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Latent Representation Learning for Alzheimer’s
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Abstract— The fusion of complementary information
contained in multi-modality data [e.g., magnetic res-
onance imaging (MRI), positron emission tomography
(PET), and genetic data] has advanced the progress of
automated Alzheimer’s disease (AD) diagnosis. However,
multi-modality based AD diagnostic models are often hin-
dered by the missing data, i.e., not all the subjects have
complete multi-modality data. One simple solution used by
many previous studies is to discard samples with missing
modalities. However, this significantly reduces the number
of training samples, thus leading to a sub-optimal classifi-
cation model. Furthermore, when building the classification
model, most existing methods simply concatenate features
from different modalities into a single feature vector without
considering their underlying associations. As features from
different modalities are often closely related (e.g., MRI and
PET features are extracted from the same brain region),
utilizing their inter-modality associations may improve the
robustness of the diagnostic model. To this end, we pro-
pose a novel latent representation learning method for
multi-modality based AD diagnosis. Specifically, we use
all the available samples (including samples with incom-
plete modality data) to learn a latent representation space.
Within this space, we not only use samples with complete
multi-modality data to learn a common latent representation,
but also use samples with incomplete multi-modality data to
learn independent modality-specific latent representations.
We then project the latent representations to the label
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space for AD diagnosis. We perform experiments using
737 subjects from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, and the experimental results
verify the effectiveness of our proposed method.

Index Terms— Alzheimer’s disease, multi-modality data,
incomplete multi-modality data, latent representation space

I. INTRODUCTION

AS one of the most common neurodegenerative diseases,
Alzheimer’s disease (AD) often appears in people over

65 years old, and gradually affects their memory and other
brain functions. According to a recent research report from
the Alzheimer’s Association [1], the total prevalence of AD is
expected to reach 60 million worldwide over the next 50 years.
Thus, a lot of research efforts have been devoted to understand
the underlying biological or physiological mechanisms of
AD [2], [3]. Although there is no effective cure for AD,
studies have demonstrated that the diagnosis of its early stage
(i.e., Mild Cognitive Impairment (MCI)) is highly desirable in
clinical practice, so that early treatments could be administered
to possibly slow down the disease progression [4], [5].

Advanced multi-modality neuroimaging technology, such
as Magnetic Resonance Imaging (MRI) [2], [6]–[10] and
Positron Emission Tomography (PET) [11], [12], have pro-
vided unprecedented opportunities for the early diagnosis
of AD. In particular, the fusion of multi-modality data
has advanced the progress of automatic AD diagnosis,
thanks to the complementary information contained within
them [12]–[16]. In addition, several Genome-Wide Associ-
ation Studies (GWAS) have identified a series of genetic
variations (e.g., Single Nucleotide Polymorphism (SNP)) asso-
ciated with AD [17], which are likely to increase the risk of
developing the disease [18], [19]. Therefore, it is of interest
to develop a prediction model that fuses both neuroimaging
(e.g., MRI and PET) and genetic data (e.g., SNP) to further
improve the performance of AD diagnosis [20].

In automated AD diagnosis studies using multi-modality
data, the feature dimension is usually very high (e.g.,
tens of thousands) while the number of training samples
is limited, i.e., it is a typical small-sample-size problem.
To address this issue, previous studies have applied various
dimension reduction or feature selection techniques [21], [22]
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on multi-modality data, to find the most informative fea-
ture subset for accurate AD diagnosis. For example,
Salas-Gonzalez et al.hbox [22] utilize the statistical t-test
method to select voxels of interest for AD diagnosis. Sparse
learning based feature selection methods have also been widely
applied in AD diagnosis [23], [24]. In addition, many clas-
sic feature dimensionality reduction algorithms, e.g., Prin-
cipal Component Analysis (PCA) [25], Linear Discriminant
Analysis (LDA) [26], and Laplacian Preserving Projection
(LPP) [27], have been applied to AD status prediction.

Although various feature selection and dimension reduction
methods have been proposed, there are still two challenges
with automatic AD diagnosis systems using multi-modality
neuroimaging (i.e., MRI and PET) and genetic data (i.e., SNP).
The first challenge is that it is difficult to exploit the inherent
association among multi-modality data. To fuse multi-modality
data, conventional methods usually first conduct feature selec-
tion for each modality separately and then concatenate the
selected features for diagnosis or prognosis. However, such
approaches ignore the underlying association between different
modalities. Although several classic multi-modality fusion
approaches (e.g., Multiple Kernel Learning (MKL) [28] and
Canonical Correlation Analysis (CCA) [29]) can exploit the
relationship between different modalities, they can only be
applied to the complete multi-modality data.

As briefly mentioned above, the second challenge in
multi-modality based AD diagnosis system is the missing data
issue, i.e., not all the samples have complete multi-modality
data. Generally, there are two approaches for dealing with
this issue, i.e., 1) discarding the samples with missing val-
ues, and 2) imputing the missing values. Several current
AD diagnostic models follow the first approach, i.e., they
simply discard samples with at least one missing modality
and perform disease diagnosis using the remaining samples
that have complete multi-modality data. However, this simple
strategy not only disregards lots of useful information in
the discarded samples, it also escalates the small-sample-
size issue. The second approach uses various data imputation
techniques (e.g., Zero imputation, k-Nearest Neighbor (KNN),
expectation maximization, low-rank matrix completion, etc.)
to impute the missing data, so that any diagnostic model that
works with complete data can be used. However, this strategy
could introduce unnecessary noise and thus reduce the classifi-
cation performance. Several approaches have also been devel-
oped to handle incomplete multi-modality data [7], [30], [31].
However, these approaches do not effectively exploit the
correlations across multiple modalities. It is expected to boost
diagnostic performance by fusing these multi-modality data.

To this end, we propose a novel latent representation learn-
ing framework for AD diagnosis (as shown in Fig. 1). Specifi-
cally, we assume there exists a latent space for multi-modality
data, to which each modality can be projected. The projection
from different modalities to this common latent space is
expected to model the association among different modalities.
That is, we first treat data from each modality (e.g., MRI, PET,
and SNP) as explicit features that can reflect different attribute
information. For instance, MRI data can provide us with
anatomical brain information, while PET and SNP data can

Fig. 1. Illustration of our proposed AD diagnosis framework. First,
we project original features into a latent representation space. Within
this space, we utilize samples with complete multi-modality data to
learn a common latent representation, and utilize samples with incom-
plete multi-modality to learn modality-specific representations. Finally,
the latent feature representations are projected to the label space for AD
diagnosis.

provide us with functional brain information and congenital
genetic information, respectively. To make full use of all avail-
able samples for learning a more reliable prediction model,
we utilize samples with complete multi-modality data to learn
the common latent feature representation, and utilize samples
with incomplete multi-modality data to learn an independent
(i.e., modality-specific) latent feature representation for each
modality. Furthermore, the learned latent representations are
projected to the corresponding label space for AD diagnosis.
We evaluate our proposed method on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, and the experimen-
tal results verify its effectiveness.

The key contribution of this paper is three-fold. First, our
method performs classification tasks using new feature rep-
resentations in a latent space, instead of the original features.
These new feature representations are expected to be less noisy
than the original features, since projecting the original features
into the latent space involves sparse feature learning. Second,
our method makes use of all the available subjects to train a
more reliable model, while the conventional methods usually
use only subjects with complete multi-modality data or impute
missing values via specific algorithms. Third, we integrate both
the latent feature learning and classifier training into a unified
framework, while most conventional methods often conduct
the two tasks separately.

The rest of this paper is organized as follows. We describe
the materials used in this study and present the data pre-
processing steps in Section II. Then, we introduce our pro-
posed latent representation learning method in Section III.
We further describe experiments in Section IV and provide
the related discussion in Section V. Finally, we conclude this
paper in Section VI.

II. MATERIALS AND DATA PREPROCESSING

We used the data from the public ADNI database [32]
to evaluate our proposed framework. The ADNI dataset
was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and
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TABLE I
DEMOGRAPHIC INFORMATION OF THE BASELINE SUBJECTS IN THIS

STUDY (MMSE: MINI-MENTAL STATE EXAMINATION)

Bioengineering, the Food and Drug Administration, private
pharmaceutical companies and nonprofit organizations with a
five-year public-private partnership. The main aim of ADNI is
to research the potential of fusing multi-modality data, includ-
ing neuroimaging, clinical, biological, and genetic biomarkers,
to effectively diagnose AD and its early stage.

A. Studied Subjects

In this study, we used 737 subjects from the ADNI-1
database, including 171 AD, 362 MCI, and 204 normal
control (NC) subjects. For MCI subjects, we further labeled
those who progressed to AD after a certain period of time as
progressive MCI (pMCI) subjects, and those who remained
stable as stable MCI (sMCI) subjects. In this study, there
are 205 sMCI subjects and 157 pMCI subjects. All the
studied subjects have baseline MR images acquired at the first
screening time (i.e., the baseline time-point). Among them,
only 360 subjects have baseline PET data. Table I shows the
demographic information of the studied subjects.

B. Data Preprocessing

In this study, we downloaded 1.5T MR images from the
ADNI website.1 The MR images were collected using a
variety of scanners with protocols customized to each scan-
ner. For quality control, ADNI reviewed the MR images
and corrected them for spatial distortion caused by B1 field
inhomogeneity and gradient nonlinearity. Following previ-
ous studies [33], we further processed these MR images
and extracted ROI-based features. Specifically, the MR
images were processed under the following steps: 1) anterior
commissure-posterior commissure (AC-PC) correction using
MIPAV software,2 2) intensity inhomogeneity correction using
the N3 algorithm [34], 3) brain extraction using a robust
skull-stripping algorithm [35], 4) cerebellum removal, 5) tis-
sues segmentation using the FAST algorithm in the FSL
package [36] to obtain three main tissues (i.e., white matter
(WM), gray matter (GM), and cerebrospinal fluid), 6) registra-
tion to a template [37] using the HAMMER algorithm [38],
and 7) ROI labels projection from the template image to the
subject image. Finally, we computed the GM tissue volume of
each ROI in the labeled image, and normalized them with the
intracranial volume as the ROI-based feature representation
for each subject. Moreover, for each subject, we first aligned
PET images to their corresponding T1 MR images using affine
registration, and then computed the average PET intensity

1http://www.loni.usc.edu/ADNI
2http://mipav.cit.nih.gov/clickwrap.php

TABLE II
THE MAIN NOTATIONS USED IN THE PROPOSED

FORMULATION IN EQ. (6)

value of each ROI as a feature representation. Using a template
with 93 ROIs [37], we obtained a 93-dimensional ROI-based
feature vector from a specific type of neuroimaging data (i.e.,
MRI or PET) for each subject.

Genetic variations can provide us microscopic information
about AD. In this study, the SNP data were genotyped using
the Human 610-Quad BeadChip. According to the AlzGene
database,3 only SNPs belonging to the top AD gene candidates
were selected. The selected SNPs were imputed to estimate the
missing genotypes, and Illumina annotation information was
used to select a subset of SNPs [39].

III. METHODOLOGY

In this section, we provide the details of the proposed
AD diagnosis framework, and then present the optimization
algorithm, as well as the model prediction steps.

A. Formulation

Let X ∈ R
d×n denote a feature matrix, where d and n

indicate the feature dimension and the number of subjects,
respectively, and Y ∈ R

l×n denote the corresponding label
matrix, with l being the total number of classes. The least
square regression model with multi-class group sparse feature
selection method is given as

min
W

‖W�X − Y‖2
F + β‖W‖2,1, (1)

where W ∈ R
d×l is a regression coefficient matrix, � denotes

the transpose operator, ‖ · ‖F denotes the Frobenius norm,

‖ · ‖2,1 denotes the �2,1-norm, i.e., ‖W‖2,1 = ∑d
i

√∑l
j w2

i j ,
and β is a trade-off parameter that is used to balance the recon-
struction error (the first term) and the regularizer (the second
term). The �2,1-norm regularizer has been widely applied to

3www.alzgene.org
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multi-task feature learning [40]–[42], and is used to penalize
the coefficients in each row of W, so that only certain rows
in W are non-zeros. In Eq. (1), the optimal solution assigns
relatively large weights to informative features while zero or
small weights to uninformative or less informative features.

For multi-modality data fusion, as in our case, Eq. (1) can
be extended to

min
Wv

V∑
v=1

‖W�
v Xv − Y‖2

F + β‖Wv‖2,1, (2)

where V is the number of modalities, and Xv denotes feature
matrix for the v-th modality. In Eq. (2), the original features
from different modalities are projected into the label space
without considering the correlation among different modali-
ties. However, we know that both neuroimaging and genetic
features are related in some ways, as they are directly and
indirectly associated with the AD disease label, respectively,
thus giving different views for the AD prediction task. Hence,
we hypothesize that there exists a common latent feature space
for those modalities, which contains information from different
perspectives and gives us a more comprehensive view of the
AD prediction task. Thus, we extend Eq. (2) into the following
formulation as

min
Wv ,Ev ,H,P

1

2
‖PH − Y‖2

F + γ

V∑
v=1

‖W�
v Xv − H‖2

F

+ β

V∑
v=1

‖Wv‖2,1 + η

2
‖P‖2

F . (3)

Furthermore, to alleviate outlier effect in latent space learn-
ing, we adopt the �1-norm to replace the Frobenius norm.
Thus, the objective function in Eq. (3) is transformed to

min
Wv ,Ev ,H,P

1

2
‖PH − Y‖2

F + β

V∑
v

‖Wv‖2,1

+ γ

V∑
v

‖Ev‖1 + η

2
‖P‖2

F ,

s.t . W�
v Xv = H + Ev , ∀v ∈ {1, 2, · · · , V }, (4)

where β, γ and η are the regularization parameters, H ∈ R
h×n

is the common latent feature representation for all modalities,
Wv ∈ R

dv×h is a feature projection matrix for the v-th
modality, Ev ∈ R

h×nv is the sparse error matrix for the v-th
modality, and P ∈ R

l×h is a label projection matrix that
projects the common latent feature representation to the label
space. Note that the dimensions of the coefficient matrix Wv

in Eq. (4) and Eq. (2) are different, where Wv in Eq. (2) maps
the v-th feature matrix to the label space directly, while Wv

in Eq. (4) maps the v-th feature matrix to a common latent
space H, which will be subsequently mapped to the label space
via P. The equality constraints in Eq. (4) are used to enforce
different modality data of the same subject to have a common
feature component (H) and a modality specific discrepancy
component (Ev ) after they are projected by Wv . Furthermore,
assuming that the discrepancy component is sparse, we impose
�1-norm on Ev , while Frobenius norm is imposed on P to limit
the magnitudes of its coefficient values.

In addition, to preserve the local structure of the data after
the projection (i.e., to preserve the local neighborhood of the
samples before and after the projection), we add a Laplacian
regularizer in Eq. (4), given as

min
Wv ,Ev ,H,P

1

2
‖PH − Y‖2

F + λ

V∑
v=1

tr
(

W�
v XvLv (W�

v Xv )
�)

+ β

V∑
v=1

‖Wv‖2,1 + γ

V∑
v=1

‖Ev‖1 + η

2
‖P‖2

F ,

s.t . W�
v Xv = H + Ev , ∀v ∈ {1, 2, · · · , V }, (5)

where the second term is the Laplacian regularization term,
which is added to ensure that similar inputs have similar latent
feature representations, and λ is its regularization parameter.
Specifically, the Laplacian matrix is given as Lv = Dv − Sv ,
where Dv is a diagonal matrix with its i -th diagonal element
denoting the sum of the i -th row in Sv . Sv is a similarity
matrix for the v-th modality, whose (i, j )-th element is given
as exp(−‖Xv,:i − Xv,: j‖2

2/σ), where Xv,:i and Xv,: j denote
the i -th column and the j -th column of Xv , respectively, and
σ = 1 is empirically set in this study.

So far, the proposed method in Eq. (5) can only be
applied to subjects with complete multi-modality data, i.e.,
each modality has the same number of samples, n = nv ,
∀v = {1, 2, · · · , V }. However, using Eq. (5), subjects with
incomplete multi-modality data will be discarded. Intuitively,
using more samples for model training should result in a
more reliable prediction model. To make the joint latent
feature learning model in Eq. (5) applicable to incomplete
multi-modality data, we have to make some modifications.
First, we decompose Xv into two parts, one with com-
plete multi-modality data, and the other with incomplete
multi-modality data, i.e., Xv = [Xc

v , Xc̄
v ] ∈ R

dv×(nc+nc̄
v ), where

nv = nc + nc̄
v is the total number of samples in v-modality.

Note that the number of complete multi-modality data, denoted
by nc, is the same for each Xv . Then, the corresponding label
for Xv is given by Yv = [Yc, Yc̄

v ]. Similarly, the matrix H in
the constraint of Eq. (5) is also decomposed into two parts,
i.e., Hv = [Hc, Hc̄

v ] ∈ R
h×(nc+nc̄

v ), where Hc denotes the
latent feature representation for the complete multi-modality
data, and Hc̄

v denotes the latent feature representation for the
remaning v-th modality data (other than that included in Hc).
Using the notations above, we extend Eq. (5) to

min
Wv ,Ev ,H,P

1

2
‖P[Hc, Hc̄

1, . . . , Hc̄
V ] − [Yc, Yc̄

1, . . . , Yc̄
V ]‖2

F

+ λ

V∑
v

tr
(

W�
v [Xc

v , Xc̄
v ]Lv (W�

v [Xc
v , Xc̄

v ])�
)

+ β

V∑
v

‖Wv‖2,1 + γ

V∑
v

‖Ev‖1 + η

2
‖P‖2

F ,

s.t . W�
v [Xc

v , Xc̄
v ] = [Hc, Hc̄

v ] + Ev , ∀v ∈ {1, 2, · · · , V },
(6)

where H = [Hc, Hc̄
1, . . . , Hc̄

V ] is the latent representation
matrix for all the samples. Note that the latent representation
Hc̄

v is specific to the v-th modality, as it is not shared with
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other modalities like Hc. Thus, we also refer to Hc̄
v as the

modality-specific latent representation.
Using Eq. (6), we can include all the data from the dataset,

regardless of modality completeness when training the model,
i.e., to learn Wv and P. All the modalities are projected to a
common latent feature space via Wv , and P is the classifier
coefficient matrix that predicts disease label from the data
point in the latent feature space. For clarity, the notations used
in Eq. (6) are summarized in Table. II.

B. Optimization and Model Prediction

The objective function in Eq. (6) is not jointly convex
with respect to all variables. Therefore, we utilize the Aug-
mented Lagrange Multiplier (ALM) [43] algorithm to solve
the problem efficiently and effectively. The detailed optimiza-
tion steps are provided in the Supplementary Materials of
this manuscript. After training our model, we can obtain the
feature projection matrix Wv for the v-th modality, and the
label projection matrix P. For a given testing sample xte

with � available modalities, the latent feature representation
is computed by averaging the feature projections from each
available modality, i.e., hte = 1

|�|
∑

v∈� Wvxte
v , where |�|

denotes the number of modalities in �. Consequently, the final
classification label for this test sample is given as yte = Phte.

IV. EXPERIMENTS

In this section, we first describe the parameter settings of
our method and the comparison methods. Then we report the
classification performance of all the comparison methods, and
show the results using different combinations of modalities.
In addition, we show classification results using incomplete
multi-modality data with different missing rates.

A. Experimental Setup

We evaluate our method using the ADNI dataset for two
multi-class classification tasks, including 1) NC vs. MCI
vs. AD (i.e., three-class classification task), and 2) NC vs.
sMCI vs. pMCI vs. AD (i.e., four-class classification task).
In addition, as it is important to distinguish progressive MCI
from stable MCI for early diagnosis, we also evaluated our
proposed method for the sMCI vs. pMCI classification task.
Using only the complete multi-modality data (i.e., subjects
with no missing modality), we first compare the proposed
method with several conventional methods, the details of
which are briefly introduced below.

• Baseline method. We conduct an experiment using only
the original features without performing any feature selec-
tion (denoted as “Baseline”).

• Feature reduction (or selection) methods. Three compari-
son methods are used in this category, namely 1) Principal
Component Analysis (PCA) [25], 2) Locality Preserving
Projection (LPP) [27], and 3) the �2,1-norm based feature
selection method as described in Eq. (2), which is denoted
as “L21”. For PCA and LPP, we determined the optimal
dimensionality of the data based on the eigenvalues com-
puted using the generalized eigen-decomposition method

described in [44]. For the L21 method, we optimize its
sparsity parameter (λ) by cross-validating its value in the
range of {10−4, . . . , 102}.

• Modality (or feature) fusion methods. Two comparison
methods in this category are used, i.e., 1) CCA [45] and
2) MKL [28]. For CCA, we optimize the regularization
parameter by cross-validating its value in the range of
{10−4, . . . , 102}. For MKL, we optimize the normalized
weight parameter for each modality by cross-validating
its value in the range of {0, . . . , 1}.

• Deep learning based feature representation method.
In this category, we compare our method with the Stacked
Auto-Encoder (SAE) [46] method. In SAE, the main
parameter to be determined is the number of hidden
units. Following [46], we build a three-layer network
with multi-modality data input using a grid search from
[100, 300, 500]-[50, 100]-[10, 20, 30] (bottom-top).

Furthermore, to verify the advantage of our proposed
method in handling the missing data issue in the testing
phase, we also compare it with the following state-of-the-art
methods.

• Data imputation methods. 1) Zero imputation. In this
method, the missing values are filled with zeros. Since
all the features are z-normalized (i.e., subtract the mean
and divide by the standard deviation) before the impu-
tation process, this method is equivalent to filling the
missing feature values with the average observed values.
2) k-Nearest Neighbor (KNN) imputation [47]. In this
method, the missing values are filled with the weighted
mean of the k nearest-neighbor samples. Following [7],
the weights are inversely proportional to the Euclidean
distances between the neighboring samples. 3) Low-rank
Matrix Completion (LRMC) [48], [49] based imputation
method. This was proposed to recover missing data from
a limited number of samples. After data imputation,
we employe a linear SVM to perform disease classifi-
cation in these three methods.

• Incomplete Multi-Source Feature learning (iMSF)
method [30], [31]. This is a multi-task learning method,
which first partitions the data into several groups
according to the availability of modalities, and treats
the learning of a classifier for each group of data as a
task. A joint sparse learning model is then employed to
select a common set of features among all these tasks.
There are two versions of iMSF, which use different
loss functions, i.e., the least square loss (denoted as
“iMSF-R”) and the logistic loss (denoted as “iMSF-L”).
Note that the source code of the iMSF method is
designed for binary classification tasks, and here we
adopt a one-vs-all strategy for multi-class classification
tasks.

• Doubly Aligned Incomplete Multi-view Cluster-
ing (DAIMC) method [50]. This is a clustering method
that is designed for incomplete multi-modality data using
weighted semi-nonnegative matrix factorization [50].
To apply this method for the classification task, we train
a SVM classifier using the learned common latent
features in DAIMC.
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• Matrix Shrinkage and Completion method (MSC) [7].
This method first partitions the combined matrix (e.g.,
features and targets) into sub-matrices, where each
sub-matrix consists of samples with complete features
(corresponding to a certain combination of modalities)
and target outputs. Then, a multi-task sparse learning
framework is employed to select informative features and
samples. Subsequently, the shrunk combined matrix with
missing features and unknown target outputs is imputed
via low-rank matrix completion using a fixed-point con-
tinuation method [51].

We use a ten-fold cross-validation strategy to evaluate all
comparison methods. Specifically, we first randomly partition
the whole dataset into ten subsets (with each subset having
a roughly equal number of samples), and then select one
subset for testing and use the remaining nine subsets for
training. We repeat the whole process fifty times to avoid
possible bias in dataset partitioning during cross-validation.
Thus, the final results are computed by averaging the fifty
repetition results. In our proposed method, it would take a
significant amount of time if we simultaneously tune five
hyper-parameters. In this case, we first tune λ and h by fixing
other hyper-parameters. Here, we empirically set λ = 0.01
and h = 30, and then apply a five-fold inner cross-validation
to tune values of the other three hyper-parameters, i.e.,
β, γ, η ∈ {10−4, 10−3, . . . , 104}, in Eq. (6). Note that we
use the SVM classifier from the LIBSVM toolbox [52] to
perform classification for all the comparison methods (except
for iMSF and MSC), and determine the margin parameter C
in the SVM classifier using a grid search in the range of
{10−5, 10−4, . . . , 103}. Moreover, for fair comparison, we also
conduct five-fold inner cross-validation to conduct parameter
selection for all the comparison methods. We use classification
accuracy (ACC) and Area Under Curve (AUC) to evaluate all
the comparison methods, and follow the AUC computation
method in [53] for multi-class classification tasks.

The SNP data are high-dimensional, but only parts of
SNPs are related to AD, as shown by previous studies [20].
Thus, in order to reduce the computational complexity for
the AD prediction task [17], we employ sparse learning to
select 100 SNPs. Specifically, we first randomly partition the
whole dataset into 10 subsets (with each subset having a
roughly equal number of samples), and select one subset for
testing, while the remaining nine subsets are used for training.
We then use a five-fold inner cross-validation on the training
set to select SNPs via a sparse learning method [54]. Finally,
we select the top 100 most related SNPs.

B. Classification Results using Complete
Multi-Modality Data

Fig. 2 shows the classification performance of all the com-
peting methods on three classification tasks, using complete
multi-modality data (i.e., using only subjects with all three
modalities). Here, “Ours_com” denotes our proposed method
that uses the samples with only complete multi-modality data
to train a model, while “Ours” denotes the proposed method
that uses all available samples (including the samples with

Fig. 2. Classification results in terms of ACC (top) and AUC (bottom)
achieved by 9 different methods for three classification tasks, i.e., NC
vs. MCI vs. AD (left), NC vs. sMCI vs. pMCI/AD (middle), and sMCI vs.
pMCI (right), using complete multi-modality data in training and testing
(except “Ours”, which denotes our method uses all available samples
with incomplete multi-modality data for model training). The error bars
denote the standard deviations of the results.

incomplete multi-modalities). The comparison methods only
train models using samples with complete multi-modality data,
as they are inapplicable to incomplete dataset.

From Fig. 2, we can have following observations. First,
our proposed method (i.e., Ours_com) outperforms the three
feature selection methods (i.e., PCA, LPP and L21), which
implies that the new feature representation learned by our pro-
posed method can help improve the classification performance.
It also outperforms modality fusion methods (e.g., CCA and
MKL) for all three classification tasks. The comparison results
indicate that our method is more effective than both the
CCA and MKL methods in exploiting the correlations among
different modalities. Additionally, it also outperforms the deep
learning based method (i.e., SAE) that learns high-level fea-
tures for classification. Generally, deep learning based methods
can learn “good” features for classification, but the diagnosis
performance is likely degraded due to the limited number
of samples in this study. Second, the results reported for
multi-class classification tasks (i.e., NC vs. MCI vs. AD, NC
vs. sMCI vs. pMCI vs. AD) are lower than the performance on
the binary classification task (i.e., sMCI vs. pMCI). A possible
reason for this is that multi-class classification tasks are much
more challenging than binary classification tasks. Also, our
proposed method that uses all available data (“Ours”) is
better than its degraded version, (“Ours_com”), which only
uses complete multi-modality data for training. This shows
the advantage of using all available data during the training,
rather than discarding samples with incomplete multi-modality
data.

C. Classification Results using Incomplete
Multi-Modality Data

Based on all available subjects with incomplete multi-
modality, we perform three classification tasks and report the
ACC and AUC results in Fig. 3. The results show that our
method outperforms imputation based methods in terms of
ACC and AUC. On one hand, this is probably due to the fact
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Fig. 3. Classification results in terms of ACC (top) and AUC (bottom)
achieved by 8 different methods for three classification tasks, i.e., NC vs.
MCI vs. AD (left), NC vs. sMCI vs. pMCI vs. AD (middle), and sMCI vs.
pMCI (right), using incomplete multi-modality data in training and testing.
The error bars denote the standard deviations of the results.

that our proposed method does not involve any imputation, and
thus avoids imputation errors that may affect the classification
model like in the imputation based methods. On the other
hand, this may also result from the use of latent feature
representations when learning the prediction model, which are
less noisy (due to the explicit learning of the error matrix),
more discriminative (due to feature selection), and more
comprehensive (by considering information from different data
views). Thus, introducing the latent feature representation not
only solves the missing data problem, but also results in a
more accurate prediction model. Our method also performs
better than two state-of-the-art methods (i.e., DAIMC and
MSC). In addition, we perform the McNemar test between our
method and other comparison methods. Specifically, we utilize
the “testcholdout” function (Matlab code) to conduct the
McNemar test, which returns an h value that indicates whether
the two comparison classification models have equal predictive
accuracies. That is, h = 0 (accepting the null hypothesis)
indicates that the two models have equal predictive accuracies,
while h = 1 indicates that the predictive accuracies between
the two methods are statistically different. In our experiments,
we obtain h = 1 for all the McNemar tests, indicating that the
predictions between our method and all comparison methods
are significantly different statistically.

D. Results Using Different Combinations of Modalities

The main aim of this study is to learn the latent feature
representations from multiple modalities by exploiting the
correlations among them. To further analyze the benefit of
fusing multi-modality neuroimaging and genetic data, we show
the performance of our proposed method for different com-
binations of modalities on different classification tasks in
Fig. 4 (i.e., results with only complete multi-modality testing
data) and Fig. 5 (i.e., results with incomplete multi-modality
testing data). From Fig. 4 and Fig. 5, it can be seen that
our model using MRI and PET data outperforms the models
using other two modality combinations (e.g., MRI and SNP,
or PET and SNP). These results show that SNP data is less

Fig. 4. Classification accuracies of the proposed method trained
using all available training data (including incomplete multi-modality
data), and tested using only complete multi-modality data. Four different
combinations of modalities (i.e., MRI+PET, MRI+SNP, PET+SNP, and
MRI+PET+SNP) and three different combinations of disease cohorts
(or classification tasks) are used in this group of experiments. The error
bars denote the standard deviations of results.

Fig. 5. The classification accuracies of the proposed method, which
was trained using all available training data (including incomplete
multi-modality data) and tested using all available testing data (including
incomplete multi-modality data). Four different combinations of modal-
ities (i.e., MRI+PET, MRI+SNP, PET+SNP, and MRI+PET+SNP) and
three different combinations of disease cohorts (or classification tasks)
were used in this group of experiments. The error bars denote the
standard deviations of results.

discriminative in AD status diagnosis. A possible reason could
be that the MRI and PET data are the phenotype features
that are closely related to diagnostic labels, while the SNP
data are genotype features that are relatively less related to
diagnostic labels [17], [20]. On the other hand, when all the
three modalities are used, our model performs better than the
case of using any combination of two modalities.

E. Study on Different Missing Modalities

In the aforementioned experiments, we use 737 subjects
from the ADNI-1 database, where all subjects have complete
MRI scans and only 360 subjects have PET data. To further
verify the effectiveness of our method in handling the missing
data issue, we randomly discard partial MRI or SNP data.
Specifically, we randomly select r% (in this study, we set
r = 10, 20) of subjects to discard their MRI or SNP data to
simulate the missing data issue for MRI and SNP modalities.
Then, we conduct a set of experiments to investigate the per-
formance of different methods in AD diagnosis based on these
subjects. The experimental results are shown in Fig. 6. From
Fig. 6, it can be seen that our proposed method outperforms
all the comparison methods under different missing modalities
and different missing rates.

To verify the effectiveness of our proposed method in
handling problems with more missing data (e.g., r = 50),
we include a second set of experiments with 50% MRI or
PET data being missing. That is, half of the studied subjects
have missing MRI or SNP data. Fig. 7 shows the comparison
results obtained by using different methods for sMCI/pMCI
classification. From Fig. 7, it can be seen that our proposed
method outperforms all the comparison methods.
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Fig. 6. Classification accuracy (i.e., ACC) achieved by different methods using data with r� (Left: r = 10; Right: r = 20) subjects associated with
missing MRI (top) or SNP (bottom) data. The error bar denotes the standard deviation of the results.

Fig. 7. Classification accuracy (i.e., ACC) achieved by different meth-
ods when 50� subjects are with missing MRI (left) or SNP (right) in
sMCI/pMCI classification.

Fig. 8. Classification accuracy (i.e., ACC) achieved by different methods
when half of the subjects are missing both MRI and SNP in sMCI/pMCI
classification.

Further, we also include a set of experiments when 50% of
subjects have no both MRI and SNP data (i.e., only the PET
data available) for sMCI/pMCI classification task. Among all
362 subjects in sMCI/pMCI classification, only 185 subjects
have the PET data. Therefore, we first select 50% of these
185 subjects and discard both their MRI and SNP data (i.e.,
these subjects now only have PET data). Fig. 8 shows the
comparison results, which further verifies the effectiveness of
our method in dealing with the cases when more modalities
are missing.

V. DISCUSSION

In this section, we first investigate the influences of different
parameters and present the most discriminative ROIs and
SNPs identified by our proposed method. Then, we compare
our method with several state-of-the-art methods, and pro-
vide the differences between our method and several related
approaches. Finally, we discuss several limitations of our
model.

A. Influences of Parameters

In this section, we study the effects of hyper-parameters
(i.e., β, γ , and η). Specifically, we set the values of these
parameters in the range of {10−5, 10−4, . . . , 102} for each
experiment. We fix the value of one parameter and tune
the other two parameters. As an example, Fig. 9 shows the
classification accuracy (of the testing samples with com-
plete multi-modality data) achieved by our method for the
NC/MCI/AD classification task using different parameter val-
ues. From Fig. 9, the experimental results demonstrate that our
proposed method obtains better classification results when the
values of β, γ , and η fall in [0.1, 10], [1, 10], and [0.1, 10],
respectively.

B. Most Related ROIs and SNPs

Based on the formulation in the proposed model (see
Eq. (5)), it is expected that when the optimal weight matrices
(i.e., Wv ) are found, a small or even zero weight will be
assigned to uninformative or less informative feature, while
a larger weight will be assigned to more informative feature.
For example, for the v-th modality, the element in the learned
Wv denotes the contribution of the original feature in the latent
space. To study which ROIs/SNPs are selected by our proposed
method, we rank the absolute values of all the elements in
Wv , and then report the top elements (with each element
corresponding to a specific ROI/SNP) that are frequently
selected across all folds.

We show the top ten most related ROIs for MRI and
PET data in three classification tasks in Fig. 10 and Fig. 11,
respectively. Fig. 10 shows that, hippocampal, amygdala,
globus, and lobe WM regions are identified as most related
ROIs for AD diagnosis for MRI data. This is consistent with
several previous studies which also show that these regions are
highly related to AD and MCI classification [44], [55], [56].
For PET data, Fig. 11 shows that precuneus, gyrus, and
hippocampal regions are identified as discriminative ROIs for
AD and early MCI diagnosis. Again, these identified ROIs
are consistent with those reported in previous AD-related
studies [20], [44], [57].

In Table S2 of the Supplementary Materials, we report those
most related ROIs that are frequently selected by our method
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Fig. 9. Classification accuracies of our proposed method for the NC/MCI/AD classification task using different settings of hyper-parameters,
i.e., β, γ, η ∈ {10−5, . . . , 102}.

Fig. 10. Top ten selected ROIs for MRI data in three classification tasks. From top to bottom: NC/MCI/AD, NC/sMCI/pMCI/AD, and sMCI/pMCI.
Here, different colors denote different ROIs.

Fig. 11. Top ten selected ROIs for PET data in three classification tasks. From top to bottom: NC/MCI/AD, NC/sMCI/pMCI/AD, and sMCI/pMCI.
Here, different colors denote different ROIs.

for the three classification tasks. We also include the color
bar to visualize the correspondence between the color and the
selected ROI in Fig. S1 and Table S2 of the Supplementary
Materials. We further report the top five discriminative SNPs
that are most frequently identified by our method, which
include rs429358, rs10740220, rs2298525, rs7073924, and
rs11655156. These genes have been reported to be related to
AD in previous studies [17], [58]–[60]. These results suggest
that our method is able to identify the most relevant SNPs for
AD and early MCI diagnosis. The top 100 selected SNPs can
be found in Table S1 of the Supplementary Materials.

C. Comparison With State-of-the-Art Methods

We compare the results achieved by our proposed method
with those obtained by other state-of-the-art methods that
use ADNI subjects. Since very few studies are conducted on
multi-class classification tasks, we only report the result of
sMCI vs. pMCI classification in Table III. As can be seen,
our proposed method generally outperforms other comparison
methods [4], [46], [61]–[63] on the sMCI vs. pMCI classifi-
cation task. The main reason is that our method projects the
original features from multi-modality data into a latent space
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TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS

ON SMCI VS. PMCI CLASSIFICATION

which provides more comprehensive views for improving
diagnosis performance.

D. Comparison with Previous Studies

Our proposed method is similar to but different from several
previous studies [64]–[66]. First, previous methods [64]–[66]
typically conduct the clustering task by first learning com-
mon representations and then applying a spectral clustering
algorithm on the representation. Different from [64]–[66], our
method conducts the latent representation learning and model
training in a unified framework, thus seamlessly integrating
them together. In this way, a “good” latent representation
helps to induce a better classification model, and in return a
more accurate prediction model will promote the learning of
more discriminative latent representations. However, previous
methods [64]–[66] have ignored the underlying relationship
between latent representation learning and model training.
Second, we utilize the �1-norm [67]–[71] to alleviate the
outlier (e.g., noise) issue in latent space learning, while these
methods [64]–[66] do not consider this issue. Intuitively, our
method should be more robust to outliers (e.g., noises), result-
ing in improved classification performance in comparison with
previous studies. Third, we adopt the �2,1 constraint on the
projection matrices to ensure that the discriminative features
have much larger contributions to the latent learning across
different modalities. In contrast, the methods in [64]–[66] do
not consider this point. We further compare our method with
the Partial Multi-View Clustering (PVC) method [64] on the
sMCI vs. pMCI classification task, with the comparison results
shown in Fig. S2 of the Supplementary Materials.

E. Limitations

Although our proposed method achieves promising results
in AD and early MCI diagnosis, there are several technical
issues to be addressed in future work. First, a linear projection
is employed in our model, but it may not be effective to
model the complex brain patterns. As such, a non-linear
projection can be applied to our formulation in the future.
Second, we could extend the proposed model for dealing
with the problem of incomplete multi-modality data using a
deep learning framework to further improve the classification
performance, since deep neural network based features are
typically more discriminative than hand-crafted features.

VI. CONCLUSION

In this paper, we propose a novel AD diagnosis framework
with latent feature representation learning. Specifically, we

first project multi-modality data to a latent feature space,
to exploit the underlying association among different modali-
ties. To make use of all available samples to learn an accurate
AD prediction model from the incomplete multi-modality
dataset, we utilize samples with complete multi-modality data
to learn the common latent feature representation, and also uti-
lize samples with the incomplete multi-modality data to learn
the modality-specific latent feature representation. Finally,
the learned latent feature representations can be linearly pro-
jected to the label space for AD diagnosis. Experimental
results demonstrate the effectiveness of our proposed method.
In future work, our method can be also applied to other
diagnosis tasks, such as for schizophrenia [72].
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