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Abstract

Although case‐control association studies have been widely used, they are

insufficient for many complex diseases, such as Alzheimer’s disease and breast

cancer, since these diseases may have multiple subtypes with distinct

morphologies and clinical implications. Many multigroup studies, such as the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), have been undertaken by

recruiting subjects based on their multiclass primary disease status, while

extensive secondary outcomes have been collected. The aim of this paper is to

develop a general regression framework for the analysis of secondary

phenotypes collected in multigroup association studies. Our regression frame-

work is built on a conditional model for the secondary outcome given the

multigroup status and covariates and its relationship with the population

regression of interest of the secondary outcome given the covariates. Then, we

develop generalized estimation equations to estimate the parameters of interest.

We use both simulations and a large‐scale imaging genetic data analysis from

the ADNI to evaluate the effect of the multigroup sampling scheme on standard

genome‐wide association analyses based on linear regression methods, while

comparing it with our statistical methods that appropriately adjust for the

multigroup sampling scheme. Data used in preparation of this article were

obtained from the ADNI database.
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1 | INTRODUCTION

To motivate the proposed methodology, we consider a
large database with imaging, genetic, and clinical data
from 1737 subjects collected through the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study. The
overall design of the ADNI is a longitudinal study of
various biomarkers at baseline and their longitudinal
profiles. ADNI has gone through four phases from
ADNI1, GO, 2 to ADNI3 from 2004 until 2016. ADNI1
began with 204 cognitively normal controls (NC), 362
subjects with mild cognitive impairment (MCI), and 179

subjects with Alzheimer’s disease (AD), and was
extended by three follow‐up phases with a different
number of subjects in each category. ADNI is a typical
example of multigroup studies. Similar to the case‐
control design, the multigroup sample is usually not a
random sample from the whole population because of the
unequal selection probabilities between different disease
groups. The proportions of AD and MCI in ADNI are
much bigger than their global prevalences in the age‐
matched general population (Kim et al., 2015). In this
paper, we focus on the brain regions of the left and right
hippocampi of each ADNI subject and a large genetic
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data set with over 6 000 000 genotyped and imputed
single‐nucleotide polymorphisms (SNPs) on all 22 human
chromosomes. Since the hippocampus is critical for
learning and memory and is vulnerable to damage in
the early stages of AD (Schuff et al., 2009), the volume
and shape of the hippocampi may be effective phenotypes
that facilitate the identification of causal genes and the
mechanistic understanding of pathophysiological pro-
cesses of AD. Our primary goal is to search for genetic
patterns associated with local hippocampal changes,
while correcting for the selection bias associated with
ascertainment in multigroup studies.

In many genetic association studies, some variables
of interest are the marker genotype(s), G, secondary
(or intermediate) traits Y, the primary phenotype (multi-
group status) D, clinical variablesC, and the ascertainment
(sampling) indicator S. For instance, various imaging
measures (eg, subcortical volumes) have been widely used
as secondary traits that may be directly associated with a
specific disease outcome for most brain‐related diseases. A
statistical challenge arises from the fact that the main
target of interest is the population model of Y given G,
whereas both secondary traits Y and marker genotype(s) G
are collected depending upon the grouping phenotype D.
In genetic epidemiology, standard statistical methods that
either ignore ascertainment or naively adjust for ascertain-
ment by conditioning on the disease status (eg, meta‐
analysis of subjects in different subgroups) can lead to
estimation bias, inflated false‐positive rate, and decreased
statistical power. Therefore, adjusting for D is critical when
one models Y given G in genetic association studies.

There is a large literature on the development of
statistical methods for eliminating the selection bias
associated with ascertainment in case‐control (or two‐group)
studies. The simplest method is to fit a regression model to
all subjects in a single group (eg, cases or controls, or each
subgroup in multigroup study). It requires a strong
assumption that no group difference exists in the genetic
effects regarding the corresponding secondary traits. More-
over, dropping a certain number of observations can
substantially decrease the estimation efficiency and statis-
tical power. Another simple method, called LRegD (Potkin
et al., 2010), is to include the case‐control status D as an
additional covariate in the regression models. However,
LRegD may yield flawed conclusions, since the associations
between a secondary outcome and an exposure of interest in
the case and control groups can be quite different from that
in the underlying target population (Tchetgen Tchetgen,
2014). Various weighted likelihoods, such as the inverse
probability weighting (IPW) approach, have been widely
used (Richardson et al., 2007; Schifano et al., 2013; Sofer
et al., 2017), but they do not utilize the information collected
on the primary outcome D. Lee et al. (1997) and Jiang et al.

(2006) develop a maximum likelihood estimate of the
regression coefficients assuming that the sampling rates for
cases and controls are known. Lin and Zeng (2009)
introduce a retrospective likelihood function by explicitly
conditioning on the sampling scheme. He et al. (2012) use a
Gaussian copula approach, allowing more flexible distribu-
tions of the secondary outcome Y compared to Lin and Zeng
(2009). Wei et al. (2013) propose a robust estimation method
for secondary analysis of case‐control data by assuming that
the secondary trait Y follows a homoscedastic regression
model given X. Breslow et al. (2000) apply the semipara-
metric inference method through building an augmented
estimation equation to improve the efficiency of IPW. Song
et al. (2016) introduce a set of counterfactual estimation
functions under an alternative disease status and combine
the observed and counterfactual estimation functions into a
set of weighted estimation equations. However, all these
approaches focus on the case‐control design.

The aim of this paper is to develop a general
regression framework for the analysis of secondary
phenotypes collected in multigroup association studies,
called MGLREG. There are two major contributions in
this paper.

(I) To the best of our knowledge, this is the first paper
that systematically discusses the secondary trait
analysis in multigroup studies, while allowing the
multiphase design.

(II) We have developed companion software, called
MGLREG, along with its documentation and re-
leased it to the public through the link from github
(see reference MGLREG).

2 | METHODS

In Section 2.1, we introduce the data structure and some
notations. In Sections 2.2 and 2.3, we build the
conditional model for Y given D and X and derive its
associated estimation equations for the three‐group
study, that is, J= 3. Our approach can be easily extended
from the basic J= 3 case to the more general setting of
J> 3 (details for general J discussed in supplements). In
Section 2.4, we discuss how to extend our regression
framework from continuous secondary outcomes to
binary ones. In Section 2.5, we further consider the
extension to multiple phases scenario.

2.1 | Data structure and notation

Suppose that we consider N independent subjects from a
multigroup study. For each subject, given the group
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status D J{0, 1, …, − 1}i ∈ , we denote Si as the ascertain-
ment (sampling) indicator and observe the secondary
phenotype Yi of interest, the clinical factors Ci, as well as
the genotype scoreGi for i N= 1, …, , where J is a positive
integer. For instance, J= 2 corresponds to the case‐
control design, whereas J> 2 corresponds to the multi-
group design. Without loss of generality, we focus on
continuous secondary traits, while the group 0 corre-
sponds to the control group. Suppose there are nj subjects
in the j‐th group for j J= 0, …, − 1 such that N is equal
to n n n+ + + J0 1 −1⋯ . An important assumption is that
the prevalence of each subgroup j is known to be p =j͠

P D j( = ) in the target population and π P D= ( =j
∼

j S n N| = 1) = /j in the sample for j J= 0, 1, …, − 1.
Although the true value of pj͠ is required, our method
still works for an approximated value of pj͠ . To
demonstrate this point, we allow misspecification of p̃j
in the simulation studies and find that our method
performs acceptably stable with varied p̃j’s combinations.

2.2 | Model setup

The main target of inference is the population mean
model for Y given X, denoted as X Xμ E Y( ) = ( | ). We
focus on the three‐group case with J= 3 from now on,
but all derivations given below are valid when we replace
2 by J − 1. By using the law of conditional expectations,
we have

X X Xμ μ D j P D j( ) = ( , = ) × ( = | ),
j=0

2

∑∼ (1)

where X Xμ D E Y D( , ) = ( | , )∼ . A sufficient condition for
estimating Xμ ( ) is to estimate both Xμ D( , )∼ and XP D( | ).
Since we observe Y and X conditional on D and S= 1,
we can consistently estimate XE Y D S( | , , = 1) and

XP D S( | , = 1) instead of Xμ D( , )∼ and XP D( | ).
The sampling design of the multigroup study depends

on D only, and therefore XY( , ) is randomly sampled
within each group D. Accordingly, we could characterize
a relationship between XE Y D S( | , , = 1) and Xμ D( , )∼ as

X X Xμ D E Y D E Y D S( , ) = ( | , ) = ( | , , = 1).∼ (2)

It then follows from (2) that Xμ D( , )∼ can be
consistently estimated.

Second, we characterize a relationship between
XP D S( | , = 1) and XP D( | ). Let X P DΠ ( ) = ( =j

Xj S| , = 1) denote the risk function of D j= at X in
the multigroup sample and X XP P D j( ) = ( = | )j be the
probability of D given X in the whole population. For

each j = 0, 1, 2, XΠ ( )j and XP ( )j satisfy the following
relationship:

X

X

X

X

π

π

P

P
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Π ( )

Π ( )
=

( )

( )
.

j
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0

0

0⋅ ⋅
∼

∼
͠

͠
(3)

We assume that XΠ ( )j follows a multinomial logistic
regression model as follows:

X

X

X

X
X φ

P

P
ηlog

Π ( )

Π ( )
= log

( )

( )
+ = j

j j

j
T

0 0

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭ (4)

for j= 0, 1, and 2, where η p π p π= log( ) − log( )j j j0 0
∼ ∼͠ ͠ . If the

ηj’s are known and the ratio of XΠ ( )j over XΠ ( )0 can be
consistently estimated, then the ratio of XP ( )j over XP ( )0

can be consistently estimated.
We derive a conditional model of Xμ D( , )∼ based

on (2). Specifically, it follows from the equality
XP D j( = | ) = 1

j=0

2
∑ and (2) that Xμ j( , )∼ is given by

X X X X

X

μ j μ P D k μ j

μ k

( , ) = ( ) + ( = | ){ ( , )

− ( , )}.

k j

∑∼ ∼

∼

≠

(5)

Furthermore, we define X X Xγ μ μ( ) = ( , 1) − ( , 0)1
∼ ∼

and X X Xγ μ μ( ) = ( , 2) − ( , 0)2
∼ ∼ . With some algebraic

calculations, we can rewrite (5) as follows:

X X X Xμ j μ j k P D k γ( , ) = ( ) + {1( = ) − ( = | )} ( )
k

k

=1

2

∑∼ (6)

for j= 0, 1, and 2. The term besides Xμ ( ) on the right‐
hand side of (6) encodes the selection bias by modeling
the group difference of Y given different D statuses with
fixed X (Tchetgen Tchetgen, 2014).

Equation (6) has several important implications. If the
selection bias is absent, then we have X Xγ γ( ) = ( ) = 01 2

and Xμ i( , )∼ reduces to Xμ ( ) regardless of the status of D.
If the disease is rare, then both XP D( = 1| ) and

XP D( = 2 | ) are close to zero in the whole population
and (6) reduces to

X X Xμ j μ j k γ( , ) = ( ) + 1( = ) × ( ).
k

k

=1

2

∑∼ (7)

Furthermore, if we set X Xγ Γ( ) = T
1 1, X Xγ Γ( ) = T

2 2,
and X X βμ ( ) = T , where Γ1, Γ2, and β are three vectors of
regression coefficients, then model (7) reduces to

X X β Xμ j j k Γ( , ) = + 1( = ) ,T

k

T
k

=1

2

∑∼ (8)
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in which β represents the main effects of X on Y and Γ1

and Γ2 represent the interaction effects of D and X on Y.
However, if the disease is not rare, then the selection bias
can be substantial when Xμ D( , )∼ varies dramatically
across D.

2.3 | Estimation

Our conditional model consists of three key components
including (2), (4), and (6). We can develop a two‐stage
estimation procedure to estimate the parameters of interest
in Xμ ( ), Xγ j{ ( ): = 1, 2}j , and XP j{ ( ): = 1, 2}j as follows:

• Stage I: Based on (4), we can construct a set of
estimation equations to estimate the unknown para-
meters in XP ( )j in order to obtain its estimate, denoted
as XP ( )j
 .

• Stage II: We can substitute XP ( )j
 in (6) and then

construct the other set of estimation equations to estimate
the parameters in Xμ ( ), Xγ ( )1 , and Xγ ( )2 based on (6).

In stage I, we assume that log XP{ ( )} −j

X X φP f ηlog{ ( )} = ( ; , )j j0 1 holds for j= 1, 2, where
f ( ; , )j ⋅ ⋅ ⋅ is a known parametric function. For instance,
in (4), we set X φ X φf η η( ; , ) = −j j

T
j j1 for each j.

Since η p π p π= log( ) − log( )j j j0 0
∼ ∼͠ ͠ is known, we can

construct a log pseudo‐likelihood function, denoted as
φL ( ), to estimate unknown parameters φ φ φ= ( , )T T T

1 2

in X{Π ( )}j based on N observations in the sample
X D S i N{( , , = 1): = 1, …, }i i i . Specifically, the log

pseudo‐likelihood function φL ( ) is given by

( ){ }X φ X φD j1( = ) − log 1 + exp .
i

N

j

i i
T

j

j

i
T

j

=1 =1

2

=1

2

⎪ ⎪

⎪ ⎪
⎡

⎣
⎢⎢

⎧
⎨
⎩

⎫
⎬
⎭

⎤

⎦
⎥⎥∑ ∑ ∑

(9)

We can calculate the maximum pseudo‐likelihood
estimate, φ φ φ φL^ ^ ^= ( , ) = argmax ( )φ

T T T
1 2 or equivalently,

φ φL 0( )/ =T∂ ∂ . Then, we compute

X X φ X φ

X φ

P f η f η

f η

( ) = exp{ ( ; , )}/[1 + exp{ ( ; , )}

+ exp{ ( ; , )}]

jj j j 1

2

1 1

2 2

 





as a consistent estimate of XP ( )j for j= 1 and 2.
In stage II, we need to assume an explicit form of
Xμ ( ), Xγ ( )1 , and Xγ ( )2 as follows:

X X β X X

X X

μ μ γ g

γ g

Γ

Γ

( ) = ( ; ), ( ) = ( ; ), and

( ) = ( ; ),

1 1 1

1 2 2 (10)

where μ ( , )⋅ ⋅ , g ( , )1 ⋅ ⋅ , and g ( , )2 ⋅ ⋅ are known functions and
β, Γ1, and Γ2 are unknown parameter vectors. Suppose
that θ β Γ Γ= ( , , )T T T T

1 2 and μ ( , )⋅ ⋅ , g ( , )1 ⋅ ⋅ , and g ( , )2 ⋅ ⋅ are all
in the linear form as described in last section. In this case,
(6) can be rewritten as

X θ φ̂ X β

X φ̂ X

μ D μ D j

P g Γ

˜( , ; , ) = ( ; ) + {1( = )

− ˆ ( ; )} ( ; ).

j

j j j

=1

2

∑

(11)

We construct consistent estimation equations based on
N observations Xy D S i N{( , , , = 1): = 1, …, }i i i i as follows:

θ φ̂
X θ φ̂

θ
θ φ̂U

μ D
ε 0( ; ) =

˜( , ; , )
( , ) = ,

i

N
i i

T i

=1

∑
∂

∂
(12)

where θ φ X θ φε y μ D( , ) = − ( , ; , )i i i i ∼ for i N= 1, …, . Let
θ be the solution to θ φU 0( ; ) = such that θ φU 0( ; ) =  .

The algorithm which jointly solves θ φU 0( ; ) =  and
φ φL 0( )/ =T∂ ∂ is denoted as “MGLReg” throughout the

paper. We can show that

θ θ

φ φ
n N 0 Σ

−

−
( , ),*

*

L



⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ → (13)

where L→ denotes the convergence in distribution and θ*
and φ

*
are the true value of θ and φ, respectively.

Moreover, Σ as a covariance matrix can be approximated
by Σ, which is given by

θ φ θ φ

φ

θ φ

φ

θ φ θ φ

φ
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N
U

N
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U

N

L

N

N
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1
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1
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⎠
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∂ ∂

∂ ∂

∂ ∂

∂
(14)

where θ= /θ∂ ∂ ∂ and φ= /φ∂ ∂ ∂ .
We discuss an extension of the semiparametric locally

efficient estimation (“SLEE”) method of Tchetgen Tchetgen
(2014). Specifically, the joint density of the observed data in
the multigroup case can be written as

X X X X Xf Y D f D π f Y D f D f( | , ) ( | ) ( | , ) *( | ) *( )
j

j
D j

=0

2
1( = )∏ ∝∼

(15)
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where X X X Xf f f D f D*( ) ( ) ( = 0| )/ *( = 0| )∝ and

X X Xf D j P

p π

π p

logit( *( = | )) = logit(Π ( )) = logit( ( ))

− log
(1 − )

(1 − )

j j

j j

j j
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

∼

∼

͠

͠

for j= 1, 2. We can derive the efficient score of θ φ( , ) as

θ φ θ φ θ φR R R( , ) = ( ( , ) , ( , ) ),θ φ
T T (16)

where X θ φ θ X θ φR μ D ε φ D ε= ( , ; , ){var( ( , | , ))} ( , )θ θ
−1∂ ∼

and

φ X θ φ

θ φ X θ φ

R L μ D

ε D ε

= ( ) + ( , ; , )

× {var( ( , | , ))} ( , ).

φ φ φ

−1

∂ ∂ ∼

The SLEE method by solving (16) is theoretically more
efficient than MRLReg, but it is computationally much
more difficult. However, simulations in the next section
demonstrates that “MRLReg” is competitive in compar-
ison of estimation efficiency compared with “SLEE.”

2.4 | Extension to binary secondary
outcome

Our framework can be easily extended to the case when
Y is binary. Assume that μ∼ X( ,D) =E Y(( X D P| , ) =

XY D( = 1| , ) and μ X XP Y( = ( = 1 | ) on the logit
scale. Let XOdds( ,D) = Y( = X XD P Y D1| , )/ ( = 0 , ) and

XOdds( ) =P Y( = 1 | X )/P XY( = 0 | ). Following the deri-
vation of (3.1) in Tchetgen Tchetgen (2014), we can get

X X X XD ν D νOdds( , ) = exp[log{Odds( )} + ( , ) − ( )],

(17)

where X X Xν D D D( , ) = log(Odds( , )/Odds( , = 0)) and

X X X

X

ν ν D j P D j Y

P D Y

( ) = exp{ ( , = )} ( = | , = 0)

+ ( = 0| , = 0).

j=1

2

∑

If (3) holds, we have

{ }{ }X

X

X

X
X φ

P

P
mlog

Π ( )

Π ( )
= log

( )

( )
= ( ; ),

*

*

*

*

j j

j
j

0

(18)

where XΠ ( )*j and XP ( )*j here correspond to P D( =
Xj Y S| , = 0, = 1) and XP D j Y( = | , = 0), respectively.

By setting X X βμlog{Odds( )} = ( ; ) and Xν D j( , = ) =

X γD j g1( = ) ( ; )
j j j∑ , we have

X θ φ X β

X γ X γ γ φ

P Y D μ

D j g ν

logit{ ( = 1| , ; , )} = ( ; )

+ 1( = ) ( ; ) − ( ; , , )
j

j j 1 2∑ (19)

with θ β γ γ= ( , , )T T T T
1 2 . Similar to φL ( ), we solve the log‐

likelihood function given by

( )

{ }X φ

X φ

Y D j(1 − ) 1( = )

− log 1 + exp .

i
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T

j

j
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T
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=1 =1
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⎧
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⎩

⎫
⎬
⎭

⎤

⎦
⎥⎥

∑ ∑

∑ (20)

Finally, estimating θ can be done by solving estima-
tion equations based on (19).

2.5 | Extension to multiphase scenario

In this subsection, we extend our regression framework to
large‐scale multigroup studies with multiple phases. In
practice, some studies (eg, ADNI) collect data across
multiple phases, while different phases may follow different
sampling schemes. We only consider the case that each
subject participates in a single phase, which agrees with the
study design of ADNI. For notational simplicity, we consider
a three‐group study with two phases.

It is assumed that all subjects from different phases
follow the same population‐level models in terms of
Xμ ( ) XE Y= ( | ), X Xμ D E Y D( , ) = ( | , )∼ , and P XD j( = | ),

and (2) holds for both phases. Similar to (5), we have

X X X X Xμ j μ P D k μ j μ k( , ) = ( ) + ( = | ){ ( , ) − ( , )}
k j

∑∼ ∼ ∼

≠

(21)

for both phases and each j = 0, 1, 2. We still use
X Xγ Γ( ) = T

1 1, X Xγ Γ( ) = T
2 2, and X X βμ ( ) = T to char-

acterize the group difference and target the model at the
population level. However, it is assumed that different
sampling schemes are used for phases 1 and 2. Let A be
the phase from now on, and denote X P DΠ ( ) = ( =j

m( )

Xj A m S| , = , = 1) for phase m = 1, 2 and group
j = 0, 1, 2. Thus, (3) is given by
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for
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j
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0
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∼
͠

͠

(22)
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where p P D j S A m= ( = | = 1, = )j
m( )͠ corresponds to the

proportion of group j in the sample at phase m.
Subsequently, by assuming a multinomial logistic regres-
sion model for XP ( )j , we have

X

X

X

X
X φ

P

P
η ηlog

Π ( )

Π ( )
= log

( )

( )
+ = + ,

j
m

m

j
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m T
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0
( )

0

( ) ( )
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧⎨⎩
⎫⎬⎭

(23)

where η p π p π= log( ) − log( )j
m m

j j
m( )

0
( ) ( )

0
∼ ∼͠ ͠ for m = 1, 2.

We use a slightly different two‐stage estimation
procedure to estimate all the parameters of interest.
Specifically, in stage I, we estimate XP ( )j for the two
phases by combining the observations from both phases.
Afterwards, we use the same estimation method in
stage II to estimate additional parameters in Xμ ( ), Xγ ( )1 ,
and Xγ ( )2 . The log pseudo‐likelihood function φL ( ) in
stage I is given by

{ }( )

( )

X φ

X φ

D j η

η A m

1( = ) +

− log 1 + exp + 1( = ).
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Under some mild conditions, it can be shown that
θ θ φ φn N 0 Σ( − , − ) ( , ),* * *

L  → where the covariance
matrix Σ* can be approximated by Σ*

 , which is given in
the supplements.

3 | SIMULATION STUDIES

We carry out Monte Carlo simulations to evaluate the
finite sample performance of five methods including
(a) LReg: linear regression without bias correction; (b)
LRegD: linear regression method adjusted for the
group status X D D= (1( = 1), 1( = 2))s

T ; (c) IPW: in-
verse probability weighting approach (Richardson
et al., 2007); (d) SPREG: the retrospective likelihood
method in (Lin and Zeng, 2009); (e) MGLReg; and (f)
SLEE: the semiparametric locally efficient estimation
method.

3.1 | Two‐SNP setup

We consider two parts of the simulation. The first part
assumes that group difference exists in the genetic effects
on the secondary trait. The second part assumes an
incorrect specification of the conditional model and a
misspecification of the X Xγ γ( ), ( )1 2 (Lin and Zeng, 2009;

Song et al., 2016; Zhu et al., 2017). In this setup, one SNP
has significant effect on the secondary trait, whereas the
other is unrelated.

3.1.1 | Setting 1

The details of the first part are described as follows:

(i) Generate a nongenetic covariate C N (0, 1)∼ for
each subject.

(ii) Generate two SNP‐level genetic variables G G,1 2

with minor allele frequency (MAF) = 0.3 following
a multinomial distribution with frequencies
p p p p( , 2 (1 − ), (1 − ) )A A A A

2 2 for AA Aa aa( , , ) respec-
tively, with the Hardy‐Weinberg equilibrium as-
sumption under the additive mode of inheritance.

(iii) Generate the primary trait D according to the
following multinomial logistic model:

X

X
X φ

P D j

P D
jlog

( = | )

( = 0| )
= for = 1, 2,T

j

⎧⎨⎩
⎫⎬⎭

where X C G G= (1, , , )T
1 2 . Subsequently, we can

calculate the two dummy variables D1( = 1) and
D1( = 2). Moreover, we choose φ φ=1 2 so that the

global prevalence of groups 0, 1, and 2 are
respectively 10%, 15%, and 75%. We also consider a
rare disease case with the global prevalence of groups
0, 1, and 2 being 5%, 5%, and 90%, respectively.

(iv) Generate the secondary phenotype Y for each
subject according to (6) as follows:

β X X XY β D j P γ ε= + + {1( = ) − ( )} ( ) + ,T

j

j j0 1
=1

2

∑

(24)

where ε N δ(0, )∼ , β = (1, 2, 0)T
1 . β0 and δ are equal

to the sample mean and variance of left hippo-
campi volume from ADNI, respectively. We
also set X Xγ Γ( ) =j i i

T
j for j = 1, 2 with Γ =1

(−2, − 1, − 1, − 1)T and Γ = (1, 1, 1, 1)T2 .
(v) Repeat steps (i) to (iv) to generate XY D( , , ) until we

obtain a total of N=50 000 observations as the whole
population. Then, we randomly select 500, 1000, and
500 subjects from the D=0, D=1, and D=2 groups to
build a nonrandom three‐group sample.

3.1.2 | Setting 2

(i) Generate X C G G= (1, , , )T
1 2 as setting 1.

(ii) Generate the secondary phenotype Y for each
subject according to
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β XY β ε= + + ,T
0 1 (25)

and we still have ε N δ(0, )∼ , β = (1, 2, 0)T
1 , and the

same β δ( , )0 as setting 1.
(iii) Simulate the primary trait D using a multinomial

model given by

X

X,
X φ

P D j Y

P D Y
Y jlog

( = | , )

( = 0| )
= ( , ) for = 1, 2,T

j

⎧⎨⎩
⎫⎬⎭ ͠

and we also vary φ φ,1 2͠ ͠ to get the global group
prevalences to be (10%, 15%, 75%) and (5%, 5%, 90%)
for the rare case, respectively.

(iv) Repeat steps (i) to (iii) until the sample size reaches
500 000 and then sample 500 (D= 0), 1000 (D= 1),
and 500 (D= 2) observations from the above large
pool of subjects.

Tables 1 and 2 present the simulation results under
the first and second simulation setups. They include the
mean absolute biases and the variances of βG

 and, their
95% confidence interval coverage rates based on the 1000
Monte Carlo samples for all six methods. Both LReg and
LRegD perform poorly in correcting the sampling bias for
both settings. Under the first setting, MGLReg and SLEE
introduced in this paper have the smallest estimation
bias. The SLEE performs slightly better than MGLReg,
but the difference is not substantial. The IPW achieves a
comparable performance with MGLReg, whereas our
method is more efficient under both settings. The
likelihood‐based approach SPREG does not work in the
first part, since it highly depends on the correct
specification of the conditional model. For the second
part, MGLReg and SLEE provide competitive estimation
results with SPREG, especially in the rare disease case.
On the other hand, as we misspecify p p( , )0 1͠ ͠ , both
MGLReg and SLEE perform acceptably stable under

TABLE 1 Estimation biases, variances, and 95% coverage rates of βG
 for p = 0.3A

Setting 1 Setting 2

Absolute bias Variance Coverage Absolute bias Variance Coverage

β = 2G1

LReg 0.8526 1.06 × 10−2 0.012 0.1774 9.22 × 10−3 0.572
LRegD 0.5639 2.79 × 10−2 0.066 0.8633 7.59 × 10−3 0.000
IPW 0.0848 1.94 × 10−2 0.945 0.1180 2.14 × 10−2 0.945
SPREG 1.2001 1.78 × 10−1 0.000 0.0889 1.13 × 10−2 0.946

MGLReg p p( = 0.1, = 0.15)0 1͠ ͠ 0.0615 2.69 × 10−3 0.969 0.0987 1.49 × 10−2 0.946

SLEE p p( = 0.1, = 0.15)0 1͠ ͠ 0.0613 2.63 × 10−3 0.970 0.0986 1.48 × 10−2 0.948

MGLReg p p( = 0.05, = 0.15)0 1͠ ͠ 0.0633 3.21 × 10−3 0.954 0.1014 1.37 × 10−2 0.936

SLEE p p( = 0.05, = 0.15)0 1͠ ͠ 0.0631 3.20 × 10−3 0.956 0.1006 1.36 × 10−2 0.935

MGLReg p p( = 0.15, = 0.15)0 1͠ ͠ 0.0671 2.75 × 10−3 0.960 0.1053 1.77 × 10−2 0.926

SLEE p p( = 0.15, = 0.15)0 1͠ ͠ 0.661 2.69 × 10−3 0.961 0.1048 1.74 × 10−2 0.928

MGLReg p p( = 0.1, = 0.1)0 1͠ ͠ 0.1008 6.26 × 10−3 0.884 0.1065 1.58 × 10−2 0.914

SLEE p p( = 0.1, = 0.1)0 1͠ ͠ 0.0993 6.15 × 10−3 0.886 0.1029 1.56 × 10−2 0.918

MGLReg p p( = 0.1, = 0.2)0 1͠ ͠ 0.0955 3.15 × 10−3 0.854 0.0982 1.10 × 10−2 0.956

SLEE p p( = 0.1, = 0.2)0 1͠ ͠ 0.0942 3.07 × 10−3 0.886 0.0972 1.04 × 10−2 0.960

β = 0G2

LReg 0.8483 1.08 × 10−2 0.000 0.1478 1.11 × 10−2 0.776
LRegD 0.9744 2.04 × 10−2 0.000 0.3744 6.79 × 10−3 0.014
IPW 0.0752 1.73 × 10−2 0.944 0.1137 2.55 × 10−2 0.950
SPREG 0.7418 1.04 × 10−1 0.112 0.0994 1.53 × 10−2 0.954
MGLReg p p( = 0.1, = 0.15)0 1͠ ͠ 0.0655 6.80 × 10−3 0.954 0.1050 1.99 × 10−2 0.952
SLEE p p( = 0.1, = 0.15)0 1͠ ͠ 0.0644 6.55 × 10−3 0.954 0.1036 1.92 × 10−2 0.952
MGLReg p p( = 0.05, = 0.15)0 1͠ ͠ 0.0868 9.86 × 10−3 0.868 0.1050 1.99 × 10−2 0.952
SLEE p p( = 0.05, = 0.15)0 1͠ ͠ 0.0851 9.75 × 10−3 0.870 0.1036 1.92 × 10−2 0.952
MGLReg p p( = 0.15, = 0.15)0 1͠ ͠ 0.0714 5.62 × 10−3 0.924 0.1070 1.76 × 10−2 0.948
SLEE p p( = 0.15, = 0.15)0 1͠ ͠ 0.0706 5.53 × 10−3 0.928 0.1049 1.99 × 10−2 0.950
MGLReg p p( = 0.1, = 0.1)0 1͠ ͠ 0.0945 7.53 × 10−3 0.846 0.0987 2.61 × 10−2 0.930
SLEE p p( = 0.1, = 0.1)0 1͠ ͠ 0.0947 7.38 × 10−3 0.848 0.1043 2.54 × 10−2 0.932
MGLReg p p( = 0.1, = 0.2)0 1͠ ͠ 0.0938 6.39 × 10−3 0.844 0.1023 1.91 × 10−2 0.946
SLEE p p( = 0.1, = 0.2)0 1͠ ͠ 0.0897 5.95 × 10−3 0.850 0.1019 1.86 × 10−2 0.946
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different global prevalence settings. More details are
given in Tables 1 and 2. In terms of the computation
efficiency, MGLReg is about 10 times faster than SLEE.
Therefore, we choose MGLReg to do the large‐scale
ADNI data analysis.

3.2 | Multiple‐SNP setup

To better mimic the real‐world genome‐wide association
study (GWAS) analysis, we use the same simulation
settings as those for the two‐SNP setup except adopting a
multiple‐SNP setup within total 500 SNPs and randomly
sampling 10 SNPs as causal SNPs with effect size being 0:5.
For details, please refer to the supplementary document.

Table 3 presents the mean absolute biases, the mean
estimation variances and their 95% confidence interval
coverage rates based on 100 Monte Carlo samples of both
the causal and noncausal SNPs for all methods. Table 3
shows that our method MGLReg can detect more causal
SNPs (higher mean coverage rates) compared to the other
methods in both settings, demonstrating that our method
is more robust against biased sampling and less sensitive
to model misspecification. Compared to the two‐SNP
setup, IPW is more biased especially for setting 2,
whereas our method is much more stable. SPREG does

not perform well in this case even for setting 2, which
confirms our conclusion that SPREG highly depends on
the correct specification of the conditional model. For
SNPs not associated with secondary phenotype, MGLReg
performs similar to others. It means that it does not
overestimate the genetic effects of noncausal SNPs even
with higher model complexity.

4 | THE ALZHEIMER ’S DISEASE
NEUROIMAGING INITIATIVE
DATA

We apply the MGLReg method to the ADNI data set. The
main goal of this data analysis is to search for genetic
patterns that are associated with local hippocampal
changes, while correcting for the selection bias associated
with ascertainment in multigroup studies.

4.1 | GWAS analysis

The 299 subjects with normal cognition (NC), 553 with
MCI and 185 with AD build the final sample data, where
712 of them are from ADNI1 with the other 325 from
ADNI2 and GO. The secondary outcome Y used in the

TABLE 2 Estimation biases, variances, and 95% coverage rates of βG
 for rare disease case

Setting 1 Setting 2

Absolute bias Variance Coverage Absolute bias Variance Coverage

β = 2G1

LReg 1.5466 7.14 × 10−3 0.000 0.6095 7.49 × 10−3 0.102
LRegD 0.7638 2.37 × 10−2 0.004 1.0535 6.54 × 10−3 0.000
IPW 0.0686 5.68 × 10−3 0.832 0.1859 3.25 × 10−2 0.640
SPREG 0.1546 1.22 × 10−1 0.896 0.1486 9.82 × 10−2 0.891

MGLReg p p( = 0.05, = 0.05)0 1͠ ͠ 0.0552 4.86 × 10−3 0.916 0.1139 2.14 × 10−2 0.928

SLEE p p( = 0.05, = 0.050 1͠ ͠ 0.0552 4.85 × 10−3 0.920 0.1081 1.92 × 10−2 0.930

MGLReg p p( = 0.05, = 0.1)0 1͠ ͠ 0.0726 4.42 × 10−3 0.868 0.1313 2.84 × 10−2 0.911

SLEE p p( = 0.05, = 0.1)0 1͠ ͠ 0.0720 4.39 × 10−3 0.872 0.1308 2.59 × 10−2 0.912

MGLReg p p( = 0.1, = 0.05)0 1͠ ͠ 0.0709 3.83 × 10−3 0.880 0.1293 2.47 × 10−2 0.912

SLEE p p( = 0.01, = 0.05)0 1͠ ͠ 0.0714 3.81 × 10−3 0.884 0.1252 2.38 × 10−2 0.916

β = 0G2

LReg 1.0773 1.34 × 10−2 0.000 0.3857 8.91 × 10−3 0.390
LRegD 1.0959 8.33 × 10−3 0.000 0.5367 7.35 × 10−3 0.004
IPW 0.0751 7.88 × 10−3 0.850 0.1536 3.42 × 10−2 0.950
SPREG 0.1376 1.38 × 10−1 0.884 0.1349 5.10 × 10−2 0.921
MGLReg p p( = 0.1, = 0.15)0 1͠ ͠ 0.0712 6.80 × 10−3 0.970 0.1270 2.30 × 10−2 0.946
SLEE p p( = 0.1, = 0.15)0 1͠ ͠ 0.0710 6.55 × 10−3 0.972 0.1240 2.18 × 10−2 0.950
MGLReg p p( = 0.05, = 0.1)0 1͠ ͠ 0.0806 9.94 × 10−3 0.926 0.1448 3.37 × 10−2 0.938
SLEE p p( = 0.05, = 0.1)0 1͠ ͠ 0.0797 9.70 × 10−3 0.932 0.1399 3.18 × 10−2 0.940
MGLReg p p( = 0.1, = 0.05)0 1͠ ͠ 0.0795 8.87 × 10−3 0.930 0.1432 3.01 × 10−2 0.942
SLEE p p( = 0.1, = 0.05)0 1͠ ͠ 0.0793 8.85 × 10−3 0.932 0.1429 2.96 × 10−2 0.945
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experiment are the logarithm of the left and right
hippocampi volumes divided by the whole brain volume.
The 6 017 259 SNPs after quality control are analyzed,
and the genetic factor at each individual SNP is coded as
0, 1, and 2. To correct for the population stratification,
the top three principal components (PCs) of the whole‐
genome data are included as covariates (Price et al.,
2006). We also add a dummy variable for distinguishing
ADNI1 from (ADNI2, ADNIGO), since different imaging
protocols were used in ADNI1 and (ADNI2, ADNIGO),
which may affect the volume segmentation results. We
apply two‐sample t test to test the difference between
ADNI1 and (ADNI2, ADNIGO), whose p‐value is smaller
than e2 − 16. Thus, a significant difference exists
between the distribution of Y for ADNI1 and that for
(ADNI2, ADNIGO) according to the boxplot in the
supplements. The details of data description and proces-
sing procedures are discussed in Supplementary Material.

In this data analysis, D= 0, 1, and 2 represent
AD, MCI, and NC, respectively. The global prevalence
of AD within people older than 65 is more than 10%
(Alzheimer’s Association, 2012) while MCI is between
10% and 20% (Kim et al., 2015). We compare four different
combinations of p p( , )0 1͠ ͠ , (0.1, 0.15), (0.1, 0.2), (0.15, 0.15),

and (0.15, 0.2) for our proposed method, since the
prevalences of AD and MCI vary with patients getting
old, and the chance of developing MCI and AD increases
as adults age.

4.2 | Results

Table 4 presents the most significant pairs of SNPs
combined with the regions of interest detected by LReg,
where significant SNPs are selected according to the
5 × 10−8 p‐value threshold for both the left and right

hippocampi. The p‐values of these SNPs by MGLReg with
different p p( , )0 1͠ ͠ selections are also provided. Those
p‐values smaller than 5 × 10−8 are marked by bold italic
in Table 4.

The SNP rs429358, related to gene APOE, is
detected as the most significant SNP for both left and
right hippocampi by both LReg and MGLReg. Specifi-
cally, rs429358 has significant genetic effects on the
volume size of left hippocampi since its p‐value is
consistently smaller than the e5 −8 threshold with
different combinations of p p( , )0 1͠ ͠ . This result agrees
with the previous findings (Kim et al., 2002; Shen et al.,
2010; Lu et al., 2011; Kim et al., 2015). Another
significant SNP rs769449, also in APOE region, has
competitive significancy with rs429358 for both left
and right hippocampi, which was found to be
associated with cerebrospinal fluid (CSF) tau (Crucha-
ga et al., 2013) and verbal memory (Arpawong et al.,
2017). Therefore, our results may prove that rs769449
may have potential effects on the hippocampi volumes.
Other significant SNPs detected by LReg are not stably
significant when the population rates vary according to
the results of our approach. For example, rs59007384
(associated with gene TOMM40) is related to the
progression from MCI status to AD (Cervantes et al.,
2011). The higher group proportion of AD in the
sample data may result in the significant p‐value by
LReg. However, our method MGLReg indicates that
rs59007384 may not be significantly related with the
hippocampi volume sizes in the whole population,
especially the group of normal people.

Figure 1 presents the heatmaps of log10(p)‐value
for SNPs rs429358, rs769449, and rs59007384 using
MGLReg, with p0͠ and p1͠ varying within [0.1, 0.35] and
[0.1, 0.65], respectively, demonstrating a dynamic

TABLE 3 Mean estimation biases, variances, and 95% coverage rates of causal and noncausal single‐nucleotide polymorphisms (SNPs)

Setting 1 Setting 2

Absolute bias Variance Coverage Absolute bias Variance Coverage

Causal SNPs

LReg 0.2996 1.16 × 10−2 0.128 0.2032 9.02 × 10−3 0.512
LRegD 0.3042 1.02 × 10−1 0.220 0.3691 6.38 × 10−3 0.000
IPW 0.0693 7.61 × 10−3 0.902 0.1772 5.46 × 10−2 0.648
SPREG 0.2998 1.17 × 10−1 0.132 0.1534 3.57 × 10−2 0.904
MGLReg 0.0557 4.83 × 10−3 0.944 0.1075 1.14 × 10−2 0.956

Noncausal SNPs
LReg 0.0674 7.07 × 10−3 0.923 0.1464 1.01 × 10−2 0.929
LRegD 0.0576 4.01 × 10−3 0.943 0.0961 6.91 × 10−2 0.933
IPW 0.0700 7.59 × 10−3 0.907 0.1898 5.68 × 10−2 0.645
SPREG 0.0693 8.39 × 10−3 0.940 0.1302 3.39 × 10−2 0.937
MGLReg 0.0549 5.06 × 10−3 0.951 0.0896 1.67 × 10−2 0.947
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change of significance over various MCI and AD
prevalence rates in the whole population. We introduce
the significance prevalence heatmap (SPH) by using
ellipse contours corresponding to different p‐value
thresholds to determine the population prevalence
range for the significance of a specific SNP. For
instance, if p p+0 1͠ ͠ is smaller than 0.5, then within
the given p p( , )0 1͠ ͠ range, rs429358 is significant for the
left hippocampi as p p+ 2.625 × > 0.40450 1͠ ͠ and for
the right hippocampi as p p+ 3.138 × > 0.5960 1͠ ͠ ;
rs769449 is significant for the left hippocampi as
p p+ 2.70 × > 0.4780 1͠ ͠ and for the right hippocampi as
p p+ 3.5 × > 0.5340 1͠ ͠ .

To more clearly show how the global prevalence rate
p p( , )0 1͠ ͠ influences the genetic effects, we plot the density
curves of the p−log ( )10 ‐values of 50 SNPs in the APOE
region by LReg and MGLReg with different p p( , )0 1͠ ͠

combinations (Figure 2). The curves shift to left as
p p( , )0 1͠ ͠ decreases. It indicates that most significant SNPs
in this region detected by LReg are considered unim-
portant in normal people. Only those SNPs jointly
detected by both LReg and MGLReg with all p p( , )0 1͠ ͠

settings have significant population‐level genetic effects
on the hippocampi volume size.

Since the genetic measurements were on different
platforms, we do an interaction analysis to test its
potential differences and consequences on inference.
Specifically, we repeat the experiment above, but adding
an interaction term between phase status and genetic
factor into the covariates set. We include the p‐values of
testing the interaction term for the top SNPs in Table 4.
We observe that the genetic data acquired at the two
phases do not have a significant difference based on the
p‐values. Figures 3 and 4 present the Manhattan plots of
the GWAS results based on the left and right hippocampi
by all the 6 017 259 SNPs to give a global view of the
genetic effects and their variation as the global pre-
valence rate varies.

5 | DISCUSSION

The aim of this article is to develop a general
regression framework based on the conditional model
for the secondary outcome given the multigroup status
and covariates and its relationship with the population
regression of interest of the secondary outcome given
covariates. It allows us to reduce the effect of sampling
bias on the association between a certain genetic factor
G and secondary trait Y in multigroup studies. Our
method shares a similar idea with the traditional
weighted likelihoods method such as IPW in correct-
ing the weights of subjects in multiple groups, but itT
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outperforms IPW in terms of smaller estimation bias
and type‐I error rate. The GWAS experiment clearly
demonstrates how the global prevalence rates influ-
ence the effects of covariates on the secondary
outcome. Our experiment provides more evidence that

rs429358 and rs769449 have whole‐population‐level
genetic effects on the volume sizes of left and right
hippocampi. On the other hand, other top SNPs
detected by LReg may be caused by the sampling bias
by our method.

FIGURE 1 The heatmaps of −log10(p)‐value for three selected single‐nucleotide polymorphisms by MGLReg with different global
Alzheimer’s disease (AD) and mild cognitive impairment (MCI) prevalence rates in the whole population [This figure appears in color in the
electronic version of this article, and any mention of color refers to that version]

FIGURE 2 The density curves of −log10(p)‐values of top 50 APOE region single‐nucleotide polymorphisms by each method for the left
and right hippocampus volumes [This figure appears in color in the electronic version of this article, and any mention of color refers to that
version]
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Web Appendices, Tables, and Figures referenced in
Sections 2, 3, and 4, proofs, and detailed description of
the real data are available with this paper at the
Biometrics website on Wiley Online Library. We devel-
oped the R package MGLREG as our companion
software, which is publicly available from github (see
reference MGLREG).
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