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Summary. When a true survival endpoint cannot be assessed for some subjects, an alternative endpoint that measures the
true endpoint with error may be collected, which often occurs when obtaining the true endpoint is too invasive or costly. We
develop an estimated likelihood function for the situation where we have both uncertain endpoints for all participants and
true endpoints for only a subset of participants. We propose a nonparametric maximum estimated likelihood estimator of the
discrete survival function of time to the true endpoint. We show that the proposed estimator is consistent and asymptotically
normal. We demonstrate through extensive simulations that the proposed estimator has little bias compared to the näıve
Kaplan–Meier survival function estimator, which uses only uncertain endpoints, and more efficient with moderate missingness
compared to the complete-case Kaplan–Meier survival function estimator, which uses only available true endpoints. Finally,
we apply the proposed method to a data set for estimating the risk of detecting Alzheimer’s disease from the Alzheimer’s
Disease Neuroimaging Initiative.
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1. Introduction
Survival function estimation is crucial in studying disease
progression and therapeutic benefits of drugs in epidemi-
ology studies and clinical trials that involve time-to-event
data. However, event outcomes may be subject to measure-
ment error, which can lead to misclassification of the true
event outcome. Gold standard or better outcome measure-
ments are sometimes unavailable due to high costs or invasive
procedures, and using only complete, true outcomes may
exclude many subjects due to missing data. For example, the
pathological diagnosis of Alzheimer’s disease (AD) has been
traditionally determined by autopsy. Recently, as we enter the
exciting new era of “personalized medicine,” AD biomarker
research has been very successful. It is well accepted now that
time to pathological diagnosis of AD can be reliably measured
by time to an abnormal biomarker value among living partic-
ipants in research studies (Shaw et al., 2009). Specifically, the
amyloid beta (Aβ) protein biomarker from a cerebral spinal
fluid (CSF) assay has been shown to represent the pathologi-
cal aspects of AD well and the abnormality of Aβ can be used
as a reliable (true) endpoint for studying time to pathological
diagnosis of AD among living participants (Shaw et al., 2009).
However, the CSF biomarker assay involves a lumbar punc-
ture, so it is often considered too invasive for many patients
and therefore has limited availability. An alternative outcome
is time to diagnosis of AD by clinical assessment, which relies
primarily on cognitive tests. The clinical diagnosis is widely
available, but it measures the outcome of pathological diag-
nosis with error. Sources of error in clinical diagnosis include
normal aging independent of AD, “cognitive reserve” due to
education-linked factors, and disease heterogeneity (Nelson

et al., 2012). Thus, the clinical diagnosis is an uncertain end-
point. Under these circumstances, it is important to develop
powerful analytical approaches to use combined information
from both true and uncertain endpoints to obtain consis-
tent and more efficient estimators compared to the näıve
estimator, which ignores true endpoint measures, and the
complete-case estimator, which uses only the available true
endpoint measures.

Our proposed method is motivated by survival function
estimation of time to pathological development of AD using
data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Weiner et al., 2012). Participants in the ongoing
ADNI study were evaluated at predetermined time points to
assess AD development based on cognitive tests. Regardless of
these clinical diagnoses, a subset of participants also had lon-
gitudinal CSF assays to measure Aβ values, from which time
to CSF diagnoses could be determined. Some study partici-
pants randomly withdrew from the study before developing
cognitive or pathological signs of AD. Therefore, survival time
is a discrete random variable subject to random right cen-
soring. Although several nonparametric and semiparametric
methods for estimating survival when the outcome is uncer-
tain have been proposed, many rely on prior knowledge of
the mismeasurement rates of the uncertain endpoint without
an internal validation subsample of true endpoints (Snapinn,
1998; Richardson and Hughes, 2000; Meier, Richardson, and
Hughes, 2003; Balasubramanian and Lagakos, 2001). Among
those that do incorporate a validation subsample, the method
primarily focused on the discrete proportional hazards model
in which real-time validation of uncertain outcomes is not
possible (Magaret, 2008).
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Specifically, Snapinn (1998) estimated weights representing
certainty of potential endpoints to modify the Cox pro-
portional hazards model. Richardson and Hughes (2000)
obtained unbiased product limit estimates of time to an event
with a mismeasured event indicator using an Expectation-
Maximization (EM) algorithm. Their estimate uses known
information about the sensitivity and specificity of the diag-
nostic test for having the event without a validation sample.
Meier et al. (2003) extended this work for the adjusted propor-
tional hazards model for discrete failure times, also assuming
known sensitivity and specificity. Similarly, Balasubramanian
and Lagakos (2001) assumed a known time-dependent sen-
sitivity function to estimate the distribution of the time to
perinatal HIV transmission.

Pepe (1992) developed an estimated likelihood method to
incorporate both uncertain endpoints and a validation sub-
sample to make inference without assuming known sensitivity
or specificity. However, the method was not specifically for a
survival setting and therefore did not incorporate censoring
or the estimation of an entire function over time. Fleming
et al. (1994) used Pepe’s method for the proportional haz-
ards model by incorporating a validation set available on all
subjects (i.e., no missing true endpoint measures) to aug-
ment the likelihood for subjects with censored failure times.
Magaret (2008) also extended Pepe’s work to the discrete pro-
portional hazards model in a method designed for situations
where uncertain outcomes could only be validated at the end
of study. Therefore, these previous methods are unable to
address the unique challenges seen in the ADNI data.

We propose a nonparametric discrete survival function esti-
mator for data with characteristics similar to those of the
ADNI study. There are four new contributions to the lit-
erature from this article which we summarize below. First,
we propose a nonparametric discrete survival function esti-
mator without assuming known mismeasurement rates of the
uncertain outcome. Instead, we incorporate both an uncertain
outcome on all subjects and a validation subsample of true
outcomes to construct a survival estimator using an estimated
likelihood method (Pepe, 1992). The standard estimated like-
lihood method estimates a finite number of parameters, but
we use the parameter estimates to define and estimate a
survival function over all time by proving that the survival
function is a step function. The proposed estimator is the non-
parametric maximum estimated likelihood survival function
estimator, which is computed by a constrained maximization
procedure. In addition, because study subjects are evaluated
at predetermined time points by study design, survival time
is a discrete random variable for both true and uncertain end-
points. We develop the asymptotic distribution theory of the
estimator at all possible time points and provide an asymp-
totic variance estimator. Second, the proposed nonparametric
survival function estimator allows real-time validation and
allows missingness or censoring of the true endpoint regardless
of the value of the uncertain event indicator. In other words,
validation can be conducted at any time during the study
and on subjects with either events or censored uncertain out-
comes. Third, the proposed estimator is able to handle both
type 1 and random right censoring mechanisms for the sur-
vival outcomes. Unlike in a standard survival setting, allowing
for random censoring involves estimation of a censoring distri-

bution. The censoring distribution parameters are considered
nuisance parameters, but they complicate the form of the like-
lihood and the computation. Fourth, we conducted in-depth
exploration of the estimated likelihood estimator’s proper-
ties, including the effect of correlation between outcomes and
amount of missingness on the efficiency of the proposed esti-
mator compared to standard methods, the number of events
needed per parameter, and the robustness of missingness
assumptions.

We organize the rest of the article as follows. We first
describe the estimated likelihood and nonparametric max-
imum estimated likelihood estimator (Section 2). We then
develop the asymptotic properties of the proposed estima-
tor (Section 3). We perform extensive simulations to assess
the performance of our proposed estimator and compare it to
the complete-case and näıve Kaplan–Meier survival function
estimators (Section 4). The simulations consider different cor-
relations between true and uncertain endpoints, amounts and
types of censoring, amounts of missingness of true endpoints,
types of measurement error, as well as different sample sizes.
This is followed by an application to the estimation of the sur-
vival function of time to pathological diagnosis of AD using
data from the ongoing ADNI study (Section 5). Finally, we
summarize our findings and point to applications where incor-
porating both true and uncertain endpoints are particularly
useful (Section 6).

2. Proposed Nonparametric Maximum
Estimated Likelihood Estimator

Let T represent the true time to event and C represent the
true right censoring time, with event indicator δ = I(T ≤ C).
Similarly, let T ∗ represent the uncertain time to event and
C∗ be the uncertain right censoring time, with indicator
δ∗ = I(T ∗ ≤ C∗). Define X = min{T, C} and X∗ = min{T ∗, C∗}.
Then X and X∗ represent the true and uncertain observed
times, respectively. Let xk represent the kth ordered true
observed time point for k = 1, . . . , K, where K is the total
number of discrete true time points that can be observed (i.e.,
the maximum number of all possible true observed times). Let
F represent the survival function of the true time to event and
let G represent the survival function of the true censoring
time.

Let V represent the validation set, where both the uncertain
and true outcomes are available. There are nV subjects in the
validation set. It is assumed that the validation subsample is
a representative sample of the entire cohort, implying that
data are missing completely at random. Then V is the non-
validation set, where only the uncertain outcome is available
and the true outcome is missing. With a total of n subjects in
the study, there are n − nV subjects in the non-validation set.
The entire observed data are (Xi, δi, X

∗
i , δ

∗
i ) for i = 1, . . . , nV

and (X∗
j , δ

∗
j) for j = 1, . . . , n − nV . Using similar arguments as

in Pepe (1992), the full likelihood would then be

L =
∏
i∈V

P(Xi, δi)P(X∗
i , δ

∗
i |Xi, δi)

∏
j∈V

P(X∗
j , δ

∗
j). (1)

To avoid having to specify or assume the form of the relation-
ship between the true and uncertain endpoints, we propose to
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use the estimated likelihood

L̂ =
∏
i∈V

P(Xi, δi)P̂(X∗
i , δ

∗
i |Xi, δi)

∏
j∈V

P̂(X∗
j , δ

∗
j), (2)

where for discrete data,

P̂(X∗
j , δ

∗
j) =

K∑
k=1

1∑
δ=0

P(xk, δ)P̂(X∗
j , δ

∗
j |xk, δ).

The sum marginalizes the joint distribution to obtain the
marginal distribution of the uncertain outcome, so the outer
sum is taken over all possible time points, k = 1, . . . , K, and
the inner sum over all possible event indicator values. The
estimated conditional probability P̂(X∗

j , δ
∗
j |xk, δ) is given by

P̂(X∗
j , δ

∗
j |xk, δ) = P̂(X∗

j , δ
∗
j , xk, δ)

P̂(xk, δ)

=
1
nV

∑
i∈V

I(X∗
i = X∗

j , δ
∗
i = δ∗

j , Xi = xk, δi = δ)
1
nV

∑
i∈V

I(Xi = xk, δi = δ)
,

where I(·) is the indicator function. Conceptually, the con-
ditional probability is estimated empirically by counting the
proportion of subjects in the validation set whose uncertain
outcomes match those of the given non-validation set subject.
Because the conditional probability P̂(X∗

i , δ
∗
i |Xi, δi) from the

validation set contribution does not contain any parameters
of interest, it can be factored out and the estimated likelihood
to be maximized becomes

L̂ ∝
∏
i∈V

P(Xi, δi)
∏
j∈V

P̂(X∗
j , δ

∗
j). (3)

Then for a subject i ∈ V , the contribution to the likelihood
is the same as it would be in a standard discrete survival
setting,

P(Xi, δi) = {F(xki−1) − F(xki
)}δiF(xki

)1−δiG(xki−1)
δi {G(xki−1)

− G(xki
)}1−δi

∝ {F(xki−1) − F(xki
)}δiF(xki

)1−δi (4)

where xki
is the observed time for subject i corresponding to

the kth time point. Only the true outcome contributes to the
likelihood for those in the validation set, implying that uncer-
tain outcomes do not provide any additional information when
the true outcome is known. However, the uncertain outcomes
for those in the validation set are still used to estimate the
relationship between the uncertain and true outcomes, which
are then used to weight likelihood contributions for those in
the non-validation set. For a subject j ∈ V , the contribution

to the likelihood is

P̂(X∗
j , δ

∗
j )

=
K∑

k=1

1∑
δ=0

[
{F(xk−1) − F(xk)}δF(xk)

1−δG(xk−1)δ{G(xk−1)

−G(xk)}1−δ ·
1
nV

∑
i∈V

I(X∗
i = X∗

j , δ
∗
i = δ∗

j , Xi = xk, δi = δ)

1
nV

∑
i∈V

I(Xi = xk, δi = δ)

]
.

(5)

Unlike in the validation set contribution, the censoring dis-
tribution cannot be factored out of the likelihood from the
non-validation set contribution. This distribution is impor-
tant in allowing random censoring for survival outcomes in
the estimated likelihood method. Details on the derivation
of the estimated likelihood are available in Web Appendix
A. Note that any subjects in the non-validation set with an
observed uncertain time that does not match any observed
uncertain times in the validation set do not contribute to the
likelihood.

The estimated likelihood is a function of possible survival
function values for the event distribution and censoring dis-
tribution at each time point. The parameters representing
the censoring distribution G are estimated jointly with the
parameters representing the event distribution F , but treated
as nuisance parameters. When the study only has type 1 right
censoring, though, the contribution to the likelihood by the
censoring distribution will always be 1, so the censoring dis-
tribution can be factored out of the likelihood and does not
need to be estimated. In order to solve for the nonparametric
maximum estimated likelihood survival function estimator F

using the estimated likelihood we developed, we first note that
the maximum estimate will be a step function that is continu-
ous from the right with left limits and falls only at event times
actually seen in the validation set, tk̃, k̃ = 1, . . . , K̃, where K̃ is
the total number of unique true event times actually seen in
the data set. Similarly, if the censoring distribution is being
estimated, the maximum estimator will be a step function
that is continuous from the right with left limits and falls only
at censoring times seen in the validation set. Details on the
derivation of the step function are available in Web Appendix
A. To solve for the parameters, we used the Nelder–Mead
algorithm to conduct constrained maximization. We required
that both F and G survival functions are monotonically non-
increasing as time increases and are bounded between 0 and
1. In the case where the parameter space is one-dimensional,
meaning there is only one event time in the validation set data
and only type 1 censoring, we used the Brent algorithm. To
obtain initial estimates for the event distribution parameters,
we used the complete-case Kaplan–Meier estimates based on
the true observed times and true event indicators from the val-
idation set. Initial parameters for the censoring distribution
were determined by the complete-case Kaplan–Meier esti-
mates calculated by inverting the event indicator to obtain a
censoring indicator. Let F̂(tk̃) represent the event distribution

estimates obtained from the algorithm for k̃ = 1, . . . , K̃. The
maximum estimated likelihood survival function estimator is
then the step function that takes value 1 in the interval [0, t1),
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F̂(tk̃) in each interval [tk̃, tk̃+1) for k̃ = 1, . . . , K̃ − 1, and F̂(tk̃)
in the interval [tk̃, xk̃], where xk̃ is the last true observed time
and may be equal to tk̃ if a true event occurs at the last true
observed time. The estimator is considered undefined after xk̃.

3. Asymptotic Properties of the Proposed
Nonparametric Maximum Estimated
Likelihood Estimator

The asymptotic properties of the proposed estimator refer
to the situation when the total number of subjects n → ∞.
As long as the proportion of subjects in the validation set
to the total number of subjects does not have a zero limit,
limn→∞

nV

n
= pV > 0, similar arguments as in Theorem 3.1 of

Pepe (1992) imply that F̂(t) is a consistent estimator for F(t)
for all possible true event times that can be seen. Although
F̂(t) only drops at true event times actually seen in the data,

tk̃, k̃ = 1, . . . , K̃, this set will approach the set of all possible
true event times that can be seen in data, t̊k, k̊ = 1, . . . , K̊,
where K̊ is the total number of possible true event times that
can be seen in data. In other words, K̃ → K̊ as n → ∞. K̊ is
always less than or equal to K and greater than or equal to K̃.
K̊ equals K if all possible true observed times can be events,
which is likely to be true in most situations. Note that F̂ is
not consistent at all event times if the upper bound of T is
greater than the upper bound of C. In this case, event times
between the upper bound of C and the upper bound of T can
never be seen in data, so F̂ is not consistent at those times
and those times are not included in K̊ or in K. Because we
have discrete time points, F(t) is also a step function that can
be defined by the survival function values at each true event
time that can be seen in data, t̊k, k̊ = 1, . . . , K̊, and we have
that

√
n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
F̂(t1)

F̂(t2)

...

F̂(tK̊)

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
F(t1)

F(t2)

...

F(tK̊)

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

converges to a zero-mean Gaussian random variable in dis-
tribution with asymptotic variance covariance matrix equal
to �F , where �F is the top left K̊ × K̊ quadrant of the full
variance covariance matrix

� = I−1 + (1 − pV )2

pV

I−1KI−1, (6)

where I is the information matrix based on the (non-
estimated) log likelihood and K is the expected conditional
variance of the non-validation contribution to the log likeli-
hood (Pepe, 1992),

K = E

[
Var

{
∂ log P(X∗, δ∗)

∂θ

∣∣∣∣X, δ

}]
for parameters θ = {F, G}. The first term in the � variance
expression represents the variance component based on the
maximum likelihood estimator and the second term represents

a penalty from estimating the likelihood with empirical prob-
abilities. The I and K matrices can be estimated consistently
by

Î = 1

n

∂2 log L̂

∂θ2

∣∣∣∣
θ=̂θ

(7)

for maximum estimated likelihood estimates θ̂ = {F̂ , Ĝ} and

K̂ = 1

nV

∑
i∈V

Q̂iQ̂
T
i

∣∣∣∣∣
θ=̂θ

, (8)

where

Q̂i = 1

n − nV

1

P̂(Xi, δi)

∑
j∈V

[{
I(X∗

j = X∗
i , δ

∗
j = δ∗

i )

−P̂(X∗
j , δ

∗
j |Xi, δi)

}{D(Xi, δi)

P̂(X∗
j , δ

∗
j)

− D̂(X∗
j , δ

∗
j)

P̂2(X∗
j , δ

∗
j)

P(Xi, δi)

}]

and

D(Xi, δi) = ∂P(Xi, δi)

∂θ

D̂(X∗
j , δ

∗
j) =

K∑
k=1

1∑
δ=0

∂P(X, δ)

∂θ
P̂(X∗

j , δ
∗
j |X, δ).

In practice, derivatives in the variance expression can be cal-
culated numerically. We found that the numerical derivatives
were sometimes unable to be computed or led to negative
variances with data that had large amounts of missingness or
large numbers of parameters to estimate. In these cases, boot-
strapped variance estimates can be calculated or analytical
forms of the derivatives should be used. Furthermore, in order
to calculate point-wise confidence intervals using the proposed
parameter estimates and variance estimates, a log transfor-
mation or arcsine-square root transformation may be used to
ensure confidence limits are bounded by 0 and 1 (Borgan and
Liestøl, 1990).

4. Simulations

Our proposed survival function estimator is motivated by the
fact that true endpoints are missing for some subjects while
uncertain endpoints are available for all subjects and carry
useful information for survival function estimation. In order to
assess the performance of our proposed survival function esti-
mator, we conducted a series of simulation studies. We simu-
lated the true event time from a discrete uniform distribution,
T ∼ Unif[1,8], where survival time can only take integer val-
ues, and assumed right censoring at C = 7. The uncertain time
to event was calculated as T ∗ = T + ε, where ε ∼ Unif[0, ζ]
and ε is independent of T . The maximum integer value of
the discrete uniform distribution for ε was calculated as ζ =⌊√

63 · (1 − ρ2)/ρ2 + 1 − 1
⌋
, where 
a� represents the largest
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integer not greater than a and ρ represents the correlation
between T and T ∗. The expression for ζ was computed using
the definition of correlation between T and T ∗, independence
of ε and T , and variance expressions for T and ε. Mathemati-
cal details of the derivation can be found in Web Appendix B.
We considered correlations of ρ ∈ {0.01, 0.25, 0.50, 0.75, 1}. We
set the right-censoring time for the uncertain endpoint also at
C∗ = 7. To create a representative validation subsample, we
simulated data missing completely at random (MCAR) by
randomly selecting a proportion r ∈ {0.25, 0.50, 0.75} of the
sample to be missing true endpoints. We used total sample
sizes of n ∈ {200, 500} and conducted 500 simulation repeti-
tions for each set of parameter values.

For each simulation, we used the proposed method to calcu-
late survival function estimates at each observed time. We also
calculated complete-case Kaplan–Meier estimates using only
true endpoints in the validation set, the näıve Kaplan–Meier
estimates using only uncertain endpoints from all subjects,
and the true Kaplan–Meier estimates using true endpoints
from all subjects (which would be unavailable in real data).
For the proposed estimator, the complete-case Kaplan–Meier
estimator, and the näıve Kaplan–Meier estimator, we cal-
culated estimated bias (parameter estimate−true parameter
values), observed sample standard deviations (SD), estimated

standard errors (ŜE), relative efficiency (RE) compared to the
true Kaplan–Meier estimator (where lower RE implies greater
efficiency and RE equal to 1 implies optimal efficiency), mean
squared error (MSE) estimates, and 95% coverage (Cov) using
log transformed confidence intervals at each of the observed
time points. Each statistic was then averaged over all time
points. We note that for all simulations presented in Tables 1–
3, the observed sample standard deviation corresponds well
with the standard error estimates from the asymptotic theory
for the proposed estimator.

Table 1 shows the results from the simulation study
with type 1 censoring and n = 200. The proposed estimator
behaves similarly to the complete-case Kaplan–Meier esti-
mator in terms of bias. Both have little bias, whereas the
näıve Kaplan–Meier estimator is heavily biased. When the
proportion of missingness is low or moderate (r = 0.25 or
r = 0.50), the RE of our proposed estimator is similar to that
of the complete-case Kaplan–Meier estimator when correla-
tion is low and improves until it reaches optimal efficiency
with correlation of 1, which can be interpreted as the situa-
tion where the uncertain outcome has no measurement error.
The MSE of the proposed estimator is also similar to then
becomes smaller than the MSE of the complete-case Kaplan–
Meier estimator as correlation increases, and it is consistently
smaller than the MSE of the näıve Kaplan–Meier estimator.
This demonstrates that using the internal validation sub-
sample can reduce the bias of survival estimates compared
to using only uncertain endpoints and that using uncertain
endpoints in the non-validation subsample can improve effi-
ciency compared to using only true endpoints. When the
amount of missing true outcomes is high (r = 0.75), though,
our proposed estimator is actually slightly less efficient than
the complete-case Kaplan–Meier estimator at low correlations
between outcomes.

We saw similar results for simulations with n = 500, as
shown in Web Table 1. We also increased the proportion of

censored subjects (results not shown) by setting an earlier
censoring time for both endpoints and arrived at the same
conclusions. Although we assumed only non-negative mea-
surement error of the uncertain endpoint for our simulations
to demonstrate the potentially large bias in the näıve estima-
tor and to better control the correlation between outcomes,
we also conducted simulations allowing for negative or posi-
tive measurement error and the results (not shown) for our
estimator and the complete-case estimator are similar.

In addition, we tested the performance of our proposed
method at smaller sample sizes, n ∈ {10, 20, 30, . . .}, to deter-
mine an approximate threshold for the number of events per
parameter, or events per variable (EPV), needed for accurate
estimation. We calculated the EPV as the smallest number of
events in the validation set divided by K̃ ∈ {4, 7, 10}, the num-
ber of parameters to estimate, such that average bias was less
than 0.01 in magnitude and average coverage was between
93% and 97%. Through these simulation studies (Web Table
2), we found an EPV of at most 4.

To compare the efficiency between our proposed esti-
mator and the complete-case Kaplan–Meier estimator over
various amounts of missingness, we computed the relative
efficiencies (averaged over times) at 5% increments of the
percentage of missingness of true endpoints for correlations
of ρ ∈ {0.25, 0.50, 0.75} (Figure 1). For these simulations, we
used a larger sample size of n = 500 to ensure that the EPV
was adequate even at the largest amounts of missingness.
For correlations of 0.50 and 0.75, our proposed estimator is
more efficient (lower RE) than the complete-case Kaplan–
Meier estimator when the proportion of missing data is low,
then the efficiency curves cross and our proposed estimator
becomes less efficient. The point of crossing is at a higher
percentage of missingness with higher values of the correla-
tion between outcomes. Even with low correlation (ρ = 0.25)
between outcomes, though, our estimator has similar or lower
efficiency than the complete-case Kaplan–Meier estimator
when the amount of missingness is 50% or less. This is consis-
tent with Pepe’s recommendation for non-survival data with
one parameter of interest (Pepe, 1992).

We explored the behavior of our proposed estima-
tor under random censorship by simulating true event
times T ∼Unif[1, 8], uncertain event times T ∗ = T + ε where
ε ∼Unif[0, 2], true censoring times C ∼Unif[5, 7], and uncer-
tain censoring times C∗ = C + γ where γ ∼Unif[0, 2]. These
simulations resulted in a small amount of censoring (approx-
imately 25%). We also increased the amount of censoring by
simulating true censoring times C ∼Unif[3, 7], which resulted
in a moderate amount of censoring (approximately 38%).
The results of these random censoring simulations are shown
in Table 2. Similar to the results from type 1 censoring,
our proposed estimator has little bias compared to the
näıve Kaplan–Meier estimator and is more efficient than the
complete-case Kaplan–Meier estimator for both small and
moderate amounts of censoring. We saw similar results with
n = 500 as seen in Web Table 3.

To test the robustness of the MCAR assumption of the pro-
posed method, we relaxed this assumption and simulated data
missing at random (MAR). We defined a missingness indica-
tor R, where R = 1 denotes a missing true endpoint and R = 0
denotes a non-missing true endpoint, based on the uncertain
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Table 1
Simulation results for type 1 censoring and n = 200

Bias MSE

r ρ Method ×10−3 SD ŜE ×10−3 RE Cov

Proposed −0.26 0.035 0.035 1.27 1.36 0.96
0.01 Comp K–M −0.55 0.035 0.035 1.27 1.36 0.95

Näıve K–M 498.41 0.003 0.002 310.32 0.01 0.00

Proposed 0.79 0.035 0.035 1.28 1.36 0.96
0.25 Comp K–M −0.55 0.035 0.035 1.27 1.36 0.95

Näıve K–M 449.43 0.014 0.014 247.32 0.28 0.00

Proposed 0.57 0.035 0.034 1.26 1.34 0.96
25 0.50 Comp K–M −0.55 0.035 0.035 1.27 1.36 0.95

Näıve K–M 384.50 0.020 0.020 175.53 0.56 0.00

Proposed 0.32 0.034 0.033 1.18 1.26 0.96
0.75 Comp K–M −0.55 0.035 0.035 1.27 1.36 0.95

Näıve K–M 285.90 0.025 0.025 91.52 0.83 0.00

Proposed 0.02 0.030 0.030 0.94 1.00 0.96
1.00 Comp K–M −0.55 0.035 0.035 1.27 1.36 0.95

Näıve K–M 0.03 0.030 0.030 0.94 1.00 0.95

Proposed −0.15 0.043 0.043 1.88 1.99 0.95
0.01 Comp K–M −1.01 0.043 0.042 1.87 1.98 0.95

Näıve K–M 498.41 0.003 0.002 310.32 0.01 0.00

Proposed 4.62 0.044 0.042 2.02 2.14 0.95
0.25 Comp K–M −1.01 0.043 0.042 1.87 1.98 0.95

Näıve K–M 449.43 0.014 0.014 247.32 0.28 0.00

Proposed 3.10 0.044 0.042 1.94 2.05 0.95
50 0.50 Comp K–M −1.01 0.043 0.042 1.87 1.98 0.95

Näıve K–M 384.50 0.020 0.020 175.53 0.56 0.00

Proposed 2.32 0.042 0.040 1.76 1.88 0.95
0.75 Comp K–M −1.01 0.043 0.042 1.87 1.98 0.95

Näıve K–M 285.90 0.025 0.025 91.52 0.83 0.00

Proposed 0.02 0.030 0.030 0.94 1.00 0.96
1.00 Comp K–M −1.01 0.043 0.042 1.87 1.98 0.95

Näıve K–M 0.03 0.030 0.030 0.94 1.00 0.95

Proposed 3.35 0.061 0.060 3.86 4.11 0.96
0.01 Comp K–M 1.86 0.061 0.060 3.83 4.07 0.96

Näıve K–M 498.41 0.003 0.002 310.32 0.01 0.00

Proposed 24.12 0.065 0.065 4.39 4.65 0.98
0.25 Comp K–M 1.86 0.061 0.060 3.83 4.07 0.96

Näıve K–M 449.43 0.014 0.014 247.32 0.28 0.00

Proposed 21.49 0.067 0.063 4.58 4.83 0.96
75 0.50 Comp K–M 1.86 0.061 0.060 3.83 4.07 0.96

Näıve K–M 384.50 0.020 0.020 175.53 0.56 0.00

Proposed 9.84 0.061 0.058 3.83 4.13 0.95
0.75 Comp K–M 1.86 0.061 0.060 3.83 4.07 0.96

Näıve K–M 285.90 0.025 0.025 91.52 0.83 0.00

Proposed −0.22 0.031 0.030 0.97 1.03 0.96
1.00 Comp K–M 1.86 0.061 0.060 3.83 4.07 0.96

Näıve K–M 0.03 0.030 0.030 0.94 1.00 0.95

r is the percent missing and ρ is the correlation between true and uncertain outcomes. Proposed refers to the proposed estimator, Comp
K–M refers to the complete-case Kaplan–Meier estimator, and näıve K–M refers to the näıve Kaplan–Meier estimator. SD is standard

deviation of estimates across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error, RE is relative
efficiency, Cov is 95% coverage, all averaged across time.
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Figure 1. Relative efficiencies by correlation between true
and uncertain endpoints (ρ) and amount of missingness of
true endpoints. Proposed refers to the proposed estimator
and Comp K–M refers to the complete-case Kaplan–Meier
estimator.

indicator δ∗ such that

R|(δ∗ = 0) =
{

1 with probability pR

0 with probability 1 − pR

R|(δ∗ = 1) =
{

1 with probability 1 − pR

0 with probability pR

for probability pR = 0.60. This implies that the probability
of missingness of the true endpoint depends on the observed

Table 2
Simulation results for random censoring and n = 200

Bias MSE

r C Method ×10−3 SD ŜE ×10−3 RE Cov

Proposed 0.24 0.035 0.034 1.25 1.17 0.96
S Comp K–M 0.39 0.038 0.037 1.47 1.39 0.95

Näıve K–M 119.63 0.030 0.029 15.47 0.83 0.03
25

Proposed 0.57 0.040 0.038 1.65 1.20 0.96
M Comp K–M 0.37 0.043 0.041 1.94 1.44 0.94

Näıve K–M 119.98 0.032 0.032 15.75 0.78 0.05

Proposed −2.18 0.040 0.041 1.64 1.54 0.95
S Comp K–M −0.12 0.047 0.046 2.23 2.10 0.95

Näıve K–M 119.63 0.03 0.029 15.47 0.83 0.03
50

Proposed −1.99 0.049 0.044 2.68 1.84 0.96
M Comp K–M −0.52 0.053 0.050 2.95 2.18 0.93

Näıve K–M 119.98 0.032 0.032 15.75 0.78 0.05

r is the percent missing and C is the amount of censoring, where
S means small (25%) and M means moderate (38%). Proposed
refers to the proposed estimator, Comp K–M refers to the complete-
case Kaplan–Meier estimator, and Näıve K–M refers to the näıve
Kaplan–Meier estimator. SD is standard deviation of estimates

across simulations, ŜE is estimated standard error of the estimate,
MSE is mean squared error, RE is relative efficiency, Cov is 95%
coverage, all averaged across time.

event indicator of the uncertain endpoint. In the AD example,
this would mean that subjects who are clinically determined
to be non-AD during the study are more likely to miss the
CSF biomarker endpoint. In the results from the MAR sim-
ulations in Table 3, we see that both the proposed estimator
and the complete-case Kaplan–Meier estimator are sometimes
slightly biased. However, the proposed estimator is less biased
than the complete-case estimator, particularly when the cor-
relation between outcomes is very high, and therefore the
coverage of the proposed estimator is better than the coverage
of the complete-case estimator when the correlation between
outcomes is greater than 0.01. We saw similar results with
n = 500 as seen in Web Table 4.

5. Application to the Alzheimer’s Disease
Neuroimaging Initiative Study

We illustrated our method by considering data (retrieved on
July 26, 2013) from the ongoing ADNI study (Weiner et al.,
2012). See Web Appendix C for more detailed information
about the ADNI study. Participants in this study were seen
every 6 months until the end of 2 years, then annually there-
after, at which time clinical diagnoses of non-AD (cognitively
normal or mild cognitive impairment) or AD were given.
These follow-up times were predetermined by study design,
and AD is a chronic disease with slow progression (Jack et al.,
2010). Therefore, the outcome of interest in the current study
was time to detection of AD, measured in years, and thus
discrete survival estimates would be appropriate. The cur-
rent study includes data from participants in the ADNI-1 and
ADNI-GO segments of the ADNI study. For those who agreed
to a lumbar puncture, CSF assays were performed and Aβ

protein concentrations were measured. Participants with an
Aβ biomarker value greater than 192 pg/ml were classified as
non-AD at baseline and those with an Aβ value less than or
equal to 192 pg/ml were classified as AD at baseline (Shaw
et al., 2009). There were 186 patients who were non-AD at
the time of enrollment according to both the clinical diagnosis
and CSF diagnosis. For each patient, the time to clinical AD
or last follow-up was recorded to obtain an uncertain, mis-
measured outcome on all patients. A subset of 110 patients
continued to have CSF assays performed annually. For these
110 patients in the validation set, patients were classified as
non-AD or AD at each time point using the same cutoff of
192 pg/ml and the true time to AD or last follow-up was also
recorded. Thus, patients with any CSF assays during follow-
up were considered to be in the validation set and those with
no follow-up CSF assays were in the non-validation set, or
nV = 110 and n = 186 using the notation of Section 2.

First, we assessed the missingness in the data. We used a
log-rank test to compare the survival functions for time to
clinical AD between the non-validation set and the validation
set. The χ2 test statistic was 0.2 with 1 degree of freedom,
yielding a p-value of 0.662. We also used Fisher’s exact test
to test for an association between the clinical event indicator
and missingness. The p-value was 1. Further, because we used
all available longitudinal CSF assays, those who were missing
CSF outcomes were missing immediately after baseline. Since
all subjects begin as non-AD, the missingness could not be
dependent on baseline CSF or clinical diagnoses. Therefore,
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Table 3
Simulation results for data missing at random and n = 200

Bias MSE

Censoring ρ/C Method ×10−3 SD ŜE ×10−3 RE Cov

Proposed 2.53 0.048 0.048 2.31 2.47 0.96
0.01 Comp K–M 0.91 0.048 0.048 2.31 2.47 0.95

Näıve K–M 498.41 0.003 0.002 310.32 0.01 0.00

Proposed 17.06 0.048 0.049 2.38 2.56 0.97
0.25 Comp K–M −11.75 0.046 0.046 2.17 2.31 0.94

Näıve K–M 449.43 0.014 0.014 247.32 0.28 0.00

Proposed 21.47 0.047 0.046 2.22 2.38 0.98
Type 1 0.50 Comp K–M −26.55 0.045 0.045 2.06 2.19 0.90

Näıve K–M 384.50 0.020 0.020 175.53 0.56 0.00

Proposed 16.27 0.042 0.041 1.78 1.94 0.96
0.75 Comp K–M −44.30 0.043 0.042 1.89 2.00 0.81

Näıve K–M 285.90 0.025 0.025 91.52 0.83 0.00

Proposed 0.02 0.030 0.030 0.94 1.00 0.96
1.00 Comp K–M −22.56 0.039 0.039 1.57 1.65 0.88

Näıve K–M 0.03 0.030 0.030 0.94 1.00 0.95

Proposed 0.32 0.039 0.044 1.62 1.49 0.96
S Comp K–M −33.92 0.043 0.042 1.87 1.78 0.86

Näıve K–M 119.63 0.03 0.029 15.47 0.83 0.03
Random

Proposed 1.66 0.047 0.044 2.49 1.69 0.96
M Comp K–M −41.74 0.048 0.047 2.31 1.81 0.83

Näıve K–M 119.98 0.032 0.032 15.75 0.78 0.05

Censoring is the type of the censoring mechanism and ρ/C either represents the correlation ρ between true and uncertain outcomes
or represents the amount of censoring, where S means small (25%) and M means moderate (38%). Proposed refers to the proposed
estimator, Comp K–M refers to the complete-case Kaplan–Meier estimator, and näıve K–M refers to the näıve Kaplan–Meier estimator.

SD is standard deviation of estimates across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error,
RE is relative efficiency, Cov is 95% coverage, all averaged across time.

we did not find strong evidence against the MCAR assump-
tion.

Figure 2 shows the estimated survival functions using our
proposed estimator, which maximized the estimated likeli-
hood, the complete-case Kaplan–Meier estimator which only
uses 110 CSF diagnoses, and the näıve Kaplan–Meier esti-
mator which only uses the 186 clinical diagnoses. The three
survival functions are very similar until 36 months, at which
time the näıve Kaplan–Meier estimate begins to diverge from
the other two survival curves. With higher survival probabili-
ties, the näıve estimate overestimates the probability of being
AD-free after 36 months compared to the proposed estimator
and complete-case Kaplan–Meier estimator. Since the näıve
estimate is based on only clinical diagnoses, this would indi-
cate that abnormality of Aβ occurred earlier than cognitive
impairment. This finding is consistent with the recent theo-
retical model of AD pathology developed by Jack et al.(2010).

Table 4 shows the standard error estimates at each time
point. The standard errors of the proposed estimate are
similar to or smaller than those of the complete-case Kaplan–
Meier estimate at all time points. Although we cannot
calculate the correlation between true and uncertain event
times in the data example since both events are not observed
for any subjects, the estimated correlation between the true
and uncertain observed outcomes is 0.363 (Hotelling, 1936).
Thus, the standard errors we observed further support the

conclusion that the proposed estimator helps to improve effi-
ciency relative to the complete-case estimator when there is
moderate correlation between outcomes.
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Figure 2. Data example survival function estimates for
time to AD. Proposed refers to the proposed estimator, Comp
K–M refers to the complete-case Kaplan–Meier estimator, and
Näıve K–M refers to the näıve Kaplan–Meier estimator.
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Table 4
Data example standard error estimates

Proposed Complete-case Näıve
Month estimator Kaplan–Meier Kaplan–Meier

6 0.000 0.000 0.005
12 0.008 0.013 0.012
18 0.008 0.013 0.016
24 0.022 0.019 0.017
36 0.036 0.036 0.023
48 0.038 0.040 0.031
60 0.040 0.045 0.036
72 0.046 0.051 0.036
84 0.046 0.051 0.074

6. Discussion

We proposed a nonparametric maximum likelihood estimator
for the discrete survival function in the presence of uncer-
tain endpoints by using an internal validation subsample. We
allowed for random censoring for survival outcomes by incor-
porating a censoring distribution in the likelihood, showed
that the survival function estimator is a step function that
drops only at observed event times, and proved that the
proposed estimator is consistent and asymptotically normal.
We evaluated the finite sample performance of the proposed
estimator through extensive simulations. We found that the
proposed estimator has little bias and can improve efficiency
relative to the complete-case Kaplan–Meier estimator. It can
also reduce bias compared to the näıve Kaplan–Meier esti-
mator. The proposed estimator also works better than the
complete-case and näıve estimators under departure from the
MCAR assumption.

The efficiency gains of the proposed estimator have useful
implications in clinical trials. A true outcome may be costly
to obtain on all subjects, but using the proposed method can
incorporate a less costly uncertain outcome assessed on all
subjects and the true outcomes on a smaller subsample. Com-
pared to obtaining true outcomes on all subjects which can be
very costly or using a complete-case estimator on the smaller
subsample, our estimator can reduce costs of a trial without
sacrificing power.

The proposed approach does not require that subjects can
only be validated at the end of study. Instead, our approach
allows that all subjects can have the opportunity to be vali-
dated at any predetermined timepoint. Through simulations,
we found that the efficiency gains of our proposed estimator
depends on both the correlation between outcomes and the
size of the validation sample. However, in general, the pro-
posed estimator appears to work well when the size of the
validation sample is 50% or more of the total sample size.
Interesting study design issues arise with regard to the size
of the validation sample that is needed to adequately accom-
modate the uncertainty of the mismeasured endpoints. For
example, in epidemiological studies, if the total budget for
assessing subjects is fixed, it is valuable to determine the
optimum size of the study cohort and optimum size of the
validation subsample. These design issues are currently under
investigation.

The proposed method can be used with data that have
both type 1 right censoring and random right censoring. The
proposed method also assumes that study subjects are seen at
predetermined time points and relies on a discrete time frame-
work. In studies where subjects are evaluated at any time,
that is, time is considered continuous, the proposed estimator
may not improve efficiency compared to the complete-case
Kaplan–Meier estimator. Furthermore, if study participants
are not seen as frequently as the unit of time of interest or
if a participant misses a visit and then experiences the event
upon return, there may be interval censoring. For these situ-
ations, an extension of our proposed method is needed, but is
not trivial.

Currently, our proposed method only estimates a single sur-
vival function. A natural extension of the method would be a
semiparametric version that is able to incorporate covariates
and conduct between-group comparisons. Using our proposed
method for a proportional hazards model to estimate a hazard
ratio for a categorical or continuous covariate of interest is cur-
rently under investigation. The case of a categorical covariate
is similar to the nonparametric version, but with the addi-
tion of a random variable in the estimated likelihood. For the
continuous covariate, however, a more complex approach such
as inclusion of smooth kernel-type functions in the empirical
probability estimates must be used.

As early detection of AD and other chronic diseases
becomes increasingly important, but event outcomes may be
hard to obtain for everyone, we recommend collecting an
internal validation sample when the measures of the event
outcome are uncertain so that statistical analysis can be
improved with greater accuracy and power.

7. Supplementary Materials

Web appendices, including detailed mathematical derivations,
additional information about the ADNI study, and additional
results from simulation studies referenced in Sections 2, 4, and
5, as well as R code for implementing the proposed method,
are available with this paper at the Biometrics website on the
Wiley Online Library.

Acknowledgements

Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu). As such, the investigators
within the ADNI contributed to design and implementation
of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of
ADNI investigators can be found at http://adni.loni.usc.edu/
wp-content/uploads/how to apply/ADNI Acknowledgement
List.pdf. Data collection and sharing for this project was
funded by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (National Institutes of Health Grant U01 AG024904)
and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). Dr. Zee received support from NIH
National Institute of Mental Health grant T32MH065218
and Dr. Xie from NIH National Institute on Aging grant



10 Biometrics

AG10124 (University of Pennsylvania Alzheimer’s Disease
Core Center), AG32953, AG17586, and NS053488. The
authors thank an anonymous associate editor and two
anonymous referees for their constructive comments.

References

Balasubramanian, R. and Lagakos, S. W. (2001). Estimation of
the timing of perinatal transmission of HIV. Biometrics 57,
1048–1058.

Borgan, O. R. and Liestøl, K. (1990). A note on confidence intervals
and bands for the survival function based on transforma-
tions. Scandinavian Journal of Statistics 17, 35–41.

Fleming, T. R., Prentice, R. L., Pepe, M. S., and Glidden, D.
(1994). Surrogate and auxiliary endpoints in clinical trials,
with potential applications in cancer and AIDS research.
Statistics in Medicine 13, 955–968.

Hotelling, H. (1936). Relations between two sets of variates.
Biometrika 3/4, 321–377.

Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen,
P. S., Weiner, M. W., et al. (2010). Hypothetical model of
dynamic biomarkers of the Alzheimer’s pathological cascade.
Lancet Neurology 9, 119–128.

Magaret, A. S. (2008). Incorporating validation subsets into
discrete proportional hazards models for mismeasured out-
comes. Statistics in Medicine 27, 5456–5470.

Meier, A. S., Richardson, B. A., and Hughes, J. P. (2003). Discrete
proportional hazards models for mismeasured outcomes.
Biometrics 59, 947–954.

Nelson, P. T., Alafuzoff, I., Bigio, E. H., Bouras, C., Braak, H.,
Cairns, N. J., et al. (2012). Correlation of Alzheimer disease
neuropathologic changes with cognitive status: A review of
the literature. Journal of Neuropathology and Experimental
Neurology 71, 362–381.

Pepe, M. (1992). Inference using surrogate outcome data and a
validation sample. Biometrika 79, 355–365.

Richardson, B. A. and Hughes, J. P. (2000). Product limit estima-
tion for infectious disease data when the diagnostic test for
the outcome is measured with uncertainty. Biostatistics 1,
341–354.

Shaw, L., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M.,
Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal
fluid biomarker signature in Alzheimer’s disease neuroimag-
ing initiative subjects. Annals of Neurology 65, 403–413.

Snapinn, S. M. (1998). Survival analysis with uncertain endpoints.
Biometrics 54, 209–218.

Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns,
N. J., Green, R. C., et al. (2012). The Alzheimer’s Disease
Neuroimaging Initiative: A review of papers published since
its inception. Alzheimer’s & Dementia 8, S1–68.

Received October 2013. Revised February 2015.
Accepted March 2015.


