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Abstract

Accurate prediction of clinical changes of mild cognitive impairment (MCI) patients, including both qualitative change (i.e.,
conversion to Alzheimer’s disease (AD)) and quantitative change (i.e., cognitive scores) at future time points, is important for
early diagnosis of AD and for monitoring the disease progression. In this paper, we propose to predict future clinical
changes of MCI patients by using both baseline and longitudinal multimodality data. To do this, we first develop a
longitudinal feature selection method to jointly select brain regions across multiple time points for each modality.
Specifically, for each time point, we train a sparse linear regression model by using the imaging data and the corresponding
clinical scores, with an extra ‘group regularization’ to group the weights corresponding to the same brain region across
multiple time points together and to allow for selection of brain regions based on the strength of multiple time points
jointly. Then, to further reflect the longitudinal changes on the selected brain regions, we extract a set of longitudinal
features from the original baseline and longitudinal data. Finally, we combine all features on the selected brain regions,
from different modalities, for prediction by using our previously proposed multi-kernel SVM. We validate our method on 88
ADNI MCI subjects, with both MRI and FDG-PET data and the corresponding clinical scores (i.e., MMSE and ADAS-Cog) at 5
different time points. We first predict the clinical scores (MMSE and ADAS-Cog) at 24-month by using the multimodality data
at previous time points, and then predict the conversion of MCI to AD by using the multimodality data at time points which
are at least 6-month ahead of the conversion. The results on both sets of experiments show that our proposed method can
achieve better performance in predicting future clinical changes of MCI patients than the conventional methods.
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Introduction

Alzheimer’s disease (AD), the most common form of dementia,

is a progressive age-related neurodegenerative disease usually

diagnosed in people over 65 years of age. It is reported that there

are 26.6 million AD sufferers worldwide, and 1 in 85 people will

be affected by 2050 [1]. Mild cognitive impairment (MCI) is a

prodromal stage of AD, and the existing studies have suggested

that the individuals with amnestic MCI tend to progress to

probable AD at a rate of approximately 10% to 15% per year.

Thus, accurate diagnosis of AD, especially MCI, is of great

importance for timely therapy and possible delay of the disease.

Over the past several years, many high-dimensional pattern

classification methods have been developed for classification of AD

and MCI based on different modalities of biomarkers, e.g., the

structural brain atrophy measured by magnetic resonance imaging

(MRI) [2,3,4], the metabolic brain alterations measured by

fluorodeoxyglucose positron emission tomography (FDG-PET)

[5,6], and the pathological amyloid depositions measured through

cerebrospinal fluid (CSF) [3,7,8,9], etc.

Recently, due to the importance of MCI in early diagnosis of

AD, there is a growing interest in predicting future clinical changes

of MCI subjects from brain imaging data [10,11,12,13,14].

Generally, there are two kinds of clinical changes for MCI

subjects at future time points. First, some MCI subjects will

convert into AD after some time (i.e., MCI converters, MCI-C for

short), while others will never convert (i.e., MCI non-converters,

MCI-NC for short). It’s important to predict whether a certain

MCI subject will convert into AD at future time points or not. This

is a qualitative prediction, which can be solved through

classification between MCI-C and MCI-NC. Second, because

AD is a progressive neurodegenerative disease, there exist

continuous changes between the measured clinical scores, e.g.,

Mini Mental State Examination (MMSE) and Alzheimer’s Disease

Assessment Scale - Cognitive Subscale (ADAS-Cog), at follow-up

time points. Thus, it’s important to predict the future clinical

scores based on the data at previous time points, which is

especially helpful for monitoring disease progression. However,

different from predicting MCI conversion, predicting future

clinical scores requires a quantitative prediction, which needs to

be solved by learning a regression model, instead of a classification

model.

A number of high-dimensional classification and regression

methods have been used for predicting future clinical changes of
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MCI patients, including the conversion from MCI to AD

[10,11,15,16] and the future clinical cognitive scores

[13,14,17,18]. However, most existing methods perform the

prediction using only the baseline data, although in practice there

may also exist longitudinal data at the follow-up time points which

often contains useful longitudinal information for prediction. It’s

worth noting that, in the group-based analysis methods,

longitudinal data have been already used for measuring longitu-

dinal changes of brain through regions of interest (ROI) or voxel-

based method for decades [19,20], but it’s until very recently that

only a few researchers started to use longitudinal data for

individual-based classification, i.e., identifying MCI-C from

MCI-NC [12,21,22,23]. On the other hand, to the best of our

knowledge, none of the existing regression methods ever exploited

the longitudinal data for predicting future clinical scores of MCI

subjects.

In this paper, we propose to predict the MCI-to-AD conversion

and the future clinical scores of MCI patients by using both

baseline and longitudinal multimodality data. Specifically, we first

develop a longitudinal feature selection method which can jointly

select the brain regions across multiple time points for each

modality. Also, in the longitudinal feature selection method, for

each time point we train a sparse linear regression model using the

imaging data and corresponding clinical scores, with an extra

‘group regularization’ to group the weights corresponding to the

same brain region across multiple time points together and to

allow for selection of brain regions based on the strength of

multiple time points jointly. After selecting the brain regions using

the longitudinal feature selection, we then extract a set of

longitudinal features from the original baseline and longitudinal

data to further reflect the longitudinal changes on those selected

brain regions. Finally, we combine all features on the selected

brain regions from different modalities for prediction, by using our

previously proposed multi-kernel support vector machines (SVM)

[24,25].

To evaluate our method, we perform two sets of experiments

on 88 MCI subjects, including 38 MCI converters (MCI-C) and

50 MCI non-converters (MCI-NC), from the ADNI database.

Here, each subject has both MRI and FDG-PET data and the

corresponding clinical scores, including MMSE and ADAS-Cog,

at 5 different time points (i.e., baseline, 6-month, 12-month, 18-

montha and 24-month). In our first set of experiments, we

predict the clinical scores (including MMSE and ADAS-Cog) at

24-month by using the multimodality data at previous time

points (i.e., baseline, 6-month, 12-month and 18-month). In our

second set of experiments, we predict the conversion of MCI by

using the multimodality data at time points which are at least 6-

month ahead of the conversion. Our hypothesis is that the

proposed pattern analysis method based on both baseline and

longitudinal multimodality data would perform better in

predicting the future changes of MCI patients than the

conventional methods.

Methods

The data used in the preparation of this paper were obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (www.loni.ucla.edu/ADNI). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National

Institute of Biomedical Imaging and Bioengineering (NIBIB), the

Food and Drug Administration (FDA), private pharmaceutical

companies, and non-profit organizations, as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has been to

test whether the serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. Determination of

sensitive and specific markers of very early AD progression is

intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen the

time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California –

San Francisco. ADNI is the result of efforts of many coinvestiga-

tors from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50 sites

across the U.S. and Canada. The initial goal of ADNI was to

recruit 800 adults, ages 55 to 90, to participate in the research,

approximately 200 cognitively normal older individuals to be

followed for 3 years, 400 people with MCI to be followed for 3

years and 200 people with early AD to be followed for 2 years. For

up-to-date information, see www.adni-info.org.

Ethics statement
Study subjects gave written informed consent at the time of

enrollment for imaging and genetic sample collection and

completed questionnaires approved by each participating sites

Institutional Review Board (IRB). The authors state that they have

obtained approval from the ADNI Data Sharing and Publications

Committee for use of the data and confirm that the data was

analyzed anonymously.

Subjects
The ADNI general eligibility criteria are described at www.

adni-info.org. Briefly, subjects are between 55–90 years of age,

having a study partner able to provide an independent evaluation

of functioning. Specific psychoactive medications will be excluded.

General inclusion/exclusion criteria are as follows: 1) healthy

subjects: MMSE scores between 24–30, a Clinical Dementia

Rating (CDR) of 0, non-depressed, non MCI, and nondemented;

2) MCI subjects: MMSE scores between 24–30, a memory

complaint, having objective memory loss measured by education

adjusted scores on Wechsler Memory Scale Logical Memory II, a

CDR of 0.5, absence of significant levels of impairment in other

cognitive domains, essentially preserved activities of daily living,

and an absence of dementia; and 3) Mild AD: MMSE scores

between 20–26, CDR of 0.5 or 1.0, and meets the National

Institute of Neurological and Communicative Disorders and

Stroke and the Alzheimer’s Disease and Related Disorders

Association (NINCDS/ADRDA) criteria for probable AD. Study

subjects gave written informed consent at the time of enrollment

for imaging and genetic sample collection and completed

questionnaires approved by each participating sites Institutional

Review Board (IRB).

In this paper, 88 MCI subjects with all corresponding MRI and

PET data as well as two cognitive scores (MMSE and ADAS-Cog)

at 5 different time points (baseline, 6-month, 12-month, 18-month

and 24-month) are included. In particular, it contains 35 MCI

converters (MCI-C) and 50 MCI non-converters (MCI-NC).

Table 1 lists the demographics of all these subjects.

MRI and PET
A detailed description on acquiring MRI and PET data from

ADNI as used in this paper can be found at [24,25]. Briefly,

structural MR scans were acquired from 1.5 T scanners. Raw

Digital Imaging and Communications in Medicine (DICOM)

MRI scans were downloaded from the public ADNI site (www.

loni.ucla.edu/ADNI), reviewed for quality, and automatically

corrected for spatial distortion caused by gradient nonlinearity
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and B1 field inhomogeneity. PET images were acquired 30–60

minutes post-injection, averaged, spatially aligned, interpolated

to a standard voxel size, intensity normalized, and smoothed to

a common resolution of 8 mm full width at half maximum.

Image analysis
Image pre-processing is performed for all MR and PET images.

First, we perform anterior commissure (AC) - posterior commis-

sure (PC) correction on all images, and use the N3 algorithm [26]

to correct the intensity inhomogeneity. Next, we do skull-stripping

on structural MR images using both brain surface extractor (BSE)

[27] and brain extraction tool (BET) [28], followed by manual

edition and intensity inhomogeneity correction. After removal of

cerebellum, FAST in the FSL package [29] is used to segment

structural MR images into three different tissues: grey matter

(GM), white matter (WM), and cerebrospinal fluid (CSF). Then, a

fully automatic 4-dimensional atlas warping method called 4D

HAMMER [30] is used to register all different time-point images

of each subject to a template with 93 manually labeled ROIs [31].

Here, besides HAMMER, other registration methods [32,33,34,

35,36] can also be used. After registration, we can label all images

based on the 93 labeled ROIs in the template. For each of the 93

ROI regions in the labeled MR image, we compute the total tissue

GM, WM and CSF volumes of that region and use them as

features. For PET image, we first align it to its respective MR

image of the same subject at the same time point by using a rigid

registration, and then compute the average intensity of each ROI

in the PET image as a feature.

Overview of the proposed method
Fig. 1 gives the flowchart of the proposed method, which gives

an overview of the major steps employed to use multimodality

longitudinal data for prediction. In this study, we use two imaging

modalities, i.e., MRI and PET. Thus, for each subject, we have

both MRI and PET images, as well as the two cognitive scores

(MMSE and ADAS-Cog), at different time points. For each MRI

or PET image of each subject at each time point, image pre-

processing steps (including registration and labeling) as intro-

duced in Image analysis subsection is first performed to obtain the

regional MRI and PET features, respectively. After obtaining the

regional MRI and PET features, longitudinal feature selection is

first performed to select the common brain regions across

multiple time points for MRI and PET, respectively. Then, we

extract a set of longitudinal features from the original baseline

and longitudinal data to characterize the longitudinal changes on

the selected brain regions for MRI and PET, respectively. Besides

features from MRI and PET, we also use the two cognitive scores

(MMSE and ADAS-Cog) as features and put those scores at

different time points into a feature vector. Finally, we combine

both imaging and cognitive features for prediction by using our

previously proposed multi-kernel SVM. In what follows, we will

detail the three major steps in our methods, i.e., 1) longitudinal

feature selection, 2) longitudinal feature extraction, and 3) multi-

kernel SVM.

Longitudinal feature selection
Since not all brain regions are related to AD, those irrelevant

features derived from the unrelated brain regions are better

removed by feature selection before performing classification and

regression. However, to our knowledge, most existing feature

selection methods are designed for the single-time-point image,

i.e., each subject has only the single-time-point data with the

corresponding targets. This feature selection method cannot be

easily extended for feature selection on multiple time-point images

(i.e., baseline plus longitudinal data). To distinguish from the

existing feature selection methods based on the single-time-point

data, we call our feature selection on multiple time-point (baseline

plus longitudinal) data as longitudinal feature selection method, as

formulated below. It’s worth noting that, in this study, we focus on

the linear feature selection based on feature weight learning as

detailed next.

Assume that we have N training subjects s1,:::,si,:::,sNf g and

each subject si has T imaging data at T different time points,

represented as xij

� �T

j~1
, where xij[R1|D is a D-dimensional row

vector. Denote Xj~ x1j ,:::,xij ,:::,xNj

� �
([RN|D) as the training

data matrix at the j-th time point, and yj ([RN ) is the

corresponding target outputs at the j-th time point. Longitudinal

feature selection learns a feature weight vector wj ([RD) from Xj

and yj , with a ‘group regularization’ constraint on the corre-

sponding elements of wj across T time points, as formulated in the

following objective function:

min
W

1

2

XT

j~1

yj{Xjwj

�� ��2

2
zl

XD

d~1

wd
�� ��

2
ð1Þ

where W~ w1,:::,wj ,::::,wT

� �
([RD|T ), and wd is its d-th row

vector. The regularization parameter l balances the relative

contributions of the two terms and also controls the ‘sparsity’ of

the linear models. In fact, the last term in the above objective

function is equivalent to the l2,1-norm of the matrix W, i.e., first

computing l2-norm on each row vector and then computing l1-

norm on column vector with l2c-norms of row vectors. It’s worth

noting that the use of l2-norm on row vectors forces the weights

corresponding to the d-th feature across multiple time points to be

grouped together and the further use of l1-norm tends to select

features based on the strength of T time points jointly. In other

words, features (in brain regions) will be selected as a group across

all time points together. This formulation is important for

tracking the longitudinal changes of brain regions with progres-

sion of disease.

Fig. 2 gives an illustration on the longitudinal feature selection.

Here, at each time point j, we have baseline (for time point j = 1)

or longitudinal (for time point j.1) image data Xj (each row

denotes a subject with features gotten from different brain

Table 1. Subject information.

MCI-C (n = 38) MCI-NC (n = 50)

Female/Male 15/23 14/36

Age 74.767.2 74.367.9

Education 15.962.8 16.062.9

MMSE (baseline) 26.961.7 27.461.6

MMSE (24 months) 23.963.6 27.062.6

(p,0.0001) (p = 0.406)

ADAS-Cog (baseline) 12.763.9 9.664.1

ADAS-Cog (24 months) 16.166.2 11.065.9

(p = 0.0052) (p = 0.1755)

MCI = Mild Cognitive Impairment, MCI-C = MCI converter, MCI-NC = MCI non-
converter, MMSE = Mini-Mental State Examination, ADAS-Cog = Alzheimer’s
Disease Assessment Scale - Cognitive Subscale.
doi:10.1371/journal.pone.0033182.t001
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regions), and corresponding clinical scores yj , e.g., MMSE or

ADAS-Cog. By imposing a ‘group regularization’ on the

corresponding elements of each feature weight vector wj ,

longitudinal feature selection achieves the goal of ‘group

selection’ of features (or brain regions).

It is easy to know that the above objective function in Eq. (1)

reduces to the standard l1-norm regularized optimization

problem in Lasso [37] when only a single (baseline) time point

of data is available, i.e., T = 1. Also, because of the use of l2,1-

norm for W in the above objective function, it will result in a

weight matrix W with elements in some rows being all zeros. For

the goal of feature selection, we can just keep those features with

non-zero weights. For implementation, there have been a number

of algorithms available in machine learning and statistics

communities to solve the linear regression problem with l2,1-

norm regularization [38–39]. In this paper, the SLEP toolbox

[40] is used to solve the objective function in our longitudinal

feature selection method.

Longitudinal feature estimation
For each selected brain region obtained from the longitudinal

feature selection step, besides using its corresponding features

from the imaging data at each time point, we can also derive

some new features to reflect the longitudinal changes on

specific brain regions across different time points. For example,

in thickness-based measures, the thinning speed [41], which

can be seen as a first-order feature, is computed by solving the

first-order linear regression on thickness values across all time

points in a specific brain region. In this study, to extract more

higher-order features, we solve the following higher-order

linear equation for each subject and for each selected brain

region:

u~cT tT{1z:::zcktk{1z:::zc2tzc1 ð2Þ

where t ( = 1,…,T) denotes different time point, u is the

corresponding imaging feature, and c1,c2,:::,ck,:::,cT are the

coefficients. It’s easy to derive the solution for the coefficients by

substituting each t (for = 1,…,T) and the correspondinguinto the

above equation. Specifically, denoting xd
ij as the selected imaging

feature d for subject siat the j-th time point, by respectively

substituting = 1,…,Tand u~xd
ij (j = 1,…,T) into the above equa-

tion, we can obtain the corresponding coefficients, denoted as cd
ij

( = 1,…,T), which are regarded as new longitudinal features.

Multi-kernel SVM
Multimodality data can contain complementary information. In

ADNI dataset, many subjects have both MRI and PET imaging

data, CSF biological data, MMSE and ADAS-Cog cognitive data,

etc. It has been shown that the use of multimodal data can achieve

better classification and regression performance than the use of

only the single modality data. In this study, we will use our

previously proposed multi-kernel SVM method, evaluated on both

classification [24] and regression [25] problems, to combine the

features from different modalities.

Assume that each subject si has M different modalities of data at

each of the T different time points, which can be represented as

x
(1)
ij ,:::,x(m)

ij ,:::,x(M)
ij

n o
, i~1,:::,N; j~1,:::,T . For each modality of

each subject, we perform the above longitudinal feature selection

to select a subset of brain regions and obtain the corresponding

selected features, represented as x’(1)
ij ,:::,x’(m)

ij ,:::,x’(M)
ij

n o
,

i~1,:::,N; j~1,:::,T . Similarly, for each modality of each subject,

Figure 1. Flowchart of the proposed method.
doi:10.1371/journal.pone.0033182.g001
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based on the selected brain regions, we can use the above-

described longitudinal feature extraction method to further extract

the corresponding longitudinal features, denoted as

c
(1)
ij ,:::,c(m)

ij ,:::,c(M)
ij

n o
, i~1,:::,N; j~1,:::,T . Finally, for ease of

subsequent classification and regression, for each modality of each

subject si, we generate a final feature vector for representation

x’(1)
i ,:::,x’(m)

i ,:::,x’(M)
i

n o
, i~1,:::,N, by concatenating its corre-

sponding feature vectors x’(m)
ij and c

(m)
ij , j~1,:::,T , into a single

vector x’(m)
i .

The main idea of multi-kernel SVM is to first construct an

individual kernel for each modality of data and then learn a mixed

kernel based on the linear combination of all individual kernels. In

our previous works, multi-kernel SVM has been proposed for both

regression [25] and classification [24] problems. For example, the

objective function of multi-kernel SVM for classification can be

defined below [24]:

max
a,a�

1

2

XN

i~1

ai{
1

2

XN

i,j~1

aiajzizj

XM

m~1

bmk(m) x’(m)
i ,x’(m)

j

� �

s:t:
XN

i~1

aizi~0

0ƒaiƒC,i~1,:::,N:

ð3Þ

where k(m)(:,:)is the individual kernel function defined for the m-th

modality, and bm§0denotes the combining weight on the m-th

modality with the constraint
P

m bm~1. Also,zi is the corre-

sponding target output of classification for subject si, i.e., the class

label indicating whether subject si will convert into AD at future

time point. A similar objective function of multi-kernel SVM for

regression has been given in [25]. It’s worth nothing that multi-

kernel SVM can be efficiently solved with the conventional

SVM solver, e.g., LIBSVM, by defining a mixed kernel

k(x’i,x’j)~
PM

m~1 bmk(m) x’(m)
i ,x’(m)

j

� �
as done in [24,25].

Validation
To evaluate the performance of different methods in predicting

future clinical changes of MCI patients, we perform two sets of

experiments on 88 MCI subjects, including 38 MCI converters

(MCI-C) and 50 MCI non-converters (MCI-NC), from the ADNI

dataset. Each subject has both imaging modalities of data, i.e.,

MRI and PET, at 5 different time points such as baseline (bl), 6-

month (M06), 12-month (M12), 18-month (M18) and 24-month

(M24). Besides MRI and PET imaging data, each subject also has

clinical cognitive scores (i.e., MMSE and ADAS-Cog) at bl, M06,

M12, M18 and M24. In our first set of experiments, we predict the

future MMSE and ADAS-Cog scores at M24 time point by using

all data acquired at the previous time points (including bl, M06,

M12 and M18). Here, besides MRI and PET, we also include

cognitive scores at the previous time points (including bl, M06,

M12 and M18) as additional modality data to further improve the

performance. In our second set of experiments, we predict the

conversion of MCI to AD using both baseline and longitudinal

MRI, PET and cognitive data. Note that those 38 MCI converters

converted at different time points (from M06 to 48 month (M48)),

and thus a flexible number of time points (6-month ahead of the

conversion and up to M18) of data are used for each test subject.

This is different from the regression method where a fixed number

of time points are used for all subjects. It’s worth noting that the

Figure 2. Illustration on longitudinal feature selection.
doi:10.1371/journal.pone.0033182.g002
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goal of the second set of experiments is to validate the usefulness of

longitudinal data in prediction of MCI conversion, so we include

all available longitudinal data (at 6 months ahead of the

conversion). In practice, for a MCI subject, we predict the

conversion by using only the baseline data. However, if the subject

doesn’t convert at later time point, we can then use all data from

baseline to the current time point for refined prediction of

conversion. In this study, a 6-month ahead prediction is

performed, although the same strategy can also be used for

prediction at other amount of time ahead the conversion.

For measuring the regression performance in the first set of

experiments, we use a 10-fold cross-validation strategy by

computing the Pearson’s correlation coefficient (CORR) and the

root mean square error (RMSE) between the predicted and the

actual clinical scores. Specifically, the whole set of subject samples

are equally partitioned into 10 subsets, and each time the subject

samples within one subset are selected as the testing samples and

all other subject samples in the remaining 9 subsets are used for

training the SVM models. This process is repeated for 10 times.

On the other hand, in the second set of experiments, we use a

leave-one-out cross-validation strategy to evaluate the classification

performance, since each subject uses different number of time

points for classification. Classification performance will be

measured by the classification accuracy (i.e., the proportion of

MCI subjects correctly classified), as well as the sensitivity (i.e., the

proportion of MCI converters correctly classified) and the

specificity (i.e., the proportion of MCI non-converters correctly

classified). Besides, we also plot the receiver operating character-

istic (ROC) curve and report the area under the ROC curve

(AUC). In both sets of experiments, SVM is implemented using

LIBSVM toolbox [42], and a linear kernel is used after

normalizing each feature vector with unit norm. For all respective

methods, the values for parameters (e.g.,l and bm) are determined

by performing another round of cross-validation on the training

data. Moreover, in our pre-processing step, we perform feature

normalization, i.e., subtracting the mean and then dividing the

standard deviation (of all training subjects) for each feature value.

Results

Predicting future clinical scores (MMSE and ADAS-Cog)
We first predict the future MMSE and ADAS-Cog scores at

M24 time point by using the data acquired at the previous time

points including baseline (bl), M06, M12 and M18. Before giving

the prediction results, we first plot in Fig. 3 the average

longitudinal changes of MMSE and ADAS-Cog scores at two

sub-groups of MCI patients, i.e., MCI-C and MCI-NC. Table 1

also gives the average MMSE and ADAS-Cog scores at baseline

and 24-month (M24) time points, respectively. It can be seen from

Fig. 3 that, as disease progresses, the cognitive performance of the

MCI-C subjects declines gradually as reflected by the decreased

MMSE and increased ADAS-Cog scores, while the cognitive

performance of the MCI-NC subjects declines much slower than

that of the MCI-C subjects. Furthermore, Table 1 provides the p-

value between baseline and 24-month MMSE (or ADAS-Cog)

scores, indicating that there exist significant difference between

baseline and 24-month for MCI-C group, but no significant

difference for MCI-NC group.

Table 2 shows the performance of the proposed method in

predicting 24-month MMSE and ADAS-Cog scores of MCI

patients, by using different numbers of longitudinal data, from

only the baseline data (bl) to all the available data (bl+M06+
M12+M18). For comparison, we also include the results from the

other two multimodal regression methods, i.e., CONCAT and

Ensemble, which have been used in for predicting future decline in

cognitive scores. Briefly, in the CONCAT method, for each

subject, all data from different modalities and different time points

are first concatenated into a long vector, and then a standard

feature selection method based on Lasso [37] is performed,

followed by using the standard SVM for final regression. On the

other hand, in the Ensemble method, all data from different

modalities and different time points are not concatenated as in the

CONCAT method. Instead, for each modality of each time point,

a standard Lasso feature selection is performed, followed by

classification using an individual SVM, and finally the majority

voting (for classification) or averaging (for regression) is used to fuse

all individual results (from different modalities and time points) at

the decision-making level. It’s worth noting that, in Table 2, for

the CONCAT and Ensemble methods, we report only the results

with use of the baseline data; the results on more numbers of time

points can be found later. Figs. 4–5 further show the scatter plots

of the predicated scores vs. the actual scores of MMSE and ADAS-

Cog by different methods, respectively.

As can be seen from Table 2 and Figs. 4–5, if using only the

baseline data, our proposed (bl) method, which degenerates into a

conventional multi-kernel regression method, achieves only the

slightly better performance than the CONCAT (bl) and Ensemble

(bl) methods on most performance measures. Here, ‘bl’ denotes the

use of only the baseline data in the above methods. On the other

hand, by using the longitudinal data, the performance of our

proposed method can be significantly improved. Specifically, for

predicting MMSE and ADAS-Cog scores at the M24 time point,

our proposed (bl+M06+M12+M18) method achieves the CORR

of 0.786 and 0.777 and the RMSE of 2.035 and 4.004,

respectively, which are much better than the case of using only

the baseline data. Furthermore, to investigate the effect of using

different number of longitudinal data in regression, Table 2 and

Fig. 6 also report the respective results for our proposed method

and other three methods, indicating that the performance of our

proposed method is consistently improved when more and more

longitudinal data are used. Fig. 6 also shows that the use of

longitudinal data can also improve the performance of the

CONCAT and Ensemble methods, but the improvement is much

less than our proposed method. These results show the

effectiveness of using longitudinal data for improved regression,

especially by our proposed method that can effectively use

longitudinal data through longitudinal feature selection and

estimation. Finally, in Fig. 7, we report the result of our proposed

method under different number of time points for two sub-groups

of MCI patients, which again shows the effectiveness of using

longitudinal data for improved performance. Moreover, Fig. 7

shows that it is easier to predict the future changes of MCI-NC

subjects, compared to the MCI-C subjects, since the MCI-NC

subjects have less change in cognitive performance than the MCI-

C subjects as shown in Fig.3.

Predicting future conversion (from MCI to AD)
In this set of experiments, we predict the future conversion of

MCI patients based on both baseline and longitudinal data which

are at least 6-month ahead of the conversion. Table 3 shows the

results of three different methods, i.e., CONCAT, Ensemble, and

our proposed method, in predicting the conversion. Here, for each

method, we include two cases, i.e., one with only baseline data (bl)

and another with both baseline and longitudinal data (bl+lt). As

can be seen from Table 3, the proposed method outperforms the

other two methods on both cases (with or without using

longitudinal data). Specifically, our proposed (bl+lt) method

achieves a classification accuracy of 78.4%, a sensitivity of
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79.0%, a specificity of 78.0%, and an AUC of 0.768, which are

consistently better than the other two methods on each

performance measure. Table 3 also indicates that, by using

longitudinal data, the CONCAT (bl+lt) and Ensemble (bl+lt)

methods can achieve better performance than the CONCAT (bl)

and Ensemble (bl) methods, respectively, but they are still inferior

to our proposed (bl+lt) method.

Moreover, we also investigate the performance of different

methods in predicting conversion of MCI patients under different

conversion time, as shown in Fig. 8. Specifically, Fig. 8(a) gives the

distribution of actual conversion times of the MCI-C subjects, and

Fig. 8(b) gives the classification results for MCI-C subjects under

different conversion time by the three different methods. It’s worth

noting that both baseline and longitudinal data at the time points

such as 6-month and up to M18 ahead of the conversion are used

for each method. Fig. 8 shows that our proposed method

outperforms the other two methods on most cases, especially for

MCI-C subjects who converted at M12 time point, where our

method correctly predicts the conversion for all the 9 subjects with

100% classification accuracy by using both baseline data and

longitudinal data at M06 time point. This again confirms the

efficacy of our proposed method in using longitudinal data for

prediction.

In the above experiments, all methods use multimodality data,

including MRI, PET and cognitive scores. To compare between

multimodality-based method and single-modality based methods,

we generate the three single-modality based methods, namely

MRI-based, PET-based, and Cognitive-based methods, as the

variants of our proposed multimodality-based method. Specifi-

cally, for the MRI-based and PET-based methods, we perform

the corresponding longitudinal feature selection and extraction as

used in our proposed method, but then we perform the standard

SVM based classification, instead of the multi-kernel SVM based

classification. On the other hand, for the Cognitive-based

method, we just concatenate the MMSE and ADAS-Cog scores

from different time points together as features for the subsequent

SVM-based classification. Fig. 9 shows the results of multi-

modality-based and single-modality based methods in predicting

MCI conversion. For the ROC curves shown in Fig. 9(b), we also

compute the corresponding AUC values, obtaining 0.697, 0.676,

0.670 and 0.768 for the MRI-based, PET-based, Cognitive-

based, and our multimodality-based methods, respectively. Our

multimodality-based method achieves much better performance

than the single-modality based methods, which shows the efficacy

of our proposed method in using multimodality data for

prediction.

Figure 3. Average longitudinal changes of clinical scores in MCI patients.
doi:10.1371/journal.pone.0033182.g003

Table 2. Comparison of performance of different methods in predicting 24-month (M24) clinical scores of MCI patients, by using
different numbers of longitudinal data.

Method MMSE ADAS-Cog

CORR RMSE CORR RMSE

CONCAT (bl) 0.63560.049 2.54160.100 0.65760.038 4.77160.146

Ensemble (bl) 0.66660.039 2.63760.081 0.67760.037 4.94360.155

Proposed (bl) 0.65960.043 2.45760.123 0.68260.044 4.76360.084

Proposed (bl+M06) 0.70260.037 2.34460.097 0.74660.028 4.31860.173

Proposed (bl+M06+M12) 0.74360.024 2.17760.113 0.76860.025 4.09760.126

Proposed (bl+M06+M12+M18) 0.78660.013 2.03560.076 0.77760.027 4.00460.086

The reported values are the correlation coefficient (CORR) and the root-mean-square error (RMSE), averaged on 10-fold tests (with standard deviation also reported).
MMSE = Mini-Mental State Examination, ADAS-Cog = Alzheimer’s Disease Assessment Scale - Cognitive Subscale.
doi:10.1371/journal.pone.0033182.t002
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Figure 4. Scatter plots of the predicated MMSE scores vs. the actual scores by six different methods.
doi:10.1371/journal.pone.0033182.g004
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Figure 5. Scatter plots of the predicated ADAS-Cog scores vs. the actual scores by six different methods.
doi:10.1371/journal.pone.0033182.g005
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Figure 6. Regression performance with respect to the use of different number of longitudinal time points by three different
methods.
doi:10.1371/journal.pone.0033182.g006

Figure 7. Regression performance of the proposed method on two sub-groups of MCI patients, when using different number of
longitudinal time points.
doi:10.1371/journal.pone.0033182.g007
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Top selected brain regions
In this subsection, we investigate the top selected brain regions

by our longitudinal feature selection method. It’s worth noting

that for validation of our proposed method in predicting the

future MMSE and ADAS-Cog scores at M24 time point, we use

a 10-fold cross validation with 10 independent runs. For each run

and each fold, an independent longitudinal feature selection is

performed. To determine the top selected brain regions, we count

the frequency of each brain region selected across all folds and all

runs. Figs. 10–11 give the top 20% brain regions detected by our

longitudinal feature selection method on MRI and PET

modalities, respectively. As can be seen from Figs. 10–11, by

jointly considering the longitudinal changes across multiple time

points, our longitudinal feature selection method can select the

relevant brain regions to AD and MCI. For example, Fig. 10

shows that most of the selected top regions, e.g., hippocampal,

amygdale, entorhinal cortex, and parahippocampal regions, are

known to be related to the AD and MCI by many studies using

the group comparison methods [12,43,44,45,46]. On the other

hand, Figs. 10–11 also indicate that there exist different patterns

for MRI and PET images, thus showing the importance of using

both for providing complementary information in prediction.

This also partially explains why the multimodality-based method

can achieve better performance than the single-modality based

methods.

Discussion

In this paper, we have proposed a new regression/classification

method with three major steps, i.e., longitudinal feature selection,

longitudinal feature estimation, and multi-kernel SVM, for

predicting future clinical changes of MCI patients using multi-

modality data from multiple time points. Our proposed method

has been validated on 88 MCI subjects with MRI, PET, and

cognitive scores at 4 different time points including baseline, 6-

month, 12-month and 18-month, through two sets of experiments,

i.e., 1) predicting future MMSE and ADAS-Cog scores at 24-

month time point using both baseline and longitudinal multi-

modality data at previous time points, and 2) predicting future

conversion of MCI subjects using both baseline and longitudinal

multimodality data at least 6-month ahead of the conversion.

Longitudinal feature selection
In this paper, to distinguish from conventional feature selection

methods that are often based on the single (baseline) time point of

data, we call our new feature selection method that works on

multiple (baseline plus longitudinal) time points of data as the

longitudinal feature selection method. The key characteristics of

our longitudinal feature selection method is that the features are

jointly selected from the longitudinal data across multiple time

points, to better reflect the longitudinal change patterns of the

brain with the progression of disease. To the best of our

knowledge, this new type of feature selection problem was not

investigated in the previous studies, and we solved this problem by

formulating it as a linear feature weigh learning with l2,1-norm

regularization, which can be efficiently solved by the existing

multi-task learning methods [38,39,40]. It’s worth noting that, a

few recent works also use the similar multi-task learning techniques

based on l2,1-norm regularization as used in our proposed

longitudinal feature selection method, but they are developed for

different purposes. For example, in [25] and [47], joint regression

and classification is performed via multi-task learning, where the

estimation of each regression or classification variable is regarded

as a different task. However, both methods use only the baseline

data and thus cannot reflect the longitudinal change patterns of

the brain across different time points, which are apparently

different from our longitudinal feature selection method.

Table 3. Comparison of performance of different methods in
predicting the conversion of MCI patients.

Method
Accuracy
(%)

Sensitivity
(%)

Specificity
(%) AUC

CONCAT (bl) 61.4 52.6 68.0 0.691

Ensemble (bl) 58.0 55.3 60.0 0.633

Proposed (bl) 72.7 65.8 78.0 0.745

CONCAT (bl+lt) 70.5 63.2 76.0 0.742

Ensemble (bl+lt) 65.9 57.9 72.0 0.706

Proposed (bl+lt) 78.4 79.0 78.0 0.768

doi:10.1371/journal.pone.0033182.t003

Figure 8. Prediction of conversion of MCI patients under different conversion times.
doi:10.1371/journal.pone.0033182.g008
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Predicting future clinical scores
A number of high-dimensional regression methods have been

used for predicting future clinical scores (or changes) for MCI

subjects, based on the baseline neuroimaging data. For example,

in [14], a principal component analysis (PCA) based model was

used on the baseline MRI data of 49 MCI subjects (including 20

Figure 9. Classification performance comparison between single-modality vs. multimodality based methods.
doi:10.1371/journal.pone.0033182.g009

Figure 10. Top 20% brain regions detected by the longitudinal feature selection method on MRI images.
doi:10.1371/journal.pone.0033182.g010

Predicting Future Clinical Changes of MCI Patients

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e33182



MCI-C and 29 MCI-NC) to predict the 12-month change in

MMSE score, and a correlation coefficient of 0.31 was reported.

In [17], a Bagging relevant vector machine (RVM) was adopted to

predict the future decline of MMSE score from the baseline MRI

data and a correlation coefficient of 0.537 was achieved on 16

MCI-C, 5 MCI-NC, and 5 AD subjects. More recently, in our

previous work, a multi-modal multi-task (M3T) model has been

proposed to predict the 24-month change in MMSE and ADAS-

Cog scores, and the correlation coefficients of 0.511 and 0.531 are

achieved on 38 MCI-C and 42 MCI-NC, as well as 40 AD and 47

HC subjects, respectively. In contrast, by using the longitudinal

data, our proposed method achieves much better correlation

coefficients of 0.786 and 0.777 on 38 MCI-C and 50 MCI-NC

subjects, for predicting 24-month MMSE and ADAS-Cog scores,

respectively. All these results further validate the importance of

using the longitudinal data for improved prediction of future

clinical scores of MCI subjects.

Predicting MCI conversion
A lot of recent studies in early diagnosis of AD has been focused

on predicting the conversion of MCI to AD, i.e., identifying the

MCI converters (MCI-C) from MCI non-converters (MCI-NC)

[10,11,12,15,16]. Specifically, in [12], the accuracy between 75%

and 80% and an maximum AUC of 0.77 were reported on 27

MCI-C and 76 MCI-NC subjects using both baseline and

longitudinal MRI data in the ADNI dataset. In [11], the

maximum accuracy of 61.7% and AUC of 0.734 were reported

on 69 MCI-C and 170 MCI-NC subjects by using both MRI and

CSF data. In [10], the maximum AUC of 0.67 was reported on 86

MCI-C and 128 MCI-NC subjects using the hippocampal atrophy

rates calculated by the boundary shift integral within ROIs. More

recently, in [16], a sensitivity of 63% and specificity of 76% were

reported on 72 MCI-C and 131 MCI-NC subjects by using the

incremental learning method based on spatial frequency repre-

sentation of cortical thickness data, which has been shown better

than the other ten benchmark methods for MCI-C vs. MCI-NC

classification as reported in [15]. In contrast, our method achieves

an accuracy of 78.4%, sensitivity of 79.0%, specificity of 78.0%

and AUC of 0.768, on 38 MCI-C and 50 MCI-NC subjects from

ADNI, which are comparable to the best results reported in

several recent studies on ADNI.

Limitations
The current study is limited by several factors as detailed below.

First, our proposed method performs prediction based on the

longitudinal and multimodality data (i.e., MRI, PET, etc), and

thus requires each subject to have the corresponding modality data

across different time points, which limits the size of subjects that

can be used for study. For example, there are more than 400 MCI

subjects in the ADNI dataset, while there are only 88 MCI subjects

Figure 11. Top 20% brain regions detected by the longitudinal feature selection method on PET images.
doi:10.1371/journal.pone.0033182.g011
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(as used in our study) having all MRI and PET data and the

corresponding MMSE and ADAS-Cog scores at multiple time

points (including baseline, 6-month, 12-month and 18-month).

Moreover, besides MRI and PET used in our study, there also

exist other modality data, e.g., CSF and APOE, etc. However,

because our current method requires every subject must have the

same data on all corresponding modalities and the number of

subjects with all modality data (including CSF and APOE) is too

small for reasonable learning, the current study does not consider

data from other modalities (e.g., CSF and APOE).

Conclusion
In summary, our experimental results have demonstrated that

our proposed method which is based on both baseline and

longitudinal multimodality data can effectively predict the future

clinical changes of MCI patients. Specifically, it can effectively

predict the future MMSE and ADAS-Cog scores at 24-month

using both baseline and longitudinal data at previous time points,

and can also predict the conversion of MCI to AD at least 6-

month ahead of the conversion by using both baseline and

longitudinal data. To the best of our knowledge, the longitudinal

feature selection method developed in our method is new in

neuroimaging and deserves further study. In the future work,

besides the group regularization used in our current longitudinal

feature selection, we will also consider adding temporal smooth-

ness constraint between feature weights at adjacent time points, to

further reflect the longitudinal progressive changes of the brain

regions. Moreover, we will develop techniques to deal with

incomplete data in both modalities and time points to overcome

the limitation of small sample size of MCI subjects, for further

improving the final performance. Finally, we want to apply the

technique developed in this paper for diagnosis of other

neuroimaging diseases, e.g., schizophrenia [48,49].
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