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Multi-atlas label fusion with 
random local binary pattern 
features: Application to 
hippocampus segmentation
Hancan Zhu  1, Zhenyu tang2, Hewei cheng3, Yihong Wu4 & Yong fan  5*

Automatic and reliable segmentation of the hippocampus from magnetic resonance (MR) brain images 
is extremely important in a variety of neuroimage studies. to improve the hippocampus segmentation 
performance, a local binary pattern based feature extraction method is developed for machine 
learning based multi-atlas hippocampus segmentation. Under the framework of multi-atlas image 
segmentation (MAiS), a set of selected atlases are registered to images to be segmented using a non-
linear image registration algorithm. the registered atlases are then used as training data to build linear 
regression models for segmenting the images based on the image features, referred to as random local 
binary pattern (RLBp), extracted using a novel image feature extraction method. the RLBp based 
MAIS algorithm has been validated for segmenting hippocampus based on a data set of 135 T1 MR 
images which are from the Alzheimer’s Disease neuroimaging initiative database (adni.loni.usc.edu). 
By using manual segmentation labels produced by experienced tracers as the standard of truth, six 
segmentation evaluation metrics were used to evaluate the image segmentation results by comparing 
automatic segmentation results with the manual segmentation labels. We further computed cohen’s d 
effect size to investigate the sensitivity of each segmenting method in detecting volumetric differences 
of the hippocampus between different groups of subjects. The evaluation results showed that our 
method was competitive to state-of-the-art label fusion methods in terms of accuracy. Hippocampal 
volumetric analysis showed that the proposed RLBp method performed well in detecting the volumetric 
differences of the hippocampus between groups of Alzheimer’s disease patients, mild cognitive 
impairment subjects, and normal controls. These results have demonstrated that the RLBP based multi-
atlas image segmentation method could facilitate efficient and accurate extraction of the hippocampus 
and may help predict Alzheimer’s disease. the codes of the proposed method is available (https://www.
nitrc.org/frs/?group_id=1242).

Accurate and automatic hippocampus segmentation from magnetic resonance (MR) brain images is important in 
several neuroimaging studies of brain disorders, such as brain cancer, epilepsy, and Alzheimer’s disease (AD)1–3. 
To achieve fully automated hippocampus segmentation, atlas-based methods have been proposed for hippocam-
pus segmentation4. These methods typically adopt an atlas image with a manually labeled hippocampus and use 
a nonlinear image registration algorithm to align the atlas to the image to be segmented, referred to as a target 
image hereafter, and the segmentation of the target image is then achieved by propagating the atlas label to the 
target image space. However, there may be a limit to the performance of these techniques for a case in which there 
exists a large anatomic difference between the atlas and target images, which would make the image registration 
difficult.
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To partially circumvent this problem, multi-atlas image segmentation (MAIS) methods have been proposed5,6. 
In contrast to the single-atlas image segmentation method, the MAIS methods generally comprise image regis-
tration and label fusion. In MAIS methods, each atlas image is first registered to the target image and the atlas 
label is propagated to the target image space accordingly7. The propagated label maps are then fused to get a final 
segmentation8. In some MAIS methods, a small number of atlas images that are better matched with the target 
image are selected instead of using all the available atlas images9–12.

In the MAIS methods, the label fusion step is a core component as it fuses the propagated atlas labels to obtain 
the image segmentation result. Several label fusion strategies have been developed, such as majority voting6 and 
weighted voting13. For better accounting for the image registration errors, nonlocal patch-based (NLP) methods 
were proposed14,15. In the NLP methods, for labeling a target image voxel a number of voxels in the searching 
region in each atlas image are considered and high weight factors are assigned to those more similar to the target 
image voxel. To improve the accuracy and robustness of the NLP methods, several label fusion methods have 
been proposed, including sparse representation16,17, dictionary learning18, manifold learning19–22, and joint label 
fusion (JLF)23. In addition to these methods, NLP methods have also been combined with statistical label fusion 
methods5, which have been highly successful24–26.

Recently, pattern recognition based label fusion methods have been developed and successfully applied 
to a variety of medical image segmentation problems10,27–30. These methods solve the image segmentation 
problem as a pattern recognition problem by considering registered atlas images as training data in order to 
build pattern recognition models for predicting the segmentation labels of images to be segmented. It has been 
demonstrated that feature extraction is important in pattern recognition based label fusion methods10,27. For 
example, image intensity and texture image features were adopted to train support vector machine (SVM) 
classifiers for predicting segmentation labels10,27, the random forest classification algorithm was adopted to 
construct classifiers for label fusion using local and contextual image features28,29, artificial neural networks 
were built for label fusion using statistical and textural features30. The studies on the aforementioned methods 
have demonstrated that MAIS algorithms could achieve improved performance by building pattern recogni-
tion models using rich image features.

In this paper, we propose a novel feature extraction method based on local binary pattern (LBP) features31,32, 
referred to as random local binary pattern (RLBP), for building linear regression models to achieve reliable and 
accurate label fusion in MAIS. We have illustrated that the proposed RLBP method is more robust to image noise 
than the LBP method and is capable of capturing discriminative information for the image segmentation. Our 
method is validated for segmenting hippocampi from MR brain images. In the validation experiment, we com-
pared the proposed RLBP method with the LBP method32. The results showed that our method could provide 
more accurate segmentation results than the LBP method. We also compared our method with state-of-the-art 
label fusion methods, including NLP14,15, local label learning (LLL)10, JLF23, and nonlocal weighted voting with 
metric learning (NLW-ML)33. The results demonstrated that our RLBP method was competitive to state-of-the-art 
label fusion methods. In addition, we also performed a hippocampal volumetric analysis experiment. The 
obtained results demonstrated that our RLBP method performed well in detecting the volumetric differences of 
the hippocampus between AD, mild cognitive impairment (MCI), and normal control (NC) groups. Part of this 
work has been previously presented in34.

Materials and Methods
imaging data. A dataset comprising 135 T1 MRI scans with manually labeled hippocampi from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu/) was used for validating the 
proposed algorithm. The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging, 
positron emission tomography, other biological markers, and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive impairment and early Alzheimer’s disease. For up-to-date 
information, see www.adni-info.org. The ADNI MRI scans were acquired using a sagittal 3D MP-RAGE T1-w 
sequence (TR = 2400 ms, minimum full TE, TI = 1000 ms, FOV = 240 mm, voxel size of 1 25 1 25 1 2mm3. × . × . ).

Manual labeling of hippocampus. Hippocampus labels of the image data in the Neuroimaging 
Informatics Technology Initiative format were provided by the European Alzheimer’s Disease Consortium and 
Alzheimer’s Disease Neuroimaging Initiative harmonized segmentation protocol (EADC–ADNI)35, which can 
be publicly downloaded (www.hippocampal-protocol.net). The dataset consists of a preliminary release part with 
100 subjects and a final release part with 35 subjects. In the preliminary release part, one subject’s hippocampus 
label missed several slices. In the final release part, the hippocampus labels and the images of three subjects are not 
well matched. Their subject identification numbers are 002_S_0938, 007_S_1304, 029_S_4279 and 136_S_0429 
respectively. Such problems might be caused by imaging data format conversion. Figure 1 shows these MR brain 
scans and their corresponding hippocampus labels. We used the remaining 32 subjects in the final release part 
as a training data set and the remaining 99 preliminary release subjects as a testing data set in the present study.

The training data set contains 14 NC, 11 MCI, and 7 AD subjects (see Table 1). The testing data set contains 
29 NC, 34 MCI, and 36 AD subjects (see Table 2). The testing MCI subjects were further classified as stable MCIs 
(sMCI, n = 11) and progressive MCIs (pMCI, n = 21), according to the ADNI clinical data downloaded on July 
17, 2017. However, 2 MCI subjects could not be assigned to either sMCI or pMCI groups due to missing data.

All the MR brain images were aligned along the line that passes through the anterior and posterior commis-
sures of the brain, corrected for their bias field, and finally spatially normalized to the MNI152 template space 
using affine transformation35.

https://doi.org/10.1038/s41598-019-53387-9
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Atlas selection and registration. To reduce the computation cost and improve the registration accuracy, 
we identified two bounding boxes, one for the left hippocampus and the other for the right hippocampus. In 
particular, the sizes of the obtained bounding boxes were 48 77 67× ×  and × ×47 70 66 for the left and right 
hippocampi respectively, which were large enough for covering the hippocampi of an unseen target image10,36. To 
improve the segmentation performance, we selected N  atlases which were most similar to the target image based 
on normalized mutual information of the image intensities within the bounding box9. Then, we used a nonlinear, 
cross-correlation-driven image registration algorithm to register these atlas images to the target images to achieve 
a better local anatomy matching between the target image and each atlas image37. To further reduce the computa-
tion cost, the majority voting label fusion was performed to get an initial segmentation for the target image. We 
then applied the proposed method introduced in the following two subsections to segment voxels which did not 
receive a unanimous vote in the majority voting label fusion10.

Machine learning based MAiS. With atlas selection and image registration, we have N  warped atlases 
= = …A I L i N( , ), 1, 2, ,i i i , where Ii is the i-th warped atlas image and Li is its warped label map. A machine 

learning based MAIS method is to infer the label map of the target image I  by building prediction models based 
on the warped atlases such that the image segmentation problem is solved as a pattern recognition problem.

To label the target voxel x, a set of training voxels is identified in a cube-shaped searching neighborhood N x( ) 
of size + × + × +r r r(2 1) (2 1) (2 1)s s s  of the corresponding voxel X from all atlas images, and a feature vector 
for each of the training voxels is extracted to characterize the local image information. By denoting the feature 
vector of the target voxel by fx, the feature vector of voxel j of the ith atlas by fi j,  and its corresponding segmenta-
tion label by l { 1, 1}i j, ∈ −  where 1 represents the region of interest and −1 represents the background, we 
obtain a training set = | = .. ∈D f l i N j N x{( , ) 1, , , ( )}x i j i j, , . A pattern recognition model is finally built by using 
the training set Dx to predict the segmentation label of the test sample fx.

RLBp feature extraction method. To characterize each image voxel, a new feature extraction method is 
developed based on the LBP image feature extraction method32. In particular, the LBP image feature extraction 
method was developed for 2D images. Given a 3 3×  neighboring system as illustrated by Fig. 2, the LBP features 
are computed as

Figure 1. MR brain images (top row) with problematic hippocampus labels (bottom row).

NC MCI AD

Number of subjects 14 11 7

Age (years): mean ± std 76.44 ± 9.014 77.01 ± 9.23 77.09 ± 8.31

Males/Females 5/9 6/5 1/6

Table 1. Demographic and diagnostic information of the training subjects.

NC MCI AD

Number of subjects 29 34 36

Age (years): mean ± std 75.79 ± 6.72 74.24 ± 7.67 73.70 ± 8.18

Males/Females 16/13 20/14 20/16

Table 2. Demographic and diagnostic information of the testing subjects.

https://doi.org/10.1038/s41598-019-53387-9
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( )LBP s g g p, 0, , 7, (1)p p c= − = …

where = ≥
<{s x x

x( ) 1, 0
0, 0

, and gc and gp are the image intensity values of the center pixel and its neighboring 

voxels respectively. The binarization of the local image intensity difference makes LBP features robust to illumi-
nation and image contrast variations. However, it is sensitive to image noise38.

In order to obtain more discriminative and robust image features, we propose an RLBP feature extraction 
method, as illustrated in Fig. 3. First, we extend the LBP method to be applicable to 3D images. Thus, for a voxel 
C in a 3D image with a cubic image patch centered at itself with ( ) ( )r r r2 1 2 1 (2 1)p p p+ × + × +  voxels, a 
difference image intensity vector is computed using

( )y x x x x x x n r[ , , , ] , 2 1 , (2)c c n c
T

p1 2
3→ = − − … − = +

where x i n, 1, ,i = …  is the image intensity value of a voxel in the cubic image patch, and xc is the image intensity 
value of the voxel c.

Then, we constructed a large number of random transformation functions to generate RLBP features with the 
following formula,

h h h h R( ) [ ( ), ( ), , ( )] , (3)L
T L

1 2⋅ = ⋅ ⋅ … ⋅ ∈

Figure 2. Illustration of the image neighborhood for computing LBP features.

Figure 3. Illustration of the computation of RLBP features.

https://doi.org/10.1038/s41598-019-53387-9
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, “·” represents the dot multiplication of vectors, and 

w Rj
n→ ∈  is a random vector whose values are uniformly distributed in −[ 1, 1]. Using the RLBP feature extraction 

method, a feature vector 
→

= →f c h y( ) ( ) is obtained for the given voxel c.
The LBP method obtains the binarized values directly from the sign of the differences between the adjacent 

pixels and the center pixel regardless of the absolute value of the differences. It has been demonstrated that small 
pixel difference is vulnerable to noise38. In contrast to the LBP method, the proposed RLBP method adopts a large 
number of random weights to obtain weighed sums of the image difference vectors before the binarization. The 
random combination processing increases the robustness of the image difference as illustrated by the example 
shown in Fig. 4. Particularly, Fig. 4 shows a 2D image patch and a version of it that is corrupted by noise. Their 
LBP features are (01110111) and (11011111), which are different in 3 out of 8 bits. By setting L 20=  (the dimen-
sion of the generated RLBP feature is 20) for 100 computations, the RLBP features of these two image patches are 
the same in 68 computations, different in 1 bit in 24 computations, different in 2 bits in 7 computations, and dif-
ferent in 3 bits in 1 computation, thus illustrating that the RLBP features are statistically more robust to image 
noise than the LBP features.

Linear regression with RLBp features for label fusion. Based on the generated RBLP features fi j,
→  and 

the corresponding label li j, , we use the following linear regression model to predict the label of target voxel,

F C l fargmin ( ) 1
2

1
2

( ) ,
(4)i j

i j
T

i j

2

,
, ,

2∑β β β
→

=
→

+ −
→ →

β
→

where ⋅  is the L2 norm and C is a balance parameter between the data fitting cost and the regularization term.
To solve the optimization problem of Eq. (4), we let the gradient of F( )β

→
 be equal to zero,

F l f f( ) C ( ) ( ) 0
(5)i j

i j
T

i j i j
,

, , ,∑β β β∇
→

=
→

+ −
→ →

⋅ −
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By reorganizing Eq. (5), we obtain
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where I  is an identity matrix. We then obtain
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and estimate the label of the target voxel as

β
→

=
→ →

.L x f( ) sgn( ) (6)
T

x

parameter optimization. There are five parameters in our method, including the number of selected 
atlases (N ), the dimension of the generated RLBP feature L( ), balance parameter C( ) in the linear regression 
model, search radius r( )s , and patch radius r( )p . We first chose the best value of N  from {5, 10, 15, 20, 25, 30} using 
the baseline majority voting label fusion method. We fixed the searching radius to r 1s = , since a nonlinear image 
registration algorithm was used to warp the atlas images to the target image 10,33, and selected the best value of L 
from {100, 500, 1000, 1500, 2000}. Finally, we determined the other two parameters C and rp empirically from 

Figure 4. Example image patch, the version of it that is corrupted by noise, and the histogram of the differences 
between the RLBP features, for 100 computations.

https://doi.org/10.1038/s41598-019-53387-9
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{4 , 4 , , 45 4 0…− − } and {1, 2, 3, 4, 5} using a grid-searching strategy. We performed leave-one-out cross-validation 
experiments based on the training set for optimizing these parameters.

evaluation metrics for segmentation results. The segmentation accuracy of the proposed method was 
evaluated by using the test dataset. We evaluated the image segmentation results using six segmentation evalua-
tion metrics that measure differences between the automatic segmentation results and their corresponding man-
ual segmentation labels in different aspects, including Dice coefficient (Dice), Jaccard, Precision, Recall, volume 
difference (dVol), and mean distance (MD). These metrics are defined as,

∩ ∩
∪

=
+

=Dice 2 V(A B)
V(A) V(B)

, Jaccard V(A B)
V(A B)

,

∩ ∩= =Precision V(A B)
V(B)

, Recall V(A B)
V(A)

,

= − = ∈∂ ∈∂( )V A V B min d e fdVol ( ) ( ) , MD mean ( , ) ,e A f B

where A is the manual segmentation, B is the automated segmentation, A  and B  are the complements of A and B, 
V X( ) is the volume of X , A∂  is a set of the boundary voxels of A, and d( , )⋅ ⋅  is the Euclidian distance between 
two voxels.

The correlation coefficients between the hippocampal volumes estimated using the manual segmentation and 
the automatic segmentation methods were also computed.

comparison of the proposed method with state-of-the-art algorithms. The proposed method was 
compared with state-of-the-art label fusion methods, including NLP14, LLL10, JLF23 and NLW-ML33. The param-
eters of all these methods were also optimally selected according to the results of leave-one-out cross-validation 
experiments on the training set. As in the case of the RLBP, the searching radius rs was fixed as 1 (searching neigh-
borhood V with a size of 3 × 3 × 3) for all these methods.

The NLP method comprises two additional parameters, which include patch radius rp and xσ  in the Gauss 
function. xσ  was set as { }min P x P x s N j V( ) ( ) , 1 ,x x s j, 2s j,

σ ε= − + = .. ∈ , where e1 20ε = −  used to ensure 
numerical stability14,15. The best value of rp was selected from {1, 2, 3, 4}. For the LLL method, the parameter C in 
the sparse linear SVM classifiers was set to its default vaule (C = 1). The patch radius rp and the number of train-
ing samples k were determined from {1, 2, 3, 4} and {300, 400, 500} using the grid-searching strategy. For the JLF 
method, the patch radius rp and parameter β  were determined from {1, 2, 3} and {0.5, 1, 1.5, 2} using the 
grid-searching strategy. For the NLW-ML method, the best values of two parameters rp and k were selected from 
{1, 2, 3} and {3, 9, 27} using the grid-searching strategy.

The proposed method (RLBP) was also compared with LBP features for label fusion using the same linear 
regression model to illustrate the effectiveness of the proposed RLBP feature extraction method. As the only dif-
ference between the RLBP and LBP methods is that a large number of random combinations are used in the RLBP 
method before binarization, parameters of the same values were used in the LBP method as RLBP.

Hippocampal volumetric analysis. A hippocampal volumetric analysis was performed based on the test 
dataset. As the hippocampal volume varies with the brain size, we corrected the hippocampal volumes according 
to the intracranial volumes estimated using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). The hippocampal vol-
umes were then corrected using the following equation

ICV
Corrected volume Measured volume ICV , (7)

mean= ×

where ICV is the intracranial volume of the testing subject whose hippocampal volume is to be corrected, and 
ICVmean is the mean intracranial volume of all testing subjects. All volumes in formula (7) were measured in cm3.

In order to investigate the sensitivity of each method in detecting the volumetric differences of the hippocam-
pus between the different groups including NC, MCI, and AD, we computed the Cohen’s d effect size based on the 
corrected hippocampal volumes. Cohen’s d effect size is defined as Cohen’s d ,m m

SDPooled

1 2= −  = +SD ,Pooled
SD SD

2
1
2

2
2

 
where m and SD are the mean and standard deviation respectively 39. Based on a conventional operational defini-
tion of Cohen’s d, small, medium, and large effect sizes were defined as d 0 5, 0 5 d 0 8,< . . < < .  and d 0 8> . , 
respectively19,39.

We also carried out classification experiments to distinguish AD patients (n = 36) from NC subjects (n = 29) 
as well as to distinguish stable MCI (sMCI, n = 11) subjects from progressive MCI (pMCI, n = 21) subjects. The 
latter was served as an experiment for prediction of MCI conversion. To assess each segmentation method with 
respect to its classification performance, we trained and tested linear support vector machine (SVM) classifiers40 
built upon the age of each subject, as well as the left and right hippocampal volume measures derived from its 
segmentation results. The SVM classifier was built using MATLAB (R2012a) functions with default parameter 
(C = 1) based on a leave-one-out (LOO) cross-validation procedure. The classification performance was evalu-
ated based on receiver operating characteristic (ROC) curves, summarized by area under the ROC curve (AUC).

https://doi.org/10.1038/s41598-019-53387-9
http://www.fil.ion.ucl.ac.uk/spm/


7Scientific RepoRtS |         (2019) 9:16839  | https://doi.org/10.1038/s41598-019-53387-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

experimental results
parameter optimization results. The left subfigure of Fig. 5 shows the mean Dice values of segmentation 
results obtained by majority voting label fusion method with different number of atlases, which illustrates that 
n = 20 could obtain the optimal segmentation results. The right subfigure of Fig. 5 shows the mean Dice values of 
segmentation results obtained by the RLBP method with different values L, which demonstrates that the proposed 
method could perform well when L > 500, and it  could obtain the best segmentation results when L was between 
1000 and 1500. Thus, we chose L = 1000 for the computational efficiency. Table 3 shows the average segmentation 
accuracy of the RLBP method with different parameters measured in terms of the Dice index, and it can be 
observed that the optimal values were C 4 4= −  and =r 4p . For the NLP method, the optimal value of rp was 1. For 
the LLL method, the best parameters were r 3p =  and k 300= . For the JLF method, the best parameters were 

=r 1p  and β = 1. For the NLW-ML method, the optimal parameters were =r 1p  and =k 9.

Segmentation accuracy results. Figure 6 shows a 2D visualization of the segmentation results of a ran-
domly selected subject obtained using different methods, including the NLP, LLL, JLF, NLW-ML and RLBP meth-
ods. Table 4 summarizes six segmentation accuracy metrics (mean ± std) of the segmentation results of the test 
images obtained using the segmentation methods under comparison, including NLP, LBP, LLL, JLF, NLW-ML 
and RLBP methods. For each metric, the best value was highlighted in bold. The results illustrated that the pro-
posed RLBP method performed statistically better than the NLP, LBP, and LLL methods (pair-wise Wilcoxon 
signed rank tests, p < 0.05) in most of the metrics used for evaluating their segmentation results. The performance 
of the RLBP method was comparable to that of the state-of-the-art JLF and NLW-ML algorithms. Figure 7 shows 
box plots of Dice, dVol and MD indexes of the segmentation results obtained using different methods, while 
Fig. 8 shows relative improvement of Dice values (%) achieved by RLBP method compared with other label fusion 
methods. Both of these figures illustrate that the RLBP method achieved competitive performance.

Figure 9 shows the scatter plots of the hippocampal volumes estimated using manual segmentation and the 
automatic segmentation methods, and the correlation coefficients are summarized in Table 5. All automatic seg-
mentation methods obtained the Pearson Correlation coefficients larger than 0.93, with one-tailed p < 0.001.

Hippocampal volumetric analysis results. The corrected volumes of the left and right hippocampi by 
groups are summarized in Table 6, indicating that the AD subjects had smaller hippocampus than the MCI 
and NC subjects, and the MCI subjects had smaller hippocampus than the NC subjects. Table 7 summarizes 
the Cohen’s effect sizes of the hippocampal volumes between various groups. These results indicated that the 
hippocampal volumes estimated by different methods were sensitive in capturing the differences between AD 
and NC as well as between MCI and NC groups. However, all the methods, including the manual segmentation 
method, had median or low effect sizes between the MCI and AD groups. For the left hippocampus, LLL and 

Figure 5. Mean Dice values of segmentation results obtained by majority voting label fusion method with 
different number of atlases (left), random local binary pattern method with different values of parameter L 
(right).

C
−4 5 −4 4 −4 3 4 2− −4 1 40rp

1 0.8746 ± 0.0432 0.8740 ± 0.0439 0.8668 ± 0.0447 0.8504 ± 0.0446 0.8252 ± 0.0446 0.8040 ± 0.0447

2 0.8798 ± 0.0416 0.8797 ± 0.0416 0.8735 ± 0.0410 0.8571 ± 0.0407 0.834 ± 0.0406 0.8165 ± 0.0406

3 0.8806 ± 0.0408 0.8809 ± 0.0406 0.8748 ± 0.0400 0.8583 ± 0.0392 0.8363 ± 0.0401 0.8179 ± 0.0388

4 0.8807 ± 0.0400 0.8813* ± 0.0400 0.8744 ± 0.0394 0.8586 ± 0.0392 0.8358 ± 0.0380 0.8162 ± 0.0373

5 0.8804 ± 0.0395 0.8811 ± 0.0394 0.8750 ± 0.0393 0.8578 ± 0.0383 0.8350 ± 0.0373 0.8150 ± 0.0379

Table 3. Dice values (mean ± std) of bilateral hippocampus segmentation results obtained using the RLBP 
method with different parameters C and rp

https://doi.org/10.1038/s41598-019-53387-9
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RLBP methods obtained medium effect sizes (between 0.5 and 0.8), while NLP, LBP, JLF, NLW-ML methods 
obtained small effect sizes (smaller than 0.5). For the right hippocampus, all methods obtained small effect sizes. 
However, the proposed RLBP method got the largest effect size.

The performance of different SVM classifiers built upon the age of each subject, as well as the left and right 
hippocampal volume measures estimated by different methods is shown in Fig. 10. DeLong statistical test was 
further used to compare the ROC curve of the RLBP method with other methods41. Table 8 lists the AUC values, 
their standard errors, and p-values of the statistical tests. It can be observed that the RLBP method obtained the 
best AUC value for distinguishing AD from NC subjects, and the JLF and RLBP methods obtained the best AUC 

Figure 6. Hippocampus segmentation results of a randomly selected subject using different methods.

NLP LBP LLL JLF NLW-ML RLBP

Dice
left 0.861 ± 0.031*

1.0e-10
0.862 ± 0.027*
1.0e-10

0.870 ± 0.026*
1.0e-7

0.874 ± 0.024
0.063

0.875 ± 0.025
0.989 0.876 ± 0.023

right 0.867 ± 0.029*
1.0e-10

0.869 ± 0.034*
1.0e-10

0.878 ± 0.024*
0.002

0.878 ± 0.026
0.143

0.880 ± 0.025
0.014 0.879 ± 0.024

Jaccard
left 0.757 ± 0.046*

1.0e-10
0.758 ± 0.041*
1.0e-10

0.772 ± 0.040*
1.0e-7

0.777 ± 0.037
0.067

0.779 ± 0.039
0.986 0.780 ± 0.035

right 0.766 ± 0.043*
1.0e-10

0.769 ± 0.049*
1.0e-10

0.783 ± 0.038*
0.002

0.784 ± 0.040
0.143

0.787 ± 0.039
0.012 0.785 ± 0.037

Precision
left 0.870 ± 0.035*

1.0e-10
0.875 ± 0.038*
1.0e-7

0.882 ± 0.036
0.823

0.872 ± 0.034*
1.0e-7

0.884 ± 0.033
0.146 0.884 ± 0.030

right 0.869 ± 0.041*
1.0e-10

0.871 ± 0.052*
0.0004

0.879 ± 0.039
0.237

0.867 ± 0.041*
1.0e-7

0.881 ± 0.040
0.007 0.879 ± 0.036

Recall
left 0.854 ± 0.045*

1.0e-10
0.851 ± 0.036*
1.0e-10

0.860 ± 0.038*
1.0e-7

0.878 ± 0.035
0.0005

0.867 ± 0.039
0.313 0.869 ± 0.034

right 0.867 ± 0.041*
1.0e-10

0.869 ± 0.036*
1.0e-10

0.878 ± 0.033*
0.001

0.891 ± 0.029
4.0e-6

0.881 ± 0.036
0.709 0.881 ± 0.033

dVol
(cm3)

left 0.139 ± 0.145*
1.0e-5

0.136 ± 0.131*
4.0e-7

0.131 ± 0.131*
4.0e-6

0.123 ± 0.107*
0.030

0.124 ± 0.125*
0.0009 0.107 ± 0.118

right 0.138 ± 0.140*
0.0006

0.138 ± 0.131*
0.001

0.122 ± 0.121
0.102

0.132 ± 0.103
0.056

0.123 ± 0.123
0.086 0.113 ± 0.111

MD
left 0.352 ± 0.200*

1.0e-10
0.277 ± 0.055*
1.0e-10

0.313 ± 0.707*
0.025

0.269 ± 0.060*
4.0e-6

0.248 ± 0.067
0.004 0.248 ± 0.041

right 0.332 ± 0.126*
1.0e-10

0.279 ± 0.082*
1.0e-7

0.249 ± 0.059*
2.0e-7

0.280 ± 0.076*
1.0e-7

0.248 ± 0.058
6.0e-7 0.257 ± 0.051

Table 4. Six metric index values (mean ± std, p-value) for the segmentation results obtained by different 
methods (‘*’ indicates RLBP method achieved statistically better results).
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for distinguishing pMCI from sMCI subjects. In particular, the RLBP method was better than NLP, LBP and 
NLW-ML in distinguishing pMCI from sMCI subjects (p < 0.05).

computational cost. The NLP, LLL, NLW-ML, and RLBP methods were implemented using MATLAB 7.14 
on a personal computer with a four-core 3.4-GHZ CPU, and the JLF method was implemented using C +  + . On 
average, the RLBP method required approximately 8.0 min to segment one side of the hippocampus, while the 
NLP, LLL, NLW-ML, and JFL methods required approximately 4.0 min, 6.0 min, 20 min, and 0.5 min respectively 
to segment one side of the hippocampus. Note that, this is the time for feature extraction and segmentation 
excluding image registration.

Discussion and conclusions
Machine learning based multi-atlas label fusion methods have obtained great success in a variety of image seg-
mentation problems. In these methods, feature extraction plays an important role10,27. In this study, we presented 
an RLBP feature extraction method for machine learning based label fusion. In contrast to the original LBP fea-
ture extraction method, the proposed RLBP method computes a large number of random combinations before 

Figure 7. Comparison of various methods for segmenting left hippocampus (top row) and right hippocampus 
(bottom row) in terms of the Dice, dVol and MD indexes. In each box, the central line is the median, and the 
central diamond is the mean. The edges of each box are the 25th and 75th percentiles.

Figure 8. Relative improvement (%) achieved by our method compared with alternative state-of-the-art 
methods in terms of Dice index values of individual testing images. The relative improvement rates of individual 
testing images were ranked separately for different methods.

https://doi.org/10.1038/s41598-019-53387-9


1 0Scientific RepoRtS |         (2019) 9:16839  | https://doi.org/10.1038/s41598-019-53387-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

the binarization. It is known that a small pixel difference is vulnerable to image noise, which may degrade the 
pattern recognition performance when the LBP features are used to build prediction models as the LBP method 
treats large and small differences in the same way. Benefiting from the random combination processing, the large 
difference will contribute more in the binarized features, which makes the proposed RLBP method more robust to 
image noise than LBP method. The random combination weights in the RLBP feature extraction method can be 
seen as random texture feature filters. Using a large number of random texture feature filters, the statistical prop-
erties of the image patches can be captured efficiently. The experiment results demonstrated that the proposed 

Figure 9. Volumetric comparison of hippocampus segmentation results obtained on using the automatic 
methods and manual labeling. The black line represents the unity line. From top to bottom: NLP versus RLBP 
method, LBP versus RLBP method, LLL versus RLBP method, JLF versus RLBP method, and NLW-ML versus 
RLBP method. The hippocampal volumes were corrected using the total intracranial volumes. The x and y axes 
are volume measures (cm3) of hippocampi segmented by different methods.

NLP LBP LLL JLF
NLW-
ML RLBP

Left 0.9416 0.9492 0.9467 0.9532 0.9504 0.9595

Right 0.9395 0.9420 0.9517 0.9610 0.9493 0.9572

Table 5. Pearson correlation coefficients between hippocampus volumes estimated using manual and 
automatic methods for both the left and right hippocampi.

Manual NLP LBP LLL JLF NLW-ML RLBP

NC
Left 3.111 ± 0.337 2.971 ± 0.309 2.967 ± 0.291 2.984 ± 0.308 3.111 ± 0.319 3.015 ± 0.307 3.029 ± 0.310

Right 3.151 ± 0.324 3.076 ± 0.294 3.101 ± 0.296 3.1145 ± 0.300 3.224 ± 0.314 3.130 ± 0.300 3.143 ± 0.316

MCI
Left 2.657 ± 0.484 2.567 ± 0.457 2.581 ± 0.471 2.602 ± 0.465 2.668 ± 0.528 2.594 ± 0.473 2.615 ± 0.483

Right 2.716 ± 0.543 2.678 ± 0.472 2. 700 ± 0.481 2.704 ± 0.493 2.774 ± 0.549 2.702 ± 0.497 2.727 ± 0.513

AD
Left 2.403 ± 0.532 2.353 ± 0.415 2.361 ± 0.434 2.352 ± 0.434 2.436 ± 0.489 2.367 ± 0.436 2.365 ± 0.454

Right 2.528 ± 0.576 2.500 ± 0.435 2.531 ± 0.446 2.524 ± 0.477 2.602 ± 0.502 2.521 ± 0.456 2.516 ± 0.485

Table 6. Corrected hippocampal volumes (mean ± std) by group (cm3).
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RLBP feature extraction method was more effective than the LBP method when using the same linear regression 
model in multi-atlas based hippocampus segmentation.

The comparison experiments with start-of-the-art multi-atlas label fusion methods demonstrated that the 
proposed RLBP method exhibited superior or comparable segmentation results, which were evaluated using by a 
variety of image segmentation metrics. It is worth noting that hippocampal volumes estimated by the automatic 
segmentation methods were highly correlated with the manual labeling results. The volumetric analysis exper-
iments demonstrated that all the hippocampus segmentation methods under comparison achieved promising 
performance for distinghusing NC from AD and MCI subjects based on their hippocampal volume measures. 
We further used a linear SVM classifier with the age of each subject as well as left and right hippocampal vol-
ume measures estimated by each method as features to distinguish AD patients from NC subjects (diagnosis 
study) and distinguishing sMCI from pMCI subjects (prognosis study). The results showed that the RLBP method 
obtained the best AUC values for distinguishing AD from NC subjects, as well as for distinguishing pMCI from 
sMCI subjects. However, because of the limited samples, the RLBP method was only statistically better than NLP, 
LBP and NLW-ML for distinguishing pMCI from sMCI subjects (p < 0.05).

In the present study, linear regression models were built by using RLBP features to achieve multi-atlas label 
fusion. In our experiments, we also tested sparse linear SVM classifiers with RLBP features for multi-atlas label 
fusion. However, the results were not as good as thosed obtained by the linear regression models. Compared 
with training a nonlinear SVM classification model27,33, the computational cost of training a linear regression 
model is much lower. Thus, the proposed RLBP method was faster than the existing nonlinear SVM classification 
based label fusion methods27,33. The RBLP based label fusion method achieved a segmentation accuracy similar to 
NLW-ML with a faster computation speed33. The proposed method could be further improved by incorporating 
deep learning techniques in order to extract more discriminative image features42–54.

Manual NLP LBP LLL JLF NLW-ML RLBP

NC-MCI
Left 1.0889 1.0348 0.9855 0.9682 1.0144 1.0566 1.0205

Right 0.9730 1.0131 1.0062 1.0061 1.0071 1.0434 0.9781

NC-AD
Left 1.5913 1.6888 1.6388 1.6808 1.6344 1.7172 1.7092

Right 1.3329 1.5542 1.5052 1.4823 1.4848 1.5783 1.5309

MCI-AD
Left 0.4996 0.4919 0.4849 0.5563 0.4562 0.4977 0.5333

Right 0.3355 0.3928 0.3633 0.3721 0.3252 0.3799 0.4209

Table 7. Cohen’s d effect sizes between the three diagnosis groups (NC-MCI, NC-AD, and MCI-AD).

Figure 10. ROC curves of the SVM classifiers built upon the age of each subject and hippocampal volume 
measures estimated by different methods under comparison. Left panel shows ROC curves for distinguishing 
AD patients from NC subjects, right panel shows ROC curves for distinguishing sMCI from pMCI subjects.

Manual NLP LBP LLL JLF NLW-ML RLBP

NC-AD 0.870 ± 0.047
0.151

0.889 ± 0.044
0.064

0.898 ± 0.043
0.528

0.901 ± 0.041
0.661

0.894 ± 0.045
0.437

0.902 ± 0.042
0.529 0.904 ± 0.042

sMCI- pMCI 0.667 ± 0.104
0.307

0.649 ± 0.103*
0.033

0.662 ± 0.105*
0.037

0.671 ± 0.105
0.126

0.732 ± 0.099
1.000

0.680 ± 0.107*
0.019 0.732 ± 0.098

Table 8. AUC values ± standard errors, p-values of the SVM classifiers built upon the age of each subject and 
hippocampal volume measures estimated by different methods under comparison (‘*’ indicates RLBP method 
achieved statistically better results).
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The proposed method is a learning-based technique, and therefore, its performance is bounded by the quality 
of the training and testing data. In this study, we adopted the EADC-ADNI dataset for both training and testing35. 
Particularly, 68 1.5 T and 67 3 T volumetric structural ADNI scans from different subjects were segmented using 
five qualified harmonized protocol tracers, the absolute interrater intraclass correlation coefficients of which were 
0.953 and 0.975 (left and right).

As a multi-atlas segmentation method, a major issue is the high computational cost of nonlinear image regis-
tration. To reduce the computational cost, several methods have been proposed, such as the enhanced atlas-based 
segmentation method55, optimized patch match label fusion method56, and multi-atlas learner fusion method57. 
In this study, we adopted an atlas selection strategy for selecting the most similar atlases for reducing the com-
putational cost of the nonlinear image registration9,10. However, it would be interesting to combine the proposed 
method with the enhanced atlas based segmentation method, the optimized patch match label fusion method, 
and the multi-atlas learner fusion method to further improve the computational speed. A very promising direc-
tion for improving both the computational efficiency and segmentation accuracy by utilizing deep learning tech-
niques has been reported in recent papers42–54. By using deep learning techniqures, more discriminative image 
features can be extracted to achieve improved segmentation performance.

In conclusion, we have proposed a novel RLBP method to extract image features for building prediction mod-
els to fuse labels in the framework of multi-atlas segmentation. The results of the evaluation experiments showed 
that the proposed RLBP method could achieve hippocampus segmentation accuracy competitive to or compara-
ble with that of state-of-the-art label fusion methods.
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