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Abstract—Recently, a sparse inverse covariance estimation
(SICE) technique has been employed to model functional brain
connectivity. The inverse covariance matrix (SICE matrix in short)
estimated for each subject is used as a representation of brain con-
nectivity to discriminate Alzheimers disease from normal controls.
However, we observed that direct use of the SICE matrix does
not necessarily give satisfying discrimination, due to its high di-
mensionality and the scarcity of training subjects. Looking into
this problem, we argue that the intrinsic dimensionality of these
SICE matrices shall be much lower, considering 1) an SICE ma-
trix resides on a Riemannian manifold of symmetric positive def-
initeness matrices, and 2) human brains share common patterns
of connectivity across subjects. Therefore, we propose to employ
manifold-based similarity measures and kernel-based PCA to ex-
tract principal connectivity components as a compact represen-
tation of brain network. Moreover, to cater for the requirement
of both discrimination and interpretation in neuroimage analysis,
we develop a novel preimage estimation algorithm to make the
obtained connectivity components anatomically interpretable. To
verify the efficacy of our method and gain insights into SICE-based
brain networks, we conduct extensive experimental study on syn-
thetic data and real rs-fMRI data from the ADNI dataset. Our
method outperforms the comparable methods and improves the
classification accuracy significantly.

Index Terms—Alzheimer’s disease (AD) classification, brain net-
work, kernel principal component analysis (PCA), preimage esti-
mation, rs-fMRI, symmetric positive definite (SPD) kernel.

I. INTRODUCTION

A S an incurable and the most common form of dementia,
Alzheimer’s disease (AD) affects tens of million people

worldwide. Precise diagnosis of AD, especially at its early warn-
ing stage: Mild cognitive impairment (MCI), enables treatments
to delay or even avoid cognitive symptoms, such as language dis-
order and memory loss [1]. However, this is a very challenging
task. Conventional diagnosis of MCI based on clinical obser-
vations and structural imaging [2] can hardly achieve accurate
diagnosis since the symptoms of MCI are often ambiguous and
not necessarily related to structural alterations [3]. Recent stud-
ies show that the functional connectivity between some brain

Manuscript received August 17, 2014; accepted January 24, 2015. Date of
publication February 4, 2015; date of current version May 18, 2015. Asterisk
indicates corresponding author

∗J. Zhang is with the School of Computer Science and Software Engineer-
ing, University of Wollongong, Wollongong, N.S.W. 2522, Australia (e-mail:
jz163@uowmail.edu.au).

L. Zhou, L. Wang, and W. Li are with the School of Computer Science and
Software Engineering, University of Wollongong.

This paper contains supplementary material available online at http://
ieeexplore.ieee.org (File size: 1 MB).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2015.2399495

regions of AD patients differs from that of normal aging. For
example, compared with the healthy, AD patients have been
found decreased functional connectivity between hippocampus
and other brain regions, and MCI patients have been observed
increased functional connectivity between the frontal lobe and
other brain regions [4]. Therefore, detecting these abnormal al-
terations in functional connectivity of AD can bring significant
benefits in identifying novel connectivity-based biomarkers to
improve the diagnosis confidence and revealing the mechanism
of AD to help the development of therapies.

Constructing and classifying functional brain networks based
on resting-state functional magnetic resonance imaging (rs-
fMRI) [5] holds great promise for functional connectivity anal-
ysis [6], [7]. rs-fMRI focuses on the low-frequency (<0.1
Hz) oscillations of blood-oxygen-level-dependent signal, which
presents the underlying neuronal activation patterns of brain re-
gions [8]–[10]. Many methods have been proposed to model
brain connectivity based on the covarying patterns of rs-fMRI
time series across brain regions. Two issues are generally
involved: identifying network nodes and inferring the func-
tional connectivity between nodes. The network nodes are of-
ten defined as anatomically separated brain regions of interest
(ROIs) or alternatively as latent components in some data-driven
methods, e.g., independent component analysis [11], [12], and
clustering-based methods [13], [14]. Given a set of network
nodes, the functional connectivity between two nodes is conven-
tionally measured by the correlation coefficient of time series
associated with the two nodes (e.g., the averaged time series
from all voxels within a node) [15]–[17], and the brain network
is then represented by a correlation matrix.

However, it has been argued that partial correlation could be
a better choice since it measures the correlation of two nodes
by regressing out the effects from all other nodes [18]. This
often results in a more accurate estimate of network structure
in comparison with those correlation-based methods. Sparse
inverse covariance estimation (SICE) is a principled method
for partial correlation estimation, which often produces a stable
estimation with the help of the sparsity regularization [19]. The
result of SICE is an inverse covariance matrix, and each of
its off-diagonal entries indicates the partial correlation between
two nodes. It has been widely used to model functional brain
connectivity in [20]–[22]. For brevity, we call it “SICE matrix”
throughout this paper.

SICE matrices can be used as a representation to classify brain
networks. A direct approach could be to vectorize each SICE
matrix into a feature vector, as in [16]. However, when using it
to train a classifier to separate AD from normal controls (NC),
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the problem of “the curse of dimensionality” arises since the
dimensionality of the vector (at the order of d × d1 for a network
with d nodes, for example, d = 90 in our study) is usually much
larger than the number of training subjects, which is often only
tens for each class. This usually leads to poor performance
of classification. An alternative approach is to summarize a
d × d SICE matrix into lower dimensional graphical features,
such as local clustering coefficient (LCC) [17] or hubs [23].
Nevertheless, these approaches have the risk of losing useful
information contained in the SICE matrices. This paper aims to
address the high dimensionality issue of these SICE matrices by
extracting compact representation for classification.

As an inverse covariance matrix, an SICE matrix is symmetric
positive definite (SPD). This inherent property restricts SICE
matrices to a lower dimensional Riemannian manifold rather
than the full d × d dimensional Euclidean space. In medical
image analysis, the concept of Riemannian manifold has been
widely used for DTI analysis [24], shape statistics [25], and
functional-connectivity detection [6]. Moreover, considering the
fact that brain connectivity patterns are specific and generally
similar across different subjects, the SICE matrices representing
the brain connectivity should concentrate on an even smaller
subset of this manifold. In other words, the intrinsic degree of
freedom of these SICE matrices shall be much lower than the
apparent dimensions of d × d. These two factors motivate us to
seek a compact representation that better reflects the underlying
distribution of the SICE matrices.

Principal component analysis (PCA), the commonly used un-
supervised dimensionality reduction method, is a natural op-
tion for this task. However, a linear PCA is not expected to
work well for manifold-constrained SICE matrices. Recently,
advances have been made on measuring the similarity of SPD
matrices considering the underlying manifold that they reside.
In particular, a set of SPD kernels, e.g., Stein kernel [26] and
Log-Euclidean kernel [27], have been proposed with promising
applications [28], [29]. These kernels implicitly embed the Rie-
mannian manifold of SPD matrices to a kernel-induced feature
space F . They offer better measure than their counterparts in
Euclidean spaces and require less computation than Riemannian
metric, as detailed in [26]. In this paper, we take advantage of
these kernels to conduct a SPD-kernel-based PCA. This pro-
vides two advantages: 1) It produces a compact representation
that can mitigate the curse of dimensionality and, thus, improves
classification. 2) The extracted leading eigenvectors in F can
reveal the intrinsic structure of the SICE matrices and, hence,
assist brain network analysis.

While our approach introduced above could significantly im-
prove the classification accuracy, another problem arises: how
to interpret the obtained compact representation anatomically,
or more specifically, can we visualize the principal connectivity
components identified by a SPD-kernel PCA? This is important
in neuroimage analysis, as it could possibly help to reveal the
disease mechanisms behind. Since SPD-kernel PCA is implic-
itly carried out in the kernel-induced feature space F , the ex-

1To be precise, the dimensionality of the vector is d (d−1)
2 because the SICE

matrix is symmetric and its diagonal entries are not used.

tracted eigenvectors inF are not explicitly known and, therefore,
cannot be readily used for anatomical analysis. A kernel preim-
age method has to be employed to recover these eigenvectors in
the original input space. However, estimating the preimages of
an object in F is challenging. Existing preimage methods [30],
[31] require the knowledge of an explicit distance mapping be-
tween an input space and the feature space F . Unfortunately,
such an explicit distance mapping is intractable for SPD ker-
nels and, thus, the existing preimage methods cannot be applied
to our case. To solve this problem, we further propose a novel
preimage method for the SPD kernels and use it to gain insight
into SICE-based brain network analysis.

To verify our approach, we conduct an extensive experimen-
tal study on both synthetic dataset and rs-fMRI data from the
benchmark dataset ADNI.2 As will be seen, the results well
demonstrate the effectiveness and advantages of our method.
Specifically, the proposed compact representation obtained via
the SPD-kernel PCA achieves superior classification perfor-
mance to that from linear PCA and the graphical feature LCC.
Also, the proposed preimage method can effectively recover in
the original input space the principal connectivity components
identified in a feature space and enables the visualization and
anatomical analysis of these components.

In addition, we would like to point out that besides SICE
matrices, the proposed method can be seamlessly applied to the
correlation matrices previously mentioned, because they are also
SPD. We focus on SICE matrices in this paper because SICE
matrices model the partial correlations, which enjoy theoretical
advantages, and generally admit more stable connectivity in
comparison with correlation [32].

This paper is an significant extension of our previous work re-
ported in a workshop paper [33]. The extension is made in three
aspects: 1) More SPD kernels are investigated in this version. As
demonstrated, different SPD kernels consistently achieve supe-
rior classification performance, which indicates the generality
of the proposed method; 2) new experiments are conducted on a
specifically designed synthetic data to show the characteristics
of the proposed preimage method and its effectiveness; 3) in
addition to the k-nearest neighbor (k-NN) classifier, this ver-
sion includes support vector machines (SVM) as a classifier to
evaluate the classification performance.

The rest of the paper is organized as follows. Section II re-
views the SICE algorithm and the manifold structure of SPD
matrices. Section III details the proposed SPD-kernel PCA and
the preimage method. Section IV presents the experimental re-
sults on synthetic and real rs-fMRI datasets, and finally, Section
V concludes this paper.

II. RELATED WORK

A. Constructing Brain Network Using SICE

Let {x1 ,x2 , . . . ,xM } be a time series of length M , where xi

is a d-dimensional vector, corresponding to an observation of d
brain nodes. Following the literature of SICE [19], [21], xi is

2http://adni.loni.usc.edu.
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Fig. 1. Illustration of the Riemannian manifold of SPD matrices. (a) Sym+
d

forms a closed, self-dual convex cone, which is a Riemannian manifold in the
Euclidean space Rd×d [26]. (b) To measure the distance between two SICE
matrices A and B, Euclidean distance is not accurate since it does not consider
the special geometry of the manifold structure. Instead, geodesic distance, which
is defined as the shortest curve connecting A and B on the manifold, is more
accurate.

assumed to follow a Gaussian distribution N (μ,Σ). Each off-
diagonal entry of Σ−1 indicates the partial correlation between
two nodes by eliminating the effect of all other nodes. Σ−1

ij will
be zero if nodes i and j are independent of each other when
conditioned on the other nodes. In this sense, Σ−1

ij can be inter-
preted as the existence and strength of the connectivity between
nodes i and j. The estimation of S = Σ−1 can be obtained by
maximizing the penalized log-likelihood over positive definite
matrix S (S � 0) [19], [21]:

S∗ = arg max
S�0

log
(
det(S)

)
− tr(CS) − λ||S||1 (1)

where C is the sample-based covariance matrix; det(·), tr(·),
and || · ||1 denote the determinant, trace, and the sum of the
absolute values of the entries of a matrix. ||S||1 imposes sparsity
on S to achieve more reliable estimation by considering the fact
that a brain region often has limited direct connections with other
brain regions in neurological activities. The tradeoff between
the degree of sparsity and the log-likelihood estimation of S is
controlled by the regularization parameter λ. Larger λ makes S∗

more sparse. The maximization problem in (1) can be efficiently
solved by the off-the-shelf packages, such as SLEP [34].

B. SPD Matrices

The resulting SICE matrix S∗ obtained by (1) is SPD since it
is an estimation of inverse covariance matrix. Let Sym+

d denotes
the d × d SPD matrices set: Sym+

d = {A|A = A� ∀x ∈
Rd ,x �= 0,x�Ax > 0}.

As illustrated in Fig. 1(a), Sym+
d forms a closed self-dual

convex cone, which is a Riemannian manifold in the Euclidean
space Rd×d [26]. To effectively measure the similarity between
two SICE matrices, as in Fig. 1(b), methods that respect the
geodesic distance rather than Euclidean distance should be used
[27]. To directly measure the geodesic distance for SPD matrices
on the manifold, affine-invariant Riemannian metrics (AIRMs)
were proposed in [35] and [24]. However, there are two issues:
1) The computational cost of AIRMs is high because it inten-
sively uses matrix inverse, square roots, and logarithms [27],
[28]; 2) more importantly, the linear algorithms, e.g., SVM, that

are developed in Euclidean spaces cannot be directly applied
to SPD matrices lying on a manifold [29]. To address these
issues, kernel method [26], [27], has been adopted to measure
the similarity between SPD matrices. It measures the similar-
ity by implicitly mapping the Riemannian manifold of SPD
matrices onto a high-dimensional kernel-induced feature space
F , where linear algorithms can be generalized. The manifold
structure is well incorporated in the mapping by utilizing dis-
tance functions that are specially designed for SPD matrices.
Also, kernel methods are often computationally more efficient
than AIRMs because the intensive use of matrix inverse, square
roots, and logarithms in AIRMs can be avoided or reduced [27].

III. PROPOSED METHOD

A. SICE Representation Using SPD-Kernel Based PCA

In spite of individual variation, human brains do share com-
mon specific connectivity patterns across different subjects.
Therefore, the SICE matrices used to represent brain networks
shall have similar structures across subjects. This makes them be
further restricted into a small subset of the Riemannian manifold
of SPD matrices, with a limited degree of freedom. Inspired by
this observation, we aim to extract a compact representation of
these SICE matrices for better classification and analysis. PCA
is a commonly used technique to generate a compact represen-
tation of data by exploring a subspace that can best represent the
data. Therefore, PCA is a natural choice for our task. However,
linear PCA is not expected to work well for the SICE matrices
because it does not consider the manifold structure. Conse-
quently, we adopt kernel PCA [37] and integrate SPD kernels
for similarity measure. This effectively accounts for the mani-
fold structure of SICE matrices when exploring the subspace of
the data. Our method is elaborated as follows.

The SICE method is applied to N subjects to obtain a train-
ing set {S1 ,S2 , . . . ,SN } ⊂ Sym+

d , where Si is the SICE ma-
trix for the ith subject. We define the kernel mapping Φ(·):
Sym+

d 	→ F , which cannot be explicitly solved but implicitly
induced by a given SPD kernel. As an extension of PCA, ker-
nel PCA generalizes linear PCA to a kernel-induced feature
space F . For the self-containedness of this paper, we briefly
describe Kernel PCA as follows and the details can be found
in [37]. Without loss of generality, it is assumed that Φ(Si) is
centered, i.e.,

∑N
i=1 Φ(Si) = 0, and as in [37], this can be eas-

ily achieved by simple computation with kernel matrix. Then,
a N × N kernel matrix K can be obtained with each entry
Kij = 〈Φ(Si),Φ(Sj )〉 = k(Si ,Sj ). Kernel PCA first performs
the eigen decomposition on the kernel matrix: K = UΛU�.
The ith column of U, denoted by ui , corresponds to the ith
eigenvector, and Λ = diag( λ1 , λ2 , . . . , λN ), where λi corre-
sponds to the ith eigenvalue in a descending order. Let ΣΦ
denote the covariance matrix computed by {Φ(Si)}N

i=1 in F .
The ith eigenvector of ΣΦ can be expressed as

vi =
1√
λi

Φui (2)

where Φ = [Φ(S1), Φ(S2), . . . , Φ(SN )]. Analogous to linear
PCA, for a given SICE matrixS, Φ(S) can then be projected onto
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the top m eigenvectors to obtain an m-dimensional principal
component vector

α = V�
m Φ(S)

where Vm = [v1 ,v2 , . . . ,vm ]. Note that the ith component of
α, denoted by αi , is v�

i Φ(S). With the kernel trick, it can be
computed as

αi = v�
i Φ(S) =

1√
λi

u�
i Φ�Φ(S) =

1√
λi

u�
i kS (3)

where kS = [k(S,S1), k(S,S2), . . . , k(S,SN )]�. Once α is
obtained as a new representation for each SICE matrix, an SVM
or k-NN classifier can be trained on α with class labels.

In this paper, we study four commonly used SPD kernels,
namely, Cholesky kernel (CHK) [29], power Euclidean kernel
(PEK) [29], Log-Euclidean kernel (LEK) [27], and Stein kernel
(SK) [26]. The four kernels are all in a form of

k(Si ,Sj ) = exp
(
− θ · d2(Si ,Sj )

)
(4)

where d(·, ·) is a kind of distance between two SPD matrices.
Different definitions of d(·, ·) lead to different kernels, and the
distance functions in the four kernels are Cholesky distance [36],
power Euclidean distance [36], Log-Euclidean distance [27],
and root Stein divergence [26], respectively. They are introduced
as follows.

1) Cholesky Distance: Cholesky distance measures the dif-
ference between Si and Sj by

d(Si ,Sj ) = ||(Si) − (Sj )||F (5)

where (S) is a lower triangular matrix with positive diagonal
entries obtained by the Cholesky decomposition of S, that is,
S = (S)(S)� and || · ||F denotes the Frobenius matrix norm.

2) Power Euclidean Distance: Power Euclidean distance be-
tween Si and Sj is given by

d(Si ,Sj ) =
1
p
||Sp

i − Sp
j ||F (6)

where p ∈ R. Note that S, as a SPD matrix, can be eigen de-
composed as S = UΛU�, and Sp can be easily computed by
Sp = UΛpU�. In this paper, we set p = 0.5 since it achieves
the best result in the literature [29], [36] and our experiments.

3) Log-Euclidean Distance: Log-Euclidean distance is de-
fined as

d(Si ,Sj ) = || log(Si) − log(Sj )||F (7)

where log(S) = U log(Λ)U� and log(Λ) applies logarithm to
each diagonal element of Λ to obtain a new diagonal matrix.

4) Root Stein Divergence: Root Stein divergence is the
square root of Stein divergence, which is defined as

d(Si ,Sj )=
[
log

(
det

(
Si + Sj

2

))
− 1

2
log

(
det(SiSj )

)
] 1

2

.

(8)
With root Stein divergence as the distance function, the θ in
k(Si ,Sj ) = exp

(
− θ · d2(Si ,Sj )

)
is a positive scalar within

the range of { 1
2 , 2

2 , 3
2 , . . . , (d−1)

2 } ∪ ( (d−1)
2 ,+∞) to guarantee

SK to be a Mercer kernel [26].

The four distance functions and the corresponding kernels
are summarized in Table I. They will be applied to SPD-kernel
PCA to produce the principal component vector α.

B. Preimage Estimation

As will be shown in the experimental study, the principal
components α extracted by the above SPD-kernel PCA offer
promising classification performance. Note that α is fundamen-
tally determined by the m leading eigenvectors v1 , . . . ,vm ,
which capture the underlying structure of SICE matrices and can
be deemed as the building blocks of this representation of brain
connectivity. Therefore, analyzing these eigenvectors is impor-
tant for the understanding and interpretation of the obtained
principal connectivity patterns. However, the eigenvectors are
derived in F via the implicit kernel mapping Φ(·) and, thus, are
not readily used for analysis in the input space Sym+

d . To tackle
this issue, we aim to develop a method that can project a data-
point in the subspace spanned by the m leading eigenvectors in
F back to the input space. This will allow the visualization of
the principal connectivity patterns in the input space for inter-
pretation. This is known as the “preimage” problem of kernel
methods in the literature [30], [31], [38]. Unfortunately, exist-
ing preimage methods, such as those in [30] and [31], cannot be
applied to our case, because they require an explicit mapping
between the Euclidean distance in F and the Euclidean distance
in the input space, which is unavailable when the SPD kernels
are used. In the following, we develop a novel preimage method
for the SPD kernels to address this issue.

Let Φm (S) denote the projection of Φ(S) into the subspace
spanned by the m leading eigenvectors in F , that is

Φm (S) =
m∑

i=1

αivi =
m∑

i=1

1√
λi

u�
i kS · 1√

λi

Φui

=
m∑

i=1

[
k�

S
1
λi

ui · u�
i Φ�

]�
= ΦMkS

(9)

where M =
∑m

i=1
1
λi

uiu�
i and recall Φ = [Φ(S1), Φ(S2), . . . ,

Φ(SN )] and kS = [k(S,S1), k(S,S2), . . . , k(S,SN )]�. Our
aim is to find a preimage Ŝ in the original input space (that
is, Sym+

d ) which best satisfies Φ(Ŝ) = Φm (S). Considering the
fact that Riemannian manifold is locally homeomorphic with a
Euclidean space [39], we model Ŝ by a linear combination3 of
its neighboring SICE matrices in Sym+

d . Similar to the work in
[30], we assume that if Si and Sj are close in Sym+

d , then Φ(Si)
and Φ(Sj ) shall also be close in F . With this assumption, we
can obtain the neighbors of Ŝ in Sym+

d by finding the neighbors
of Φm (S) in F .

Specifically, Ŝ is estimated as follows. First, we find a set of
NN Ω = {Sj}L

j=1 for Ŝ from a training set {Si}N
i=1 by sorting

3Using linear combination of neighbors may restrict the search space of
preimage and could affect the reconstruction accuracy. Here, we use it for three
reasons: 1) our experiment on synthetic data (with ground truth) has demon-
strated good reconstruction result; ii) using linear combination can significantly
simplify the optimization problem of preimage estimation; iii) by using linear
combination of neighbors, we can better enforce the constructed preimage to
follow the underlying distribution of training samples.
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TABLE I
DEFINITION AND PROPERTIES OF DISTANCE FUNCTIONS ON Sym+

d

Distance name Formula Range of θ in k = exp(−θ · d2 ) to define a valid kernel Kernel abbr. in the paper

Cholesky [36] d = ||(S1 ) − (S2 )||F R+ CHK

Power-Euclidean [36] d = 1
p ||Sp

1 − Sp
2 ||F R+ PEK

Log-Euclidean [27] d = || log(S1 ) − log(S2 )||F R+ LEK

S-Divergence root [26] d =
[
log

(
det

(
S 1 + S 2

2

))
− 1

2 log (det(S1 S2 ))
] 1

2
θ ∈

{
1
2 , 2

2 , 3
2 , . . . ,

(d −1 )
2

}
∪

(
(d −1 )

2 , +∞
)

SK

the following distance:

d2(Φm (S),Φ(Si))

� ||Φm (S) − Φ(Si)||2

= ||Φm (S)||2 + ||Φ(Si)||2 − 2Φm (S)�Φ(Si)

=

(
m∑

i=1

αivi

)� (
m∑

i=1

αivi

)

+ k(Si ,Si)

− 2 (ΦMkS)� Φ(Si)

=
m∑

i=1

α2
i + k(Si ,Si) − 2k�

SMΦ�Φ(Si)

[By applying Eq.(3)]

= (k�
S − 2k�

S i
)MkS + k(Si ,Si). (10)

This distance can be easily computed because it is fully repre-
sented by the kernel functions.

Second, we model the preimage Ŝ by a convex (linear) com-
bination of its neighbors as

Ŝ =
L∑

j=1

wjSj (11)

where Sj ∈ Ω, wj ≥ 0, and
∑L

j=1 wj = 1. This convex com-

bination guarantees the SPD of Ŝ and also makes it be
effectively constrained by its L neighbors. Defining w =
[w1 , w2 , . . . , wL ]�, we seek the optimal w by solving

w∗ = arg min
w≥0;w�1=1

d2

⎛

⎝Φm (S),Φ

⎛

⎝
∑

Sj ∈Ω

wjSj

⎞

⎠

⎞

⎠ (12)

where d2
(
Φm (S),Φ(

∑
Sj ∈Ω wjSj )

)
= d2(Φm (S),Φ(Ŝ)) =

(k�
S − 2k�

Ŝ
)MkS + k(Ŝ, Ŝ) by applying (10) and (11). This

optimization problem can be efficiently solved using gradient
descent based algorithms. Note that (12) can be used to com-
pute the preimage of any datapoint Φm (S) in F . In addition,
when estimating the preimage of a specific eigenvector vi , we
can simply set Φm (S) as vi and solve the same optimization

problem in (12). In this case, the objective function reduces to

d2(vi ,Φ(Si)) = ||vi − Φ(Si)||2

= ||vi ||2 + ||Φ(Si)||2 − 2v�
i Φ(Si)

= 1 + k(Si ,Si) − 2
(

1√
λi

Φui

)�
Φ(Si)

= 1 + k(Si ,Si) −
2√
λi

u�
i kS i

.

(13)

Algorithm 1 outlines the proposed preimage algorithm.

Algorithm 1: Preimage estimation for Φm (S) in F
Input: A training set {Si}N

i=1 , test data S, m;
Output: Preimage Ŝ

1: Find a set of L neighbors Ω = {Sj}L
j=1 for Ŝ by sorting

d2(Φm (S),Φ(Si)), i = 1, · · · , N , according to (10);
2: Solve (14) to obtain w∗:
w∗ = arg minw≥0;w�1=1 d2(Φm (S),Φ(

∑
Sj ∈Ω wjSj ));

3: return Ŝ =
∑L

j=1 wjSj .

IV. EXPERIMENTAL STUDY

A. Data Preprocessing and Experimental Settings

Rs-fMRI data of 196 subjects were downloaded from the
ADNI website4 in June 2013. Nine subjects were discarded
due to the corruption of data, and the remaining 187 subjects
were preprocessed for analysis. After removing subjects that
had problems in the preprocessing steps, such as large head mo-
tion, 156 subjects were kept, including 26 AD, 44 early MCI, 38
late MCI, 38 NC, and ten significant memory concern labeled
by ADNI. We used the 38 NC and the 44 early MCI in this paper
because our focus in this paper is to identify MCI at very early
stage, which is the most challenging and significant task in AD
prediction. The IDs of the 82 (38 NC and 44 early MCI) sub-
jects are provided in the supplementary material. The data are
acquired on a 3-T (Philips) scanner with TR/TE set as 3000/30

4http://adni.loni.usc.edu.
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TABLE II
CLASSIFICATION ACCURACY (IN %) BY DIRECTLY USING SICE/SLR MATRICES AS FEATURES

Linear kernel (vectorized [16]) LEK (proposed) SK (proposed) CHK (proposed) PEK (proposed)

k -NN SVM k -NN SVM k -NN SVM k -NN SVM k -NN SVM
SLR [17] 53.7 52.4 NA NA NA NA NA NA NA NA
SICE 57.3 57.3 61.0 61.0 63.4 64.6 61.0 62.2 61.0 65.9

ms and flip angle of 80◦. Each series has 140 volumes, and each
volume consists of 48 slices of image matrices with dimensions
64 × 64 with voxel size of 3.31 × 3.31 × 3.31 mm3 . The pre-
processing is carried out using SPM85 and DPARSFA [40]. The
first ten volumes of each series are discarded for signal equi-
librium. Slice timing, head motion correction, and MNI space
normalization are performed. Participants with too much head
motion are excluded. The normalized brain images are warped
into automatic anatomical labeling (AAL) [41] atlas to obtain
90 ROIs as nodes. By following common practice [15]–[17], the
ROI mean time series are extracted by averaging the time series
from all voxels within each ROI and then bandpass filtered to
obtain multiple subbands as in [17].

The functional connectivity networks of 82 participants are
obtained by the SICE method using SLEP [34], with the spar-
sity levels of λ = [0.1 : 0.1 : 0.9]. For comparison, constrained
sparse linear regression (SLR) [17] is also used to learn func-
tional connectivity networks with the same setting. Functional
connectivity networks constructed by SICE and SLR are called
“SICE matrices” and “SLR matrices,” respectively. To make full
use of the limited subjects, a leave-one-out procedure is used for
training and test. That is, each sample is reserved for test in turn,
while the remaining samples are used for training. Both SVM
and k-NN are used as the classifier to compare the classifica-
tion accuracy of different methods. The parameters used in the
following classification tasks of this rs-fMRI dataset, including
the sparsity level λ, the subband of the time series, the number
of eigenvectors m, and the regularization parameter of SVM are
tuned by fivefold cross validation on the training set. θ in all the
four SPD kernels is empirically set as 0.5, and the k of k-NN is
set as 7.

B. Experimental Result

The experiment consists of three parts: 1) Evaluating the
classification performance when the original SICE or SLR ma-
trices are used as the features; 2) evaluating the classification
performance when the compact representation of SICE or SLR
matrices is used as the features; 3) investigating the effectiveness
of the proposed preimage method.

1) Classification Using Original SICE or SLR Matrices: By
applying the SICE or SLR method to the rs-fMRI data, we can
obtain the SICE or SLR matrices as the representation of brain
networks. These matrices can be directly used as features to
train a classifier. A straightforward way is to vectorize the ma-
trices into high-dimensional vectors as features as in [16], which
are then used to train a linear SVM or k-NN with linear kernel

5http://www.fil.ion.ucl.ac.uk/spm/software/.

as the similarity measure to search NN to perform classifica-
tion. Note that linear kernel is Euclidean distance-based simi-
larity measure. As shown in the second and third columns in
Table II (labeled by “linear kernel”), this method produces poor
classification performance (lower than 60%) on both SICE and
SLR matrices, be it k-NN or linear SVM is used as the classi-
fier. Specifically, it only achieves 53.7% for the k-NN classifier
using SLR matrices. When SICE matrices are used, the clas-
sification performance is only 57.3% too. The result does not
change much when a linear SVM is used. The poor classifica-
tion performance of this method is largely due to two issues: 1)
The vectorization ignores the underlying structure of SICE ma-
trices, and the linear kernel in SVM and in the k-NN classifier
cannot effectively evaluate their similarity and distance; and 2)
the “small sample size” problem occurs because the dimension-
ality of the resulting feature vectors is high, while the training
samples are limited.

In order to effectively consider the manifold geometry of
SICE matrices, we employ the four aforementioned SPD ker-
nels to evaluate the similarity between SICE matrices and adopt
k-NN and SVM classifiers with these kernels to perform clas-
sification. As seen in the columns under “LEK,” “SK,” “CHK,”
“PEK” in Table II, the classification accuracy with respect to
each SPD kernel is above 60%, which clearly outperforms that
of their linear counterparts. In particular, PEK obtains 65.9%
with SVM as the classifier, achieving an improvement of 8.6
percentage points over linear SVM. This well verifies the im-
portance of considering the manifold structure of SICE matrices
for the classification. Note that because SLR matrices are not
necessarily SPD, the SPD kernels cannot be applied. There-
fore, no classification result is reported in the row of “SLR” in
Table II.

2) Classification Using the Compact Representation: In this
experiment, we compare the classification performance of the
compact representation obtained by the proposed SPD-kernel
PCA, linear PCA, and the method computing LCC [17]. LCC,
as a measure of local neighborhood connectivity for a node, is
defined as the ratio of the number of existing edges between
the neighbors of the node and the number of potential con-
nections between these neighbors [42]. In this case, LCC can
map a network, represented by a d × d adjacency matrix, to a
d-dimensional vector, where d is the number of nodes in the
network.

Table III shows the classification results when using the com-
pact representation of SICE or SLR matrices using k-NN with
Euclidean distance and linear kernel SVM. LCC achieves 65.9%
for both SICE and SLR matrices with k-NN as the classifier.
It is better than the result (53.7% and 57.3% in the second
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TABLE III
CLASSIFICATION ACCURACY (IN %) OF COMPACT REPRESENTATION ON SICE/SLR MATRICES

LCC Linear PCA LEK PCA (proposed) SK PCA (proposed) CHK PCA (proposed) PEK PCA (proposed)

k -NN SVM k -NN SVM k -NN SVM k -NN SVM k -NN SVM k -NN SVM
SLR [17] 65.9 64.6 67.1 65.9 NA NA NA NA NA NA NA NA
SICE 65.9 63.4 67.1 68.3 69.5 69.5 72 73.2 68.3 70.7 72 73.2

TABLE IV
CLASSIFICATION ACCURACY (IN %) BY USING ORIGINAL SICE/SLR MATRICES AND PREIMAGES OF Φm (S) WITH k-NN

SLR [17] SICE Preimages of SICE
(LEK, proposed)

Preimages of SICE
(SK, proposed)

Preimages of SICE
(CHK, proposed)

Preimages of SICE
(PEK, proposed)

Linear kernel 53.7 57.3 68.3 67.1 63.4 63.4
LCC 65.9 65.9 67.1 67.1 64.6 68.3

column of Table II) of directly using the original matrices, and
is comparable to the result (65.9%) of applying PEK-SVM, the
best one obtained in Table II. When linear PCA is applied to the
vectorized SICE or SLR matrices to extract the top m principal
components as features, the classification accuracy increases
to 67.1% for both SICE and SLR matrices. This performance
is better than LCC and all the methods in Table II. Such a
result indicates the power of compact representation and also
preliminarily justifies our idea of exploring the lower intrinsic
dimensions of the SICE matrices. By further taking the SPD
property into account and using the proposed SPD-kernel PCA
to extract the compact representation, the classification accu-
racy is significantly boosted up to 73.2% for both SK-PCA and
PEK-PCA, with SVM as the classifier. This achieves an im-
provement of 4.9 percentage points (73.2% versus 68.3%) over
linear PCA and 7.3 percentage points (73.2% versus 65.9%)
over LCC. These results well demonstrate that: 1) The obtained
compact representation can effectively improve the generaliza-
tion of the classifier in the case of limited training samples. 2)
It is important to consider the manifold property of SICE ma-
trices in order to obtain better compact representation. Cross
referencing the SICE results in Tables II and III, SPD-kernel
PCA achieves the best classification performance, i.e., 73.2%,
obtaining an improvement of 15.9 percentage points over the
linear kernel method (57.3%, in Table II).

3) Investigating the Proposed Preimage Method: The two
goals of the preimage method, which is shown in Algorithm 1,
is to estimate the preimage of 1) Φm (S), which is the projection
of Φ(S) into the m leading eigenvectors in F and 2) one single
eigenvector vi of SPD-kernel PCA in F .

The motivation of the first goal to recover the preimage of
Φm (S) is inspired by the property of PCA. It is known that
projecting data into the m leading eigenvectors discards the
minor components, which often correspond to the data noise.
Therefore, when an SICE matrixS is contaminated by noise (and
it makes Φ(S) noisy), Φm (S) can be regarded as a “denoised”
version of Φ(S). As a result, if the proposed preimage method

really works, the recovered preimage shall be closer to the true
inverse covariance matrix than S is. In the literature, such a
property has been extensively used for data and image denoising
[43].

The proposed preimage method is performed on the real rs-
fMRI data. Here, we aim to investigate if the preimages can
boost the classification performance in comparison with the
original SICE matrices based on the assumption that the preim-
age of Φm (S) can bring some kind of denoising effect. We
first estimate the preimages of Φm (Si), Si ∈ {Si}82

i=1 and redo
classification using two methods: 1) Linear kernel method. As
what we did in the second column of Table II, k-NN classi-
fier is directly applied to the obtained preimages with linear
kernel as the similarity measure; ii) LCC method. As what we
did in the second column of Table III, LCC is extracted as a
feature from the obtained preimages and apply k-NN classi-
fier to LCC with Euclidean distance. The number of leading
eigenvectors m is selected by cross validation from the range
of [1 : 5 : 80] on the training set while the number of neighbors
L is empirically set as 20. In our experiment, we observe that
1) A larger L will make the optimization significantly more
time consuming, while the performance of the method remains
similar; 2) the selected value of m is usually in the range of
[15–35].

Table IV shows the classification result on the preimages of
Φm (Si), Si ∈ {Si}82

i=1 , obtained on the real rs-fMRI data. The
classification performance with the preimages when SK, LEK,
and PEK are used can consistently outperform the classification
performance with original SICE or SLR matrices using either
linear kernel method or LCC method. Specifically, the perfor-
mance of linear kernel method on SICE matrices is boosted to
68.3% (the fourth column, with preimages when LEK is used)
from 57.3% (the third column). We believe that the improvement
is due to that, by estimating the preimages of Φm (Si) in F ,
the resulting matrices are more reliable than the original SICE
matrices.
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Fig. 2. Top two eigenvectors extracted in linear PCA (The first row), CHK PCA (The second row), PEK PCA (The third row), LEK PCA (The fourth row), and
LEK PCA (The fifth row). (a) Eigenvector 1 of linear PCA. (b) Eigenvector 2 of linear PCA. (c) Eigenvector 1 of CHK PCA. (d) Eigenvector 2 of CHK PCA.
(e) Eigenvector 1 of PEK PCA. (f) Eigenvector 2 of PEK PCA. (g) Eigenvector 1 of LEK PCA. (h) Eigenvector 2 of LEK PCA. (i) Eigenvector 1 of SK PCA. (j)
Eigenvector 2 of SK PCA.
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TABLE V
NAME AND LOBE OF EACH ROI IN FIG. 2

Lobe ROI index ROI name ROI index ROI name

frontal 1 Frontal_Sup_L 2 Frontal_Sup_R
3 Frontal_Sup_Orb_L 4 Frontal_Sup_Orb_R
5 Frontal_Mid_L 6 Frontal_Mid_R
7 Frontal_Mid_Orb_L 8 Frontal_Mid_Orb_R
9 Frontal_Inf_Oper_L 10 Frontal_Inf_Oper_R

11 Frontal_Inf_Tri_L 12 Frontal_Inf_Tri_R
13 Frontal_Inf_Orb_L 14 Frontal_Inf_Orb_R
15 Supp_Motor_Area_L 16 Supp_Motor_Area_R
17 Olfactory_L 18 Olfactory_R
19 Frontal_Sup_Medial_L 20 Frontal_Sup_Medial_R
21 Frontal_Mid_Orb_L 22 Frontal_Mid_Orb_R
23 Rectus_L 24 Rectus_R
25 Paracentral_Lobule_L 26 Paracentral_Lobule_R

parietal 27 Parietal_Sup_L 28 Parietal_Sup_R
29 Parietal_Inf_L 30 Parietal_Inf_R
31 SupraMarginal_L 32 SupraMarginal_R
33 Angular_L 34 Angular_R
35 Precuneus_L 36 Precuneus_R

occipital 37 Calcarine_L 38 Calcarine_R
39 Cuneus_L 40 Cuneus_R
41 Lingual_L 42 Lingual_R
43 Occipital_Sup_L 44 Occipital_Sup_R
45 Occipital_Mid_L 46 Occipital_Mid_R
47 Occipital_Inf_L 48 Occipital_Inf_R
49 Fusiform_L 50 Fusiform_R

temporal 51 Heschl_L 52 Heschl_R
53 Temporal_Sup_L 54 Temporal_Sup_R
55 Temporal_Mid_L 56 Temporal_Mid_R
57 Temporal_Inf_L 58 Temporal_Inf_R

limbic 59 Cingulum_Ant_L 60 Cingulum_Ant_R
61 Cingulum_Mid_L 62 Cingulum_Mid_R
63 Cingulum_Post_L 64 Cingulum_Post_R
65 Hippocampus_L 66 Hippocampus_R
67 ParaHippocampal_L 68 ParaHippocampal_R
69 Temporal_Pole_Sup_L 70 Temporal_Pole_Sup_R
71 Temporal_Pole_Mid_L 72 Temporal_Pole_Mid_R

insula 73 Insula_L 74 Insula_R
sub cortical 75 Amygdala_L 76 Amygdala_R

77 Caudate_L 78 Caudate_R
79 Putamen_L 80 Putamen_R
81 Pallidum_L 82 Pallidum_R
83 Thalamus_L 84 Thalamus_R

central 85 Precentral_L 86 Precentral_R
87 Rolandic_Oper_L 88 Rolandic_Oper_R
89 Postcentral_L 90 Postcentral_R

Recall that the leading eigenvectors vi inF capture the under-
lying structure of SICE matrices and can be deemed as the build-
ing blocks of the representation for brain connectivity. Thus, we
estimate the preimage of top eigenvectors vi in F for anatom-
ical analysis. In this experiment, the preimages of the top two
eigenvectors, which pose the most significant variance of SICE
matrices in F , are visualized in Fig. 2. The lobe, index, and
name of each ROI in AAL [41] atlas are listed in Table V. We
observe that: 1) compared with the eigenvectors in linear PCA,
the eigenvectors obtained in the SPD-kernel PCA capture richer
connection structures. Specifically, as seen from Fig. 2(a), the
first eigenvector in linear PCA only presents very weak intralobe
connections in frontal and occipital lobes. In contrast, the first
eigenvector obtained by each of the SPD-kernel PCA well cap-
tures the intralobe connections in all the lobes. Especially, as in-
dicated in Fig. 2(c), (e), (g), and (i), there are strong connections

at orbitofrontal cortex ( ROI index: 8, 19–22), rectus gyrus (23,
24), occipital gyrus (43–48), temporal gyri (53–58), hippocam-
pus (65–66), and temporal pole (69–72). Respecting the second
eigenvector, the eigenvectors obtained by the SPD-kernels PCA
[see Fig. 2(d), (f), (h), and (j)] incorporate both intralobe and
inter-lobe connections while the eigenvector in linear PCA [see
Fig. 2(b)] mainly captures only intraobe connections in occipi-
tal lobe; 2) the preimages obtained when different SPD kernels
are used, as seen in Fig. 2(c)–(j), are very similar with each
other with slight variation. This is expected since they all reflect
the underlying manifold structure of SICE matrices. Further ex-
ploration of their clinical interpretation will be included in our
future work.

C. Evaluation of the Preimage Method Using Synthetic Data

To further investigate the efficacy of the proposed preimage
method, a synthetic dataset is specially designed for evaluation.
The synthetic dataset is used for two purposes: 1) It allows the
comparison between the recovered preimage of Φm (·) and the
ground truth inverse covariance matrix, which is not available
for real rs-fMRI data; ii) by adjusting the parameters used to gen-
erate the synthetic data, the behavior of the proposed preimage
method can be demonstrated. The synthetic data are generated
by mimicking the following data generation process in practice.

1) Generate a set of 82 covariance matrices of the size of 90 ×
90, by sampling a Wishart distribution6 [44]. Let Σi(i =
1, . . . , 82) be the ith covariance matrix and its inverse Σ−1

i

will be used as a ground truth inverse covariance matrix;
2) A set of 130 vectors are randomly sampled from each

normal distribution N (0,Σi), where i = 1, . . . , 82;
3) Gaussian noise is added to each set of 130 vectors to

simulate that the data are contaminated. The noise level is
denoted by δ;

4) A sample-based covariance matrix C is computed by us-
ing each set of the (noisy) 130 vectors and 82 covari-
ance matrices are obtained in total. They are denoted as
C1 ,C1 , . . . ,C82 ;

5) Apply the SICE method to each Ci to obtain the SICE ma-
trix, and they are collectively denoted by {Si}82

i=1 . These
SICE matrices form the synthetic dataset. Note that they
are affected by the noise added in Step 3.

From the synthetic dataset {Si}82
i=1 , every Si is selected in

turn as the test data and the remainder are used as the train-
ing set. Algorithm 1 is then applied to estimate the preim-
age Ŝi for Φm (Si). Then, the recovered preimage Ŝi and
the test data Si are compared, respectively, with the ground
truth inverse covariance matrix Σ−1

i prepared in Step 1. This
is to see whether Ŝi is really closer to Σ−1

i than Si . Fol-
lowing the literature [45], we use Kullback–Liebler (KL) di-
vergence to compare Ŝi (or Si) with Σ−1

i . Given a pair of
SPD matrices Σ1 and Σ2 , KL divergence measures the sim-
ilarity of two Gaussians N (μ1 ,Σ1) and N (μ2 ,Σ2). It can

6The Wishart distribution is used as Σi ∼ W90 (Σ0 , n), where Σ0 ∈
Sym+

90 is set as a block-wise covariance matrix for a better illustration of
the result, and n is the degree of freedom set as 1000.
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Fig. 3. Performance of the proposed preimage method on synthetic dataset. (a) Averaged KL divergence between the ground truth inverse covariance matrix
Σ−1 and the original SICE matrix S (labeled by “original”) or the preimages Ŝ when four SPD kernels are used (labeled by “CHK,” “PEK,” “LEK,” and “SK”,
respectively) at various noise levels with m and L set as 5 and 20, respectively. As indicated, the resulting KL divergence values corresponding to the four SPD
kernels are consistently smaller than KL(Σ−1 , S) at all noise levels. Moreover, the improvement of KL(Σ−1 , Ŝ) over KL(Σ−1 , S), i.e., KL(Σ−1 , S) −
KL(Σ−1 , Ŝ), becomes more significant with increase of δ. Note that the KL divergence values corresponding to the four kernels are similar and overlapped in
the figure; (b) the iImprovement of the proposed preimage method (using SK) with various number of leading eigenvectors m when L is set as 20, and (c) the
improvement of the proposed preimage method (using SK) with various number of neighbors L when m is set as 5.

Fig. 4. Illustration of the result obtained by our proposed preimage method. (a) Shows a ground truth inverse covariance matrix Σ−1 , (b) plots the original SICE
matrix S, and (c) shows the estimated preimage Ŝ of Φm (S). As seen, Ŝ is more similar to Σ−1 in comparison with S, indicating that the proposed preimage
method brings some kind of denoising effect.

be used to measure the similarity between the two SPD ma-
trices by relating them to the covariance matrices and setting
the means as zero. KL divergence in our case is expressed
as KL(Σ1 ,Σ2) = tr(Σ−1

2 Σ1) − log det(Σ−1
2 Σ1) − d, where

d is the number of network nodes. It is nonnegative and a smaller
divergence indicates that these two matrices are more similar.

The result is shown in Fig. 3. As seen in Fig. 3(a),
KL(Σ−1 , Ŝ) (averaged over all 82 test cases and with m and
L set as 5 and 20, respectively.) is consistently lower than
KL(Σ−1 ,S) for all the different noise levels and the SPD
kernels used in the kernel PCA. This result suggests that the
obtained preimage Ŝ is closer to the ground truth inverse co-
variance matrix Σ−1 in comparison with the original SICE
matrix S. Relating back to the idea that we use to design
this experiment, this result shows that the proposed preimage
method indeed works. Also, the improvement of KL(Σ−1 , Ŝ)
over KL(Σ−1 ,S), i.e., KL(Σ−1 ,S) − KL(Σ−1 , Ŝ), becomes
more significant with the increase of the noise level δ introduced
in Step 3 of the synthetic data generation process. To demon-

strate the result obtained by the proposed pe-image method, an
example is given in Fig. 4, where Fig. 4(a) shows a ground truth
inverse covariance matrix Σ−1 , Fig. 4(b) plots the estimated
SICE matrix S and Fig. 4(c) shows the preimage Ŝ of Φm (S).
As seen, Ŝ is more similar to Σ−1 in comparison with S.

As indicated in Algorithm 1, the number of leading eigen-
vectors m and the number of neighbors L are two important
parameters. We evaluate how the performance of the proposed
preimage method will change with these two parameters. SK
is taken as an example. Fig. 3(b) and (c) shows the improve-
ment, i.e., KL(Σ−1 ,S) − KL(Σ−1 , Ŝ), of our method with
different m and L, respectively. As seen in Fig. 3(b), when
L is set as constant 20, the improvement first increases with
m and then decreases, achieving the highest value when m is
five. This is because the first several leading eigenvectors vi

in F represent the dominant network structures of the network
while the following ones intend to characterize more detailed
structures which are vulnerable to noise. As a result, with the in-
creasing value of m, the components often correspond to noise.
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Therefore, when m > 5, noisy components could be included,
and this reduces the magnitude of the improvement. At the same
time, note that the improvement does consistently hold although
its magnitude is reduced. Fig. 3(c) shows that, when m is fixed
at 5, the improvement with the increase of L becomes saturated
when L = 20. This is because the constraint of

∑L
j=1 wj = 1

in Ŝ =
∑L

j=1 wjSj (11) imposes the sparsity of wj , limiting

the actual number of neighbors Sj used to estimate Ŝ. Based on
our experience, a relatively large initial number of L is recom-
mended, e.g., one fourth of the number of training samples, and
the constraint of

∑L
j=1 wj = 1 will implicitly and automatically

select a small set of Sj by setting most wj as zero.

V. CONCLUSION

Recently, SICE has been used as a representation of brain
connectivity to classify AD and NC. However, its high dimen-
sionality can adversely affect the classification performance.
Taking advantage of the SPD property of SICE matrices, we
use SPD-kernel PCA to extract principal components to obtain
a compact representation for classification. We also propose a
preimage estimation algorithm, which allows visualization and
analysis of the extracted principal connectivity patterns in the
input space. The efficacy of the proposed method is verified by
extensive experimental study on synthetic data and real rs-fMRI
data from the ADNI.

In this paper, we specifically focus on unsupervised learn-
ing to explore compact representation without using class label
information. Note that our framework can readily be extended
to supervised case, such as kernel linear discriminant analysis,
to explore discriminative representation. This will be studied in
our future work.
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