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ODVBA: Optimally-Discriminative Voxel-Based
Analysis
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Abstract—Gaussian smoothing of images prior to applying Gaussian blurring of full-width-half-max (FWHM) in the
voxel-based statistics is an important step in Voxel-Based Analysis range of 8-16mm is used to account for registration errors,
and Statistical Parametric Mapping (VBA-SPM), and is used 1 Gayssianize the data, and to integrate imaging signais fr
to account for registration errors, to Gaussianize the data, and . . .
to integrate imaging signals from a region around each voxel. N reglon, rather.tharll fro_m . sllngle voxel. The effect of this
However, it has also become a limitation of VBA-SPM based Smoothing function is critical: if the kernel is too smallrfo
methods, since it is often chosen empirically and lacks spatial the task, statistical power will be lost and large numbers
adaptivity to the shape and spatial extent of the region of interst,  of false negatives will result in missing many regions that
such as a region of atrophy or functional activity. In this paper, might present group differences in structure and function;

we propose a new framework, named Optimally-Discriminative if the k lis 00 | tatistical Iso be lost
Voxel-Based Analysis (ODVBA), for determining the optimal spa- It the kernel IS 100 large, statisucal power can also be los

tially adaptive smoothing of images, followed by applying voxel- Dy blurring image measurements from regions that display
based group analysis. In ODVBA, Nonnegative Discriminative group differences with measurements from regions that have
Projection is applied regionally to get the direction that best no group difference. In the latter case, spatial locakrais

discriminates between two groups, e.g., patients and controls; 454 seriously compromised, as significant smoothing blurs

this direction is equivalent to local filtering by an optimal kernel th t t and often leads to fal USi
whose coefficients define the optimally discriminative direction. € measurements out and often leads {o false conclusions

By considering all the neighborhoods that contain a given voxel, about the origin of a functional activation or of brain atngp
we then compose this information to produce the statistic for each Moreover, a filter that is too large, or that is not matched
voxel. Finally, permutation tests are used to obtain a statistical with the underlying group difference, will also have reddice
parametric map of group differences. ODVBA has been evaluated sensitivity in detecting group differences. As a resultu@san

using simulated data in which the ground truth is known and with thing is oft h iricall . d hoc fashi
data from an Alzheimer’s disease (AD) study. The experimental Smoothing IS often chosen empirically, or in an ad hoc fashio

results have shown that the proposed ODVBA can precisely @n obvious limitation of such VBA-SPM analyses, in part

describe the shape and location of structural abnormality. because of its heuristic nature, and in part because it @h le
Index Terms—Gaussian smoothing, Statistical Parametric (0 Overfitting of the data without proper cross-validation o

Mapping, Nonnegative Discriminative Projection, Optimally- correction for multiple comparisons.

Discriminative Voxel-Based Analysis, Voxel-Based Morphometry, However, the most profound limitation of Gaussian smooth-

Alzheimer's disease, ADNI. ing of images prior to applying the General Linear Model
(GLM) [18] is its lack of spatial adaptivity to the shape
I. INTRODUCTION and spatial extent of a structural or functional region of

OXEL-Based Analysis and Statistical Parametric Maghterest. For example, if atrophy or functional activatiorthe
ping (VBA-SPM) [1][18] of imaging data have of- hippocampus is to be detected, Gaussian smoothing will blur
fered the potential to analyze structural and functionahdavolumetric or activation measurements from the hippocanpu
in great spatial detail, without the need to define a prio¥ith such measurements from surrounding tissues, inogudin
regions of interest (ROIs). As a result, numerous studiéie ventricles, the fusiform gyrus, the amygdala and theewhi
[7][11][23][33][48][49][50] during the past decade havetb matt_er. Prewou; wqu in the I.|terature [13] has showq that
ter investigated brain structure and function in normal arfpatially adaptive filtering of image data can dramatically
diseased populations, and have enabled the quantificationneprove statistical power to detect group differences. eizav,
spatio-temporal imaging patterns. little is known about how to optimally define the shape and
A fundamentally important aspect of VBA-SPM has beefixtent of the smoothing filter, so as to maximize the ability o
the spatial smoothing of images prior to analysis. TypjcallVBA-SPM to detect group effects.
In this paper, we present a mathematically rigorous frame-
Copyright (c) 2010 IEEE. Personal use of this material is pethi \yqrk for determining the optimal spatial smoothing of struc
However, permission to use this material for any other purposest be . . . . .
obtained from the IEEE by sending a request to pubs-permis@eee.org. tural (and potentially functional) images, prior to applyi
TThe work used data from the Alzheimer’s Disease Neuroimagiitgtive ~ VOxel-based group analysis. We consider this problem in the

(ADNI) database. The work was supp(_)rted by the Nation_alttne‘s of Health  context of determining group differences, and we therefore
under Grant RO1AG1497Asterisk indicates corresponding author.

*T. Zhang is with the Section of Biomedical Image Analysis, Bement of I’eSt.rICt our experiments to VOX?I'WBe stqtlstlcal hypasib'
Radiology, University of Pennsylvania, Philadelphia, F#04 USA (e-mail: testing. However, the mathematical formalism and algorith

Tianhao.Zhang@uphs.upenn.edu). o are generally applicable to any type of VBA. In order to deter
C. Davatzikos is with the Section of Biomedical Image Analy§iepart-

ment of Radiology, University of Pennsylvania, Philadeipi?A 19104 USA mine the Optimal smoothing k?mel! a regiona_‘l disc_rimmﬂ
(e-mail: Christos.Davatzikos@uphs.upenn.edu). analysis, restricted by appropriate nonnegativity camsts, is

U.S. Government work not protected by U.S. copyright.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

TABLE |
IMPORTANT NOTATIONS USED IN THE PAPER.
Notation | Description Notation | Description

X set of voxels in an image P significant level

x coordinates of a single voxel ) tuning parameter

k number of voxels in one neighborhoodd 72 regularization parameter

6 vector of subvolume I identity matrix

S learning set N; number of samples iit" class
R™ m-dimensional Euclidean space N given neighborhood

M number of voxels inX o balance parameter

w nonnegative discriminative direction ~ controlling parameter
Sw within-class scatter matrix B set of selected neighborhoods
SB between-class scatter matrix F set of all the neighborhoods
oi discrimination degree U set of uncovered voxels

M class mean G graph on voxels

e vector with all ones Gsub submatrix ofG

applied to a spatial neighborhood around each voxel, aimiagtivity. Unfortunately, although the singularity probiiehas

to find the direction (in a space of dimensionality equdleen addressed in the above LDA-based methods, a great deal
to the size of the neighborhood) that best highlights thef important information in the images would be lost, since
difference between two groups in that neighborhood. Sintdeey employ the smoothness constraint or PCA to reduce the
each voxel belongs to a large number of such neighborhoodsnensionality prior to implementing LDA. However, ODVBA
each centered on one of its neighboring voxels, the grodpes not have the singularity problem since it never inlve
difference at each voxel is determined by a composition lof ahe matrix inverse computation and the discriminative ysial
these optimal smoothing directions. Permutation testsisee is conducted on the data set constructed according to the
to obtain the statistical significance of the resulting OBVB local neighborhood so it avoids the curse of dimensionality
maps. naturally. More importantly, all these three methods aptem

This approach is akin to some fundamental principles of siff2 obtain discriminants or a “canonical image”, which is
nal and image processing, and more specifically to the matcte SPatial distribution of voxels that maximally differeates
filtering, which states that optimal detection of a signal iR€tween different experimental conditions, for interatiein
the presence of noise is achieved by filtering whose kerrfl @bnormality or activation in the groups. However, the
is related to the signal itself. In the context of voxel-lisgesulting discriminants are then usually analyzed based on
statistical analysis, the “signal” is not known, as it refat Visual inspection or simply thresholding without determga
to the underlying (unknown) group difference. Therefohes t voxel-wise statistical value; therefore, they do not pielthe

purpose of our optimization is to actually find the kerneltth& values for each voxel in the style of traditional SPM, wherea
maximizes the signal detection. ODVBA does. Finally, ODVBA also employs a non-negativity

%onstraint, which is important as it prohibits canonicahges
Shith positive and negative value cancelations, which aterof
difficult to interpret, especially if a brain region is inveld in

ODVBA has some similarities with the searchlight approa
[29][30], however it is significantly different. The sealicfint
method is basically a local multivariate analysis constdi

: : : any canonical images with different weights.
to the 'mmed'?‘te n_e|ghbc_Jrhood .Of a v_oxel_, Whereas_ODVBK' The rest of the paper is organized as follows: Section Il de-
performs a high-dimensional discriminative analysis gsin

. ) . . scribes the general formulation, and its numerical optatidn
machine learning technique over large neighborhoods, twhic g P

: ) Solution. Section III introduces a method of computatibnal
captures anatomical and functional patterns of Iargereran%ﬁiciem implementation for the ODVBA. Section IV presents
thereby determining the optimally discriminative spdyial '

- ) . ; a number of experiments with 1) simulated data of known
varying filter. ODVBA also relates to the extensive litera- P )

L L . .~ “ground truth and 2) structural images of elderly individual
ture using linear discriminant analysis (LDA) on multiae . o :
- / ) with Alzheimer's disease (AD). These experiments demon-
patterns of whole brain images. However, implementing th . .
strate that the proposed methodology significantly impsove

standard LDA directly on the images usually suffers fro o . ) .
the singularity problem [14] because the number of images?hgth the statistical power in detecting group differencas

much smaller than the number of brain voxels. To overcomt?e accuracy with which the spatial extent of the region
the problem, Kustra and Strother [31] used the smoothneo interest is determined by VBA-SPM analysis. Section V

. . ) %'ntains the discussion and conclusion. For convenieratge T
constrained, penalized LDA as a tool not only for a Sm%lists important notations used in the paper

classification task of positron emission tomography (PEB i

ages, but also for extracting the activation patterns. Tdweat

al. [45][46] presented a PCA plus Maximum uncertainty LDA
that solves the small sample size problem for classificationThe proposed framework consists of the following stages:
and visual analysis of structural MRIs. Carlson et al. [6dis 1) Regional Nonnegative Discriminative Projection. For
PCA plus LDA to classify brain activities of different stinus each voxel, we examine a (typically large) neighborhood
categories [20][40] and to find which voxels contribute te thcentered on it (sometimes referred to as a “subvolume”),

Il. THE PROPOSEDFRAMEWORK
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Fig. 1. Learning set construction.

and use the Nonnegative Discriminative Projection (NDF,)

to find the direction that best discriminates the two grougSy. 2. iustration of the basic idea of NDP using a toy datas

being compared. This direction can be viewed as a spatially

adaptive filter, which locally amplifies the group differesc

since projection is a weighted average of all voxels in tHge. if the template to which all subjects were normalized h
subvolume, i.e. it is a filter. M voxels), we will haveM learning sets.

2) Determining each voxel’s statistic. A given voxel beleng 1) The Basic Idea of NDPThe Nonnegative Discrimina-
to a number of neighborhoods centered on its neighboritige Projection (NDP) algorithm which is developed based
voxels, so it may correspond to a collection of values, eaot Nonnegative Quadratic Programming [42] is used to find
being part of a different discriminative direction and refieg the optimal discriminative directions which project theylt
underlying group differences. In order to eventually deiee dimensional samples onto a 1-dimensional space that max-
a single value for each voxel that represents the grouprdiffémizes the classification accuracy, and therefore the group
ence at that spatial location and will be used for statibticglifferences. NDP is implemented on each learning set. The re
analysis, we observe that the contribution of each voxel siltant optimally discriminant vectat has a special property:

a discriminative direction of a neighborhood to which iit is nonnegative. This stems from the nonnegativity caistr
belongs is given by the respective coefficient of the optiynalthat is incorporated into the objective function of the NDP
discriminative direction of that neighborhood. We sum up amethod. This constraint is used to help us interpret themrou
these coefficients belonging to a given voxel to determinedifferences. Specifically, our goal is not simply to find an
quantity that reflects the voxel’s discriminating value. image contrast, prescribed y, which distinguishes the two

3) Permutation tests. Since assumptions of Gaussiar@oups, but also requires that this contrast tells us sdaneth
cannot be made for the derived voxel-wise discriminativ&bout the properties of the images we are measuring, e.gt abo
measurements, we resort to permutation tests [24][39] f@gional volumetrics or functional activity. We therefdnait
obtain statistical significance (values). ourselves to nonnegative, albeit arbitrarily shaped,|ifilters,

4) Classification (optional). Although not necessarilytpafach of which prescribes a regional weighted average of the
of ODVBA, classification is demonstrated here as an addiignal being measured. In a regional volumetric analysis, f
tional use of ODVBA. In particular, along the lines of theexample, the optimal regional filter will reflect the shape of
COMPARE algorithm [16], the regional clusters showing théhe region whose volume is different between two groups.
highest group differences are used as the input features tol @ functional image analysis, this filter might represém t
fed to a classifier, e.g., an SVM. region whose signal is summed up to reflect the activation.
This is in contrast with the traditional methods of feature
extraction for pattern classification, which are free toier
any feature obtained by any image filter that maximizes

For a given voxel: in volume X, we construct its neigh- classification accuracy, but are not designed to necegsaril
borhoodN in which each voxelz; follows |z —z;|| < £& measure (interpretable) group differences.

To render this process computationally efficient when the To better illustrate the idea of NDP, we show its results
neighborhood size is large, we randomly seléct 1 vox- on a toy dataset before we describe the formulation. In this
els zy1, -+ ,x,_1 in this neighborhood and represent thisrtificial test, we generated images that contained a sdtrae
neighborhood using & dimensional subvolume vectof: = region of group difference) with intensity that varied from
[z,21,- ,zx_1)T. Provided that there aré/ subjects, we one image to another. We generated two groups of images:
can obtain N subvolume vectors which form a data setthe first set of squares had intensities with mean 120.53 and
0 = [51,52,--- ,§N] for learning. The procedure can bestandard deviation 5.79, while the second had 90.36 and 5.72
illustrated as Fig. 1. If there aré/ voxels in each subject respectively. Fig. 2A shows the difference of means from the

A. Regional Nonnegative Discriminative Projection
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two groups. Fig. 2B shows th& obtained from the learning quadratic programming which is amenable to the nonnegative
set constructed according to the neighborhood I; it is ladlgic constraint as follows:
noise with very small values dfv),, indicating that no local T
filter can be found that distinguishes the two groups at that J (@) = minw AW — pe” b
neighborhood. Fig. 2C shows thitobtained from the learning subject to(w); >0, i =1,--- ,k, 4)
set constructed according to the neighborhood II; the eséich
optimal filter 7 is well aligned with the underlying groupWhere, A = (ySw — Sp + ([Amin| + 72)I); v is the
difference, within which it has high values. The bottom lin€ontrolling parameterj\,,;,| is the absolute value of the
here is that, following the formulation to be presented nthe  Smallest eigenvalue oSy, — Sp; 7 << 1 acts as the
filter that locally amplifies the group difference in this sét regularization parametet] is the identity matrix;e is the
images calls for a weighted average of the pixel values withyector with all ones; the second tewfi is used to achieve
the part of the square that is included in the neighborhoatl,;—1(@); > 0 which means the solutions dfuj); are not
correctly reflecting the underlying difference. We now res all zeros under the nonnegative constrajntjs the balance
the details of the formulation. parameter.

2) The Formulation of NDP:Using one given learning set
constructed by the subvolume vectors from all the involvebeorem 1. A is a positive definite matrix.
individuals, we probe into neighborhood elements’ coutrib
tions for discrimination of the two groups. We expect to find Ne proof is in the Appendix A.
such a nonnegative vectai to describe the contributions of ~SinceA is positive definite /() is a convex function and
elements in the neighborhood: the larger the valuéwf is, has the unique global minimum. We solve the above optimiza-

: 7 : tion problem using the Nonnegative Quadratic Programming
the more the corresponding elemdrtt) contributes to the .
T ) P 9 _ e( )z o (NQP) [42]. According to [42], letAT and A~ denote the
discrimination. Equivalently(«), is thei'" coefficient of the

- i '€ | nonnegative matrices described as:
regional filter denoted byi. By exploiting «w, the learning set

can be projected from thg-dimensional spac®”* onto the At = Ay, i Ay >0, 5
1-dimensional spacR to be optimally classified, such as o, otherwise. ©)
U =010 = (@), 2+ (W), x1 + -+ (), 2p_1. 1) and
( )1 ( )2 1 S)k k—1 (1) — |Aij|7 ifAij<O,
where,¥ is the 1-dimensional projection éfc R*. We expect o otherwise. (6)

that the two classes will be separated as much as possibig alo . B )
@, and at the same time the samples from the same class gdt is clear thatA = A™ — A™. According to the two

more compact. nonnegative matrices, the objective function in (4) can be
A measure of the separation between the two classes is YH#ten as the combination of three terms:
distance of projected class means: T(F) = Ju(@) + Jo (@) — Ju(iB). )
~ ~ T ST 5 N2
(171 —1mg)* = (@11 — " 1ii) where
T / > — — - \T -
= w —m mip —m w
_’T( 1 2) ( 1 2) Ja(u—}») _ IETA+1U,
=" Spw (2) B T
Jy (W) = —pe” w,
where,m; = 3>y, Vi C; means the' class,i = 1,2; J (@) = W' A . (8)

N; denotes the number of samplesGh; m; = Ni dec_ g:
Sp = (1T — 1) (11 — 1) " .

And, the intra-class compactness is defined as follows: 0Ja _ 2 AT
2 2 g}“
\I/—NZ-2= (—»Té'_ T_.Z) b >
S wemr =YY (a7 a % - e
=1 Vvel; =1 fec; 8.]
5 - 3 = =2A7 0. 9)
= N w
— g7 e . .
- Z Z (0 m‘) (9 m’) w Note that the partial derivatives o, and .J. above are
=1 gec, guaranteed to be nonnegative because of the nonnegativity o
= " Sy ) w.
) _— L N\T Using the above derivatives, multiplicative updates rule
where,Sw = >i_1 > gec, (9 _mi) (9 _mi) - which does not involve the learning rates is introduced to

Sp and Sy, are called the between-class scatter matrix amginimize the objective function iteratively:
the within-class scatter matrix separately, accordingh®e t
classic Fisher Linear Discriminant Anaylsis [14] in whidfet (); ((Mg)i +V (1)} + 16(A+15)i(/1u7)i> (@);
criterion function is based on the generalized Rayleigh-quo ! 4( At ), v
tient. Herein we conside$z and.Sy, under the formulation of (10)

U.S. Government work not protected by U.S. copyright.
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Given voxel ‘ — A the respective voxek, and will be used next to determine

/ statistical significance. Higher values 6f. reflect stronger
group differences.
It is worth noting that, in ODVBA, one learning set is

constructed according to one given neighborhood (subwelum
vector) by different individuals. Actually, based on onarle
ing set, the obtained coefficieni has only one direction
. (groupX>group2 / group2groupl) to maximize the classi-
W fication accuracy. When ODVBA handle data that have both
possible positive and negative differences, it does notlnee
to calculate thew twice using Nonnegative Discriminative
Projection described in Section II-A, but it has to determnin
two different statistical values, for both positive and nega-
Fig. 3. A given voxel belonging to a set of neighborhoods. tive cases, before implementing permutation test respdgti
In particular, only having the coefficieni, by which the
projected class means ,oup1 > Mgroupz (referring to (2)),

-
e

g

wherei = 1,---, k. Equation (10) means that all the elementivolved in (12), we can get the statistical value for pwsiti

in u are updated in parallel. Sincé"u > 0 and A™w > 0, caseST. Conversely, only use by which the projected class

the updateds in(10) is always nonnegative. Meansig oupt < Mgroup2, WE can get thesY for negative
case.

Theorem 2. The function ofJ() in Equation (4) decreases Moreover, for one given neighborhood, the optimal coeffi-
monotonically to the value of its global minimum under theients can only reflect the positive (assuming grasgoup2)

multiplicative updates in Equation (10). signals if the projected class means, oup1 > Mgroupz iN
o _ this subvolume. However, the negative signals will never be
The proof is in Appendix B. ignored if they are really significant, because they may be
highlighted in other random neighborhood where they are

B. Determining each voxel's statistic stronger than the positive ones, so thaf.oup1 < Mgroupz-

For all the M voxels in one volume, we hav&/ discrim- )

inative directions, each applied to a different neighborho C. Permutation tests
as described in Section II-A. For a given voxglwe obtain ~ Assuming that the null hypothesis is that there is no
a list of (), values from differenti since z may belong difference between the two groups, the statistical sigaife
to a number of neighborhoods, as shown in Fig. 3. (Recaln be assessed by comparison with the distribution of salue
that for each neighborhood to whiehbelongs, the respective obtained when the labels are randomly permuted [24][39]. In
coefficient inw reflects the discrimination power of this voxelparticular, we randomly assign the subjects into two grpups
in terms of the pattern seen in that neighborhood.). To diyantand then implement Section II-A and Section II-B to caloglat
the group difference measured at voxelve use the following the statistic for each voxel. The above relabeling is reggbat
function, termedliscrimination degree, which relates to the N, times. For one given voxel, I}, denote the statistic value
effect size [8]: obtained under the initial class labels, afid i = 1,--- , N,

® denote the ones obtained by relabeling. Thealue for the

given voxel is calculated according to:

5= [ — 1o VNI EN,—2| . (A1)

2 . D= (Si — So)] (13)
> (¥ ) Z
i=1VveC;

where, ¢ is a tuning parameter aiming to reduce potential ' 1, ift>0,

outliers in the dataset. Leh = {N|z € N} denote the set u(t) = 0, otherwise. (14)

of neighborhoods that the given voxelbelongs to, then we

define the group difference anby summing up contributions  I1l. COMPUTATIONALLY EFFICIENT IMPLEMENTATION

from all neighborhoods to which it participates: The original method described in Section Il is based on

voxel-wise computation, an extreme solution that useshall t
S = Z On (wn), 5 @€ {1, Kk}, (12) neighborhoods corresponding to all tiié voxels. Unfortu-
Nea nately, this approach would be complicated and computation
where,wy denotes the coefficients corresponding to voxels ally expensive. The simplest way to reduce the computdtiona
N, (wy); denotes that is thei’” element inN, andéy which complexity is to randomly select a subset of the neighbadkoo
acts as the weight faby denotes theéiscrimination degree to represent all the neighborhoods, and then the number of
achieved in neighborhoodN and is defined in (11).S, the involved learning sets can be reduced. However, with thi
will serve as the statistic reflecting group differences amethod, the selected neighborhoods may not cover all the

U.S. Government work not protected by U.S. copyright.
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TABLE I TABLE Il

ALGORITHM OF GREEDY NEIGHBORHOODSCOVER ALGORITHM OF GRAPH-ASSISTANTED GREEDY NEIGHBORHOODSCOVER
Input: X, F,a, k Input: X, Fla,k,G
Output: B Output: B
1. Select arbitraryN; € F' 1. Select arbitranN; € F'
2. B+ {N;} 2. B+ {N;}
.U+ X —N; 3.U«+ X —N;
4. while U # @ 4. while U # &
5. do seletN; € F that maximize§N; N U| 5 do B = Unes N
. Uunde;(the&:onditioan NUI<(1—-a) k 6. get L according to (19)

. — — Nj _ >
7. B« BU{N,} £ GS“b_G(f’B)
8. endwhile 8. T==Ggsyup- € _ o

9. leti;n denote the index of element which is the

minimum in 7" wich constraintT (i,mmn) > a - k
10 U« X —=Nifi,}

voxels, and therefore, it is not guaranteed that statistans 11 B+ BU{NL{ipi01 )
be derived for each voxel. In this section, we use the Greedy =2 endwhile

Algorithm [10] to select the subset of the neighborhoodscivhi
include all the voxels and at the same time overlap each othe
under a certain rate. Moreover, to facilitate the greedyctea 5
we introduce a new approach named Graph-assisted Gree
Neighborhoods Cover, which uses a graph to assist in seekir 10
one neighborhood in each iteration of the greedy algorithm.

1500

15 L 11000

A. Minimum Subset of the Neighborhoods for ODVBA

We select the minimum subset of the neighborhoBdas
the replacement of all the onds, where B C F, and then
the learning sets are constructed corresponding to thetsdle
neighborhoods respectively. To get a reasonable statesthie
for each voxel after obtaining the discriminative direnso
using NDP, the selected neighborhoods are expected: i) t
cover all the voxels inX, that is,

x=Un (15)
NeB Fig. 4. Location of simulated atrophy (red points in the dasélépse) in the

. . “Blurring” case. Different colors in the background reflelifferent RAVENS
i) to overlap each other under at least an overlapping fact@yes. that is, different tissue densities.

[51] a (0 < a < 1), that is,

. M neighborhoods without using the neighbor information
Nﬂ U Z||za N =a-k (16) for searching in each iteration. We propose a Graph-adsiste
Greedy Algorithm which seleclN; by implementing simple
for eachN in B. operations on the small sub-block of the graph in each

iteration. The algorithm is described as follows.

B. The Traditional Greedy Neighborhoods Cover Algorithm A graphG is introduced to model the neighbor relationship
getween every two voxels iX. Each sample point irX is
vertex of the graph. An edge is put fram to z; if z; is

ZeB\{N}

The problem introduced in Section IlI-A can be solve
using the greedy algorithm [10][51], which works by pickin . . _ S
N that covers the maximum number of remaining elemeg?%cated in the neighborhood centeredrat That is:
that are uncovered under certain constraint in each iterati Gli i) — 1, if z; €N,

Let U contain all the remaining uncovered elements at each (4,) = 0, otherwise.

iteration. The algorithm chooses the neighborhded that ) . .
overlaps with the selected neighborhoodsArand covers as OPviously, each row ofr represents one neighborhood. Lt

many uncovered elements iA as possible. Then, the selected€note the set of the elements covered by the neighborhoods

N; is put into B and the elements covered by is removed TOM B, thatis B =y N, uselp to denote the index set
from U. It finally terminates whef/ is empty. The algorithm of the selected neighborhoods, and we can get the sub-matrix

is summarized in Table II. from G as follows:
Gow = G (L. B), (18)

7

C. Graph-assisted Greedy Neighborhoods Cover algorithm
. . . : . where setl follows
It is worth noting that Line 5 of the algorithm in Table

Il may be time-consuming because it picks from all the 1) L C X;
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: ’ in the “Different degrees” case. Different colors in the kground reflect

4) Gout (z B) 7& 0,i€L. (19) different RAVENS values, that is, different tissue deresiti

Among the terms in (19), 1) means that the rowsf,,

come fromG; 2) means that the neighborhoods to which thi&€ original SPM [1][44] and nonparametric permutationdehs
rows of G, correspond have never been selected3tod) SPM (referred to SnPM) [24][39]. In the first experiment,
means the sum of each row @,,; are not equal td, that We applied the three methods to the simulated atrophy data
iS, the neighborhood which are fu”y covered by t&are in which we know the grOUnd truth. Here, it is easy for us
removed; 4) means the neighborhoods having no intersecti@nevaluate the accuracy and statistical power of ODVBA,

with B are removed. in comparison with SPM and SnPM. The second experiment
Compute demonstrated the success of our method on the real data of
T = Gy - €, (20) AD patients from ADNI(www.loni.ucla.edu/ADNI).

and we can knowI'(i) is the number of elements covered )
by B, in the L{i}'" neighborhood. Leti,,;,, denote the A. Simulated Atrophy Data
index of element which is the minimum ifi with constraint: 1) “Blurring” case: The dataset consisted of real MRI
T (imin) > a-|N| = a-k. Then the selectel in this iteration scans of 60 normal controls, with a relatively small age eang
should beN; . ;. The proposed algorithm is summarizedbtained from ADNI. The description of the MR Image ac-
in Table III. quisition and pre-processing protocol can be found in 8acti
IV-B. Finally, RAVENS maps [13] which quantify the regional
IV. EXPERIMENTS AND RESULTS distribution of GM, WM, and CSF, are formed for each tissue
In this section, we designed two different kinds of expertype. In this test, RAVENS of GM is employed. Next, 30
ments to evaluate the performance of ODVBA compared wigamples were randomly picked and manipulated to introduce
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Fig. 8. Performance vs. the degree of atrophy in the “Diffexdegrees” case . (a) TPR vs. the degree of atrophy; (b) FPEheslegree of atrophy.

TABLE IV
TPRAND FPRVALUES WITH THE SPECIFICp VALUE THRESHOLDS IN THE
“BLURRING” CASE. V. Vo
TPR = W;
G
P <0.05]P <0.02
<py  |TPR|| 04167 [ 03104 FPR = # (Ve[ (VA\VG)), (21)
FPR|| 0.0094 | 0.0028 # (Va\Va)
snpy |LTPRI[ 05069 | 0.3924 where# () means the number of voxels.
FPR|| 0.0196 | 0.0076 We varied the significance level of the group analysis from
oDvVBA IPR|| 08646 | 0.7535 [0, 1] providing a series of TPR/FPR to build the receiver-
FPR|| 0.0032 | 0.001 operating characteristics (ROC) curve [35], as demorestrat

in Fig. 6. We also list the TPR and FPR values with different
specific p value thresholdsy( <0.05, 0.02) in Table IV. We

. . . o . can see that, for the “Blurring” case, SPM and SnPM not
0 “yUr-

sorﬁsat:zp:t)r/\evrw\t\?oréjs Itlﬁz sgﬁgg ?n(tjri]rf SRF)E\(/:E'KI Sre\?;?unes(a:%nly produce worse accuracies but also suffer from higtefals
gyrus). ’ P g aitive errors. Otherwise, ODVBA offers a globally better

. . 0
tr|1_at relgllgg\ils\lgecreaseddbt{] 3?%' t'.:'g‘ 4f' ;hOV\{S or;]e S(:“Ie“l?éesult since for any FPR, the corresponding TPR is higher.
slice 0 map and the focation of the atrophy. 2) “Different degrees” case:The data used in this experi-

Regarding the simulated data as a group of patients afént contain 60 normal controls which also come from ADNI.
the remaining data as the control group, we conduct SPihe purpose is to evaluate the capabilities of three methods
SnPM and ODVBA for the group analysis. The smoothing sizgr detecting the simulated atrophies with different degre
(FWHM of the involved Gaussian filter) in SPM and SnPMxs well as in the “Blurring” case, RAVENS maps are finally
is 7mm. The parameters in ODVBA are set@s= 15,¢ = created to represent the tissue density (which is propetim
L,p=1,9=107°72 = 107°. The experimental results areregional volume, at that location). We randomly selected 30
shown in Fig. 5. The background is the RAVENS map of golumes of GM and introduced the atrophy of 10%, 15%,
sample, appearing as a gray image, and the overlapping arg@s, 25%, 30%, and 35% (RAVENS values are reduced
are the red regions obtained by differentvalue thresholds by 10%-35%) in the region around Hippocampus, separately.
(p <0.05, 0.02). We can see that the proposed ODVBA methegyy 7 shows one selected slice and the location of the
precisely describes the “U"-like shape of the atrophy, @hilsimylated atrophy. The remaining 30 samples were regarsied a
SPM and SnPM do not. In SPM and SnPM, the images &gntrol. The smoothing size in SPM and SnPM is 8mm. The
blurred so that the results are not accurate. parameters in ODVBA are set @s= 15,¢ = 1, = 1,7 =

For the simulated data, since we know the ground truth)—>, 72 = 10~°. Fig. 8 demonstrates the performances (TPR
we employ several types of metrics to evaluate ODVBAgnd FPR) of the three involved methods versus the different
compared with SPM and SnPM. We denote the significadegrees of atrophy. The value which is used to get the
voxels obtained from the three different methodslas the significant region is 0.05. We can see that ODVBA has higher
ground truth voxels ad/;, and all the voxels involved in TPR but lower FPR on each dataset with different degrees
analysis asV4. True Positive Rate (TPR) and False Positivef atrophy than SPM and SnPM. In Fig. 9, we provide some
Rate (FPR), two commonly used assessment metrics, aepresentative slices on which we plot the ground truth aed t
defined as follows: detected significant regions obtained by the three metHods.

U.S. Government work not protected by U.S. copyright.
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SnPM SPM GT

ODVBA

10% 15% 20% 25% 30%

Fig. 9. Respective slices with ground truth and significagions. The background is the MR image of the template, appgeas a gray image, the
overlapping green color areas are the ground truth, andviegapping red color areas are the detected significanbmedihe results in st-6*" columns are
obtained from data with 10%-35% atrophy, respectively. Témults in15t-4t" columns are threshold by<f0.05; The results irst" and 6" columns are
are thresholg <0.005.

the ground truth is known, we plot the corresponding ROC

5;15 :2:2"“/' curve in Fig. 10. As shown, the performance of ODVBA is
0.95r 4%*—/:55— g ? v opvBall stable. However, the sensitivity/specificity of SPM and BnP
NS vary a lot with different kernel sizes and are companied with
e 09 £ ¢=1 ] high FPR increasing.
%0857 FW;XT;IJ\ | 4) Effect of discrimination degreein this section, we
% FWHM = 7 look into the effect of thed_iscriminqtion degree on the
€ osl S FWHM =9 performgnce of QDVBA, using the simulated d_ata with 3Q%
g //) FWHM =8 atrophy in the “Different degrees” case. By varying the tgni
F o5l /) FWHM = 7 “SFWHM=6 | parameter) described in (11), we can get a series of different
- ~— FWHM =5 resulting significant maps of ODVBA. Note that larger
0.7k —>FWHM =6 ] means the coefficients), will be combined with a stronger
S FWHM=5 discrimination degree to determine the statistical value

(referring to (12)), and) = 0 means that onlyw), is used.
Since the ground truth is known, we plot the corresponding
TPR and FPR versus in Fig. 11. As shown, along with the

Fig. 10. Performances of three methods with different kerizelss increasing of¢, the power of d?teCting the true positives is
gradually enhanced, accompanied by low level FPR.

065 L L L L
0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
False Positive Rate

is shown that ODVBA is much more powerful to detect th&. Real AD data
true atrophy hidden in the data. With the development of computer-aided diagnosis,
3) Effect of kernel sizeln this section, we study the effectAlzheimer's disease has attracted a lot of attention
of the kernel size on the performance of the three method8][17][27][28][37][47] in the community of neuroimage.
using the simulated data with 30% atrophy in the “Differenthe data used in this experiment was obtained from the
degrees” case. For SPM and SnPM, the kernel size meansAlieheimer’s Disease Neuroimaging Initiative (ADNI) datesle
FWHM of the involved Gaussian filter, which is changed fronfwww.loni.ucla.edu/ADNI), which has recruited approxi-
5mm to 9mm. For ODVBA, the kernel size means the size afately 800 adults, ages 55 to 90, including 200 with Normal
neighborhood with varying from 9mm to 17mm, with an Control (NC), 400 with mild cognitive impairment (MCI)
interval of 2mm. By changing the kernel size, we can getand 200 with AD. For up-to-date information, see www.adni-
series of different results for the three different meth&isce info.org.

U.S. Government work not protected by U.S. copyright.
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Fig. 11. Performance of ODVBA vsp. (@) TPR vs.¢ ; (b) FPR vs.¢.

SnPM SPM

ODVBA

Fig. 12. Representative sections with regions of relativeduced GM in AD compared to NC. The scale indicates-tlieg(p) values.

The goal of our study is to conduct complete evaluatiorigpically used in the modulated SPM analysis [12] and in [2].
of the structural MR images, and identify potentially compl  RAVENS maps quantify the regional distribution of GM,
spatial patterns of brain atrophy in AD patients, compar&gjy|, and CSF, since one RAVENS map is formed for each
with NC subjects. We randomly selected 100 subjects frofiasye type. RAVENS values in the template’s (stereotaxic)
the ADNI cohort. This included 50 NCs and 50 ADs, whosgpace are directly proportional to the volume of the respect
MRI scans were then analyzed. The datasets included standgfctures in the original brain scan [12]. Therefore, oegl
Tl-weighted images with varying resolutions. Adhering t9o|ymetric measurements and comparisons can be performed
volumetric 3D MPRAGE or equivalent protocols, only imagegia measurements and comparisons of the RAVENS maps. In
obtained using 1.5 T scanners were used. The sagittal imag@s experiment, we used GM for evaluation purposes.
were preprocessed according to a number of steps detailed on ) o
the ADNI website, which corrected for field inhomogeneities 1) Resulting Significant MapsBased on the measurements
and image distortion, and were resliced to axial orientatio®f tissué density maps, we compared the performance of

Images were preprocessed according to the following stgpsSPM: SnPM, and our proposed ODVBA method. For SPM

Alignment of the brain with the ACPC plane; 2) Removal ofnd SnPM, smoothing is performed using 8 mm FWHM
extra-cranial material (skull-stripping); 3) Tissue segnation kernel. For ODVBA, the pa;ar;’neters age set as follogs=
into grey matter (GM), white matter (WM), and cerebrospindl® ¢ = 1,# = 1,7 = 1077,7° = 10~°. Both SnPM and
fluid (CSF), using [41]; 4) High-dimensional image warp-ODVBA were implemented .Wlth 2000 permutations. .Flg. 12
ing [43] to a standardized coordinate system, a brain ati§0Ws some selected sections from the results (withpthe
(template) that was aligned with the MNI coordinate spaciiue < 0.001 threshold) of SPM, SnPM, and our ODVBA,

[26]; 5) Formation of tissue density maps, i.e. RAVENS mapfespectively. We can see that the results of ODVBA not
only reflect significant GM loss in AD compared with NC,

U.S. Government work not protected by U.S. copyright.
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Fig. 13. Surface renderings of regions detected by the tmethods.

SnPM

Fig. 14. Two representative magnified regions. The scaleatels the—log(p) values.

but also identify many additional regions, e.g., Precuneuwgere discovered by SPM, SnPM and ODVBA. Among them,
(Fig. 12A), Insula Cortex (Fig. 12B), Middle Temporal Gyrug=ig. 14A shows the region near the Hippocampus and Fig.
(Fig. 12C), Lentiform (Fig. 12D), Occipital Lobe (Fig. 12E) 14B shows the region around the Temporal Lobe. For the
Parahippocampal Gyrus (Fig. 12F), Superior Parietal Gyrkgy. 14A, we can see that SPM and SnPM blurred the
(Fig. 12G), Middle Frontal Gyrus (Fig. 12H), and Inferiomregions of the Hippocampus and Fusiform Gyrus. In contrast,
Frontal Gyrus (Fig. 121). As shown in the above mentioneal clear division between the two regions can be found in the
sections in Fig. 12, the significant regions detected by OBVBresults of ODVBA. For the Fig. 14B, SPM and SnPM blurred
are either totally or partially missing from the results ofhe different gyri and sulci in the region of the Temporal
SPM and SnPM. Fig. 13 shows the surface rendering bbbe, while failing to detect other significant areas altbge
significant regions obtained from the three different mdtho however, ODVBA delineates a more precise area of significant
Moreover, these are all regions that are generally knowm fraatrophy in that region.

histopathology studies [4][5][15][21][22][34].
We also employ the FDR procedure [25], a powerful

Fig. 14 shows two representative magnified regions thapproach commonly used in neuroimaging applications to

U.S. Government work not protected by U.S. copyright.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

TABLE V
STATISTICS ONANATOMICAL REGIONS.

p value<0.001 p value<0.05(corrected)
Anatomical regions SPM SnPM ODVBA SPM SnPM ODVBA
size| t |size| t |size| t size| t |size| t |size| t

232|7.13| 281 |6.52| 410 | 7.24 || 210 |6.91| 181 | 7.44| 310 | 6.86

6 [2.37| 42 |4.76| 183 | 5.61| O \ 0 \ | 128 | 5.14
275 (5.71| 322 |5.67| 531 | 7.43 || 198 |5.63| 262 |5.61| 441 | 7.62
360 [6.59| 373 |6.53| 330 | 8.09 | 345 |6.81| 365 |6.52| 319 | 8.17
405 | 5.05| 422 |4.77| 361 | 7.03 || 369 |5.27| 383 [4.99| 346 | 7.29

Middle Occipital Gyrus

Hippocampus

iddle Temporal Gyrus | = | 204 9-04| 1686]8.74| 2347] 9,25 1309/ 9.00] 1398 8.96| 2244] 950
R|1779]8.86| 2001 8.95| 3058| 9.80 || 1399| 9.30| 1663| 9.07| 2892 9.95
_ L | 1042 7.69| 1131 7.74| 1893[ 10.14]| 838 [7.63| 939 | 7.61| 1785| 10.21
Superior Temporal GyrUsg 52617 68 1224| 7.49| 1899| 8.96 || 841 | 7.77| 1032| 7.46| 1830] 8.95
, L| 194 |6.07| 271 | 7.08| 882 |8.44 || 171 |6.26] 179 |6.14] 763 | 8.62
Inferior Frontal Gyrus o137 31] 284 [6.86| 523 | 7.86 || 161 |6.99| 197 |6.78] 302 | 7.79
_ , L| 298 [6.70] 335 |6.60| 571 | 9.41 || 328 | 6.57| 300 | 6.70| 462 | 9.12
Superior Parietal Gyrus o1 o e 857572 [ 6.96| 691 | 8.64 || 258 | 6.86| 469 | 6.88] 536 | 8.58
L| 195 |5.59] 224 | 5.88| 485 | 8.35 || 170 |5.68| 185 |5.72| 420 | 8.09
Precuneus R| 282 [6.02| 304 |5.97| 415 | 6.07 || 220 | 6.06| 191 |6.52 362 | 5.91
L| 595 |6.61| 624 | 6.62| 838 | 6.82 || 470 | 7.41| 491 | 7.12| 748 7.49
Insula
R
L
R
L
R

adjust for statistical error. FDR aims to control the partioBased on the 5-fold cross-validation, the classificatida cd

of false positive error, instead of excluding this error ][38 ODVBA (90%) is superior to that of SPM (86%) and that of
In addition, FDR is adaptable since its value is compute&shPM (87%).

directly on the observeg value distribution. We partitioned

the resulting significant maps with values of 0.001 and V. DISCUSSION AND CONCLUSION

0.05 (FDR corrected) respectively, according to predefined|q this paper, we have introduced a new framework, termed
anatomical regions from the Jacob Atlas; calculated the"‘me@ptimaIIy—Discriminative \Voxel-Based Analysis (ODVBA),
of the tissue density maps per region for all the samples; agfl group analysis of medical images. In the proposed frame-
finally, compgted the. value based on these means accordiqgork’ Nonnegative Discriminative Projection (NDP) is mwr

to the class information. duced to find the optimal discriminative direction in each

Table V lists the sizes antlstatistics of major anatomical |earning set constructed by the neighborhood centeredeat th
regions. We can see that not only the sizes detected dyen voxel. Subsequently, each voxel's statistic is deteed
ODVBA, but also the corresponding values are generally py a composition of all the smoothing directions which are
greater than those detected by SPM and SnPM. This me@gsociated with the given voxel. Finally permutation tests
that the regions found by ODVBA display a higher degregre used to obtain the statistical significance of the resplt
of differentiation between the two groups and that SPM argpyBA maps. In addition, to reduce the cost of computation,
SnPM might have missed some significant information. e developed a new method termed Graph-assisted Greedy

2) Pattern Classificationin a separate experiment, we usefleighborhoods Cover to select a minimum subset of the
the detected significant regions as the features input ton@ighborhoods which are used to learn the discriminative
classifier of individual scans into NC or AD, and comparegirections. We compared ODVBA to the traditional SPM and
the three different methods in terms of the performance @ife nonparametric SPM (SnPM) with both simulated data
classification with SVM. We randomly divided the originaland real AD data from the ADNI cohort. The experimental
50 (NC) +50 (AD) into 5 subsets (10+10 each), and themsults have shown tested ODVBA against the conventional
implemented 5-fold cross validation. smoothing methods.

For each fold, 1) we used 40+40 for training and got the The main premise of our approach is that it effectively
significant regions (with the value < 0.001 threshold) by applies a form of matched filtering, to optimally detect a
the three different group analysis methods; 2) we calcdlatgroup difference. Since the shape of the target region of
the means of the tissue density values of significant voxelsgroup difference is not known, regional discriminative lgpas
each predefined anatomical region (from the Jacob Atlas) fafe used to identify voxels displaying the most significant
all the samples, and using the means from different regiensdifferences. In addition to potentially improving senstii of
the input features, we got the SVM classifier [9]; 3) finallydetection of a structural or functional signal, this apptoa
we used the left testing set with size of 10+10 for validationwas shown in several experiments to better delineate the

The radial basis function (RBF) kernel is used in this studgegion of abnormality, in contrast with conventional snioiog
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approaches that blur through boundaries and dilute theakigthe conditions
from regions of interest with signal from regions that do

not display a group difference.We use the coarse grid search G (W, W) =
over tuning parameters, e.g5, ¢, u, and~. Section IV- e satisfied.

A.3) Effect of kernel size and Section IV-A.A)E f fect

of discrimination degree are examples of the paramete{emma 1. if G (7,@) is an auxiliary function, then
selection that we studied the performance of ODVBA on () is nonincreasing under the update:

different parameters. Generally, our method is not so geasi

to the tuning parameters once its performance is stable. We ' = argmﬁinG(ﬁ, w) . (23)
can determine the optimal parameters in the simulated data i

which we know the ground truth. If the simulated data and tf@ne can refer to [32] for the proof of the above lemma.

re_zal data come frpm the same data source, have similar Sa”r‘-%ﬁowing [42], we introduce such an auxiliary function for
size, and have similar size and degree of atrophy, we assum&\ﬂ).

that the optimal parameters determined by the simulateal dat

(22)

are also sitable for the real data. That is, the simulated da ¢ ) -3 (AT ), ()2
would be an appropriate reference for the real data to select ’ ; (W), E
the optimal parameters. (@), (7).

As described in the Introduction, our method are related _ZA;]. (), (w)j <1 +log“>
with methods which use LDA and its variants over the entire i (); (w)j
image to determine “canonical image” that best discringnat ~
between two groups or conditions. However our approach has a Z (1€); (9);- (24)
significant differences from these approaches. In pa#icul ' L
such global LDA-based methods tend to be very limitefote  that 3 (ATa), (17)? > J, (¥) and

by the small sample size and high-dimensionality problem, 7 (#),(5)
and therefore are typically able to only detect some of the)_ A;; (W), (&), (1 + log (m)f(m)j,) > —J.(¥) [42],
regions that display group differences or activations, rooit i o oo .
all. They are most suitable for classification purposeserat Z,O(Lt LS) EI(?]a(r ﬂ';h:’r[eﬂr:]eacondltlonéi (@) 2 J(@) and
than for voxel-based analysis. Most importantly, thesenoas W, W) = J W) ar Lo . i

- . . . Rewrite the auxiliary function as the following form:
produce both positive and negative loadings, which reflect
cancelations in the data and therefore render it very difficu . .
to interpret the data. In general, they are not designed to; (@ “7):2 (A7), (17)2 _22 (A_u_)'). (@), log (v),
construct a precise spatial map of a group difference, but — (W), ‘ - (),
rather to find the best global discriminant. The non-ne@stiv L N\ =
constraints in our ODVBA are essential. Our results can be 72_ (ue); (v); — Z (A7), (@),
interpreted in terms of brain activity or atrophy, for exdeip ' ~ o
and the regions found match exactly the underlying regidns o ZZ Gi ((v);) — Z (4 w)z (@), (25)
interest. The non-negativity constraints are by far noiaalr i i
issue to implement, since they influence the entire optitiira where,G; ((¢);) means a function for each componentuin

K2

process. (A*+), @),
G; ((7),) = =1 (0);—2 (A~ D) , (@), log 7= —(ké), (¥), .

(@) = gy (=2 (A7), (), log 75— () ()

APPENDIXA (26)
PROOF OF THEPOSITIVE DEFINITE MATRIX Then, the minimization of7 (¢, w) can be achieved by mini-

. mizing eachG; ((¥),), and according to (23) we have:
If A\nin > 0, the smallest eigenvalue ofSy, — Sp + 'zing hG: ((@):) ing to (23) w v

(| Amin|+72) 1 iS 2\ min +72 Which is greater than 0. ,,,;,, < ("), = argmin G; ((7);) - (27)
0, the smallest eigenvalue ofSyw — Sz + (|Amin| + 7)1 @

is just 72. In a word, all the eigenvalues ofl is greater  Since the derivative of; ((v),) is:

than 0. SinceSy, Sg, and I are all symmetric matrices, A+ .
A = vSw — S + (|Amin| + 72)I is @ symmetric matrix. G ((V),) = 2( ﬂw)i (), — 2 (A‘u?), (lf)% — (né);, (28)
Thus, we complete the proof. (@); (D)1

and considering(«w’), > 0, we obtain the update rule as
follows:

APPENDIX B
PROOF OFCONVERGENCE ANDOPTIMALITY
—/ —»
Aucxiliary function [32] is used to derive the rule of (w )1:(v)i|G;((6)i):O

m—— (1€); + \/(1é)? + 16(ATd); (A=), \ ,
:< 4(A+ D), ) () (29)

Definition 1. G (v, @) is an auxiliary function for.J () if
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