incomplete multi-source dataset including MRI

and PET. The experiment setup for MLPD has been described

above. For iMSF method [37], the multi-task feature learning

framework is given by

min
b(1),b(2)

1

2

X2

i~1

1

Ni

XNi

j~1

L(X
(i)
j ,y

(i)
j ,b(i))zt

X2

q~1

Xgq

k~1

EbI(q,k)E2, ð4Þ

where L(:) is the loss function, X
(i)
j is the feature vector of the jth

subject in the ith task and y
(i)
j is the corresponding label value.

Here Ni is the number of subjects in the ith task and gq is the

number of features from the qth data source. Furthermore, bI(q,k)

denotes all the model parameters corresponding to the kth feature

in the qth data source.

In our experiment, we consider two types of loss functions for

iMSF:

N Quadratic loss function: L(X
(i)
j ,y

(i)
j ,b(i))~(y

(i)
j {(b(i))

0
X

(i)
j )2;

N L o g i s t i c l o s s f u n c t i o n : L(X
(i)
j ,y

(i)
j ,b(i))~ ln (1z exp

({y
(i)
j (b(i))

0
X

(i)
j )).

For each loss function, we again use 2-, 5- and 10-fold CV to

evaluate the classification accuracy of iMSF. For parameter t, 10

equally spaced values in the interval [0.005, 0.4] are considered,

and the optimal t is determined with another inner 5-fold CV on

the training data. For each of two loss functions (given above), we

repeat the iMSF method 30 times and the average performance is

reported.

Table 2 shows the evaluation results of MLPD and iMSF when

all available data are used. It can be observed that our proposed

MLPD method has better performance than iMSF. For cases
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using 5-fold CV and 10-fold CV, the classification accuracy of

MLPD is around 2% better than the iMSF method. Furthermore,

the MLPD acquires much higher sensitivity. In this experiment,

higher sensitivity means higher classification accuracy for the

progressive MCI patients. It is worth noting that, in practice, the

cost of misclassifying progressive MCI patients is usually much

higher than that of misclassifying stable MCI patients. Thus, the

high sensitivity characteristic of our proposed MLPD method is

very useful for the identification of progressive MCI patients.

In order to show the advantage of our proposed MLPD method,

we also extract the classification results for each task when all the

available data are used. Table 3 shows the classification

performance on task 2. The results indicate that our proposed

MLPD method has much higher classification accuracy than the

iMSF methods. Specifically, for 5-fold CV, the classification

accuracy of our method is around 4% higher than the classification

accuracy of the iMSF methods. This advantage of our proposed

method is likely due to the flexible feature selection strategy used.

For this data set, our proposed MLPD method chooses more MRI

features for task 2, while iMSF methods (using two different loss

functions) choose the same MRI features for each task. Due to

limited space, we don’t show the detailed evaluation results for task

1 here. For task 1, compared with the iMSF methods, our

proposed MLPD method acquires similar classification accuracy

while much higher sensitivity.

Comparison of MLPD with SLPD
In this section, we compare MLPD method with SLPD method

in order to show the advantage of using the whole incomplete data

set for diagnosis. The SLPD method is used in two cases. In the

first case, we discard the PET features and then use SLPD method

for all subjects. In the second case, we discard the subjects in task 2

and use SLPD method only for the subjects in task 1. Table 4

shows the comparison results for the MLPD method using all

available data and the SLPD method only using MRI features.

The results indicate that using both MRI and PET features

improves the classification performance. Specifically, for 10-fold

CV, the classification accuracy of MLPD is around 3% better than

SLPD. Due to limited space, the detailed classification perfor-

mance for only task 1 or only task 2 is not provided. But, briefly,

when the additional PET features are used, the classification

performance on task 1 is improved by around 5% while the

classification performance on task 2 is similar.

Table 5 shows the comparison results for the MLPD method

using all available data and the SLPD method only using subjects

in task 1. Note that, for the MLPD method, we extracted only the

classification results for the subjects in task 1 and reported the

Table 2. Classification performance of MLPD and iMSF using incomplete MRI and PET.

pMCI(+1)/sMCI(21) k-fold CV iMSFQ iMSFL MLPD

Accuracy 2 0.6433 (0.0030) 0.6420 (0.0035) 0.6569 (0.0034)

5 0.6467 (0.0023) 0.6482 (0.0031) 0.6697 (0.0022)

10 0.6581 (0.0022) 0.6578 (0.0030) 0.6719 (0.0025)

Sensitivity 2 0.4913 (0.0072) 0.4965 (0.0061) 0.6431 (0.0065)

5 0.4853 (0.0063) 0.5069 (0.0054) 0.6734 (0.0038)

10 0.4906 (0.0040) 0.5223 (0.0038) 0.6780 (0.0048)

Specificity 2 0.7556 (0.0048) 0.7496 (0.0064) 0.6671 (0.0044)

5 0.7659 (0.0043) 0.7527 (0.0048) 0.6671 (0.0022)

10 0.7823 (0.0035) 0.7582 (0.0044) 0.6675 (0.0026)

(For this experiment, we used all the available data from 393 subjects in total. iMSFQ and iMSFL indicate the iMSF method using quadratic loss function and logistic loss
function respectively. The best value for each performance measure is highlighted in bold. The value in the parenthesis is the standard deviation.).
doi:10.1371/journal.pone.0096458.t002

Table 3. Comparison of the classification performance of MLPD and iMSF on task 2.

pMCI(+1)/sMCI(21) k-fold CV iMSFQ iMSFL MLPD

Accuracy 2 0.6363 (0.0047) 0.6386 (0.0055) 0.6623 (0.0052)

5 0.6291 (0.0039) 0.6346 (0.0041) 0.6701 (0.0038)

10 0.6321 (0.0038) 0.6380 (0.0043) 0.6641 (0.0036)

Sensitivity 2 0.6026 (0.0101) 0.6052 (0.0092) 0.6539 (0.0089)

5 0.5990 (0.0074) 0.6104 (0.0060) 0.6750 (0.0048)

10 0.5996 (0.0057) 0.6146 (0.0067) 0.6690 (0.0059)

Specificity 2 0.6670 (0.0062) 0.6960 (0.0083) 0.6700 (0.0065)

5 0.6563 (0.0049) 0.6567 (0.0055) 0.6657 (0.0052)

10 0.6617 (0.0052) 0.6590 (0.0054) 0.6597 (0.0045)

(For this experiment, we used all the available data from 393 subjects in total. The classification results for the subjects in task 2 are reported. iMSFQ and iMSFL indicate
the iMSF method using quadratic loss function and logistic loss function respectively. The best value for each performance measure is highlighted in bold. The value in
the parenthesis is the standard deviation.).
doi:10.1371/journal.pone.0096458.t003
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performance, thus the comparison of two methods can be made on

the same set of subjects. The comparison results in Table 5

indicate that subjects in task 2 could help build a better classifier

for task 1 using our proposed MLPD method. Specifically, when

using the subjects with missing PET features, the classification

accuracy on the subjects with both MRI and PET features by our

method can be improved by around 2%.

In summary, all these experimental results show that, by making

use of all available information, our proposed MLPD method can

improve the overall classification performance.

Discussion

In this section, we will further discuss the comparison of

different classification methods, the effect of parameter C for the

two-sample t-test based feature selection procedure, and the

limitation of our MLPD method.

Comparison between MLPD and other state-of-the-art
methods

Our proposed MLPD method for the incomplete multi-source

feature learning is able to flexibly and adaptively select features for

different tasks, besides trying to solve them jointly. Compared with

the methods that simply discard subjects with missing data or

features which are not available for all subjects, our proposed

MLPD method makes use of all available data and thus could

achieve better classification performance. Specifically, MLPD

formulates the original classification problem into a multi-task

learning problem, with one task representing the learning of one

classifier for one combination of available data sources. Compared

with the state-of-the-art iMSF method, instead of selecting the

same feature subset from the shared features for all involved tasks,

MLPD could choose different ‘‘best’’ feature subsets for different

tasks adaptively. This adaptive feature selection strategy is very

important for the task with fewer available data sources, especially

when these data sources are highly correlated with the other

unavailable data sources. Note that, in order to use the whole

available data, some data imputation algorithms such as [33–36]

can be also used. However, these methods may be not effective for

the data with large blocks of missing data, and in some cases, could

be worse than the method of simply discarding the subjects with

missing data.

Effect of parameter C
The two-sample t-test is used to remove some obvious noisy

features. Features with their p-values smaller than a predefined

threshold parameter C are preselected for our MLPD method.

Larger value of C will preselect more features. In order to study

the effect of the threshold parameter C, based on 10-fold cross

Table 4. Classification performance of MLPD and SLPD.

pMCI(+1)/sMCI(21) k-fold CV SLPD MLPD

Accuracy 2 0.6423 (0.0029) 0.6569 (0.0034)

5 0.6420 (0.0028) 0.6697 (0.0022)

10 0.6409 (0.0029) 0.6719 (0.0025)

Sensitivity 2 0.6533 (0.0036) 0.6431 (0.0065)

5 0.6510 (0.0037) 0.6734 (0.0038)

10 0.6588 (0.0048) 0.6780 (0.0048)

Specificity 2 0.6342 (0.0040) 0.6671 (0.0044)

5 0.6353 (0.0046) 0.6671 (0.0022)

10 0.6276 (0.0030) 0.6675 (0.0026)

(For MLPD, all the available data are used. For SLPD, only the MRI features are used. The best value for each performance measure is highlighted in bold. The value in the
parenthesis is the standard deviation.).
doi:10.1371/journal.pone.0096458.t004

Table 5. Comparison of the classification performance of MLPD and SLPD on task 1.

pMCI(+1)/sMCI(21) k-fold CV SLPD MLPD

Accuracy 2 0.6394 (0.0067) 0.6518 (0.0045)

5 0.6538 (0.0047) 0.6694 (0.0036)

10 0.6588 (0.0031) 0.6793 (0.0033)

Sensitivity 2 0.6096 (0.0137) 0.6303 (0.0089)

5 0.6608 (0.0063) 0.6715 (0.0058)

10 0.6551 (0.0064) 0.6884 (0.0058)

Specificity 2 0.6574 (0.0073) 0.6648 (0.0068)

5 0.6497 (0.0053) 0.6682 (0.0042)

10 0.6611 (0.0036) 0.6736 (0.0038)

(For MLPD, all the available data is used, but the classification results for the subjects in task 1 is reported. For SLPD, only use the subjects in task 1. The best value for
each performance measure is highlighted in bold. The value in the parenthesis is the standard deviation.).
doi:10.1371/journal.pone.0096458.t005
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validation, we try 10 different values for C, ranging from 0.003 to

0.1. For our MLPD method, when C changes from 0.003 to 0.1,

the average number of preselected features for task 1 changes from

12 to 60, while the average number of features preselected for task

2 changes from 22 to 50. Although the number of features

preselected changes a lot, the classification accuracy of our MLPD

method is always around 0.66. On the other hand, for the SLPD

method, the average number of preselected features increases from

26 to 52 when changing parameter C from 0.003 to 0.1, but its

classification accuracy is always around 0.64. Figure 2 shows the

classification accuracies of both MLPD and SLPD methods using

different choices of C. It can be observed that both MLPD and

SLPD methods are relatively robust with respect to the number of

features preselected. Furthermore, our proposed MLPDR method

using incomplete MRI and PET data always acquires better

classification accuracy than the SLPD method that uses only the

MRI data.

Limitations
Although our proposed MLPD method performs well in our

experiments, there are still some methodological limitations. First,

we used a simple two-sample t-test to preselect some features for

each task, without considering the correlation between different

features. It would be interesting to preselect more features for the

task with fewer available data sources, using both label informa-

tion and the correlation between different features. Second, our

proposed MLPD method may require expensive computation if

involving with many incomplete data sources. For example, if

there are S data sources and only one data source is complete, our

MLPD method will decompose the classification problem into

T~2S{1 tasks. As shown in the optimization problem in (3), in

addition to the variables assigned for each task, we also need to use

many other variables representing the constraints for every two

tasks. Thus, the linear programming (LP) algorithm will involve a

large number of variables and accordingly more computational

time. For that case, some decomposition methods [49,50] should

be used to decompose the complex LP problem (3) into a sequence

of small LP problems.

Conclusion

In summary, we have proposed a new incomplete data

classification method for making full use of all available data, by

formulating the original classification problem as a multi-task

learning problem. Instead of requiring the different tasks involving

a specific source to select a common set of features for that

particular source, our MLPD method uses a more flexible feature

selection strategy to allow for selection of different feature subsets

for different tasks. Furthermore, it is very straightforward to

formulate the optimization problem of MLPD as a linear

programming problem, which can be efficiently solved by many

software packages. Besides, we have also compared our method

with several state-of-the-art methods, showing better classification

performances.
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13. Pihlajamäki M, Sperling RA (2008) fmri: use in early alzheimer’s disease and in
clinical trials. Future Neurology 3: 409–421.

14. Machulda MM, Senjem ML,Weigand SD, Smith GE, Ivnik RJ, et al. (2009)
Functional mri changes in amnestic and non-amnestic mci during encoding and

recognition tasks. Journal of the International Neuropsychological Society 15:

372–382.
15. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, et al. (2003)

Evidence from functional neuroimaging of a compensatory prefrontal network in
alzheimer’s disease. The Journal of Neuroscience 23: 986–993.

16. Silveira M, Marques J (2010) Boosting alzheimer disease diagnosis using pet

images. In: Pattern Recognition (ICPR), 2010 20th International Conference on
Pattern Recognition. IEEE, pp.2556–2559.

17. Lao Z, Shen D, Xue Z, Karacali B, Resnick SM, et al. (2004) Morphological
classification of brains via high-dimensional shape transformations and machine

learning methods. NeuroImage 21: 46–57.
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